

200 Day Hill Road Suite 200 Windsor, CT 06095 (860) 298-0541 (860) 298-0561 FAX

Solvents Recovery Service of New England, Inc. Superfund Site

Southington, CT

Annual State of Compliance Report #5

October 31, 2012 through October 30, 2013

December 2013

Table of Contents

A. Introduction	1
B. Background	2
C. Site Operational History	6
D. Regulatory Status	6
E. Selected Remedy	7
F. Performance Standards	9
G. Summary of Activities Completed This Reporting Period	9
H. Updated Schedule	9
I. Hydraulic Containment & Treatment System Operations and Maintenance	9
J. Institutional Controls / Access Agreements	. 11
K. Construction, Operation and Maintenance Activities	. 11
L. Habitat Restoration	. 13
M. Memorandum of Agreement (MOA) with Southington Water Department / Town of	of
Southington	. 13
N. Groundwater Monitoring Program	. 13
O. Recommendations of Changes to any Monitoring Program	. 15
P. Groundwater Containment and Treatment Optimization Studies	. 15
Q. Costs Incurred this Reporting Period	. 15
R. References	. 16

Tables:

Table 1 - Summary of Activities Completed - October 30, 2008 through October 31, 2013

Table N-1 - Groundwater Monitoring Network and Sampling Events

Figures:

Figure 1 - Site Location

Figure 2 - Study Area

Figure 3A - Estimated Groundwater Plume and NAPL Areas – Overburden

Figure 3B - Estimated Groundwater Plume and NAPL Areas – Bedrock

Figure 4 - Planned Remedial Activities

Figure 5- Shallow Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 6- Middle Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 7- Deep Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 8 – Shallow Bedrock Groundwater Elevation Contours, May 10-12, 2010

Figure 9- Deep Bedrock Groundwater Elevation Contours, May 10-12, 2010

Attachments:

Attachment 1 - Project Schedule

Attachment 2 - Hydraulic Containment and Treatment System, Annual Demonstration of Compliance Report No. 5, October 31, 2012 through October 30, 2013 Attachment 3 - 2013 Groundwater Sampling and Monitored Natural Attenuation Report Attachment 4 - 2013 Supplemental HydraSleeveTM Groundwater Sampling Results Memo Acronyms and abbreviations used in this Annual Report and associated attachments:

1,1-DCE 1,1,1-TCA 1,2-DCA	1,1-dichloroethene 1,1,1-trichloroethane 1,2-dichloroethane
2,3,7,8-TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
ALEP	Action Level Exceedance Plan
AOC	Administrative Order on Consent
AQC	Air Quality Control System
ARARs	Applicable or Relevant and Appropriate Requirements
ATSDR	Agency for Toxic Substance and Disease Registry
B&M	Boston & Maine
BACT	Best Available Control Technology
BBL	Blasland, Bouck & Lee, Inc.
bgs	below ground surface
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
BIU	British Thermal Unit
°C	degrees Celsius
CA	chloroethane
CBAD	Call Before You Dig
CC	
CDCE	cis-1,2-dichloroethene
	Consent Decree
	Continuous Emissions Monitoring System
CERCLA	Comprehensive Environmental Response, Compensation and Liability
CEDCUS	ACI Comprehensive Environmental Response. Compensation and Liebility
CERCLIS	Information System
CH ₄	methane
CL&P	Connecticut Light & Power
CO ₂	carbon dioxide
COCs	Constituents of Concern
CT	carbon tetrachloride
CTDEP	Connecticut Department of Environmental Protection
CTDPH	Connecticut Department of Public Health
CVOCs	Chlorinated Volatile Organic Compounds
CWA	Clean Water Act
DCE	dichloroethene
DCM	dichloromethane
DCP	Demonstration of Compliance Plan
ddms	de maximis Data Management Solutions
DHC	Dehalococcoides
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen

DQA DQOs DRE DRO EISB ELUR °F Fe(OH) ₃ f _{oc} FS FSP PMC	Data Quality Assessment Data Quality Objectives Destruction/Removal Efficiency Diesel Range Organics Enhanced In-Situ Bioremediation Environmental Land Use Restriction degrees Fahrenheit ferrous hydroxide fraction of solid organic carbon in soil Feasibility Study Field Sampling Plan Pollutant Mobility Criteria applicable to designated Class "GA"
	groundwater areas
GAC	granular activated carbon
GUIEUS	Study
apm	gallons per minute
ĞRO	Gasoline Range Organics
GWPC	Groundwater Protection Criteria
GWTF	Groundwater Treatment Facility
Н	Henry's Law Constant
H ₂	hydrogen
H ₂ O	water
H_2S	hydrogen sulfide
HAP	hazardous air pollutant
HCI	hydrochloric acid
HCTS	Hydraulic Containment and Treatment System
HDPE	High-Density Polyethylene
HLVs	Hazard Limiting Values
HZ	Heated Zone
ID	inner diameter
IFT	interfacial tension
IMS	Interim Monitoring and Sampling
IQAT	Independent Quality Assurance Team
IRIS	Integrated Risk Information System
ISTD	In-Situ Thermal Desorption
ISTR	In-Situ Thermal Remediation
J&E	Johnson & Ettinger
K _d	soil-water partition coefficient
kg	kilogram
K _{oc}	chemical-specific organic carbon partition coefficient
LAER	Lowest Achievable Emission Rate
lbs	pounds
LNAPL	light non-aqueous phase liquid

MAROS	Monitoring and Remediation Optimization System
MASC	Maximum Allowable Stack Concentration
MCLs	Maximum Contaminant Levels
MCLG	Maximum Contaminant Level Goal
ma/ka	milligrams per kilogram
ma/L	milligrams per liter
MIBK	4-methyl-2-pentanone (methyl isobutyl ketone)
mL	milliliter
MNA	Monitored Natural Attenuation
MOA	Memorandum of Agreement
N ₂	nitrogen
NA	Natural Attenuation
NAPL	non-aqueous phase liquid
ng/l	nanograms per liter
NH₄ ⁺	ammonia
NOAA	National Oceanic and Atmospheric Administration
NO ₂	nitrite
NO ₂	nitrate
NSR	New Source Review
NTCRA	Non-Time-Critical Removal Action
Ω_2	
0&M	Operations and Maintenance
	outer diameter
OH.	hydroxyl radical
OIS	On-Site Intercentor System
OMM	Operation Maintenance and Monitoring
ONOGU	Observed NAPL in the Overburden Groundwater Unit
ORP	oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OSWER	Office of Solid Waste and Emergency Response
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated hiphenyls
PCDDs	polychlorinated dipenzo-p-dioxins
PCDEs	polychlorinated dibenzofurans
PCE	tetrachloroethylene
PCR	Polymerase Chain Reaction
PEI	Permissible Exposure Limit
PFD	process flow diagram
PID	photoionization detector
PIPP	Pre-ISTR Preparation Plan
PLC	Programmable Logic Controller
POP	Project Operations Plan
nnh	parts per billion
PPF	personal protective equipment

ppm	parts per million
PSD	Prevention of Significant Deterioration
psig	pounds per square inch, gauge
PVČ	polyvinyl chloride
QAPP	Quality Assurance Project Plan
R^2	correlation coefficient
RAOs	Response Action Objectives
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RDWP	Remedial Design Work Plan
RD/RA	Remedial Design/Remedial Action
Redox	Reduction-Oxidation
RDFC	Residential Direct Exposure Criteria
RH	Relative Humidity
RI	Remedial Investigation
ROD	Record of Decision
RSRs	Remediation Standard Regulations
SAP	Sampling and Analysis Plan
SCAP	Supplemental Containment Action Plan
SCM	Site Concentual Model
SQ ²⁻	sulfate
SOP	Standard Operating Procedure
SOW	Statement of Work
SPLP	Synthetic Precipitation Leaching Procedure
SRSNE	Solvents Recovery Service of New England Inc.
SSO	Site Safety Officer
SVOCe	semi-volatile organic compounds
SWD	Southington Water Department
SWPC	Surface Water Protection Criteria
	Target Analyte List
TCE	trichloroethylene
тсн	thermal conduction heating
	Toxicity Characteristic Leaching Procedure
TEEs	Toxic Equivalency Eactors
	Toluene Ethylbenzene and Xylenes
	Toxic Substances Control Act
TT7	thermal treatment zone
	micrograms per liter
	United States Environmental Protection Aconov
	United States Fish and Wildlife Service
	United States Coological Survey
	ultraviolet
VC	vinyi chionae

VIVapor IntrusionVOCvolatile organic compoundWHOWorld Health Organization

A. Introduction

On October 30, 2008, the United States Environmental Protection Agency (USEPA) lodged a Consent Decree (CD) with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE). The CD was entered by the Court on March 26, 2009. The CD addresses Remedial Design/Remedial Action (RD/RA) activities for the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Appendix B to the CD is a Statement of Work (SOW) that defines the required RD/RA activities and deliverables.

Section VIII.B of the SOW requires the Settling Defendants to submit an Annual State of Compliance Report one year after lodging of the CD and annually thereafter, to USEPA for approval or modification, after reasonable opportunity for review and comment by Connecticut Department of Energy and Environmental Protection (CTDEEP). Section 62.e of the CD requires a demonstration of the amounts of the Rolling Oversight Cost Cap and the Available Balance. This *Annual State of Compliance Report #5* (report) has been prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to the CD, to address these CD and SOW requirements. This report documents Site activities during the period of October 31, 2012 through October 30, 2013 (the "reporting period").

As specified in SOW Section VIII.B, this report includes a comprehensive evaluation of all monitoring required by this SOW, including, but not limited to:

- compliance with the Performance Standards of the Hydraulic Containment and Treatment System and Severed Plume;
- Institutional Controls;
- construction, operation and maintenance;
- habitat restoration;
- hydraulic containment;
- the Memorandum of Agreement with Southington Water Department / Town of Southington; and
- groundwater monitoring program, including monitored natural attenuation.

Also required in the report is an assessment of the progress being made towards achieving the Performance Standards, as well as recommendations for changes to any

monitoring program to address deficiencies identified during the evaluation. Proposals for reductions in monitoring, along with justifications, are provided as appropriate.

B. Background

The SRSNE Site is located on approximately 14 acres of land along Lazy Lane in Southington, Hartford County, Connecticut, approximately 15 miles southwest of the city of Hartford (Figure 1). The physical setting of the Site – including the regional geology, overburden geology, bedrock geology, hydrogeology, groundwater use and classification, drainage, and surface water use and classification – is summarized below. This information is also described in detail in prior report submittals, including the *Remedial Investigation Report* (Blasland, Bouck & Lee, Inc. [BBL] 1998) and the *Feasibility Study Report* (BBL and USEPA 2005), and the draft Remedial Design Work Plan (RDWP) (ARCADIS, April 2009).

The SRSNE Site includes portions of several properties/areas that are referred to within the RDWP consistent with terminology established in prior Site-related documents. These properties/areas include the former SRSNE Operations Area, the former Boston & Maine railroad right-of-way, the former Cianci Property, and the Town of Southington Well Field Property (Town Well Field Property). These areas are shown on Figure 2, and further described below:

- Former SRSNE Operations Area: The former SRSNE Operations Area comprises approximately 2.5 paved acres on a 3.7-acre lot South of Lazy Lane in the Quinnipiac River basin approximately 600 feet west of the Quinnipiac River channel. This is the area where SRSNE historically performed solvent recovery and related operations. The Operations Area is bordered on the east (downhill) by an abandoned railroad right-of-way and the former Cianci Property; to the north by commercial businesses; to the west (uphill) by private property; and to the south by private property, the Connecticut Light & Power (CL&P) electrical transmission line easement, and the Town Well Field Property.
- Railroad Right-of-Way: The railroad right-of-way is an approximately 50-foot wide corridor running north-south that separates the former Operations Area (to the west) from the former Cianci Property (to the east). The railroad was historically owned and operated by Boston & Maine, but is presently abandoned and the rails have been removed. CT DEP purchased the right-of-way in this area in support of extending the Farmington Canal Heritage Trail, a rails-to-trails greenway, from New Haven to the Massachusetts border (draft *Preliminary Reuse Assessment* [USEPA 2003]).
- Former Cianci Property: The former Cianci Property is a 10-acre parcel located immediately east of the Operations Area and railroad right-of-way. The Quinnipiac

River borders the eastern edge of the former Cianci Property. Lazy Lane is to the north, and the Town Well Field Property borders the property to the south.

• Town Well Field Property: The Town Well Field Property consists of approximately 28 acres of undeveloped land south of the former Cianci Property and southeast of the Operations Area. The well field is bounded to the east by the Quinnipiac River and to the south by the Quinnipiac River and Curtiss Street. The railroad right-of-way and the Delahunty Property border the western perimeter of the well field. The CL&P easement runs northwest-southeast through the northern portion of the Town Well Field Property.

Town Production Wells No. 4 and 6 are approximately 2,000 and 1,400 feet south of the SRSNE Property, respectively. The Quinnipiac River divides the area between Wells No. 4 and 6. Production Well No. 6 is accessible using dirt roads originating from Lazy Lane or Curtiss Street, while Well No. 4 is only accessible from Curtiss Street. Production Well No. 4 was installed in August 1965 and provided drinking water to the Town of Southington from July 1966 to December 1977. Production Well No. 6 was installed in April 1976 and was pumped from May through October 1978, May through July 1979, and March 1980. Both wells have been inactive since that time.

Within these areas, "the Site" includes areas where Site-related constituents have come to be present in soil (including wetland soil) and groundwater at concentrations exceeding SOW-specified cleanup levels. This includes observed and interpreted non-aqueous phase liquid- (NAPL-) containing areas, impacted soils in the Operations Area, railroad right-of-way, and Cianci Property, and areas of impacted groundwater in both the overburden and bedrock zones. These areas, shown on Figures 3A (overburden) and 3B (bedrock), are generally described as follows:

- **Overburden NAPL Area:** This is the area where NAPL has been observed or inferred to exist in overburden soils based on the findings of prior investigations. The estimated extent of the Overburden NAPL Area includes portions of the Operations Area, the railroad right-of-way, and a portion of the Cianci Property, as shown on Figure 3A. This area has been further delineated in the northwest corner of the former Operations Area as component of the pre-design investigations referenced in the RDWP.
- **Overburden Groundwater Area:** The Overburden Groundwater Area is the portion of the Site where dissolved volatile organic compounds (VOC) concentrations in the overburden aquifer exceed cleanup goals. While the overburden groundwater is typically considered in three zones (each approximately one-third of the saturated thickness), the composite extent of this area (based on *Feasibility Study Report* [BBL and USEPA 2005] data) is depicted on Figure 3A. The overburden groundwater VOC plume extends south to the Town Well Field Property. The extent

of the overburden groundwater area, particularly to the east of the Quinnipiac River, is subject to further assessment and delineation as part of the investigations referenced in the RDWP.

- **Bedrock NAPL Area:** The Bedrock NAPL Area is the area where NAPL has been observed or is inferred to exist based on prior site investigations. This includes a majority of the former SRSNE Operations Area and Cianci Property, as shown on Figure 3B.
- Bedrock Groundwater Area: This includes the portion of the Site where dissolved VOC concentrations in the bedrock aquifer exceed groundwater cleanup goals (based on *Feasibility Study Report* [BBL and USEPA 2005] data). The bedrock groundwater VOC plume extends south into the central portion of the Town Well Field Property, represented in figures 10 and 11 in the Draft 2012 MNA report (ARCADIS, November 2012)
- Severed Plume: The portion of the affected groundwater zone that is outside the groundwater capture zone of the Non-Time-Critical Removal Action 1 (NTCRA 1) and NTCRA 2 extraction systems (described below), which contains Site-related constituents (primarily VOCs) above detectable levels is referred to as the severed plume. The approximate location and extent of the severed plume is shown on Figure 3A.

Other key Site features referenced include the Hydraulic Containment and Treatment System (HCTS). The HCTS consists of the on-site groundwater treatment system and the two groundwater extraction systems described as follows:

• NTCRA 1 Groundwater Extraction System: The NTCRA 1 groundwater extraction system ("NTCRA 1 system") is located within the NTCRA containment area on the Cianci Property east of the Operations Area (Figure 4). It consists of a steel sheet pile wall through the overburden to the top of bedrock, and 12 overburden groundwater extraction wells (RW-1 through RW-12) west (formerly upgradient) of the sheet pile wall. Groundwater is extracted from the wells to maintain hydraulic gradient reversal across the sheet pile wall. This system was installed in 1995 pursuant to Administrative Order on Consent (AOC) I-94-1045, effective October 4, 1994. Pumping from the NTCRA 1 system was initiated in July 1995.

In December of 2009, de maximis submitted a letter to the Agencies summarizing changes to the NTCRA-1 Demonstration of Compliance Plan (DCP) as a result of the abandonment of monitoring well CPZ-9 (one of the ten NTCRA I compliance monitoring points) and decommission of recovery wells RW-5 and RW-6. Monitoring well abandonment activities at the site have been undertaken in accordance with Attachment N of the RDWP.

NTCRA 2 Groundwater Extraction System: The NTCRA 2 groundwater extraction system ("NTCRA 2 system") consists of two overburden extraction wells (RW-13 and RW-14) and one bedrock extraction well (RW-1R) just north of the CL&P easement (Figure 4). These wells were installed pursuant to AOC 1-97-1000, effective February 18, 1997, and began operating in 1999, 2007, and 2001, respectively. The NTCRA 2 system includes a groundwater extraction well in the bedrock (RW-1R) and two overburden groundwater extraction wells (RW-13 and RW-14). This extraction well cluster is located in the Town Well Field Property north of the CL&P easement.

In 2013, the average combined NTCRA 1 and NTCRA 2 groundwater extraction systems pumping rate was 36.1 gallons per minute. The capture zones created by the NTCRA 1 and 2 groundwater extraction systems are shown on Figure 3A (overburden) and Figure 3B (bedrock). The operation of the combined NTCRA 1 and NTCRA 2 systems has successfully contained the overburden and bedrock VOC plumes, creating the severed plume within the Town Well Field Property. Approximately 18,978,000 gallons of groundwater were extracted, treated and discharged during this monitoring period.

On-site Groundwater Treatment System: The combined operations of the extraction systems and the treatment facility were previously referred to as the "NTCRA 1 and NTCRA 2 Groundwater Extraction and Treatment System" or "NTCRA 1/2 Groundwater System." Following entry of the CD, continued operation of the NTCRA 1/2 Groundwater System became part of the ROD-specified remedial approach for groundwater, and the system is now referred to as the HCTS (SOW Section V.A).

Groundwater extracted from the NTCRA 1 and 2 systems is treated on site with a process that was originally constructed as part of the NTCRA 1 system (Figure 4). The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility. The treatment system consists of the following unit processes: metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995. Approximately 17,340 pounds of VOCs have been removed from the groundwater since system startup.

C. Site Operational History

The SRSNE facility began operations in Southington in 1955 (ATSDR 1992). From approximately 1955 until the facility's closure in 1991, spent solvents were received from customers and distilled to remove impurities, and the recovered solvents were returned to the customer or sold to others for reuse. Based on a partial record of materials processed at the SRSNE facility (excluding pre-1967 operations files, which were destroyed in a fire), SRSNE handled in excess of 41 million gallons of waste solvents, fuels, paints, etc. Additional details regarding the operational history are provided in the *Remedial Investigation Report* (BBL 1998).

D. Regulatory Status

The SRSNE Site was added to the National Priorities List (NPL) on September 8, 1983. Since that time USEPA and the State of Connecticut have implemented a variety of enforcement, regulatory and response actions, culminating with the issuance of the Proposed Plan and Record of Decision (ROD) in September 2005. After issuing the ROD, the USEPA and SRSNE Site Group negotiated the terms of the CD.

Key regulatory milestones in the recent history of the Site, based on lists included on USEPA's project website (USEPA 2009) and in the fact sheet USEPA developed in support of the 2005 Proposed Plan (USEPA 2005b), are as follows:

Regulatory Milestone	Year
USEPA adds the Site to the NPL; SRSNE signs a consent decree with USEPA to install a groundwater recovery system and store/manage hazardous waste on site.	1983
USEPA and the State of Connecticut take enforcement action to require cleanup of the facility operations and the property.	1983-1988
USEPA initiates the Remedial Investigation for the Site, conducting three phases of investigation that are presented in a four-volume report (HNUS 1994).	1990
SRSNE operations cease.	1991
USEPA conducts a Time-Critical Removal Action to remove contaminated soils from the railroad grade drainage ditch and to remove some chemicals stored at the property to an off-site location.	1992
USEPA and the SRSNE Group enter into an Administrative Order on Consent (AOC) for Removal Action to construct and operate a pump and treat system to contain the principally contaminated overburden groundwater (the NTCRA 1 work). Other work conducted under this AOC included the construction of a mitigation wetland in the northeast corner of the Cianci Property, implementation of a full-scale phytoremediation study within the NTCRA 1	1994

sheet pile wall, and extension of public water to three buildings adjacent to the Site.	
USEPA issues an Action Memorandum for a second NTCRA (NTCRA 2) to hydraulically	1005
contain VOC-impacted bedrock groundwater down gradient of the NTCRA 1 system.	1995
USEPA and the SRSNE Site Group enter into a second AOC for Removal Action and	
Remedial Investigation/Feasibility Study (RI/FS) to expand the groundwater containment	
system and complete site investigations. Work under this AOC resulted in the completion of	1996
the Site RI/FS, implementation of NTCRA 2, and the decontamination, demolition and	
removal of the remaining buildings and tanks from the Operations Area.	
SRSNE Site Group operates groundwater controls in the overburden and bedrock aquifers,	1996 - 2004
completes remedial investigations, and conducts feasibility studies.	1990 - 2004
USEPA issues the Proposed Plan in June and holds two public meetings; the public	2005
comment period runs from June through August.	2005
USEPA issues the ROD for the Site, which describes the final remedy.	2005
SRSNE Site Group continues operation of the NTCRA 1 and 2 hydraulic containment and	2005-2008
treatment systems	2003-2000
USEPA and SRSNE Site Group sign CD to implement the RD/RA activities.	2008
SPSNE Site Group continues operation of HCTS	2008 -
	present
Court enters CD; Remedial Design work initiated.	2009
Annual Report #1	2009
1 st Five Year Review Report	2010
USEPA issues Remedial Design Work Plan Approval	2010
USEPA issues approval of PIPP 100% Design and RAWP	2010
Initiated Pre-ISTR Preparation Plan Construction Activities	2010
EPA, CTDEEP and SRSNE Site Group hold open house for public at Site	2010
Annual Report #2	2010
ISTR Conceptual Design Approval	2011
Approval of ISTR 100% Wellfield Design	2011
Annual Report #3	2011
Institutional Control Plan revisions based on March 2012 comments and May 2012 meeting	2012
Approval of the use of Hydrosleeve for interim sampling	2012
Approval for low flow screen length	2012
Completed delineation of extent of groundwater contamination	2012
Completed Pre-ISTR Preparation Plan Construction Activities	2012
Annual Report #4	2012
Initiated ISTR construction	2013
EPA, CTDEEP and SRSNE Site Group hold open house for public at Site	2013
Annual Report #5	2013

E. Selected Remedy

The overall purpose of RD/RA activities is to design and implement the selected remedial approach for the Site. The selected remedy, developed by combining components of different alternatives for source control and management of migration to obtain a comprehensive approach for Site remediation, was described in the ROD. Key elements are summarized as follows:

 Treat waste oil and solvents – where present as NAPL in the subsurface in the overburden aquifer (i.e., the Overburden NAPL Area) – using in-situ thermal treatment.

Following in-situ thermal treatment, cap the former SRSNE Operations Area. The cap will be low-permeability and multi-layered and is to be designed, constructed, and maintained to meet the requirements of Resource Conservation and Recovery Act (RCRA) Subtitle C. As described in the "Re-use of Excavated Material from Railroad Right of Way for ISTR Area Fill" memorandum (de maximis, inc., April 29, 2010), soils excavated from the Rail Road Right of Way will be incorporated as fill material in the Thermal Treatment Zone (TTZ). Excavation of soil in a specific portion of the former railroad right-of-way to a depth of 4 feet – followed by backfill to match surrounding grade –will meet the direct exposure criteria (DEC) and pollutant mobility criteria (PMC) requirements of the Connecticut Remediation Standard Regulations with the understanding that an Activity and Use Limitation (ELUR) would subsequently be established for this area.

- Excavate soils exceeding cleanup levels from certain discrete portions of the former Cianci Property. The estimated limits of soil removal on the former Cianci Property (five discrete excavation areas) are shown on Figure G-1 of the *Post-Excavation Confirmatory Sampling Plan* (Attachment G to the RDWP); these limits are subject to modification based on additional sampling proposed as part of remedial design. Provided that concentrations of polychlorinated biphenyls (PCBs) do not warrant offsite disposal, soils excavated from the former Cianci Property (and from other areas excavated outside the cap limits as part of other RD/RA activities) may be relocated to the former SRSNE Operations Area for placement beneath the cap.
- Capture and treat (on site) groundwater in both the overburden and bedrock aquifers that exceeds applicable federal drinking water standards and risk-based levels. This will be achieved through continued operation, maintenance, and modification (as needed) of the HCTS.
- Monitored natural attenuation of the groundwater plume outside the capture zones (i.e., the severed plume, shown on Figure 3A of the RDWP) that exceeds cleanup levels.

- Monitor natural degradation of constituents in the groundwater plume inside the capture zones and within the Bedrock NAPL Area (shown on Figure 3B of the RDWP).
- Implement institutional controls (i.e., Environmental Land Use Restrictions) to minimize the potential for human exposure to Site-related constituents in the subsurface soils and to prohibit activities that might affect the performance or integrity of the cap.
- Monitor groundwater and maintain the cap over the long term.

F. Performance Standards

Section IV of the SOW establishes Performance Standards for the various affected media at the SRSNE Site. It also establishes Performance Standards for other aspects of the RD/RA, including subsurface NAPL in the overburden and bedrock aquifers, performance of the multi-layer cap, hydraulic containment and treatment, the severed plume, habitat restoration, environmental monitoring, and institutional controls. These non-media-specific Performance Standards are summarized and addressed (to the extent applicable at this point in the RD/RA process) in the various task-specific work plans summarized in the RDWP.

Performance Standards for soil, wetland soil, and groundwater have been reviewed and compared to the current applicable USEPA and CTDEP standards and guidance. Based on this review, it was concluded that none of the USEPA or CTDEP criteria for Site-related constituent have been revised since the ROD was issued. However, the CTDEP has published a lower detection limit for 1,2,4-trichlorobenzene in water (0.5 micrograms per liter [ug/L] rather than the prior value of 2 ug/L). Because the detection limit is the cleanup level for groundwater (discussed below), this modification is noted on the copy of Table L-1 from the ROD that is provided as Appendix 1 to the RDWP. No other modifications were warranted to Tables L-1 or L-2 of the ROD to reflect current published guidance and standards.

G. Summary of Activities Completed This Reporting Period

A summary of activities completed during this reporting period is provided within the attached Table 1.

H. Updated Schedule

An updated project schedule is included as Attachment 1 to this report.

I. Hydraulic Containment & Treatment System Operations and Maintenance

The HCTS achieved compliance during this reporting period with the Demonstration of Compliance Requirements (see Attachment B to the SOW). Details of the operation are provided as Attachment 2 to this report.

In addition to the parameters required by the Demonstration of Compliance Requirements, groundwater temperature data have been collected within the sheetpile wall to provide a baseline dataset of temperature variation over time. These data are being collected pursuant to Section 5.3.3 of Appendix N of the RDWP (Monitoring Well Network Evaluation and Groundwater Monitoring Program).

Map views and cross-sections to demonstrate hydraulic containment in accordance with EPA guidance from January 2008 entitled *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems* (EPA/600/R-08/003) are provided in Figures 5 through 9. These figures depict groundwater elevation contours measured on May 10-12, 2010 (i.e., the most current comprehensive groundwater gauging event), and generalized overburden and bedrock capture zone boundaries for the NTCRA 2 extraction wells, which are now part of the HCTS. The estimated capture zone boundaries are based on a combination of measured water level data, historical and recent groundwater modeling results and stagnation point calculations presented in the FS Report (BBL and USEPA, May 2005; Appendix A), and updated VOC concentration data at select monitoring wells (collected in June 2013). Although the extraction rates at the NTCRA 2 wells vary as a function of seasonal and long-term precipitation rates and well redevelopment events, the typical long-term average pumping rate has been approximately 20 to 30 gpm.

To maintain recovery rate and hydraulic control for NTCRA 2, overburden extraction wells RW-13 and RW-14 were redeveloped in April 2013. The combined NTCRA 2 extraction rate during the reporting period averaged 30.4 gpm.

Figures 5 through 9 also show the locations of former Interim Monitoring and Sampling (IMS) wells that were used to monitor the VOC plume between the completion of the RI and the issuance of the ROD. These wells have the most complete data sets and concentration trends at these wells are presented in figures 7 through 11 of the Draft 2013 MNA Report). Middle overburden well MW-03 (Figure 8-Draft 2013 MNA Report) and shallow bedrock well MW-127C (Figure 10-Draft 2013 MNA Report) are the only monitoring wells south of the Connecticut Light & Power (CL&P) easement that contained VOC concentrations above the Interim Cleanup Levels (ICLs) before the start-up of the NTCRA 2 system, but they declined to below the ICLs following NTCRA 2 system start up. As shown on Figures 7 through 11of the Draft 2013 MNA Report, the VOC concentration trends at the former IMS wells are generally declining or have too many samples with no detected VOCs to support trend analysis.

VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC]) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS). The exception is PZO-2M and MW-1003DR. Samples collected from these wells in June 2013 contained benzene, tetrachloroethene (PCE) and/or trichloroethene (TCE) at concentrations above their respective action levels with concentrations up to three orders of magnitude higher than prior results. Each well was resampled later in June 2013, with results similar to those in the initial June sample. To further assess concentration trends in these and other nearby wells, two additional rounds of groundwater sampling were performed: one in July 2013 and the second in September 2013. Sampling results from both events yielded concentrations above action levels. Additional details regarding these results can be found in section N of this report. Additional sampling is scheduled for November 2013 and additional evaluation of the NCTRA 2 system is being performed to assess the possibility of additional yield of the system.

J. Institutional Controls / Access Agreements

Institutional controls in the form of deed restrictions are already in place on the Operations Area and Cianci Properties that prohibit all uses except for those associated with environmental response actions, as further described in CD paragraph 26. No additional institution controls were implemented during this reporting period. In 2010, the SRSNE Site Group took control of the Voting Trusts that control the Operations Area Property and the Cianci Property, respectively, which allows the implementation of additional institutional controls on those properties when appropriate. Additional institutional controls will be implemented pursuant to the Institutional Control Plan that has been developed as required by SOW Section V.B.7. The Institutional Control Plan was revised and resubmitted in May 2013 to address comments received in December 2011 and May 2012 meeting. The revised plan includes the use of groundwater modeling to evaluate properties where future pumping may cause migration of the plume. The properties included in this "buffer zone" will be controlled with an ordinance through the local Health Department, a process that has been used by the Town of Southington in recent years. A conference call between representatives of EPA, CTDEEP, CT AG and the SRSNE Site Group on July 18, 2013 was held to discuss the IC Plan.

Access agreements were needed to conduct RD activities obtained from four (4) property owners during this reporting period. Access was granted to six properties in 2009; negotiations for access to the remaining four properties were obtained during 2010.

K. Construction, Operation and Maintenance Activities

Installation of the thermal well field commenced on April 23, 2013 and drilling program consisted of utilizing two mini rotasonic rigs. As a result of sheen, staining, and NAPL observed in wells outside the thermal treatment zone (TTZ) additional investigation was done to delineate the extent of the NAPL. This investigation resulted in eight additional heater wells added southwest of the TTZ and six heater wells were added to the east.

The draft 100% ISTR Design and Remedial Action Work Plan (RAWP) was submitted on July 9, 2013. EPA and CTDEEP provided comments on September 20 and October 1, 2013, respectively. A response to comments was provided on October 25, 2013, and a meeting with EPA and CTDEEP was held on October 30, 2013 to review the responses to comments.

The installation of the thermal wellfield was completed on September 24, 2013, below is a summary of work completed during the installation of the thermal well field:

Subsurface Item	Number Planned	Number Installed	% Complete
Heater Wells	593	602	102%
Vapor Extraction Wells (Vertical)	534	556	101%
Temperature Monitoring Points	97	99	102%
Vacuum Monitoring Points	64	65	102%
Groundwater Monitoring Wells	7	7	100%

All cuttings generated during the installation of the well field were placed in a designated area that has been constructed within the TTZ, so that they will also be thermally treated.

During the course of the well field installation, it was noted that the depth to bedrock was averaging approximately 3 feet deeper than predicted (and used in TerraTherm's bid, design, and cost estimates). The depth to rock was based on, historical knowledge, which included the prior NAPL delineation study, and a limited number of wells installed in the Operations Area. The method of determining "top of rock" was also different, during the NAPL delineation study geoprobes were utilized, which are stopped in the weathered zone of the rock. The ISTR heaters were installed with

rotasonic drilling, which does not easily differentiate weathered rock from the overlying till, so the drilling proceeds into the "competent rock".

There are now more depth intervals for heaters, the original design planned to use three different lengths of heaters for the wellfield (15', 18' and 24'), with the shortest on the western side, and the longest on the eastern side of the TTZ. Based on the variability of depth to rock, and the need to heat the entire overburden thickness, there are now 7 different heater lengths (15', 17.5', 20', 22.5', 25', 27.5' and 30').

On September 30, 2013 Elastizell, Inc. mobilized to the site and commenced installation of the thermal cap. The thermal cap consists of an 11-inch layer of 30psi strength concrete and a 3-inch layer of 45psi strength over the top, resulting in a 14-inch layer of concrete. This thickness was required to insure the concrete could achieve the proper R factor. Steps were constructed on the terraces to insure proper thickness overall. Installation of the cap was completed on October 30, 2013.

L. Habitat Restoration

No habitat restoration activities were conducted during this reporting period. A preremediation assessment of the types, extent and condition of existing habitats on site was conducted in June 2009 pursuant to RDWP Attachment H (Habitat Restoration Work Plan).

M. Memorandum of Agreement (MOA) with Southington Water Department / Town of Southington

A draft MOA was prepared during the Annual Report #1 reporting period as required by SOW Section V.B.3. This draft MOA was submitted for EPA review on September 16, 2009 and resubmitted based upon EPA comments on June 23, 2010. EPA provided further comments on the MOA on October 28, 2011. The revised MOA was provided for further EPA review on November 15, 2011. Once final issues with are negotiated. EPA will issue the final MOA for signature by all parties. Execution of the MOA will trigger finalization and submittal of the Supplementary Containment Action Plan (SCAP). The SCAP sets forth the process the Group would undertake to enhance containment of groundwater in the event SWD re-starts pumping from the Town Well Field Property. A draft SCAP in 2009 was completed in 2009 and it is anticipated that only minor changes will be required to reflect the final MOA.

N. Groundwater Monitoring Program

A comprehensive groundwater monitoring program was scoped in *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010). A summary of the planned sampling frequency is provided in the attached Table N-1 from the RDWP. The first comprehensive groundwater sampling event occurred during May/June 2010 which supported the first Five-Year Review, submitted in 2010. This sampling event provided data for the draft 1st Monitored Natural Attenuation Report which was submitted in September 2010.

In accordance with *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010), the 2013 annual groundwater sampling event was performed in June 2013 and included sampling of groundwater at 44 monitoring wells. The 2013 Groundwater Sampling and Monitored Natural Attenuation Report (Attachment 3) and Supplemental HydraSleeve[™] Groundwater Sampling Results Memo (Attachment 4) summarizes the 2013 groundwater sampling events performed in accordance with the and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits. Sampling results are discussed below:

Benzene was detected (1.3 μ g/L) above Action Levels(1.0 μ g/L) in monitoring well MW-707DR, a deep bedrock monitoring well located just beyond the southern extent of the estimated capture zone boundary, in the June 2013. This is consistent with the benzene concentration detected (1.1 μ g/L) at well MW-707DR in June 2012, which were also above action levels.

Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 79 μ g/L and 250 μ g/L, respectively, in the June 2013 sample. These concentrations are above the Action Level of 5.0 μ g/L for both compounds. This was the first detection of PCE above the Action Level at this well. TCE was detected above the Action Level at this well in June 2012 (9.9 μ g/L).

PZO-2M was re-sampled for confirmation purposes later in June 2013; PCE and TCE were again detected at concentrations similar to those in the initial June 2013 sample. Additional groundwater sampling was performed in July 2013 to further assess concentration trends in the vicinity of this well.

Benzene, PCE and TCE were also detected at deep bedrock monitoring well MW-1003DR at concentrations above the respective Action Levels. This well was also resampled later in June 2013 and the results confirmed. Additional groundwater sampling was performed in July 2013 to further assess concentration trends in the vicinity of this well. No metals (either total or dissolved) exceeded their respective MCLs or GWPC, with the exception of total manganese measured at well MW-126B in 2013 (680 μ g/L total manganese, compared to the GWPC of 500 μ g/L). MW-126B is an upgradient, background well located north of the former Operations Area of the SRSNE Site.

Based on the results from the July sampling event, another round of sampling was performed in September 2013. Ten monitoring wells were sampled during this event,

including nine of the wells sampled in July 2013 and MW-903M. Consistent with the July 2013 event, samples were collected using HydraSleeveTM and submitted for analysis of VOCs.

The July 2013 sampling indicated PCE and TCE concentrations in PZO-2M and MW-1003DR remained above Action Levels at concentrations generally consistent with the June 2013 data; concentrations were slightly higher at PZO-2M and slightly lower at MW-1003DR. In September, PCE and TCE concentrations remained above Action Levels at monitoring wells PZO-2M and MW-1003DR, although concentrations were lower than during the June and July events.

MW-707DR, which is located outside of the inferred hydraulic capture zone, has contained benzene at a concentration at, near or slightly above the Action Level of 1 microgram per liter (ug/L). The September 2013 sample indicated no VOCs above Action Levels. MW-1002DR is a deep bedrock well upgradient of MW-1003 and has also contained PCE and TCE at concentrations above the Action Levels. With the exception of the wells and specific VOCs discussed above, the supplemental sampling of 41 wells in July 2013 and 10 wells in September 2013 did not indicate any additional noteworthy results. In general, other data were consistent with prior results, and indicate hydraulic containment of wells with concentrations exceeding Action Levels.

O. Recommendations of Changes to any Monitoring Program

Based on the results of the July and September 2013 groundwater sampling events and the recent declining concentrations at wells MW-1003DR and PZO-2M, interim HydraSleeveTM sampling events will continue on a focused basis. Additional HydraSleeveTM sampling at the four wells (PZO-2M, MW-707DR,MW-1002DR and MW-1003DR) in November 2013.

P. Groundwater Containment and Treatment Optimization Studies

No optimization studies were conducted during this reporting period.

Q. Costs Incurred this Reporting Period

Paragraph 62 of the CD sets forth "Additional Provisions Regarding Settling Defendants' Payments of U.S. Oversight Costs and State Oversight Costs." Pursuant to this paragraph, an interest bearing "Oversight Costs Payment Subaccount" of the Remedial Trust Account was established on April 27, 2009, in the amount of \$5,700,000. The balance in this subaccount at the end of October 2013 was \$ 5,781,576.37

. Other defined terms in this paragraph include:

- "Rolling Oversight Cap" defined as 15% of the total costs incurred by the Settling Defendants in performing the Work through the end of the Oversight Billing Period.
- "Available Balance" equals the Rolling Oversight Cap less the sum of all Settling Defendants prior payments for U.S Oversight Cost and State Oversight Costs.

Paragraph 62.e states that the Settling Defendants shall have the burden of calculating annually the Rolling Oversight Cap and Available Balance. The following table summarizes annually the Rolling Oversight Cap and Available Balance:

Reporting Period	Total Project Costs	Rolling Oversight Cap Amount	Oversight Costs	Available Rolling Oversight Cap Amount
Annual Report #1	\$1,880,301	\$282,045	None billed.	
Annual Report #2	\$3,446,824	\$517,024	\$84,290	
Annual Report #3	\$4,037,109	\$605,566	\$30,887	
Annual Report #4	\$1,421,795	\$213,269	\$39,939	
Annual Report #5	\$3,726,911	\$559,037	\$18,963	
Totals*:	\$14,512,940	\$2,176,941	\$174,080	\$2,002,891

* Cost Revised based on Trustee expenditure updates

The total Rolling Oversight Cap amount available is: \$2,002,891

R. References

BBL. 1998. Remedial Investigation Report. June 1998.

BBL. 2005. Interim Monitoring and Sampling Report No. 13. January 6, 2005.

BBL and USEPA. 2005. *Feasibility Study Report*. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, Connecticut. May 2005.

Halliburton NUS (HNUS) Environmental Corporation. 1994. Final Remedial Investigation Report: Remedial Investigation/Feasibility Study, SRSNE Site, Southington, Connecticut. May 1994.

Hubert, J.F., Reed, A.A., Dowdall, W.L., and Gilchrist, M.J. 1978. Guide to the Mesozoic Redbeds of Central Connecticut. State Geological and Natural History Survey of Connecticut, Department of Environmental Protection. Guidebook No. 4.

La Sala, Jr. A. M. 1961. Surficial Geology of the Southington Quadrangle, Connecticut. United States Geological Survey Map GQ-146.

Mazzaferro, D.L. 1975. Contour Map of the Bedrock Surface, Southington Quadrangle, Connecticut. United States Geological Survey (USGS) Map MF-660A.

Rogers, J. 1985. Bedrock Geological Map of Connecticut. Connecticut Geological and Natural History Survey in Cooperation with the U.S. Geological Survey.

Southington Water Department. Town of Southington Water Works Map. January 1997.

United States District Court for the District of Connecticut. 2008. Consent Decree Regarding Solvents Recovery Service of New England, Inc. Superfund Site. August 29, 2008.

USEPA. 1986. *Superfund Remedial Design and Remedial Action Guidance*, OSWER Directive 9355.0-4A. June 1986.

USEPA. 1989. Inspection Report: Solvents Recovery Service of New England. February 1-2, 1989.

USEPA. 1995a. Remedial Design/Remedial Action Handbook. OSWER Directive 9355.0-04B. June 1995.

USEPA. 1995b. Guidance for Scoping the Remedial Design. OSWER Directive 9355.0-43. March 1995.

USEPA. 1998. Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites. OSWER Directive 9200.4-26. April 1998.

USEPA. 2003. Draft *Preliminary Reuse Assessment*. September 2003. USEPA. 2005a. Record of Decision Summary, Solvents Recovery Service of New England, Inc. (SRSNE) Site, Southington, Connecticut. September 2005.

USEPA. 2005b. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, CT. Proposed Plan Fact Sheet, May 2005. Available at: http://www.epa.gov/region01/superfund/sites/srs/229296.pdf.

USEPA. 2009. USEPA's project website for the Solvents Recovery Service of New England, Inc. Superfund Site. Accessed February 24, 2009. <u>http://www.epa.gov/region01/superfund/sites/srs</u>.

ARCADIS, 2009. Draft Project Operations Plans for the Solvents Recovery Service of New England, Inc. Superfund Site. April 2009.

Tables

TABLE 1.0 Summary of Activities Completed October 31, 2012 through October 30, 2013

Document Name / Activity Author(s)		Date Submitted	Date Approved	Туре
Final RDWP and POP	ARCADIS	11/19/2010	pending	Deliverable under SOW
Response to Comments on ISTR Conceptual Design	TerraTherm	12/3/2010	7/7/2011	Deliverable under SOW
Annual State of Compliance Report #2	de maximis	12/20/2010	pending	Deliverable under SOW
PIPP Winter Stabilization Plan	de maximis	12/30/2010	pending	Deliverable under SOW
Vapor Intrusion Technical Memorandum	EPA	10/27/2010	1/19/2011	Conditional Approval
Data Comparison - Groundwater Sampling Techniques	ARCADIS	1/4/2011	N/A	Technical Memorandum
Updates to Existing MODFLOW Groundwater Flow Model	ARCADIS	1/5/2011	N/A	Technical Memorandum
Data Comparison - Groundwater Sampling Techniques	ARCADIS	2/10/2011	N/A	Technical Memorandum
Draft Institutional Controls Plan	de maximis/ARCADIS	2/18/2011	pending	Deliverable under SOW
Comments on Response to Comments on ISTR Conceptual Design	EPA	3/2/2011	7/7/2011	EPA comments
PIPP Sheetpile Wall Extension Design	ARCADIS	3/21/2011	4/22/2011	Deliverable under SOW
Data Comparison - HydraSleeve vs. Low-Flow Groundwater Sampling Techniques	ARCADIS	3/22/2011	N/A	Technical Memorandum
Response to Comments on Response to Comments on ISTR Conceptual Design	TerraTherm	4/6/2011	7/7/2011	Deliverable under SOW
Bedrock Outcrop Study	ARCADIS	4/20/2011	N/A	Technical Memorandum
Supplementary Vapor Intrusion Technical Memorandum	ARCADIS	6/6/2011	pending	Deliverable under SOW
Bedrock Modeling Memorandum	ARCADIS	6/6/2011	N/A	Technical Memorandum
Comments on Vapor Intrusion Technical Memorandum	EPA	6/15/2011	pending	EPA comments
ISTR Conceptual Design Approval	EPA	7/7/2011	7/7/2011	Approval
Technical Memorandum - Proposed Use of Hydrasleeve Sampling	ARCADIS	7/8/2011	7/8/2011	Technical Memorandum
Approval of ISTR 100% Wellfield Design	EPA	9/23/2011	9/23/2011	EPA Approval
Comments on Draft Memorandum of Agreement with Town and Southington Water Department	EPA	10/28/2011	pending	EPA comments
Annual State of Compliance Report #3	de maximis	1/12/2012	pending	Deliverable under SOW
Screen Volume Purge vs lowflow groundwater metholds	de maximis	5/11/2011	5/21/2012	Approval
Submittal for the use of hydrosleeve during interim sampling events	de maximis	1/4/2011	6/12/2012	Approval
Annual State of Compliance Report #4	de maximis	1/3/2013	pending	Deliverable under SOW
PIPP Completion Report	ARCADIS	4/3/2013	N/A	Technical Repot
Revised Institutional Controls Plan	de maximis / ARCADIS	5/21/2013	pending	Deliverable under SOW
Revised Draft ISTR work plan and POP	TerraTherm	7/8/2013	pending	Deliverable under SOW
Comments on revised Draft ISTR Work Plan and POP	EPA/CTDEEP	9/30/2013	N/A	EPA /CTDEEP comments
Response to EPA and CTDEEP comments on revised DRAFT ISTR Work Plan and POP	de maximis	10/26/2013	pending	Deliverable under SOW

Table N-1.Groundwater Monitoring Network and Sampling EventsSRSNE Superfund Site, Southington, CT

Well Group	# Wells	Sampling Period	Sampling Frequency	Analytical Parameters
"C" wells	81			VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs
"R" wells	26			VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters
"N" wells	10	first comprehensive event *	1 event	VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters
"M" wells	5			TAL metals, MNA parameters (background)
"B" wells	3			TAL metals (background)
"C" wells	81			VOCs, 1,4-dioxane, TAL metals
"R" wells	26			VOCs, 1,4-dioxane, TAL metals, MNA parameters
"N" wells	10	subsequent comprehensive events	every 5 years	VOCs, 1,4-dioxane, TAL metals, MNA parameters
"M" wells	5			TAL metals, MNA parameters
"B" wells	3			TAL metals
"P" wells	26	after first comprehensive event	annual	VOCs
K wells	20		biennial	MNA parameters
"M" wells		ofter first comprehensive syst	biennial	TAL metals (background)
IVI wells	5	alter hist comprehensive event	biennial	MNA parameters (background)
		before thermal treatment	biennial	VOCs, MNA parameters
		during thermal treatment	annual	VOCs, MNA parameters
"N" wells - overburden	8	after thermal, before equilibrium	3x / year	VOCs, MNA parameters
		ofter equilibrium	annual	VOCs
			biennial	MNA parameters
		before thermal treatment	annual	VOCs, MNA parameters
		during thermal treatment	annual	VOCs, MNA parameters
"N" wells - bedrock	2	after thermal, before equilibrium	3x / year	VOCs, MNA parameters
		after equilibrium	annual	VOCs
			biennial	MNA parameters
"W" wells	36	all comprehensive events	every 5 years	Water levels only - during all comprehensive events

Notes: 1) biennial = once every two years.

* - Shallow overburden wells MW-501C, MW-903S, and MW-904S will be re-sampled approximately 6 months after the first comprehensive sampling event.

Figures

02/27/09 SYRACUSE, NY ENV/CAD DJH, LJP B0054634/0000/10000/CDR/RDWP/54634N01.CDR

LEGEND:

	PROPERTY LINE
	PROPERTY LINE - ADJOINER
	BUILDING
	BUILDING - ADJOINER
	FORMER BUILDING
*****	RAILROAD
<u> </u>	ROAD
	GRAVEL ROAD
	DRAINAGE SWALE
	RIVER
	EASEMENT
xx	CHAINLINK FENCE
	SHEETPILE
	NTCRA 1 CONTAINMENT AREA
	OVERBURDEN GROUNDWATER AREA
	SEVERED PLUME
00000000	OVERBURDEN NAPL AREA

NOTES:

- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN THREE MONITORED OVERBURDEN ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).

GRAPHIC SCALE

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

ESTIMATED GROUNDWATER PLUME AND NAPL AREAS - OVERBURDEN FIGURE

3**A**

LEGEND:

BUILDING
BUILDING - ADJOINER
FORMER BUILDING
HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ROAD
GRAVEL ROAD
DRAINAGE SWALE
RIVER
EASEMENT
NTCRA 1 CONTAINMENT AREA
BEDROCK NAPL AREA
BEDROCK GROUNDWATER AREA

NOTES:

- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN TWO MONITORED BEDROCK ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).

GRAPHIC SCALE

ARCADIS

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

ESTIMATED GROUNDWATER PLUME AND NAPL AREAS - BEDROCK FIGURE

3B

Attachments

										S	SRSNE RD/RA Project Sch nual State of Compliance F	nedule Report #4					
ID Deliverable/Activity	Trigger	Time Frame	SOW	2008 Otr 2 Otr 3 Otr 4	Qtr 1	2009 Qtr 2 Qtr 3	Qtr 4 Qtr 1	2010 Otr 2 Otr 3	Otr 4	Otr 1 Otr	2011 tr 2 Otr 3	Qtr 4		Otr 3 Otr 4	Qir 1	2013 Otr 2 Otr 3 Otr 4	Otr 1
RDRA Schedule Lodging of the Consent Decree				♦ 10/31/2008											1		1
a Initial Remedial Steps Phase	EPA Approval of Contractors		V.B		Initial Remedial Steps Pt	1250				1							ļ
4 Notification of Supervising Contractor/Project Coordinator	Lodging of the CD	Satisfied in the draft SOW.	V.B.1	<u>▲-11/27</u>	2008					1					ļ		
5 Notification/Selection of a Remedial Design Contractor	Lodging of the CD	Notification/Selection of a Remedial Desig Contractor	gn V.B.2		12/22/2008		- т I										
6 Memorandum of Agreement (MOA)	Entry of the CD.	Within 180 days of Entry of CD Within 30 days of signed MOA.	V.B.3				Memorandum of A	preement (MUA)		l I					l L		I I
Supplemental Containment Action Plan Implementation of Supplemental Containment Action Plan (TBD)	Upon notification by EPA, and consistent with the terms of the Memorandum of Agreement	As specified by EPA.	V.B.6		l		ТВС			l I					1		I I
12 Institutional Control Plan 19 Design Initiation Phase	Completion of Vapor Intrusion Stud	by Within 30 days of completion of Vapor Inte	V.B.7 V.C			Design Initiation Phase						— — — — —	onal Control Plan				¦
43 Agency Review and Comment on Accelerated Pr Design Studies	re				1	\$ 5/19/2009	1			l I					1		1
44 Agency Review and Comment on Remedial Desi Work Plan and POP	gn			_	1	♦ 8/29/2009	1								1		1
Pre-Design Studies Pre-ISTR Final Design Package (100 % Design) 71 Technical Information Macting	EPA approval or modification of Co Submittal of 100% Design.	once Within 90 days of notice by EPA.	V.E.1		, , ,					, ,					i 		
1 ecnnical information weeting Agency Review/Comment			V.E.2	_			i.		1	1							i i
73 Agency Approval of Pre-ISTR Package (100%										- -					1		
Design) with Comments 74 ISTR Conceptual Design Package (75% Design)	EPA approval or modification of RD Work Plan.	Within 120 days of EPA approval that necessary pre-design studies to be	V.D.1	_	1]						
75 Pre-Design Activities Reports		described in the RD Work Plan are comolete	V.D.1.a		∣ ⊥					·							
Submit 75% Design Package Submit 75% Design Package Technical Information Meeting Sector 2016 Comparison Decision Package with			V.D.3	_	1		1			t t	A-2/8/2011				l I		I
83 ISTR Final Design Package (100% Design)			V.E.3	_	1		I I								1		I.
86 Submit ISTR Final Draft Package (100% Design) 87 Technical Information Meeting				+	÷					{							¦
Agency Approval of ISTR Design Package (100% Design) with Comments					1		l I			¦ 			\$ 5/2/2012		1		I
Image: Second structure Pre-construction Conference(s) 90 Pre-construction Public Meeting(s) 91 Account of PDP Content of PDP Cont	EPA approval or modification of Fin EPA approval or modification of Fin	nal CWithin 30 days of notice by EPA. nal CWithin 45 days of notice by EPA.	VI.C VI.D		1					A-1/18/2011 A-3/5/2011				_	1		i i
Accelerated ISTR Construction Activities AT&T Fiber Optic Relocation Partial CP-2 (culvert relocation)				+			-			,					-j		i
94 OAR-2 Surface Preparation for ISTR Work 95 Thermal Infrastructure Installation (oas, sewer				-	, 			_				:ł			- 		
96 Initiation of Remedial Action Construction	EPA approval or modification of Final Dasign	Within 60 days of notice by EPA.	VLE		1					l L				÷			1
Activities (ISTR and Soils) 97 Meetings During Construction	Start of Construction	Weekly during construction	VLF		+					ή							
172 In-Situ Thermal Treatment Construction 173 Thermal Final Construction Inspection	Within 60 days of notice by Settling Defendents.	3	VI.G		1					l I						In-Situ Thermal Treatment Construction	I I
174 Submit Construction Completion Report	Within 30 days of Final Construction	n Within 30 Days	VLH		1		1			l I					1	5 /27/2013	I I
Agency Approval of Completion Report Thermal Treatment					+					¦						7/27/2013	
181 Post Thermal Activities					1					l I					í I		.
182 Soil Investigation	After In-Situ Thermal to re-assess t size of the area to be capped	the	V.C.i		 		i i			i i					į.		
183 Vapor Control System Evaluation	After In-Situ Thermal to determine whether (or not) a vapor control system is needed below the cap.		V.C.j	_	1		i.								į.		
Final Soil & RCRA C Cap Conceptual Design																	!
Package 186 Technical Information Meeting	,			_	l I		1			l I					l.		
187 Agency Approval of 75% Final Soil & Multi Lay	/er				1					l I					l l		I I
Cap Design Package with Comments 188 Final Soil & Multi Layer Cap 100% Design				_	1		1			l I		- 1			1		1
189 Technical Information Meeting					1		1			l I					1		1
190 Agency Approval of Final Soil & Multi Layer C 100% Design	ap			+	+					+							
191 Final Soil & Multi Layer Cap Construction				_	T. T.		1			l I					1		I
192 Final Construction Inspection	Setting Defendents conclude construction complete.	Within 60 days of notice by Settling Defendants.	VI.G		 		i i			i i					į.		i
193 Groundwater Containment & Treatment Evaluate	on		V.C.4		1		i i								i.		
194 Optimization Studies	Upon completion of the in-situ Thermal Treatment and capping components of the remedy	As directed by the EPA, or proposed by th Settling Defendants, no less frequently the every 10 years	he V.C.6		1					1					ļ.		
195 Additional Optimization Study(s) (TBD)			V.C.6		±					! !							
196 Completion Report	Final construction inspection.	Within 30 days of inspection.	VLH		l l		I I			l I					l.		I
212 Commencement of Operation and Maintenance	EPA approval or modification of Construction Completion Report.	Immediately upon notice by EPA.	VLI	_	1		1			l Í					l Í		1
214 Annual Groundwater Sampling Event			vil.B	_	 		l l						0		1	×	1
226 Biennial Groundwater Sampling Event				+	+											<u> </u>	¦
247 Five-Year Review Sampling Event				-	1		I			l I					1	<u> </u>	1
251 Sampling between Railroad Tracks and NTCR/ Sheet Pile Wall	A 1			-	1		I I	÷		I [1		1
252 Pre ISTR Sampling				1			I I	٥	\$	l I		۰	۰		1		I I
258 ISTR Sampling					 		 			 				*	◆ ↓		
261 Post ISTR Sampling (During Time to Achieve Equilibrium)	e									 							
Post ISTR Equilibrium Sampling 277 Background Sampling Event (Match Oct.)				_	 					 						•	i
283 Compliance Reporting			VIII	_												•	
284 Monthly Progress Reports	Lodging of the CD.	On the 10th day following lodging and monthly thereafter.	VIILA	_	• • •		• • <mark>•</mark> • • • •	* * * *	* * * *	• • • • •	* * * * *	~ ~ <		* * * * *	• • • •		• • • •
369 Annual State of Compliance Reports	One Year After the Lodging of the Consent Decree	e Annually	VIII.B	+	<u>+</u>						·						
381 Five Year Review Reports	Five Years after the date of the Record of Decision	Every Five years	VILA.D	-	l I		l		٠	l L					1		I I
385 Compliance Monitoring (CM) Work Plan Evaluation(s)	No less frequently than once afte implementation of the excavation and capping component. and	ar As part of the five-year reviews.	VILB.3	-	 		l l		♦	I I					1		I I
	long-term groundwater containment and treatment syste	im.			 		I I			(1		1
389 Interim Remedial Action Report	EPA determination that long-term groundwater containment and treatment system is operational and functional	Within 90 days of notice by EPA.	VIILC	1	1					l I					1		
390 Determination of Background Metals in	Compliance with Interim Cleanup Levels for Groundwater.	No sconer than 365 days prior to submitta of Demonstration of Compliance Report.	al VIII.E	-	 					 							I
Groundwater (TBD)	Correliance with electron local	As demonstrated by Service Parland			, 												
Demonstration of Compliance Report (TBD)	comprentati wan celanup levela.	, a version and by certing Defendents.	VIII.F	_	1					i I					1		1
393 Site Closure (TBD)				_	I I		l l			t L					I I		I I
394 Summary of Cost Information (TBD)	Compliance with cleanup levels.	As demonstrated by Setting Defendants.	VIII.G	_	 		l l			l I					1		I I
Project: SRSNE Superfund She							1			1	Pane 4				1		1
Date: January 15, 2009											· mgri I						

	 de maximis_ine					SRSM Annual S	IE RD/RA Project Schedule State of Compliance Report #2					
ID Deliver:	ble/Activity	Trigger	Time Frame	2017	2018	2019	2020	2021	2022	2023	2024	2025
0 RDR	A Schedule Iging of the Consent Decree		GF4		urn urz urs ur4		um um2 um3 um4 um1 	uerz uera uera uera i	dir2 dir3 dir4	uin uinz uins u	174 Urr1 Urr2 Urr3 Urr4	
2 Ent	ry of the CD				1	1						1
3 Init	ial Remedial Steps Phase lotification of Supervising Contractor/Project	EPA Approval of Contractors Lodging of the CD	Satisfied in the draft SOW.		1		1	1				1
5 N	lotification/Selection of a Remedial Design	Lodging of the CD	Notification/Selection of a Remedial Design Contractor									+
6 Me	morandum of Agreement (MOA)	Entry of the CD.	Within 180 days of Entry of CD									1
10 Suj 11 Imj	oplemental Containment Action Plan Ilementation of Supplemental Containment	EPA Approval of MOA Upon notification by EPA, and consistent with the terms of the	Within 30 days of signed MOA. As specified by EPA.									1
12 Ins	ion Plan (TBD) titutional Control Plan	Memorandum of Agreement Completion of Vapor Intrusion Study	Within 30 days of completion of Vapor Intrus				'		 			-
¹⁹ Der ⁴³ Ag	sign Initiation Phase ancy Review and Comment on Accelerated Pre				-							T
44 Ag	sign Studies ency Review and Comment on Remedial Design rk Plan and POP			1		1	1	1	1			I I
45 Pre	-Design Studies -ISTR Final Design Package (100 % Design)	EPA approval or modification of Conc	Within 90 days of notice by EPA.			1	1					1
71 Teo	chnical Information Meeting	Submittel of 100% Design.			- ₁							γ
72 Ag	ency Review/Comment			1		1	1	1				l I
73 Ag De	ency Approval of Pre-ISTR Package (100% sign) with Comments											
74 IST	R Conceptual Design Package (75% Design)	EPA approval or modification of RD Work Plan.	Within 120 days of EPA approval that necessary pre-design studies to be described in the RD Work Plan are complete									
80 g	ubmit 75% Design Package				-¦							÷
82 Ag Co	ency Approval of 75% Design Package with mments			1			1	1			1	1
83 IST 86 Sul	R Final Design Package (100% Design) omit ISTR Final Draft Package (100% Design)			1		1	1					1
87 Teo 88 Ag	chnical Information Meeting ency Approval of ISTR Design Package (100%											
89 Pre	sign) with Comments -construction Conference(s)	EPA approval or modification of Final	Within 30 days of notice by EPA.	1			1	1			1	1
90 Pre 91 Acc	-construction Public Meeting(s) celerated ISTR Construction Activities	EPA approval or modification of Final	CWithin 45 days of notice by EPA.			·	;					
92 A 93 F	tartial CP-2 (culvert relocation) Construction											
96 T	hermal Infrastructure Installation (gas, sewer, ower)											
96 Init Act	iation of Remedial Action Construction ivities (ISTR and Soils)	EPA approval or modification of Final Design.	Within 60 days of notice by EPA.	1	1	1	1	1				1
97 N 172 li	leetings During Construction n-Situ Thermal Treatment Construction	Start of Construction	Weekly during construction									т — — — — — — — — — — — — — — — — — — —
173 7	hermal Final Construction Inspection	Within 60 days of notice by Setting Defendants.	Milikin 90 Date		1	1	1					1
175 4	approvement of Completion Report	Inspection.	The second		1	1	1	1				1
176 Th	ermal Treatment											Ϋ́
182 5	oil Investigation	After In-Situ Thermal to re-assess the										1
183	apor Control System Evaluation	After In-Situ Thermal to determine whether (or not) a vapor control										
¹⁸⁴ F	inal Soil & RCRA C Cap Conceptual Design	system is needed below the cap.		1		1	1					1
185 F	inal Soil & Multi Layer Cap Submit 75% Design							<u>_</u>				<u>+</u>
186	echnical Information Meeting			1		1	1					I I
187	gency Approval of 75% Final Soil & Multi Layer ap Design Package with Comments				1	1	1					1
188 F	inal Soil & Multi Layer Cap 100% Design iubmittal				1	1	1	1				1
189 1	echnical Information Meeting											+
191	Igency Approval of Final Soil & Multi Layer Cap 00% Design Jack Soil & Multi Layer Cap Construction											1
¹⁹² Fin	al Construction Inspection	Setting Defendents conclude	Within 60 days of notice by Settling									
		construction complete.	Cerembarto.									
193 Gro & C	oundwater Containment & Treatment Evaluation optimization Study (GCTEOS		TEOS	1		1	1	I I				1
194 (Internal Optimization Studies	Upon completion of the in-situ Thermal Treatment and capping components of the remedy	As directed by the EPA, or proposed by the Setting Defendants, no less frequently than every 10 years									!
196 Co	muletion Report	Final construction inspection.	Within 30 days of inspection.	1		1	1					I I
212 Co	nmencement of Operation and Maintenance	EPA approval or modification of	Immediately upon notice by EPA.		1	1	1					1
²¹³ Co	npliance Monitoring (CM)			1	1		I	1	1	الم	1	1
214	nnual Groundwater Sampling Event			\ ↓	>	۰	<u>ہ</u>	1				1
226 E	iennial Groundwater Sampling Event		-~-									τ
247 F	ive-Year Review Sampling Event			1	♦					*		1
251 5	ampling between Railroad Tracks and NTCRA 1 heet Pile Wall	1										
252	Pre ISTR Sampling											
261	Post ISTR Sampling (During Time to Achieve					·	[']	'	، ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ			
266	Equilibrium) Post ISTR Equilibrium Sampling		•	\ 	♦ ♦	<u> </u>	 	I I				1
277 E	ackground Sampling Event (Metals Only)			 		1	1	1				l I
283 Co	npliance Reporting			1	1		Compliance Reporting					1
284 N	Ionthly Progress Reports	Lodging of the CD.	On the 10th day following lodging and monthly thereafter.	1	1	1	1	1				1
369	nnual State of Compliance Reports	One Year After the Lodging of the Consent Decree	Annually		-				ı ۱			τ
381 F	ive Year Review Reports	Five Years after the date of the Record of Decision	Every Five years	1			<u>م</u>					
385 C	compliance Monitoring (CM) Work Plan valuation(s)	No less frequently than once after implementation of the excavation and capping component, and long-term provide after	As part of the five-year reviews.				۰					
200		containment and treatment system	Within 90 days of police \$~ EDA			1	I I	1				
307	nterim Remedial Action Report	proundwater containment and proundwater containment and treatment system is operational and functional.	er units a monte by EPA.	1	1	1		1			l l	l I
390 E	etermination of Background Metals in Groundwater (TBD)	Compliance with Interim Cleanup Levels for Groundwater.	No sooner than 385 days prior to submittal of Demonstration of Compliance Report.	1	1				1			l I
391 [emonstration of Compliance Report (TBD)	Compliance with cleanup levels.	As demonstrated by Settling Defendants.	-¦								+
³⁹² Ris	k Assessment			1	1		1				1	1
³⁹³ Sit	e Closure (TBD)			1						♦ 5/2/2023		l I
³⁹⁴ Su	nmary of Cost Information (TBD)	Compliance with cleanup levels.	As demonstrated by Settling Defendants.									
Project: SRSNI	Superfund Site			1	1		Page 2	I			1	1

DRAFT

Hydraulic Containment and Treatment System Annual Demonstration of Compliance Report No. 5

31 October 2012Through30 October 2013

Solvents Recovery Service of New England, Inc. Superfund Site Southington, Connecticut

> Prepared for: SRSNE PRP Group

Prepared by:

WESTON SOLUTIONS, INC. Suite 3B 124 Hebron Avenue Glastonbury, CT 06033 (860) 368-3200

3 DECEMBER 2013

DRAFT

HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 5 31 OCTOBER 2012 THROUGH 30 OCTOBER 2013

SOLVENTS RECOVERY SERVICE OF NEW ENGLAND, INC. SUPERFUND SITE SOUTHINGTON, CONNECTICUT

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1
1.1	NT	ГСRА-1 BACKGROUND	1
1.2	NT	FRCA-2 BACKGROUND	2
1.3	GR	ROUNDWATER TREATMENT SYSTEM	2
1.4	RE	EPORT ORGANIZATION	2
2.0	DATA	A ACQUISITION AND RESULTS	3
2.1	NT	FCRA-1 CONTAINMENT SYSTEM MONITORING	3
2.	.1.1	RGT-1 RESULTS	3
2.	.1.2	RGT-2 RESULTS	4
2.2	NT	FCRA-2 CONTAINMENT SYSTEM MONITORING	5
2.	.2.1	CT-1 RESULTS	5
2.	.2.2	CT-2 RESULTS	6
2.3	TR	REATMENT SYSTEM MONITORING	7
2.	.3.1	HCTS INFLUENT AND EFFLUENT FLOW DATA	7
2.	.3.2	HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA	8
3.0	Hydr	Iraulic Containment and Treatment System (HCTS)	
	Oper	erations and Maintenance Summary	9
3.1	OPI	PERATIONS AND MAINTENANCE SUMMARY	9
3.2	FU	UTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS	11

Tables

Table 1	Hydraulic Head Measurements End of Month Gauging
Table 2	Influent and Effluent HCTS Flow Data Summary
Table 3	Analytical Results – Process Influent
Table 4	Analytical Results – Process Effluent
Table 5	Weekly NTCRA-1 Compliance Piezometer Pair Summary

Figures

Figure 1A Overburden Hydraulic Head Contours – November 2012 Figure 1B Shallow Bedrock Hydraulic Head Contours - November 2012 Figure 1C Deep Bedrock Hydraulic Head Contours – November 2012 Figure 2A Overburden Hydraulic Head Contours – December 2012 Figure 2B Shallow Bedrock Hydraulic Head Contours - December 2012 Figure 2C Deep Bedrock Hydraulic Head Contours - December 2012 Figure 3A Overburden Hydraulic Head Contours - January 2013 Figure 3B Shallow Bedrock Hydraulic Head Contours - January 2013 Figure 3C Deep Bedrock Hydraulic Head Contours - January 2013 Figure 4A Overburden Hydraulic Head Contours – February 2013 Figure 4B Shallow Bedrock Hydraulic Head Contours – February 2013 Figure 4C Deep Bedrock Hydraulic Head Contours - February 2013 Figure 5A Overburden Hydraulic Head Contours - March 2013 Figure 5B Shallow Bedrock Hydraulic Head Contours – March 2013 Figure 5C Deep Bedrock Hydraulic Head Contours - March 2013 Figure 6A Overburden Hydraulic Head Contours - April 2013 Figure 6B Shallow Bedrock Hydraulic Head Contours - April 2013 Figure 6C Deep Bedrock Hydraulic Head Contours - April 2013 Figure 7A Overburden Hydraulic Head Contours - May 2013 Figure 7B Shallow Bedrock Hydraulic Head Contours - May 2013 Figure 7C Deep Bedrock Hydraulic Head Contours - May 2013 Figure 8A Overburden Hydraulic Head Contours - June 2013 Figure 8B Shallow Bedrock Hydraulic Head Contours – June 2013 Figure 8C Deep Bedrock Hydraulic Head Contours - June 2013 Figure 9A Overburden Hydraulic Head Contours - July 2013 Figure 9B Shallow Bedrock Hydraulic Head Contours – July 2013 Figure 9C Deep Bedrock Hydraulic Head Contours - July 2013 Figure 10A Overburden Hydraulic Head Contours - August 2013 Figure 10B Shallow Bedrock Hydraulic Head Contours - August 2013 Figure 10C Deep Bedrock Hydraulic Head Contours – August 2013 Figure 11A Overburden Hydraulic Head Contours - September 2013 Figure 11B Shallow Bedrock Hydraulic Head Contours – September 2013 Figure 11C Deep Bedrock Hydraulic Head Contours - September 2013 Figure 12A Overburden Hydraulic Head Contours – October 2013 Figure 12B Shallow Bedrock Hydraulic Head Contours - October 2013 Figure 12C Deep Bedrock Hydraulic Head Contours - October 2013 Figure 13 Hydrographs of CPZ-5 and CPZ-6 - 31 Oct. 2012 through 30 Oct. 2013 Figure 14A Hydrographs of PZR-2R and MW-704R – 31 Oct. 2012 through 30 Oct. 2013 Figure 14B Hydrographs of PZR-2DR and MW-704DR – 31 Oct. 2012 through 30 Oct. 2013

1.0 INTRODUCTION

This Demonstration of Compliance Report (DCR) was prepared by Weston Solutions, Inc. (WESTON) on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site PRP Group. The DCR documents the effectiveness of the Non-Time-Critical Removal Action No. 1 and 2 (NTCRA-1 and NTCRA-2) hydraulic containment and treatment system at the SRSNE Site in Southington, Connecticut, based on data collected during the period of 31 October 2012 through 30 October 2013. The data presented in this DCR were obtained in accordance with the United States Environmental Protection Agency (USEPA) approved Demonstration of Compliance Plans (DCP) for NTCRA-1 and NTCRA-2 (BBL, June 1995 and November 1999), respectively. The data acquisition schedule, reporting and evaluation requirements for this and future DCRs were described in these DCPs.

This is the fifth annual DCR to be issued after lodging of the consent decree and submitted in accordance with the Remedial Design/Remedial Action (RD/RA) Statement of Work (SOW). This DCR follows 60 previously submitted DCRs prepared initially on a quarterly basis and changed to annual submissions in 2003.

1.1 NTCRA-1 BACKGROUND

The NTCRA-1 hydraulic containment system is installed in the containment area (Figure 1A), which was defined in the NTCRA-1 SOW. The containment system originally included an array of 12 overburden groundwater extraction wells (RW-1 through RW-12) and a downgradient barrier (steel sheet piling) that hydraulically and physically contains overburden groundwater entering the containment area from the SRSNE operations area.

The pre-design investigation results and the designs of the hydraulic barrier wall, extraction wells and treatment system are described in detail in the NTCRA-1 100% Groundwater Containment and Treatment System Design Report (100% Design Report, BBL, January 1994). The NTCRA-1 system was constructed between February and July 1995 and brought online in accordance with the USEPA-approved schedule on 19 July 1995.

The NTCRA-1 hydraulic containment and monitoring network remained as originally constructed until November 2009 when select recovery wells, monitoring wells and piezometers were abandoned in accordance with the Monitoring Well Network Evaluation, included as Attachment N to the Remedial Design Work Plan (Arcadis, April 2009). EPA was notified that the abandoned wells and piezometers would be removed from the NTCRA-1 monitoring program and DCP on 1 November 2009 (WESTON, December 2009). The second annual DCR (31 October 2009 to 30 October 2010) summarizes the recovery wells, monitoring wells and piezometers abandoned under this program and the rationale for abandonment of each well. As indicated in the second annual DCR, all monitoring wells and piezometers were abandoned in November and December 2009, with exception to former recovery wells RW-5 and RW-6. These wells were permanently taken out of service in November 2009, but not abandoned until December 2010.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 5 31 October 2012 to 30 October 2013

As a result of the recovery well abandonment activities discussed above, the NTCRA-1 containment system now consists of ten overburden groundwater extraction wells (RW-1 through RW-4, and RW-7 through RW-12).

1.2 NTRCA-2 BACKGROUND

The NTCRA-2 hydraulic containment system is installed south of the NTCRA-1 containment area (Figure 1A), as defined in the NTCRA-2 SOW. The NTCRA-2 containment area encompasses the majority of the northern portion of the Town of Southington well field property and includes the shallow and deep bedrock, extending to a depth of 100 feet below the top of bedrock in the northern portion of this property (Figure 1A). Further upgradient (north), the NTCRA-2 containment area extends over 170 feet below the top of bedrock and over 200 feet below ground surface (BBL, November 1999).

The NTCRA-2 hydraulic containment system initially included two groundwater extraction wells (RW-13 and RW-1R) that, in combination with the NTCRA-1 containment system, contain bedrock groundwater migrating from the SRSNE operations area (Figure 1A). The design of the overburden and bedrock extraction wells RW-13 and RW-1R, respectively, are described in the NTCRA-2 100% Design Report (BBL, November 1999). Overburden recovery well RW-13 has been on-line since 14 July 1999 and bedrock recovery well RW-1R has been operating since 5 September 2001.

A third groundwater extraction well (RW-14) was added to the NTCRA-2 well field (Figure 1A) to further enhance long-term hydraulic containment of the overburden and bedrock groundwater in the NTCRA-2 well field. The design of the additional overburden extraction well is described in the RW-14 Completion Report (WESTON, November 2007). This overburden recovery well has been operating since 24 September 2007.

1.3 GROUNDWATER TREATMENT SYSTEM

The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility (Figure 1A). The treatment system consists of the following unit processes: influent equalization, metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995.

1.4 REPORT ORGANIZATION

Section 2 of this report summarizes the acquisition and evaluation of field data used to verify the effectiveness of the hydraulic containment and treatment system and Section 3 provides an overview of operations and maintenance activities conducted at the site during this O&M period.

2.0 DATA ACQUISITION AND RESULTS

The data required to demonstrate the effectiveness of the hydraulic containment and treatment system were obtained in the form of hydraulic head measurements from wells and piezometers installed in the area of the containment system, flow measurements from the extraction well array, treatment system flow rates and analytical results.

2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-1 containment system is verified through two reversal of gradient tests that determine whether groundwater flow is controlled by the system. These tests are demonstrated by comparing hydraulic head measurements at several monitoring locations. The specific wells and piezometers used for these comparisons are discussed in Sections 2.1.1 and 2.1.2. The gradient tests are:

Reversal of Gradient Test No. 1 (RGT-1): Confirms that overburden groundwater east and downgradient of the operations area is flowing in the direction of the groundwater extraction wells.

Reversal of Gradient Test No. 2 (RGT-2): Confirms that overburden groundwater flow is reversed and maintained in the direction of the groundwater extraction wells within the area enclosed by the hydraulic divide installed adjacent to the hydraulic containment system. RGT-2 is more crucial to a demonstration of compliance as it requires that overburden groundwater elevations within the barrier are at least 0.3 feet lower than those outside the wall in NTCRA-1.

2.1.1 RGT-1 RESULTS

To confirm that overburden groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the groundwater extraction wells, hydraulic head measurements were collected at the following overburden wells/piezometers located in the vicinity of the groundwater containment system:

- Extraction Wells RW-1 through RW-4 and RW-7 through RW-12;
- Monitoring Wells MW-415, MWL-304, MWL-305, MWL-307, and MWL-308

Overburden groundwater elevations were also measured at the following wells to assess the hydraulic response in the area between the hydraulic barrier wall and the Quinnipiac River:

• MWL-302, MWL-306, MWL-309, MWL-311, and TW-7A.

Monthly overburden hydraulic head data measured at the specified wells and compliance monitoring points from 31 October 2012 through 30 October 2013 are presented in Table 1. The resulting groundwater contour maps are presented as Figures 1A through 12A. The

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 5 31 October 2012 to 30 October 2013

contours indicate the horizontal hydraulic gradient between the SRSNE operations area and the extraction wells was eastward toward the extraction wells, fulfilling RGT-1.

The vertical hydraulic gradient between the overburden and bedrock in the vicinity of the hydraulic containment system is also evaluated to confirm satisfactory recovery well operation. Groundwater elevations were compared between bedrock well (MW-416) and the adjacent overburden well (MWL-307) on the same dates. This comparison indicates that the vertical component of the hydraulic gradient between the bedrock and the overburden was generally downward from the overburden to the bedrock within the containment area.

Hydraulic head data is also compared at overburden compliance piezometers CPZ-1, CPZ-3, CPZ-5, CPZ-7 and CPZ-9 and adjacent bedrock piezometers CPZ-1R, CPZ-3R, CPZ-5R, CPZ-7R and CPZ-9R. Monitoring indicates that the gradient was generally upward from the bedrock to the overburden in the vicinity of the pumping wells and the hydraulic barrier wall throughout the period covered by this DCR.

2.1.2 RGT-2 RESULTS

To confirm that groundwater flow is reversed and maintained in the direction of the groundwater extraction wells, hydraulic head measurements were collected weekly at eight fully penetrating overburden compliance piezometers (CPZ-1 2A, 3, 4A, 5, 6, 7 and 8). Compliance piezometers (CPZ-9 and 10) were removed from RGT-2 because CPZ-9 was abandoned in December 2009. As stated in the DCP, the hydraulic gradient is considered reversed and inward across the hydraulic barrier wall when the hydraulic head data measured at each compliance piezometer located inside the hydraulic barrier wall (CPZ-1, CPZ-3, CPZ-5 and CPZ-7) is at least 0.3 foot lower than the head measured at the corresponding compliance piezometer located outside the hydraulic barrier wall (CPZ-4A, CPZ-6 and CPZ-8, respectively).

Based on weekly hydraulic head measurements, the required 0.3 feet head differential was achieved in all four pairs (CPZ-1/CPZ-2A, CPZ-3/CPZ-4A, CPZ-5/CPZ-6 and CPZ-7/CPZ-8) for forty five (45) of the fifty two (52) weeks during the monitoring period. Compliance piezometer pairs CPZ-1/2A, CPZ-5/CPZ-6 and CPZ-7/CPZ-8 met the 0.3 feet head differential during the entire monitoring period. Compliance piezometer pair, CPZ-3/CPZ-4A did not achieve the required 0.3-foot differential on 7 weekly gauging rounds during the months of November and December 2012. Table 5 provides a summary of RGT-2 test results and highlights the weeks the required head differential was not maintained between CPZ-3/4A. The cause of the loss of hydraulic gradient reversal at these two compliance pairs is believed to be a result of excessively dry site conditions due to low precipitation and a substantial localized elevation decrease in the overburden water table outside of the sheet pile wall. Following substantial precipitation in December 2012, compliance at this pair was restored for the remainder of the monitoring period.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 5 31 October 2012 to 30 October 2013

To verify the continuity of gradient reversal, daily hydraulic head measurements are also recorded via a data logger at compliance piezometers CPZ-5 and CPZ-6. Measurements collected in eight hour intervals (three times/day) as recorded by a data logger installed at compliance piezometers CPZ-5 and CPZ-6 also demonstrated compliance for the entire period covered in this report, with exception to one event of non-compliance encompassing a total of two days. A hydrograph of the data logger measurements from compliance pair CPZ-5 and CPZ-6 is presented as Figure 13 for the monitoring period.

A summary of NTCRA-1 non-compliance occurrences between 31 October 2012 and 30 October 2013 is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-1 – Non-Compliance Summary – 31 October 2012 to 30 October 2013									
Date	Cause	Corrective Actions							
23-24 April 2013	Recovery Well RW-2 was out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities							

2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-2 hydraulic containment system is verified through two containment tests that compare hydraulic head measurements in NTCRA-2. The specific locations used for hydraulic head comparisons are presented in Sections 2.2.1 and 2.2.2. The containment tests are:

Containment Test Part 1 (CT-1): Confirms that within the NTCRA-2 containment area, bedrock groundwater east and downgradient of the operations area, is flowing in the direction of the hydraulic containment system.

Containment Test Part 2 (CT-2): Confirms that bedrock groundwater flow downgradient of the NTCRA-2 extraction system within the containment area is reversed and maintained in the direction of the hydraulic containment system.

2.2.1 CT-1 RESULTS

To confirm that VOC-impacted bedrock groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the extraction wells, hydraulic head measurements were obtained at the following pairs of wells/piezometers located upgradient of the hydraulic containment system:

- Shallow bedrock MW-704R and MW-121A; and
- Deep Bedrock MW-704DR and MW-705DR.

The hydraulic gradient is considered to be towards the extraction wells when the hydraulic head measured at the shallow (MW-704R) and deep (MW-704DR) bedrock monitoring wells located adjacent to extraction wells RW-13, RW-1R and RW-14 is lower than hydraulic head measurements at wells MW-121A and MW-705DR, respectively.

Monthly rounds of hydraulic head data measurements collected from 31 October 2012 to 30 October 2013 are presented in Table 1. The resulting contour maps for shallow bedrock and deep bedrock monitoring wells and piezometers are presented as contours on Figures 1B through 12B and Figures 1C through 12C, respectively. The contours indicate that groundwater flow in the shallow and deep bedrock is inward toward the NTCRA-2 extraction wells, fulfilling Containment Test Requirement No.1.

2.2.2 CT-2 RESULTS

To confirm that bedrock groundwater flow downgradient of the extraction system within the containment area is reversed and maintained in the direction of the extraction wells, hydraulic head measurements were obtained at the following locations:

- Shallow bedrock MW-704R, MW-204A, PZR-2R, and PZR-4R; and
- Deep Bedrock MW-704DR, PZR-2DR, and PZR-4DR.

The hydraulic gradient is considered reversed and inward toward the containment area when the hydraulic head measured at the shallow and deep bedrock monitoring wells MW-704R and MW-704DR, which are located adjacent to extraction wells RW-13, RW-1R and RW-14, is lower than the hydraulic head measurements at the remaining shallow and deep bedrock monitoring wells and piezometers listed above. Measurements taken at these locations are presented in Table 1 and as groundwater contours in Figures 1B through 12B and 1C through 12C.

To verify the continuity of gradient reversal, daily hydraulic head measurements are recorded via a data logger at the following locations:

- Shallow bedrock MW-704R and PZR-2R; and
- Deep Bedrock MW-704DR and PZR-2DR.

Daily hydraulic head measurements recorded via data loggers installed in NTCRA-2 compliance pairs MW-704R and PZR-2R (shallow bedrock) and MW-704DR and PZR-2DR (deep bedrock) indicated that the NTCRA-2 containment system met CT-2 for the monitoring period, with the exception to two periods of non-compliance outlined herein encompassing a total of nine (22) days.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - No. 5 31 October 2012 to 30 October 2013

Hydrographs of the data logger measurements obtained for shallow and deep bedrock compliance points between 31 October 2011 and 30 October 2012 are included as Figures 14A and 14B, respectively.

A summary of NTCRA-2 non-compliance occurrences during the monitoring period is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-2 – Non-Compliance Summary – 31 October 2012 to 30 October 2013									
Date	Cause	Corrective Actions							
31 Oct. to 19 Nov. 2012	Recovery Well RW-1R was off-line while a bedrock well depth was extended in an attempt to improve recovery well yield.	No correction action warranted. This period of non-compliance was the result of improvements to Recovery Well RW-1R.							
8-9 April 2013	Recovery Wells RW-13 and 14 were out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities							

2.3 TREATMENT SYSTEM MONITORING

HCTS influent and effluent flow measurements and laboratory analytical data were obtained during the monitoring period. The flow and analytical data are presented and discussed in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA

The influent and effluent flow rates of the groundwater treatment system were each recorded continuously using an in-line totalizing flow meter and strip chart recorder. The NTCRA-1 and NTCRA-2 recovery wells ran continuously throughout the monitoring period, with the exception of minor shutdowns during maintenance, individual recovery well failures or HCTS alarm shutdowns. During the monitoring period, NTCRA-2 recovery wells RW-13&14 were redeveloped once in April 2013 to maintain drawdown and groundwater hydraulic control during the monitoring period. All 10 NTCRA-1 recovery wells were also redeveloped in April 2013.

Approximately 18,978,000 gallons of groundwater were extracted, treated and discharged during the monitoring period. Refer to Table 2 for a summary of influent and effluent flow rates and totals. Throughout the period covered in this report, the system treated and discharged an average of 36.1 gallons per minute.

2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA

Samples of groundwater treatment system influent and effluent were collected twice per month and analyzed for metals, VOCs, alcohols and total suspended solids. For the process effluent, the first round each month was also analyzed for total PCBs. Once every quarter, additional effluent samples were collected and tested for dioxins/furans. Analytical results from the influent and effluent sampling are summarized in Tables 3 and 4, respectively. In Table 4, the effluent sampling results are compared with the discharge limits established by the CTDEP in the Substantive Requirements for Discharge, dated 6 November 1995. As shown in Table 4, the treatment system effluent water quality was below discharge limits for the monitoring period.

In addition to the analyses discussed previously, effluent samples were collected and submitted for acute and chronic toxicity analysis in January, April, July and October 2013. The submitted effluent samples passed the acute and chronic toxicity test for both Daphnia Pulex and fathead minnows.

Process influent and effluent sampling for 1,4 dioxane was monitored quarterly during the monitoring period to collect additional data concerning this compound. Currently no discharge limit exists for 1,4-dioxane. Quarterly sample results for the year are presented below.

SRSNE - 1,4-Dioxane Sampling Summary									
DateInfluent (ppb)Effluent (ppb)									
1-Jan-13	66.0	29.0							
2-Apr-13	43.0	20.0							
1-Jul-13	42.0	35.0							
2-Oct-13	57.0	23.0							

3.0 Hydraulic Containment and Treatment System (HCTS) Operations and Maintenance Summary

The HCTS operations and maintenance (O&M) summary is divided into two sections. Section 3.1 highlights the major O&M related activities performed between 31 October 2012 and 30 October 2013. Section 3.2 discusses O&M issues that are on-going or anticipated during the future activities at the site.

3.1 OPERATIONS AND MAINTENANCE SUMMARY

The following briefly describes highlighted HCTS operations and maintenance activities or capital improvements conducted during the reporting period.

- 1. **November 2012– NTCRA-2 Recovery Well (RW-1R):** Deep bedrock well, RW-1R was temporarily taken out of operation in October and November 2012 in order to perform well surveys and drill the well deeper to increase its yield and plume capture effectiveness. This recovery well was placed back into service on 19 November 2013.
- 2. December 2012 and January 2013 Recovery Well (RW-1R) Testing and Monitoring Adjustments: Temporary trolls were employed to monitor select NTCRA-2 area deep bedrock wells for the months of December 2012 and January 2013 after restoration of Recovery Well RW-1R operations to confirm its change in performance. In December 2012, WESTON lowered the RW-1R operating level from approximately 32-feet to 72-feet below the top of casing (TOC). This process adjustment and subsequent testing included monitoring the recovery well's yield and area deep bedrock groundwater levels. In January the recovery well was shut down for approximately a week to evaluate its recharge. Testing results are presented on Figure 14B. Overall the process adjustment increased the average well yield from 0.06 to 0.12 gpm.
- 3. November 2013 RW-13 Vault Replacement and NTCRA-2 Fence Improvements: As discussed in last year's DCR, the Vault for RW-13 was replaced in October 2012; however the vault hatch fabrication was delayed. In November the hatch was delivered and installed on the vault completing the RW-13 enhancements. Subsequently, the fence around the NTCRA-2 recovery well control panel was modified so recovery well RW-13 was not within the fence boundary improving access to the recovery well.
- 4. **December 2012 and September 2013 Gravity Pipe Cleaning:** In order to maintain acceptable treatment system hydraulic throughput, WESTON cleaned the metals precipitation gravity piping on two occasions during the monitoring period. All gravity piping between the Clarifier Feed Tank and Sand filter was cleaned during each event.
- 5. December 2012 and September 2013 Clarifier Feed, Flash Mix and Flocculation Tank and Mixer Cleaning: In order to maintain acceptable treatment

system performance, the Clarifier Feed Tank, Flash Mix Tank and Flocculation Tank were each dewatered and each tank and the tank mixers were cleaned on two occasions.

- 6. **January 2013 Clarifier Feed Pump P-100 Seal Replacement:** The mechanical seal for this pump failed during December 2012. The seal was replaced in January 2013 to restore its operation to normal.
- 7. **January 2013 Compressor Repair:** The right hand air compressor stopped operating normally during December 2012. During the month of January 2013, the compressor pump was rebuilt to restore its operation to normal.
- 8. February 2013 Fire Suppression System Backflow Preventer: In January, a water leak was detected in fire suppression system back flow preventer. The leak was temporally plugged and the valve was rebuilt in February 2013.
- **9. February 2013 NTCRA-2 Influent Flow Meter Replacement:** The NTCRA-2 influent flow meter has been historically reading higher than actual. The inaccuracy was steadily worsening and was causing the estimated NTCRA-1 flow contribution to be negative. The flow meter was replaced with a new smaller 1.5" Neptune water meter. Significantly improved flow results have been observed for NTCRA-2 contribution following the meter replacement for the remainder of the DCR period however fouling and a pressure restriction has been observed at this new flow meter in the fall of 2013. Future consideration will be given to replacing the meter with a magnetic type flow meter which are less prone to fouling.
- **10. April 2013- NTCRA-2 Recovery Well RW-13 and RW-14 Redevelopment:** Recovery Wells, RW-13 and RW-14 were redeveloped to improve hydraulic performance of the recovery well and maintain NTCRA-2 hydraulic gradient reversal objectives.
- **11. April 2013 NTCRA-1 Recovery Well Redevelopment:** All 10 NTCRA-1 recovery wells were redeveloped to improve hydraulic performance and maintain NTCRA-1 hydraulic gradient reversal objectives.
- 12. **April 2013 Clarifier Feed Tank pH Probe Replacement:** The pH system for the Clarifier Feed Tank was not calibrating properly. This pH probe was replaced to restore its operation to normal.
- 13. **May 2013 Primary and Secondary GAC Carbon Replacement:** Activated carbon in the primary and secondary carbon vessels (2000 lbs. each) was replaced with new carbon. The spent carbon was removed and recycled by Carbon Filtration Systems, Inc.
- 14. **August 2013 Filter Press Sump Replacement:** In August the filter press sump pump stopped working. The pump was confirmed to be inoperable and a new pump was installed to restore operation to normal.
- 15. **Ultraviolet Oxidation System:** The following summarizes the major maintenance performed on the UV Equipment during the monitoring period:

H:\SRS Account\Year 11 O&M\AnnualReport_2013\2013Annual DCR_121105 Draft final.doc

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 5 31 October 2012 to 30 October 2013

• Two (2) UV lamps were replaced during the reporting period. All lamps were removed or replaced due to failure, excessive amperage draw or excessive hours.

During the monitoring period no additional UV reactor circuits failed. At the end of this monitoring period, UV-1 has 8 of 12 functional reactor circuits. UV- 2 has 7 of 12 functional circuits out of 12.

3.2 FUTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS

WESTON will continue to evaluate the overall HCTS and make recommendations for process improvements or modifications in the coming year. These recommendations will be summarized in the Monthly Operations and Maintenance HCTS report submissions. The following improvements are planned or being considered during the next DCR period.

- The SCADA computer has reached the end of its expected lifespan. This computer and the associated interface software will be replaced.
- The NTCRA-2 force main has begun to foul and thereby impacting the NTCRA-2 recovery well flow rate. This system will be modified to enable regular cleaning and maintenance so NTCRA-2 flows can be maintained.
- Installation of a Magnetic type flow meter for the NTCRA-2 influent to eliminate fouling concerns and maintenance is being evaluated.

					10					
Measuring	Location Elevation	29-N	ov-12	28-D	ec-12	29-J	an-13	26-H	Feb-13	
Location	Lievation	Depth to Water	Water Elevation							
CPZ-1	159.64	9.88	149.76	9.89	149.75	8.55	151.09	8.60	151.04	
CPZ-1R	161.12	5.01	156.11	3.19	157.93	1.45	159.67	2.99	158.13	
CPZ-2	158.64	7.62	151.02	6.50	152.14	5.82	152.82	5.08	153.56	
CPZ-2A	158.82	7.41	151.41	6.29	152.53	5.50	153.32	4.62	154.20	
CPZ-2R	160.97	4.85	156.12	3.09	157.88	1.32	159.65	1.14	159.83	
CPZ-3	159.21	10.07	149.14	10.36	148.85	10.02	149.19	10.27	148.94	
CPZ-3R	160.70	8.15	152.55	8.29	152.41	7.29	153.41	7.61	153.09	
CPZ-4	158.80	10.65	148.15	8.62	150.18	9.11	149.69	8.28	150.52	
CPZ-4A	159.44	10.80	148.64	9.61	149.83	9.40	150.04	9.08	150.36	
CPZ-4K CP7-5	158.68	0.09	1/6 17	13.48	1/15 20	13 30	1/15 20	0.44 16.41	102.02	
CP7-5R	158.30	10.29	148.01	9.99	148.31	10.39	148.09	11 18	147.12	
CPZ-6	154.48	5.45	149.03	4.51	149.97	4.97	149.51	4.61	149.87	
CPZ-6A	158.05	8.55	149.50	7.92	150.13	6.30	151.75	8.13	149.92	
CPZ-6R	154.39	7.03	147.36	5.94	148.45	6.18	148.21	5.91	148.48	
CPZ-7	159.40	8.18	151.22	8.28	151.12	8.41	150.99	8.35	151.05	
CPZ-7R	158.58	4.39	154.19	3.70	154.88	3.26	155.32	3.08	155.50	
CPZ-8	160.11	6.68	153.43	6.10	154.01	6.62	153.49	6.26	153.85	
CPZ-8R	160.62	8.92	151.70	7.24	153.38	7.54	153.08	7.14	153.48	
CPZ-10	163.44	6.61	156.83	6.25	157.19	6.50	156.94	6.21	157.23	
CPZ-10R	162.98	5.10	157.88	3.82	159.16	3.69	159.29	3.24	159.74	
MW-121A	152.96	6.67	146.29	6.31	146.65	6.42	146.54	6.14	146.82	
MW-125A	157.87	3./0	104.11	3.00	154.81	3.20	104.67	3.13	104.74	
MW-125C	150.30	1.12	140.00	1.30	149.00	/.41	140.09	7.07	146.03	
MW-415	160.75	7.52	153 23	7.26	153.49	7.37	153.38	7.08	153.67	
MW-416	159.98	8.99	150.99	8.74	151.24	8.58	151.40	9.13	150.85	
MW-704D	150.98	5.47	145.51	5.53	145.45	4.53	146.45	4.42	146.56	
MW-704M	152.34	7.21	145.13	6.39	145.95	7.63	144.71	6.31	146.03	
MW-704R	153.23	8.20	145.03	7.42	145.81	7.62	145.61	7.32	145.91	
MW-704DR	152.84	31.02	121.82	58.75	94.09	58.55	94.29	58.82	94.02	
MW-705DR	160.99	5.88	155.11	5.18	155.81	4.70	156.29	4.50	156.49	
MWL-302	161.60	7.89	153.71	7.35	154.25	7.81	153.79	7.12	154.48	
MWL-304	159.90	9.79	150.11	9.68	150.22	9.70	150.20	9.32	150.58	
MWL-305	159.01	6.80	152.21	6.13	152.88	6.48	152.53	6.00	153.01	
MWL-306	155.39	6.44	148.95	2.97	152.42	6.16	149.23	3.14	152.25	
MWL-307	159.14	5.19	152.94	5.75	153.39	5.09	153.15	5.70	153.44	
MWL-309	155.20	4.68	150.52	3.12	152.08	4 96	150.24	3.13	152.07	
MWL -311	157.33	8.32	149.01	5.29	152.00	6.93	150.24	6.66	150.67	
P-5A	157.61	9.58	148.03	9.01	148.60	9.13	148.48	9.55	148.06	
P-5B	158.39	6.08	152.31	4.48	153.91	6.06	152.33	4.61	153.78	
P-6	153.78	6.32	147.46	5.40	148.38	5.61	148.17	5.32	148.46	
PZR-2R	153.78	7.77	146.01	7.02	146.76	7.37	146.41	6.89	146.89	
PZR-2DR	154.67	8.88	145.79	5.93	148.74	8.42	146.25	7.93	146.74	
PZR-4R	153.72	7.48	146.24	7.58	146.14	6.71	147.01	6.23	147.49	
PZR-4DR	152.73	2.76	149.97	2.04	150.69	1.31	151.42	1.21	151.52	
KW-1	157.61	16.59	141.02	16.49	141.12	16.81	140.80	16.90	140.71	
RW-2	156.49	17.20	139.29	17.30	139.19	17.49	139.00	19.48	137.01	
RW-4	157.35	16.04	140.20	17.40	141 18	17.44	143.33	16.00	140.55	
RW-7	157.09	17.82	139.27	17.10	139.99	16.26	140.83	17.61	139.48	
RW-8	156.95	17.94	139.01	19.06	137.89	18.04	138.91	18.18	138.77	
RW-9	156.72	18.04	138.68	18.60	138.12	18.16	138.56	17.74	138.98	
RW-10	156.13	17.86	138.27	17.90	138.23	17.90	138.23	17.80	138.33	
RW-11	157.82	16.97	140.85	16.98	140.84	17.84	139.98	16.84	140.98	
RW-12	158.36	18.27	140.09	19.56	138.80	19.11	139.25	23.51	134.85	
RW-13	151.64	44.82	106.82	43.44	108.20	43.04	108.60	47.74	103.90	
RW-14	151.71	27.01	124.70	26.06	125.65	27.76	123.95	29.00	122.71	
RW-1R	149.77	31.37	118.40	74.08	75.69	73.11	76.66	73.30	76.47	
IW-/A	158.72	6.98	151.74	6.28	152.44	6.77	151.95	6.35	152.37	
IVIVV-702DR	181.38	21.01	160.37	18.99	162.39	17.01	164.37	16.36	165.02	
	161.20	21.18 0.0F	146.14	19.00	147.04	17.1δ 0.60	104.08	0.10	146.00	
MW-707R	156.09	9.90 Q Q7	146.14	9.00	147.01	9.00 9.48	146.49	9.10 8.07	140.99	
MW-707DR	156.80	10.88	145.92	10.21	146.59	10.62	146 18	10 15	146.65	
PZ-02D	154.14	8.08	146.06	7.11	147.03	7.59	146.55	7.05	147.09	
PZ-O2M	154.77	8.59	146.18	7.64	147.13	8.12	146.65	7.58	147.19	
MW-3	153.79	7.71	146.08	6.85	146.94	7.30	146.49	6.67	147.12	
MW-708R	224.95	75.99	148.96	76.35	148.60	76.33	148.62	76.31	148.64	
MW-708DR	224.19	76.11	148.08	76.00	148.19	76.15	148.04	75.92	148.27	
PZ-906DR	155.85	2.20	153.65	2.09	153.76	2.51	153.34	2.80	153.05	

Measuring	Location	27-N	far-13	29-A	Apr-13	28-M	lay-13	27-J	lun-13
Location	Elevation	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water
		Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
CPZ-1	159.64	6.86	152.78	7.92	151.72	8.88	150.76	6.31	153.33
CPZ-TK CP7-2	158.64	3.38	155.19	5 29	153.35	5.00	153 12	3.38	155.26
CPZ-2A	158.82	2.97	155.85	4.89	153.93	5.11	153.71	2.96	155.86
CPZ-2R	160.97	0.00	160.97	1.52	159.45	2.03	158.94	0.00	160.97
CPZ-3	159.21	8.89	150.32	9.69	149.52	9.99	149.22	9.06	150.15
CPZ-3R	160.70	4.65	156.05	7.13	153.57	7.41	153.29	4.96	155.74
CPZ-4 CPZ-44	158.80	6.38	152.42	8.38	150.42	7.98	150.82	6.90	151.90
CPZ-4A CPZ-4R	158.76	4 59	154 17	6.28	152.48	6 79	151.97	4 59	154 17
CPZ-5	158.68	15.16	143.52	17.56	141.12	17.89	140.79	18.30	140.38
CPZ-5R	158.30	9.45	148.85	12.45	145.85	11.50	146.80	12.05	146.25
CPZ-6	154.48	3.98	150.50	4.91	149.57	4.43	150.05	4.21	150.27
CPZ-6A	158.05	7.32	150.73	8.47	149.58	7.50	150.55	7.67	150.38
	154.39	4.79	149.60	6.19	148.20	5.70	148.69	5.13	149.26
CPZ-7R	158.58	0.00	158.58	3.01	155.57	3.55	155.03	0.51	158.07
CPZ-8	160.11	6.20	153.91	6.53	153.58	6.17	153.94	6.16	153.95
CPZ-8R	160.62	6.69	153.93	7.52	153.10	7.33	153.29	6.80	153.82
CPZ-10	163.44	6.31	157.13	6.45	156.99	6.30	157.14	6.10	157.34
CPZ-10R	162.98	1.33	161.65	3.32	159.66	3.50	159.48	1.10	161.88
MW-121A	152.96	4.97	155 39	3.48	140.59	3.38	154 49	2.18	155.09
MW-125C	156.30	6.20	150.10	8.11	148.19	7.77	148.53	7.80	148.50
MW-204A	150.78	3.00	147.78	4.60	146.18	4.21	146.57	3.42	147.36
MW-415	160.75	4.06	156.69	6.06	154.69	7.01	153.74	4.93	155.82
MW-416	159.98	6.60	153.38	8.79	151.19	9.18	150.80	7.52	152.46
MW-704D	150.98	3.37	147.61	5.43	145.55	4.98	146.00	4.06	146.92
MW-704R	152.34	6.42	146.81	8.63	144.88	8.05	145.33	7 30	145.93
MW-704DR	152.84	57.47	95.37	59.16	93.68	57.82	95.02	57.68	95.16
MW-705DR	160.99	2.73	158.26	4.29	156.70	4.72	156.27	2.49	158.50
MWL-302	161.60	7.58	154.02	7.63	153.97	3.47	158.13	7.41	154.19
MWL-304	159.90	5.96	153.94	8.15	151.75	9.15	150.75	6.85	153.05
MWL-305	159.01	4.00	155.01	5.04 5.81	153.47	6.20 4.88	152.81	4.73	154.28
MWL-307	159.14	3.67	155.47	4.66	154.48	5.61	153.53	3.61	155.53
MWL-308	158.63	2.52	156.11	3.92	154.71	4.67	153.96	3.15	155.48
MWL-309	155.20	3.70	151.50	4.80	150.40	3.15	152.05	4.80	150.40
MWL-311	157.33	5.28	152.05	6.72	150.61	5.85	151.48	5.96	151.37
P-5A P-5B	157.01	8.32 5.08	149.29	9.80	147.81	8.15 4.90	149.40	9.06	148.00
P-6	153.78	4.27	149.51	5.40	148.38	4.98	148.80	4.48	149.30
PZR-2R	153.78	6.09	147.69	7.34	146.44	7.05	146.73	6.24	147.54
PZR-2DR	154.67	7.13	147.54	8.32	146.35	8.02	146.65	7.15	147.52
PZR-4R	153.72	5.20	148.52	6.58	147.14	6.40	147.32	5.26	148.46
PZR-4DR	152.73	0.00	152.73	1.21	151.52	1.42	151.31	0.00	152.73
RW-2	156.49	20.34	136.15	23.40	133.09	21.17	135.32	21.01	135.48
RW-3	157.35	13.43	143.92	18.26	139.09	17.49	139.86	16.98	140.37
RW-4	158.21	12.46	145.75	16.85	141.36	16.66	141.55	15.95	142.26
RW-7	157.09	12.78	144.31	17.27	139.82	16.70	140.39	17.04	140.05
RW-8	156.95	16.86	140.09	18.44	138.51	17.80	139.15	18.20	138.75
RW-10	156.12	12.24	143 89	18.07	137.98	17 47	138.66	18.04	137.95
RW-11	157.82	17.36	140.46	17.32	140.50	17.70	140.12	17.29	140.53
RW-12	158.36	18.77	139.59	18.09	140.27	17.77	140.59	19.96	138.40
RW-13	151.64	45.25	106.39	36.40	115.24	32.41	119.23	32.10	119.54
RW-14	151.71	31.22	120.49	10.15	141.56	10.38	141.33	10.01	141.70
κνν-1κ τw7Δ	149.77	13.81 5 06	152.76	6 77	151.05	6 20	76.91	6 11	152.61
MW-702DR	181.38	11.76	169.62	17.88	163.50	17.76	163.62	11.44	169.94
P-8A	181.26	11.68	169.58	17.82	163.44	17.65	163.61	11.40	169.86
MW-707D	156.09	8.55	147.54	9.20	146.89	9.08	147.01	8.49	147.60
MW-707R	156.01	8.26	147.75	9.32	146.69	9.13	146.88	8.46	147.55
	156.80	9.35	147.45	10.48	146.32	10.21	146.59	9.32	147.48
PZ-02D	154.14	6.91	147.76	7.41	146.73	7.13	147.01	0.52 7 03	147.02
MW-3	153.79	6.33	147.46	7.09	146.70	6.88	146.91	6.38	147.41
MW-708R	224.95	74.71	150.24	74.88	150.07	74.80	150.15	74.62	150.33
MW-708DR	224.19	74.79	149.40	75.50	148.69	75.60	148.59	75.51	148.68
PZ-906DR	155.85	3.22	152.63	3.26	152.59	3.16	152.69	4.55	151.30

Measuring	Location	<u> </u>	ul-13	<u>26</u> -A	ug-13	<u>26</u> -S	ep-13	29-0	Oct-13
Location	Elevation	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water
0.0.7.4	170.04	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
CPZ-1 CPZ-1R	159.64	8.46 3.34	151.18	9.62	150.02	10.88	148.76	11.98 7 44	147.66
CPZ-2	158.64	6.26	152.38	7.62	151.02	8.55	150.09	9.52	149.12
CPZ-2A	158.82	5.90	152.92	7.37	151.45	8.28	150.54	9.52	149.30
CPZ-2R	160.97	3.20	157.77	5.20	155.77	6.45	154.52	7.38	153.59
CPZ-3	159.21	10.41	148.80	11.33	147.88	11.80	147.41	12.33	146.88
CPZ-3R CPZ-4	158.80	9.63	149.17	10.81	147.99	11.67	147.13	12.59	149.09
CPZ-4A	159.44	10.01	149.43	11.00	148.44	11.69	147.75	12.22	147.22
CPZ-4R	158.76	7.18	151.58	8.38	150.38	9.15	149.61	11.00	147.76
CPZ-5	158.68	18.13	140.55	18.03	140.65	18.33	140.35	18.51	140.17
CPZ-5R CPZ-6	158.30	5 30	144.72	5.72	144.34	5 70	144.69	6 40	144.20
CPZ-6A	158.05	8.67	149.38	8.98	149.07	9.26	148.79	9.82	148.23
CPZ-6R	154.39	6.55	147.84	7.28	147.11	7.69	146.70	8.31	146.08
CPZ-7	159.40	12.31	147.09	12.01	147.39	11.84	147.56	12.32	147.08
CPZ-7R CPZ-8	158.58	3.88	154.70	5.07	153.51	5.70	152.88	6.36	152.22
CPZ-8R	160.62	7.65	152.97	8.00	152.62	8.20	152.42	8.66	151.96
CPZ-10	163.44	6.29	157.15	6.48	156.96	6.50	156.94	7.07	156.37
CPZ-10R	162.98	4.23	158.75	5.21	157.77	5.62	157.36	6.38	156.60
WW-121A	152.96	6.48 3.50	146.48	7.41 3.86	145.55	7.73 2.82	145.23	8.33	144.63
MW-125A	156.30	8.57	147.73	9.09	147.21	9.20	147.10	9.65	146.65
MW-204A	150.78	4.48	146.30	5.55	145.23	5.62	145.16	6.38	144.40
MW-415	160.75	6.90	153.85	8.01	152.74	8.68	152.07	9.32	151.43
MW-416	159.98	9.50	150.48	10.40	149.58	10.97	149.01	11.60	148.38
MW-704D	150.98	5.21	145.77	8.41	144.07	6.49 8.52	144.49	9.50	143.01
MW-704R	153.23	8.32	144.91	9.48	143.75	9.89	143.34	11.83	141.40
MW-704DR	152.84	58.96	93.88	59.49	93.35	60.40	92.44	60.98	91.86
MW-705DR	160.99	4.92	156.07	5.79	155.20	6.31	154.68	6.92	154.07
MWL-302 MWL-304	161.60	7.55	154.05	7.66	153.94	7.65	153.95	7.87	153.73
MWL-305	159.01	6.09	152.92	6.05	152.96	8.01	151.00	9.03	149.98
MWL-306	155.39	7.09	148.30	7.61	147.78	7.44	147.95	7.98	147.41
MWL-307	159.14	5.60	153.54	6.69	152.45	7.40	151.74	7.92	151.22
MWL-308	158.63	4.72	153.91	5.71	152.92	6.37 5.89	152.26	7.19	151.44
MWL-311	157.33	8.21	149.12	8.96	148.37	9.78	147.55	10.80	146.53
P-5A	157.61	10.28	147.33	10.71	146.90	11.00	146.61	11.60	146.01
P-5B	158.39	6.27	152.12	6.52	151.87	6.28	152.11	6.78	151.61
P-6	153.78	5./1	148.07	6.28	147.50	6.74	147.04	7.36	146.42
PZR-2R PZR-2DR	154.67	8.49	146.18	9.22	145.45	9.35	145.39	9.92	144.75
PZR-4R	153.72	6.99	146.73	7.85	145.87	8.14	145.58	8.64	145.08
PZR-4DR	152.73	1.88	150.85	3.09	149.64	3.67	149.06	4.49	148.24
RW-1	157.61	17.41	140.20	16.60	141.01	18.03	139.58	18.08	139.53
RW-2 RW-3	150.49	17.12	140.23	16.77	140.58	17.90	139.45	17.90	139.45
RW-4	158.21	15.90	142.31	17.03	141.18	15.96	142.25	15.96	142.25
RW-7	157.09	15.96	141.13	17.20	139.89	17.34	139.75	17.25	139.84
RW-8	156.95	17.40	139.55	17.84	139.11	18.01	138.94	17.80	139.15
RW-10	156.12	18.70	137.43	17.36	138.54	18.40	137.53	17.47	139.25
RW-11	157.82	18.21	139.61	17.97	139.85	18.10	139.72	18.32	139.50
RW-12	158.36	21.60	136.76	20.94	137.42	20.39	137.97	20.99	137.37
RW-13	151.64	33.78	117.86	47.20	104.44	46.44	105.20	50.70	100.94
RW-14 RW-1R	151.71	73.43	76 34	13.80	75 55	72 90	76.87	73.22	76 55
TW-7A	158.72	6.84	151.88	7.08	151.64	7.24	151.48	7.71	151.01
MW-702DR	181.38	19.90	161.48	21.60	159.78	22.62	158.76	23.56	157.82
P-8A	181.26	19.96	161.30	21.76	159.50	22.80	158.46	23.65	157.61
	156.09	9.50	146.59	10.01	146.08	9.99	146.10	10.49	145.60
MW-707DR	156.80	9.00	146.08	10.28	145.40	11.47	145.83	11.96	143.09
PZ-02D	154.14	7.64	146.50	8.38	145.76	8.46	145.68	8.91	145.23
PZ-O2M	154.77	8.18	146.59	8.87	145.90	8.93	145.84	9.42	145.35
MW-3	153.79	7.31	146.48	7.88	145.91	7.80	145.99	8.25	145.54
WW-708R	224.95	75.52	150.11	75.60	150.05	75.61	149.99	76.55	148.40
PZ-906DR	155.85	4 23	151.62	4 03	151 82	3.85	152.00	3.68	152 17

TABLE 2

31 October 2012 through 30 October 2013

Influent and Effluent GWCT System Flow Data Summary

Influent Flow Summary			ry	NCTRA-1	NCTRA-2 Flow Summary			Effluent Flow S	(NTCRA 1	
	(NCTR)	A 1 and 2 Combin	ned)	Flow				and	2 Combined)	
Date	Total Cumulative	Total Flow	Ava Rate	Summary ⁽²⁾	Total	Total Flow	Ava Rate	Total	Total Flow	Ava Rate
Dato	Flow (gallons)	Since Previous	Since Prev	Since Prev	Cumulative	Since Previous	Since	Cumulative	Since	Since
	rion (ganono)	(gallons)	(GPM)	(GPM)	Flow (gallons)	(gallons)	Prev.	Flow (gallons)	Previous	Prev.
		(guilorio)			r lott (gallollo)	(gallollo)	(GPM)	r low (gallorio)	(gallons)	(GPM)
10/30/2012	229,765,000	1,147,000	25.7	3.1	112,965,160	1,006,700	22.6	244,448,000	1,175,000	26.3
11/30/2012	231,230,000	1,465,000	32.8	5.7	114,174,960	1,209,800	27.1	245,942,000	1,494,000	33.5
1/1/2013	232,575,000	1,345,000	29.2	-2.9	115,651,860	1,476,900	32.1	247,312,000	1,370,000	29.7
1/31/2013	233,715,000	1,140,000	26.4	-4.9	117,003,660	1,351,800	31.3	248,481,000	1,169,000	27.1
2/28/2013	234,831,000	1,116,000	27.7	3.2	117,991,560	987,900	24.5	249,623,000	1,142,000	28.3
3/30/2013	236,262,000	1,431,000	33.1	10.9	118,950,860	959,300	22.2	251,082,000	1,459,000	33.8
4/30/2013	238,084,000	1,822,000	40.8	8.1	120,409,860	1,459,000	32.7	252,937,000	1,855,000	41.6
5/31/2013	239,914,000	1,830,000	41.0	7.3	121,912,360	1,502,500	33.7	254,797,000	1,860,000	41.7
6/28/2013	241,607,000	1,693,000	42.0	9.9	123,207,860	1,295,500	32.1	256,525,000	1,728,000	42.9
7/31/2013	243,464,000	1,857,000	39.1	8.8	124,647,860	1,440,000	30.3	258,434,000	1,909,000	40.2
8/30/2013	245,143,000	1,679,000	38.9	5.7	126,078,960	1,431,100	33.1	260,159,000	1,725,000	39.9
9/30/2013	246,730,000	1,587,000	35.6	3.9	127,492,660	1,413,700	31.7	261,800,000	1,641,000	36.8
10/30/2013	248,297,000	1,567,000	36.3	2.9	128,933,560	1,440,900	33.4	263,426,000	1,626,000	37.6
Yearly Averages (1)			35.3	4.9			30.4			36.1
Cumulative Totals:	248,297,000	18,532,000			128,933,560	15,968,400		263,426,000	18,978,000	

Notes:

1: The average yearly flows are calculated by dividing the total cumulative annual flow by the duration in minutes.

2: The NTCRA-2 Flow Meter is reading higher than actual causing the calculated NTCRA-1 flow to be lower than actual.

31 October 2012 through 30 October 2013

Page 1 of 1

November 2012

DRAFT

SRSNE HCTS - Influent Results

	Sample Dates				
Parameter/ Concentration (mg/L)	11/1/2012	11/14/2012			
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mg/L)	(mg/L)			
Trichloroethene (mg/L)	<0.01	0.001			
Tetrachloroethene (mg/L)	<0.01	<0.001			
Toluene (mg/L)	1.27	0.045			
Ethylbenzene (mg/L)	0.42	0.013			
Xylenes, Total (mg/L)	0.29	0.01			
Vinyl chloride (mg/L)	0.24	0.012			
1,1-Dichloroethene (mg/L)	<0.01	<0.001			
Tetrahydrofuran (mg/L)	<0.50	<0.050			
1.2-Dichloroethene ^[1] (mg/L)	0.56	0.016			
1,2-Dichloroethane (mg/L)	<0.01	<0.001			
1,1,1-Trichloroethane (mg/L)	<0.01	<0.001			
1,1,2-Trichloroethane (mg/L)	<0.01	<0.001			
Methylene chloride (mg/L)	0.04	<0.001			
Styrene (mg/L)	<0.01	<0.001			
Alcohols					
Ethanol (mg/L)	<5.0	<5.0			
Methanol (mg/L)	<5.0	<5.0			
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0			
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0			
Ketones					
Acetone (mg/L)	<0.50	<0.50			
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50			
4-Methyl-2-pentanone (Methyl	-0.50	-0.50			
Isobutyl Ketone) (mg/L)	<0.50	<0.50			
Total VOCs ^[2]	2.82	0.097			
B. INORGANIC PARAMETERS					
Metals		T			
Copper, Total (mg/L)	<0.01	<0.01			
Iron, Total (mg/L)	2.92	2.81			
Lead, Total (mg/L)	<0.005	<0.005			
Nickel, Total (mg/L)	<0.05	<0.05			
Zinc, Total (mg/L)	<0.05	< 0.05			

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

December 2012

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	12/7/2012	12/20/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.001	0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.003	0.012
Ethylbenzene (mg/L)	<0.001	0.002
Xylenes, Total (mg/L)	<0.001	0.002
Vinyl chloride (mg/L)	0.002	0.003
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.002	0.005
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0.50	-0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	0.008	0.025
B. INORGANIC PARAMETERS		
Inerais	-0.01	0.01
Uron Total (mg/L)	<0.01	0.01
lion, iotal (mg/L)	<u>3.∠</u> 3	4.2
Leau, Total (IIIg/L)		<0.000
INICKEI, I Otal (MIQ/L)	<0.05	<0.05
ZINC, I OTAI (Mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

January 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	1/1/2013	1/17/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.001	<0.01
Tetrachloroethene (mg/L)	<0.001	<0.01
Toluene (mg/L)	0.099	1.45
Ethylbenzene (mg/L)	0.026	0.39
Xylenes, Total (mg/L)	0.020	0.31
Vinyl chloride (mg/L)	0.026	0.35
1,1-Dichloroethene (mg/L)	<0.001	<0.01
Tetrahydrofuran (mg/L)	<0.050	<0.50
1.2-Dichloroethene ^[1] (mg/L)	0.042	0.48
1.2-Dichloroethane (mg/L)	<0.001	<0.01
1,1,1-Trichloroethane (mg/L)	<0.001	<0.01
1,1,2-Trichloroethane (mg/L)	<0.001	<0.01
Methylene chloride (ma/L)	0.002	0.10
Styrene (mg/L)	<0.001	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	< 0.050	< 0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.50
4-Methyl-2-pentanone (Methyl	~ ~ ~ ~	~ ~~
Isobutyl Ketone) (ma/L)	<0.050	<0.50
Total VOCs ^[2]	0.22	3.08
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	1.36	1.20
Lead, Total (mg/L)	< 0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	< 0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

February 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	2/4/2013	2/20/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.14	1.61
Ethylbenzene (mg/L)	0.30	0.45
Xylenes, Total (mg/L)	0.22	0.34
Vinyl chloride (mg/L)	0.30	0.31
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1,2-Dichloroethene ^[1] (ma/L)	0.38	0.51
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	<0.01	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	<0.01	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0.50	-0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	2.34	3.26
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	8.35	3.42
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

March 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	3/7/2013	3/21/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.75	1.83
Ethylbenzene (mg/L)	0.51	0.58
Xylenes, Total (mg/L)	0.35	0.33
Vinyl chloride (mg/L)	0.32	0.32
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.40	0.59
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	<0.01	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.03	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0 50	-0 50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	3.36	3.71
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	5.98	8.54
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

April 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	4/2/2013	4/18/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.90	0.72
Ethylbenzene (mg/L)	0.54	0.14
Xylenes, Total (mg/L)	0.28	0.07
Vinyl chloride (mg/L)	0.43	0.16
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.85	0.28
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.05	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.05	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0.50	-0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	4.1	1.39
Inerais	-0.01	-0.01
Uron Total (mg/L)	<0.01	<u.u1 5 00</u.u1
lion, i utal (My/L)	9.54	D.90
Leau, Total (IIIg/L)	<0.005	<0.000
INICKEI, I Otal (MIQ/L)	<0.05	<0.05
LZINC, LOTAL (MG/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

May 2013

DRAFT

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	5/2/2013	5/13/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	2.90	0.65
Ethylbenzene (mg/L)	0.72	0.16
Xylenes, Total (mg/L)	0.41	0.09
Vinyl chloride (mg/L)	0.65	0.13
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (mg/L)	1.38	0.30
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.08	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.06	0.05
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0.50	-0 E 0
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	6.21	1.4
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	< 0.01	< 0.01
liron. Total (mg/L)	22.3	11.2
Lead. Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

June 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	6/7/2013	6/21/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	4.03	1.44
Ethylbenzene (mg/L)	1.11	0.33
Xylenes, Total (mg/L)	0.70	0.25
Vinyl chloride (mg/L)	0.56	0.22
1,1-Dichloroethene (mg/L)	0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1,2-Dichloroethene ^[1] (ma/L)	1.24	0.39
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.07	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.05	0.07
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0 50	-0 50
Isobutyl Ketone) (mg/L)	<0.50	<0.50
Total VOCs ^[2]	7.77	2.72
B. INORGANIC PARAMETERS		
Metals		1
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	6.37	5.94
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

July 2013

DRAFT

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	7/1/2013	7/17/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	< 0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	2.57	1.81
Ethylbenzene (mg/L)	0.63	0.48
Xylenes, Total (mg/L)	0.48	0.31
Vinyl chloride (mg/L)	0.52	0.41
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1,2-Dichloroethene ^[1] (ma/L)	0.75	0.53
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.03	0.03
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.05	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	~0.50	~0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	5.03	3.61
B. INORGANIC PARAMETERS		
Metals		
Copper, I otal (mg/L)	<0.01	0.01
liron, Total (mg/L)	3.36	5.71
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

August 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	8/2/2013	8/16/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	2.16	0.89
Ethylbenzene (mg/L)	0.66	0.21
Xylenes, Total (mg/L)	0.44	0.13
Vinyl chloride (mg/L)	0.62	0.36
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.91	0.41
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.04	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.06	0.05
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0 E0	-0 E 0
Isobutyl Ketone) (mg/L)	<0.50	<0.50
Total VOCs ^[2]	4.89	2.05
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	5.80	5.58
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

September 2013

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	9/6/2013	9/19/2013
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	< 0.01	< 0.001
Tetrachloroethene (mg/L)	<0.01	<0.001
Toluene (mg/L)	0.44	0.410
Ethylbenzene (mg/L)	0.08	0.070
Xylenes, Total (mg/L)	0.04	0.040
Vinyl chloride (mg/L)	0.10	0.140
1,1-Dichloroethene (mg/L)	<0.01	<0.001
Tetrahydrofuran (mg/L)	<0.50	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.12	0.120
1,2-Dichloroethane (mg/L)	<0.01	<0.001
1,1,1-Trichloroethane (mg/L)	<0.01	<0.001
1,1,2-Trichloroethane (mg/L)	<0.01	<0.001
Methylene chloride (mg/L)	0.02	0.040
Styrene (mg/L)	<0.01	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.050
4-Methyl-2-pentanone (Methyl	-0.50	-0.050
Isobutyl Ketone) (mg/L)	<0.50	<0.050
Total VOCs ^[2]	0.80	0.82
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	2.09	4.93
Lead, Total (mg/L)	<0.005	< 0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.
October 2013

DRAFT

SRSNE HCTS - Influent Results

	Sampl	Sample Dates	
Parameter/ Concentration (mg/L)	10/2/2013	10/18/2013	
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	< 0.01	< 0.001	
Tetrachloroethene (mg/L)	<0.01	<0.001	
Toluene (mg/L)	2.07	0.012	
Ethylbenzene (mg/L)	0.57	0.002	
Xylenes, Total (mg/L)	0.45	0.001	
Vinyl chloride (mg/L)	0.81	0.003	
1,1-Dichloroethene (mg/L)	<0.01	<0.001	
Tetrahydrofuran (mg/L)	<0.50	<0.050	
1,2-Dichloroethene ^[1] (ma/L)	0.81	0.003	
1,2-Dichloroethane (mg/L)	<0.01	<0.001	
1,1,1-Trichloroethane (mg/L)	0.01	<0.001	
1,1,2-Trichloroethane (mg/L)	<0.01	<0.001	
Methylene chloride (mg/L)	0.62	<0.001	
Styrene (mg/L)	<0.01	<0.001	
Alcohols			
Ethanol (mg/L)	<5.0	<5.0	
Methanol (mg/L)	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0	
Ketones			
Acetone (mg/L)	<0.50	<0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.050	
4-Methyl-2-pentanone (Methyl	~0.50	<0.050	
Isobutyl Ketone) (ma/L)	<0.50	<0.050	
Total VOCs ^[2]	5.34	0.021	
B. INORGANIC PARAMETERS			
Metals			
Copper, Total (mg/L)	<0.01	<0.01	
Iron, Total (mg/L)	3.79	4.32	
Lead, Total (mg/L)	<0.005	<0.005	
Nickel, Total (mg/L)	<0.05	<0.05	
Zinc, Total (mg/L)	<0.05	<0.05	

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

[2] = Total VOCs is the total sum of detected compounds (mg/l)

November 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L) Requirement Discharge Limits 11/1/2012 11/14/2012 A. ORGANIC PARAMETERS ////////////////////////////////////		Substantive	Sample Dates	
A. ORGANIC PARAMETERS Volatile Organic Compounds (mg/L) (mg/L) (mg/L) Trichloroethene (mg/L) 0.973 <0.001 <0.001 Tetrachloroethene (mg/L) 0.106 <0.001 <0.001 Toluene (mg/L) 4.000 <0.001 <0.001 Toluene (mg/L) 1.000 <0.001 <0.001 Ethylbenzene (mg/L) 0.500 <0.001 <0.001 Xylenes, Total (mg/L) 0.500 <0.001 <0.001 Vinyl chloride (mg/L) 0.058 <0.001 <0.001 1,1-Dichloroethene (mg/L) 0.500 <0.050 <0.001 1,2-Dichloroethene (mg/L) 0.500 <0.050 <0.050 1,2-Dichloroethane (mg/L) 0.250 <0.001 <0.001 1,1-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 <t< th=""><th>Parameter/ Concentration (mg/L)</th><th>Requirement Discharge Limits</th><th>11/1/2012</th><th>11/14/2012</th></t<>	Parameter/ Concentration (mg/L)	Requirement Discharge Limits	11/1/2012	11/14/2012
Volatile Organic Compounds (mg/L) (mg/L) (mg/L) Trichloroethene (mg/L) 0.973 <0.001 <0.001 Tetrachloroethene (mg/L) 0.106 <0.001 <0.001 Toluene (mg/L) 4.000 <0.001 <0.001 Toluene (mg/L) 1.000 <0.001 <0.001 Ethylbenzene (mg/L) 0.500 <0.001 <0.001 Xylenes, Total (mg/L) 0.500 <0.001 <0.001 Vinyl chloride (mg/L) 0.058 <0.001 <0.001 1,1-Dichloroethene (mg/L) 0.500 <0.050 <0.001 1,2-Dichloroethene (mg/L) 0.500 <0.050 <0.050 1,2-Dichloroethane (mg/L) 0.250 <0.001 <0.001 1,1-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 Methylene chloride (mg/L) 0.500	A. ORGANIC PARAMETERS			
Trichloroethene (mg/L) 0.973 <0.001	Volatile Organic Compounds	(<i>mg/L</i>)	(mg/L)	(mg/L)
Tetrachloroethene (mg/L) 0.106 <0.001	Trichloroethene (mg/L)	0.973	<0.001	<0.001
Toluene (mg/L) 4.000 <0.001	Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Ethylbenzene (mg/L) 1.000 <0.001	Toluene (mg/L)	4.000	<0.001	<0.001
Xylenes, Total (mg/L) 0.500 <0.001	Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Vinyl chloride (mg/L) 4.500 <0.001	Xylenes, Total (mg/L)	0.500	<0.001	<0.001
1,1-Dichloroethene (mg/L) 0.058 <0.001	Vinyl chloride (mg/L)	4.500	<0.001	<0.001
Tetrahydrofuran (mg/L) 0.500 <0.050	1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
1.2-Dichloroethene ^[1] (mg/L) 5.000 0.100 0.095 1,2-Dichloroethane (mg/L) 0.250 <0.001	Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethane (mg/L) 0.250 <0.001 <0.001 1,1,1-Trichloroethane (mg/L) 4.000 0.006 0.005 1,1,2-Trichloroethane (mg/L) 0.250 <0.001	1,2-Dichloroethene ^[1] (mg/L)	5.000	0.100	0.095
1,1,1-Trichloroethane (mg/L) 4.000 0.006 0.005 1,1,2-Trichloroethane (mg/L) 0.250 <0.001	1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,2-Trichloroethane (mg/L) 0.250 <0.001 <0.001 Methylene chloride (mg/L) 15.000 0.003 <0.001	1,1,1-Trichloroethane (mg/L)	4.000	0.006	0.005
Methylene chloride (mg/L) 15.000 0.003 <0.001 Styrene (mg/L) 0.500 <0.001	1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Styrene (mg/L) 0.500 <0.001 <0.001	Methylene chloride (mg/L)	15.000	0.003	<0.001
	Styrene (mg/L)	0.500	<0.001	<0.001
AICONOIS	Alcohols			•
Ethanol (mg/L) 20.0 <5.0 <5.0	Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L) 10.0 <5.0 <5.0	Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L) 30.0 <5.0 <5.0	2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L) 10.0 <5.0 <5.0	2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	Ketones			•
Acetone (mg/L) 35.0 <0.050 <0.050	Acetone (mg/L)	35.0	<0.050	< 0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L) 10.0 <0.050 <0.050	2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	4-Methyl-2-pentanone (Methyl	~ ~		
Isobutyl Ketone) (mg/L) 2.0 <0.050 <0.050	Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2] 0.109 0.1			0.109	0.1
B. INORGANIC PARAMETERS	B. INORGANIC PARAMETERS			
Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day)	Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3] 15.8 g/day 0.01 mg/l or 1.82 g/day <0.01 mg/l or <1.82 g/day	Copper. Total (g/day) ^[3]	15.8 g/day	0.01 mg/l or 1.82 g/day	<0.01 mg/l or <1.82 g/day
Iron, Total (mg/l) 5.0 0.1 <0.05	Iron, Total (mg/l)	5.0	0.1	<0.05
Lead. Total (g/day) ^[3] 3.2 g/day <0.005 mg/l or <0.91 g/day <0.005 mg/l or <0.91 g/day	Lead. Total (g/day) ^[3]	3.2 q/day	<0.005 mg/l or <0.91 g/day	<0.005 mg/l or <0.91 g/day
Nickel, Total (mg/l)	Nickel. Total (mg/l)	0.5	<0.05	<0.05
$\frac{40.3 \text{ g/day}}{100000000000000000000000000000000000$	Zinc. Total $(\alpha/day)^{[3]}$	40.3 g/day	< 0.05 mg/l or < 9.12 g/day	< 0.05 mg/l or < 9.12 g/day
The gray Coording of Contract gray Coording of Contract gray Coording of Contract gray	OTHER	40.0 grady		
Hydrogen Peroxide (mg/L)	Hydrogen Peroxide (mg/L)	10	<0.2	<0.2
	Total PCBs (ug/L)	NI	<u></u>	<u>N9</u>
	nH (s u)	60.905	7.00	6.89
Total Suspended Solids (mail)	Total Suspended Solids (mg/l)	20 20	1	0.00 ~1
Diavios (pa/L) NS <26	Dioxins (ng/L)	NI	NS	<u> </u>
$\frac{100}{NL} = \frac{100}{NL} = \frac{100}{51}$	Eurans (ng/L)	NI	NS	<u>~50</u>

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

December 2012

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates	
Parameter/ Concentration (mg/L)	Parameter/ Concentration (mg/L) Requirement Discharge Limits	12/7/2012	12/20/2012
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.076	0.087
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.004	0.005
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.001	0.002
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	0.050	0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.081	0.094
B INORGANIC PARAMETERS			
Metals	(ma/L) or (a/day)	(ma/L) or (a/day)	(ma/L) or (a/day)
Copper Total (g/day) ^[3]	15.8 g/day	< 0.01 mg/l or < 1.62 g/day	< 0.01 mg/l or < 1.62 g/day
Iron, Total (mg/l)	5.0	0.5	0.2
Lead Total (a/day) ^[3]	3 2 a/dav	< 0.005 mg/l or < 0.81 g/day	< 0.005 mg/l or < 0.81 g/day
Nickol Total (g/day)	0.2 g/day	<0.05	<0.05
[Nickel, Total(nig)]	40.2 m/day		
ZINC, I otal (g/day) ⁽⁴⁾	40.3 g/day	<0.05 mg/i of <8.1 g/day	<0.05 mg/i of <8.1 g/day
	4.0		
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
TOTAL PUBS (µg/L)	NL	<1	
IPH (S.U.)	6.0 - 9.0 s.u.	6.85	6.77
i lotal Suspended Solids (mg/L)	30	2	2
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L) Requiremen Discharge Lin	Requirement Discharge Limits	1/1/2013	1/17/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.099	0.087
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.005	0.004
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.001	0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			•
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			•
Acetone (mg/L)	35.0	< 0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)			
		0.105	0.092
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/dav) ^[3]	15.8 g/day	0.01 mg/l or 1.47 g/day	<0.01 mg/l or <1.47 g/day
Iron, Total (mg/l)	5.0	0.22	0.06
l ead. Total (g/dav) ^[3]	3.2 α/dav	<0.005 mg/l or <0.74 g/day	<0.005 mg/l or <0.74 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
Zine Total $(a/dev)^{[3]}$	40.3 g/day	< 0.05 mg/l or < 7.37 g/day	< 0.05 mg/l or < 7.37 g/day
	40.5 g/uay	<0.05 mg/1 01 <7.57 g/day	<0.05 mg/1 or <7.57 g/day
Hudrogen Derevide (mg/L)	10		
mydrogen Peroxide (mg/L)	1.U	<0.2	
		<1	
µ⊓ (S.u.)	0.0 - 9.0 S.U.	0.82	0./3
Diavina (ng/L)	30	1	<1
Dioxins (pg/L)	NL	<30	INS NO
Furans (pg/L)	NL	<51	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

February 2013

DRAFT

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	2/4/2013	2/20/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.070	0.083
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.003	0.003
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.002	0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.030
Total VOCs ^[2]		0.075	0.087
B INORGANIC PARAMETERS			
Metals	(ma/L) or (a/dav)	(ma/L) or (a/dav)	(ma/L) or (a/dav)
Copper Total (g/day) ^[3]	15.8 g/day	< 0.01 mg/l or 1.54 g/day	< 0.01 mg/l or < 1.54 g/day
Iron, Total (mg/l)	5.0	0.08	0.32
Lead Total (a/dav) ^[3]	3 2 g/dav	< 0.005 mg/l or < 0.77 g/day	< 0.005 mg/l or < 0.77 g/day
Nickel Total (ma/l)	0.2 graay	<0.05	<0.05
\mathbf{Z}_{in} = \mathbf{T}_{a} to $ \mathbf{d}_{in} ^{(1)}$	40.2 a/day	< 0.05	< 0.05
	40.3 g/uay	<0.05 mg/1 of <1.72 g/day	<0.05 mg/1 of <7.72 g/day
	4.0	.0.0	.0.0
Invarogen Peroxide (mg/L)	1.0	<0.2	<0.2
TOTAL PUBS (UG/L)		<1	<u>NS</u>
IP⊓ (S.u.)	6.0 - 9.0 S.U.	0./3	0.08
Diavina (ng/L)	3U	1 NC	<u> </u>
Dioxins (pg/L)	NL	NS NO	INS NO
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates	
Parameter/ Concentration (mg/L)	oncentration (mg/L) Requirement Discharge Limits	3/7/2013	3/21/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	0.002
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.105	0.074
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.004	0.007
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.001	0.004
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.110	0.087
B. INORGANIC PARAMETERS	<u>.</u>		
Metals	(ma/L) or (a/dav)	(ma/L) or (a/dav)	(ma/L) or (a/dav)
Copper Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <1.85 g/day	<0.01 mg/l or <1.85 g/day
Iron. Total (mg/l)	5.0	0.29	0.33
Lead Total (ɑ/dav) ^[3]	3.2 g/day	<0.005 mg/l or <0.92 g/day	<0.005 mg/l or <0.92 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
Zine Total $(a/day)^{[3]}$	veb/n 2 0/	< 0.05 mg/l or < 9.23 g/day	< 0.05 mg/l or < 9.23 g/day
	TU.J g/uay		<0.00 mg/r or <9.20 g/uay
Hydrogon Borovido (mg/L)	10	-0.2	<0.2
	1.U NI	<0.2	<u><u.2< u=""> NO</u.2<></u>
		<u> </u>	6 92
Prints.u.)	0.0 - 9.0 S.U.	0.77	0.03
Dioving (pg/L)	30 NI	<u> </u>	
E_{LCDD}		NC	NC
	INL	- ON	- ON

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates	
Parameter/ Concentration (mg/L) Requirement Discharge Limits	Requirement Discharge Limits	4/2/2013	4/18/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.071	0.053
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.012	0.011
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
		0.083	0.06
		0.005	0.00
B. INORGANIC PARAMETERS			_
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.26 g/day	<0.01 mg/l or <2.26 g/day
Iron, Total (mg/l)	5.0	0.58	0.26
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.13 g/day	<0.005 mg/l or <1.13 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <11.32 g/day	<0.05 mg/l or <11.32 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (µg/L)	NL	<1	NS
pH (s.u.)	6.0 - 9.0 s.u.	6.78	6.83
Total Suspended Solids (mg/L)	30	2	<1
Dioxins (pg/L)	ŇL	<36	NS
Furans (pg/L)	NL	<51	NŠ

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

Table 4

DRAFT

SRSNE HCTS - Effluent Results

Substan		Sample Dates		
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	5/2/2013	5/13/2013	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(<i>mg/L</i>)	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	<0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.101	0.039	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.021	0.004	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.011	<0.001	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones				
Acetone (mg/L)	35.0	<0.050	<0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl	~ ~	0.050	0.050	
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.133	0.043	
B. INORGANIC PARAMETERS				
	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper, Total (g/day) ¹³¹	15.8 g/day	<0.01 mg/l or <2.27 g/day	<0.01 mg/l or <2.27 g/day	
Iron, I otal (mg/l)	5.0	0.55	0.29	
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.14 g/day	<0.005 mg/l or <1.14 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <11.36 g/day	<0.05 mg/l or <11.36 g/day	
OTHER				
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (µg/L)	NL	<1	NS	
pH (s.u.)	6.0 - 9.0 s.u.	6.81	7.29	
Total Suspended Solids (mg/L)	30	<1	<1	
Dioxins (pg/L)	NL	NS	NS	
Furans (pg/L)	NL	NS	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantivo	Sample Dates	
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	6/7/2013	6/21/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	<0.001	<0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	0.009
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	< 0.050	< 0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	~ ~	0.050	0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0	0.009
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.34 g/day	<0.01 mg/l or 2.34 g/day
Iron, Total (mg/l)	5.0	0.64	0.31
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.17 g/day	<0.005 mg/l or <1.17 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <11.68 g/day	<0.05 mg/l or <11.68 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	0.2
Total PCBs (µg/L)	NL	<1	NS
pH (s.u.)	6.0 - 9.0 s.u.	6.98	7.07
Total Suspended Solids (mg/L)	30	<1	2
Dioxins (pg/L)	ŇĹ	NS	NS
Furans (pg/L)	NL	NŠ	NŜ

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

Table 4

DRAFT

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	7/1/2013	7/17/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	0.002
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (mg/L)	5.000	<0.001	0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	-0.050	-0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0	0.003
B INORGANIC PARAMETERS			
Metals	(ma/l) or (a/day)	(ma/l) or (a/day)	(ma/l) or (a/day)
Copper Total (g/day) ^[3]	15.8 g/day	< 0.01 mg/l or < 2.19 g/day	0.02 mg/l or 4.38 g/day
Iron Total (mg/l)	5.0	0.23	0.27
Lead Total (a/day) ^[3]	2 2 a/dav	< 0.005 mg/l or < 1.09 g/day	< 0.005 mg/l or < 1.09 g/day
Nickol Total (g/day)	0.2 g/day	<0.000 mg/r or <1.00 g/day	<0.00 mg/r or <1.00 g/day
[Nickel, Total(nig)]	0.0 40.2 m/day	<0.05 -0.05 mg/l.or10.05 g/dov	<0.05
ZINC, I otal (g/day) ¹⁴	40.3 g/day	<0.05 mg/1 of <10.95 g/day	<0.05 mg/1 of <10.95 g/day
	4.0		
Hyarogen Peroxide (mg/L)	1.0	<0.2	<0.2
TOTAL PCBS (µg/L)	NL	<1	NS
IPH (S.U.)	6.0 - 9.0 s.u.	6.80	6.94
I lotal Suspended Solids (mg/L)	30	3	2
Dioxins (pg/L)	NL	53	NS
Furans (pg/L)	NL	<51	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L) Requiremen Discharge Lin	Requirement Discharge Limits	8/2/2013	8/16/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.003	0.004
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.007	0.006
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones		0.050	0.050
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Metnyi Etnyi Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)			
		0.01	0.01
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.18 g/day	<0.01 mg/l or <2.18 g/day
Iron, Total (mg/l)	5.0	0.12	0.16
Lead. Total (g/dav) ^[3]	3.2 g/day	<0.005 mg/l or <1.09 g/day	<0.005 mg/l or <1.09 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total $(q/day)^{[3]}$	40.3 g/day	<0.05 mg/l or <10.88 g/day	<0.05 mg/l or <10.88 g/day
OTHER	iere gruug		
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (ug/L)	NI	<1	NS
IDH (S.U.)	6.0 - 9.0 s.u.	6,79	6.90
Total Suspended Solids (mg/l)	30	1	1
Dioxins (pa/L)	ŇĹ	ŃŚ	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

September 2013

SRSNE HCTS - Effluent Results

	Substantivo	Sample Dates	
Parameter/ Concentration (mg/L)	Parameter/ Concentration (mg/L) Requirement Discharge Limits	9/6/2013	9/19/2013
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(<i>mg/L</i>)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.007	0.009
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (ma/L)	15.000	0.009	0.004
Stvrene (ma/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/l)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			1
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/l)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	10.0		
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.016	0.013
B INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2 g/day	<0.01 mg/l or <2 g/day
Iron. Total (mg/l)	5.0	0.13	0.17
Lead Total (n/dav) ^[3]	3.2 g/day	< 0.005 mg/l or < 1 g/day	< 0.005 mg/l or < 1 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
\mathbf{Z}_{inc} Total $(n/q/n)$	40.2 a/day	< 0.05 mg/l or < 10.02 g/dov	< 0.05 mg/l or < 10.02 g/dov
Zinc, Total (g/day) ^{ra}	40.5 g/uay	<0.05 mg/101 < 10.02 g/uay	<0.05 mg/1 of <10.02 g/uay
	4.0		
Invarogen Peroxiae (mg/L)	1.0	<0.2	<0.2
TOTAL PCBS (µg/L)	NL	<1	
IDH (S.U.)	6.0 - 9.0 s.u.	6.93	6.77
I lotal Suspended Solids (mg/L)	30	3	<1
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

October 2013

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive Requirement Discharge Limits	Sample Dates		
		10/2/2013	10/18/2013	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	<0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.010	0.009	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	<0.001	0.002	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols			·	
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones			•	
Acetone (mg/L)	35.0	< 0.050	< 0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl				
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.010	0.011	
B. INORGANIC PARAMETERS				
Metals	(mg/L) or (g/dav)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper, Total (g/day) ^[3]	15.8 g/dav	<0.01 mg/l or <2.05 g/day	<0.01 mg/l or <2.05 g/day	
Iron. Total (mg/l)	5.0	0.12	0.50	
Lead Total (n/dav) ^[3]	3.2 g/day	< 0.005 mg/l or < 1.03 g/day	<0.005 mg/l or <1.03 g/day	
Nickel Total (mg/l)	0.5		<0.05	
\mathbf{Z}_{inc} Total $(n/q/n)$	40.2 a/day	< 0.05 mg/l or < 10.26 g/dov	< 0.05 mg/l or < 10.26 g/dov	
	40.5 g/uay	<0.05 mg/101 < 10.26 g/uay	<0.05 mg/101 < 10.26 g/uay	
	4.0	0.0		
Invarogen Peroxiae (mg/L)	1.0	<0.2	<0.2	
TOTAL PUBS (UQ/L)	NL	<1		
IDH (S.U.)	6.0 - 9.0 s.u.	6.86	6.78	
I lotal Suspended Solids (mg/L)	30	1	<1	
	NL	<36	NS	
Furans (pg/L)	NL	<51	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

 $\mu g/L = micrograms per liter$

pg/L = picograms per liter

g/day = grams per day

TABLE 5

31 October 2012 through 30 October 2013

Weekly NTCRA-1 Compliance Piezometer Pair Summary

Date	CPZ-1/CPZ-2A	CPZ-3/CPZ-4A	CPZ-5/CPZ-6	CPZ-7/CPZ-8		
01-Nov-12	0.32	-0.78	4.01	1.94		
06-Nov-12	0.62	-0.77	4.20	1.96		
12-Nov-12	1.10	-0.10	4.53	2.25		
20-Nov-12	1.59	-0.30	4.71	2.26		
29-Nov-12	1.65	-0.50	2.86	2.21		
12-Dec-12	1.52	-0.43	4.48	2.41		
18-Dec-12	1.02	-0.42	4.19	2.99		
28-Dec-12	2.78	0.98	4.77	2.89		
03-Jan-13	2.75	0.90	3.08	2.79		
08-Jan-13	2.26	0.68	3.18	3.05		
15-Jan-13	3.20	0.94	4.62	2.78		
24-Jan-13	2.31	0.86	4.24	2.48		
29-Jan-13	2.23	0.85	4.22	2.50		
05-Feb-13	2.75	1.24	8.07	2.74		
13-Feb-13	2.60	1.14	8.02	2.75		
20-Feb-13	3.19	1.24	7.47	3.20		
26-Feb-13	3.16	1.42	7.60	2.80		
05-Mar-13	3.31	1.96	7.36	3.21		
11-Mar-13	3.37	1.88	7.63	1.64		
18-Mar-13	3.40	1.77	7.64	2.59		
27-Mar-13	3.07	1.50	6.98	0.97		
01-Apr-13	3.06	1.53	7.01	1.35		
11-Apr-13	2.62	1.37	7.10	1.13		
16-Apr-13	2.43	1.22	6.51	0.42		
23-Apr-13	1.68	1.02	6.50	3.02		
29-Apr-13	2.21	0.64	8.45	4.68		
02-May-13	2.13	0.42	8.75	5.06		
08-May-13	2.20	0.44	8.68	4.52		
16-May-13	2.49	0.57	8.88	6.54		
21-May-13	2.45	0.56	8.87	7.92		
28-May-13	2.95	1.11	9.26	7.28		
05-Jun-13	2.71	0.81	9.13	7.78		
13-Jun-13	2.69	0.79	9.54	7.41		
18-Jun-13	3.66	2.00	9.72	5.66		
27-Jun-13	2.53	1.38	9.89	7.47		
01-Jul-13	2.57	2.75	9.78	7.21		
05-JUI-13	2.50	2.75	9.97	10.58		
17-Jul-13	1.37	1.93	8.82	6.05		
24-Jul-13	1.90	0.84	8.90	5.72		
30-Jui-13	1.74	0.63	0.03	6.04		
02-Aug-13	1.67	0.95	0.32	6.37 E.06		
07-Aug-13	1.50	0.74	0.94	5.90		
14-Aug-13	1.00	0.62	0.09	6.02		
20-Aug-13	1.41	0.45	0.30	6.14		
20-Aug-13	1.43	0.30	0.11	0.14		
10-Sop-13	1.00	0.78	9.27	0.40 5.86		
16-Sep-13	1.50	0.44	8 20	5.00		
26-Sen-13	1 78	0.34	8.43	5.98		
02-Oct-13	1.87	0.33	8.87	6.32		
07-Oct-13	1.91	0.33	9,10	6.42		
15-Oct-13	1 90	0.35	8 45	6.13		
22-Oct-13	1.00	0.33	8 46	6.07		
29-Oct-13	1.64	0.34	7,91	6.09		
Highlighted Cel	lls - are weeks that the	0.30-foot hydraulic or	adient reversal stand	dard for a specific		
Compliance Piezometer Pair was not maintained during weekly gauging						

M:\Design\DWG\SRSNE\Nov 29 2012\overburden.dwg, Layout1, 11/12/2013 9:54:46 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Nov 29 2012\shallow bedrock.dwg, Layout1, 11/12/2013 9:57:25 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Nov 29 2012\deep bedrock.dwg, Layout1, 11/12/2013 9:58:29 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Dec 28 2012\overburden.dwg, Layout1, 11/12/2013 10:00:01 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Dec 28 2012\shallow bedrock.dwg, Layout1, 11/12/2013 10:06:54 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Dec 28 2012\deep bedrock.dwg, Layout1, 11/12/2013 10:06:04 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 29 2013\overburden.dwg, Layout1, 11/12/2013 10:09:34 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 29 2013\shallow bedrock.dwg, Layout1, 11/12/2013 10:13:17 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 29 2013\deep bedrock.dwg, Layout1, 11/12/2013 10:39:35 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 26 2013\overburden.dwg, Layout1, 11/12/2013 10:41:50 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 26 2013\shallow bedrock.dwg, Layout1, 11/12/2013 10:43:47 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 26 2013\deep bedrock.dwg, Layout1, 11/12/2013 11:21:59 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Mar 27 2013\overburden.dwg, Layout1, 11/12/2013 11:29:31 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Mar 27 2013\shallow bedrock.dwg, Layout1, 11/12/2013 11:31:52 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Mar 27 2013\deep bedrock.dwg, Layout1, 11/12/2013 11:33:29 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Apr 29 2013\overburden.dwg, Layout1, 11/12/2013 12:02:52 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Apr 29 2013\shallow bedrock.dwg, Layout1, 11/12/2013 12:20:02 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Apr 29 2013\deep bedrock.dwg, Layout1, 11/12/2013 12:22:03 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\May 28 2013\overburden.dwg, Layout1, 11/12/2013 12:40:11 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\May 28 2013\shallow bedrock.dwg, Layout1, 11/12/2013 12:43:11 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\May 28 2013\deep bedrock.dwg, Layout1, 11/12/2013 12:44:38 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jun 27 2013\overburden.dwg, Layout1, 11/12/2013 12:52:45 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jun 27 2013\shallow bedrock.dwg, Layout1, 11/12/2013 12:53:38 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jun 27 2013\deep bedrock.dwg, Layout1, 11/12/2013 12:54:35 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 30 2013\overburden.dwg, Layout1, 11/12/2013 12:55:38 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 30 2013\shallow bedrock.dwg, Layout1, 11/12/2013 1:02:32 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 30 2013\deep bedrock.dwg, Layout1, 11/12/2013 1:04:16 PM, girardeb, 1:1

10A

 \Diamond MW-702DR Cless Educity P-8A P P−16 ⊗ 154 CPZ-2 2R () 146 CPZ OCPZ-10 MWL-307 MWL 304 ٩ MW-415 CPZæ CP7-7 0 CPZ-8 ⊕ MW-705DR -MWL-305 INTERMITTENT TREAM CPZ-6A -RW-10 5 @ CPZ-6 MW-03 MWL-306 134<u>6</u> 736 MW-707DR 0 PZO-2M 20 MW-70 0 LEGEND CPZ-4 • PIEZOMETER MWL-308 HONITORING WELL MWL-310 & ABANDONED WELL NOTE: HYDRAULIC HEAD CONTOURS DERIVED FROM WATER LEVELS QUEEN STREET TAKEN AT GREEN LOCATIONS **OVERBURDEN** HYDRAULIC HEAD CONTOURS AUGUST 26, 2013 SOLUTIONS GRAPHIC SCALE CONCORD NEW HAMPSHIRE 200 100 0 100 200 DRAWN DATE DES. ENG. DATE W.O. NO. BEG SEP 2013 13056.001.018 SRSNE CHECKED DATE SCALE REVISION FIGURE NO. APPROXIMATE SCALE IN FEET SOUTHINGTON, CONNECTICUT AS SHOWN

M:\Design\DWG\SRSNE\Aug 26 2013\overburden.dwg, Layout1, 11/12/2013 1:05:33 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Aug 26 2013\shallow bedrock.dwg, Layout1, 11/12/2013 1:06:23 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Aug 26 2013\deep bedrock.dwg, Layout1, 11/12/2013 1:07:20 PM, girardeb, 1:1

DRAFT

M:\Design\DWG\SRSNE\Sep 26 2013\overburden.dwg, Layout1, 11/12/2013 1:09:17 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Sep 26 2013\shallow bedrock.dwg, Layout1, 11/12/2013 1:10:10 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Sep 26 2013\deep bedrock.dwg, Layout1, 11/12/2013 1:10:55 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Oct 29 2013\overburden.dwg, Layout1, 11/13/2013 11:07:41 AM, GIRARDEB, 1:1

M:\Design\DWG\SRSNE\Oct 29 2013\shallow bedrock.dwg, Layout1, 11/12/2013 2:01:10 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Oct 29 2013\deep bedrock.dwg, Layout1, 11/12/2013 2:06:40 PM, girardeb, 1:1

FIGURE 13

31 Oct. 2012 through 30 Oct. 2013

FIGURE 14A

31 Oct. 2012 through 30 Oct. 2013

Hydraulic Gradient Between MW-704R and PZR-2R NTCRA-2 Shallow Bedrock Compliance Pair

Water Elevation (feet)

100 95

> 90 85 80

FIGURE 14B

31 Oct. 2012 through 30 Oct. 2013

5-75-7073

5,20,2073

6-72-70 73-7073

1/12/10/3

7,70,2073

6,26,2073

8112073

8-27, 2073

9/#/1073

9/78/2073

70,22073

2/20/2073

7,23,2073

26,2073

22786 PO 72 7.9.7073

22-12-2012

3/6/2073

3,20,20,20,73

R-3-1073

*,7,1,9073

Date

5-7-2073

70,30,5073

70,76,7073

SRSNE Site Group

2013 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

November 2013

Disclaimer: This document is a DRAFT document prepared by the Settling Defendants under a government Consent Decree. This document has not undergone formal review by the EPA and CT DEEP. The opinions, findings, and conclusions, expressed are those of the author and not those of the U.S. Environmental Protection Agency or the CT Department of Energy and Environmental Protection.

2013 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Prepared for: SRSNE Site Group

Prepared by: ARCADIS U.S., Inc. 1687 Cole Blvd. Suite 200 Lakewood Colorado 80401 Tel 303.231.9115 Fax 303.231.9571

Our Ref.: B0054634.0000.02200

Date: November 2013

DRAFT

Table of Contents

Ex	Executive Summary v				
1.	Introd	uction	1		
	1.1	Purpose	1		
	1.2	Scope	1		
	1.3	Document Organization	3		
2.	Annua	l Groundwater Sampling Event – 2013	4		
	2.1	Scope of Work	4		
	2.2	Summary of Field Activities	4		
	2.3	Results	6		
		2.3.1 Groundwater Elevations	6		
		2.3.2 VOCs 6			
		2.3.3 SVOCs and PCBs	9		
		2.3.4 TAL Metals	9		
		2.3.5 MNA Parameters	9		
3.	MNA E	Background	10		
	3.1	Site Conceptual Model	10		
	3.2	Selection of MNA Remedy	11		
	3.3	Identified Data Gaps	12		
	3.4	Objectives of MNA Performance Monitoring	13		
	3.5	Performance Standards	13		
		3.5.1 MNA-Related Performance Standards	13		
		3.5.2 Demonstration of Compliance Report	14		
4.	MNA F	Performance Monitoring	15		
	4.1	Introduction	15		
	4.2	Groundwater Performance Monitoring Locations	15		

DRAFT

Table of Contents

	4.3	MNA N	Monitoring Parameters	16
	4.4	Monito	pring Frequency	17
	4.5		Monitoring Objectives	17
	4.6	Data C	Quality Objectives	17
5.	MNA E	valuati	on	18
	5.1	Total \	/OC Concentration Trends	18
		5.1.1	Trend Analysis	19
		5.1.2	Total VOC Attenuation Rate	21
	5.2	Estima	ate of COC Mass Flux in Groundwater	22
	5.3	Distrib	ution of VOCs in NAPL and Groundwater	23
	5.4	Evalua	ation of Monitoring Objectives	24
		5.4.1	Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA	24
		5.4.2	Evaluation of Potentially Toxic and/or Mobile Transformation Products	25
		5.4.3	Evaluation of Plume Stability	25
		5.4.4	Evaluation of No Unacceptable Impacts to Downgradient Receptors	26
		5.4.5	Evaluation of New Releases of COCs	26
		5.4.6	Evaluation of Institutional Controls	26
		5.4.7	COC Mass Flux / Mass Reduction	27
	5.5	Contin	gency Measures	27
6.	Summ	ary		28
7.	Refere	nces		31

DRAFT

Table of Contents

Tables

1	VOCs – Groundwater Sample Results – June 2013
---	---

- 2 Metals Groundwater Sample Results June 2013
- 3 MNA Parameters Groundwater Sample Results June 2013
- 4 Statistical Summary of Groundwater Total VOC Concentration Trends

Figures

- 1 Site Location Map
- 2 Groundwater Monitoring Locations Shallow Overburden
- 3 Groundwater Monitoring Locations Middle Overburden
- 4 Groundwater Monitoring Locations Deep Overburden
- 5 Groundwater Monitoring Locations Shallow Bedrock
- 6 Groundwater Monitoring Locations Deep Bedrock
- 7 VOC Exceedance Plume Shallow Overburden
- 8 VOC Exceedance Plume Middle Overburden
- 9 VOC Exceedance Plume Deep Overburden
- 10 VOC Exceedance Plume Shallow Bedrock
- 11 VOC Exceedance Plume Deep Bedrock
- 12 Groundwater Total VOC Concentrations with Time Shallow Overburden
- 13 Groundwater Total VOC Concentrations with Time Middle Overburden
- 14 Groundwater Total VOC Concentrations with Time Deep Overburden
- 15 Groundwater Total VOC Concentrations with Time Shallow Bedrock
- 16 Groundwater Total VOC Concentrations with Time Deep Bedrock
- 17 Total Mass of VOCs Removed by NTCRA 1 and NTCRA 2 Groundwater Extraction Wells

DRAFT

Table of Contents

Appendices

- A Field Sampling Forms
- B Equipment Calibration Logs

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Executive Summary

This 2013 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) activities at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Specifically, this report summarizes the 2013 groundwater sampling event performed in accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010b), and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site-related constituents of concern (COCs) at concentrations above risk levels or regulatory limits. Monitored natural attenuation is a component of the overall remedial strategy for Site groundwater as described in the United States Environmental Protection Agency's (USEPA's) 2005 Record of Decision (ROD) for the Site.

In accordance with the Work Plan, the 2013 annual groundwater sampling event was performed in June 2013 and included sampling of groundwater at 45 monitoring wells for analysis of volatile organic compounds (VOCs), target analyte list (TAL) metals, and/or MNA parameters, as indicated in the Work Plan. With the exception of recently installed wells, these sampled wells were also sampled for the full suite of potential site-related constituents in 2010 as part of the "comprehensive" event. The next "comprehensive" sampling event is scheduled in 2014 in support of the Five-Year Review.

The June 2013 results indicate that:

• VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC]) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS). The exception is at monitoring well MW-707DR, a deep bedrock monitoring well located just beyond the southern extent of the estimated capture zone boundary. Benzene was detected at a concentration of 1.3 micrograms per liter (µg/L) in the June 2013 sample, which is slightly above the Action Level of 1.0 µg/L. This is consistent with the benzene concentration detected at well MW-707DR in June 2012 (1.1 µg/L). Note that actions were evaluated following the 2012 annual sampling event to increase the bedrock capture zone,

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

resulting in the vertical extension of bedrock groundwater extraction well RW-1R and adjustments to its pumping equipment in late 2012 (ARCADIS 2013a; 2013b). The effect of those modifications in terms of improving groundwater quality and/or hydraulic capture at well MW-707DR are being evaluated.

- Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 79 µg/L and 250 µg/L, respectively, in the June 2013 sample. These concentrations are above the Action Level of 5.0 µg/L for both compounds. This was the first detection of PCE above the Action Level at this well. TCE was detected above the Action Level at this well in June 2012 (9.9 µg/L). This well was re-sampled for confirmation purposes later in June 2013; PCE and TCE were again detected at concentrations similar to those in the initial June 2013 sample. Additional groundwater sampling was performed in July 2013 (and will continue to be performed) to further assess concentration trends in the vicinity of this well.
- Benzene, PCE and TCE were also detected at deep bedrock monitoring well MW-1003DR at concentrations above the respective Action Levels. This well was also re-sampled later in June 2013 and the results confirmed. Additional groundwater sampling was performed in July 2013 (and will continue to be performed) to further assess concentration trends in the vicinity of this well.
- No metals (either total or dissolved) exceeded their respective MCLs or GWPC, with the exception of total manganese measured at well MW-126B in 2013 (680 μg/L total manganese, compared to the GWPC of 500 μg/L). MW-126B is an upgradient, background well located north of the former Operations Area of the SRSNE Site.

This MNA Report fulfills the requirement set forth in Section VII.A.2 of the SOW and the reporting approach outlined in the MNA Plan that was presented as Attachment L to the RDWP (ARCADIS 2009). This MNA Report presents results of an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluations (presented in the 2010 through 2012 MNA Reports), this evaluation considers groundwater monitoring results from the June 2013 annual groundwater monitoring event for VOCs, TAL metals and MNA parameters at a subset of monitoring wells; evaluation of current concentration trends for total VOCs in groundwater at select monitoring locations; estimates of bulk attenuation rates

ARCADIS

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicated:

- Detected concentrations of VOCs above Action Levels are contained within the previously estimated containment boundary of the HCTS; the only exception is monitoring well MW-707DR, as discussed above. Groundwater quality at this well will continue to be monitored to evaluate the effects of modifications to the well depth and pumping equipment at bedrock groundwater extraction well RW-1R (ARCADIS 2013a).
- Groundwater total VOC concentrations are generally declining or remaining stable with time throughout the Site groundwater COC plume. Notable exceptions include increases in total VOC concentrations at:
 - Four of the nine overburden wells sampled within the NTCRA 1 containment area in June 2013 (MW-415, MWL-307, TW-08A and TW-08D).
 - Middle overburden monitoring well PZO-2M, which is located in the Connecticut Light & Power (CL&P) easement (downgradient of the former Operations Area) and within the HCTS capture zone.
 - Deep bedrock monitoring well MW-1003DR, which is also located in the CL&P easement (downgradient of the former Operations Area) and within the HCTS capture zone.
- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the *Feasibility Study* (FS) (Blasland, Bouck & Lee, Inc. [BBL] and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

1. Introduction

1.1 Purpose

This 2013 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to a Consent Decree (CD), to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site) (Figure 1). The CD was lodged on October 30, 2008 with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE) and was entered by the Court on March 26, 2009.

This MNA Report presents the results and evaluation of data collected during the June 2013 annual groundwater monitoring event conducted in accordance with the Remedial Design Work Plan (RDWP) and the MNA Plan (Attachment L to the RDWP [ARCADIS 2009]), and in fulfillment of the requirements of the SOW (Sections IV.B.5.e and IV.B.5.f).

Section VII.A.2 of the SOW requires the submittal of annual MNA Reports as part of the Annual State of Compliance Reports. Monitored natural attenuation is a component of the overall remedial strategy set forth for the Site in the Record of Decision (ROD) (United States Environmental Protection Agency [USEPA] 2005) for groundwater containing Site-related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.

1.2 Scope

In accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the RDWP [ARCADIS 2010b]), the 2013 annual groundwater sampling event was performed in June 2013 and included sampling of groundwater from 28 "R", 4 "M", 3 "B" and 10 "N"-designated monitoring wells. As further described in Section 3.1, the letter designations generally pertain to the locations, monitoring scope, and sampling frequency of monitoring wells. Having been sampled for all parameters in 2010, the analytical suite for these wells in 2013 included only volatile organic compounds (VOCs), target analyte list (TAL) metals, and/or MNA parameters, as indicated in the Work Plan for each well designation.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Monitored natural attenuation refers to the reliance on natural attenuation (NA) processes, within the context of a carefully controlled and monitored site cleanup approach, to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by more active methods. Natural attenuation is the reduction in mass or concentration of COCs in groundwater over time or distance from the source of the impact due to naturally occurring processes. Attenuation processes include nondestructive physical processes (e.g., advection, dilution, dispersion, volatilization, dissolution, and sorption) and destructive chemical and biological processes.

The MNA remedy at the Site applies to the groundwater and non-aqueous phase liquid (NAPL) and addresses the following areas of the Site, in accordance with the SOW:

- Groundwater and saturated glacial deposits (gravel, sand, silt and clay) in the "Overburden Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria; and
- Groundwater and fractured rock in the "Bedrock Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria.

As part of the MNA remedy, COCs in overburden and bedrock groundwater are monitored. The Site COCs include VOCs such as chlorinated ethenes and ethanes, ketones, aromatic compounds and 1,4-dioxane; TAL metals; semivolatile organic compounds (SVOCs); and polychlorinated biphenyls (PCBs).

In addition to monitoring COC concentrations, the MNA Plan specifies longterm monitoring of a suite of geochemical parameters ("MNA parameters") to confirm geochemical evidence of NA and to verify that biochemical processes continue to support COC degradation in Site groundwater. The MNA parameters monitored at the Site include anions (sulfate, chloride, nitrate, nitrite), total organic carbon (TOC), iron (ferric, ferrous), divalent manganese, light hydrocarbons (methane, ethane, ethene), dissolved oxygen (DO), oxidation/reduction potential (ORP), pH, alkalinity, and temperature.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

1.3 Document Organization

The remainder of this MNA Report is organized into the following sections:

- Section 2 Annual Groundwater Sampling Event 2013: summarizes the groundwater sampling activities performed in June 2013 and evaluates the data.
- Section 3 MNA Background: describes the MNA performance monitoring program at the Site, including the Site conceptual model, MNA remedy, and performance standards.
- Section 4 Performance Monitoring: describes the MNA performance monitoring program at the Site, including monitoring locations, parameters, frequency and objectives.
- Section 5 MNA Evaluation: evaluates Site data based on results from the June 2013 annual sampling event, and discusses the analysis of performance monitoring data, including the data quality assessment process, data interpretation approach, and statistical procedures.
- Section 6 Summary: presents a summary of conclusions from the MNA evaluation and provides recommendations for action.
- Section 7 References: lists the references cited within this MNA Report.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2. Annual Groundwater Sampling Event – 2013

2.1 Scope of Work

The 2013 annual groundwater sampling event was conducted to satisfy the requirements of SOW Sections IV.B.5.d, IV.B.5.e and IV.B.5.f. A brief summary of the requirements of each of these sections is presented below:

- IV.B.5.d biennial monitoring of VOCs and MNA parameters at a select subset of monitoring wells in the overburden aquifer in the area between the railroad tracks and the non-time-critical removal action (NTCRA) 1 sheet pile wall (i.e., overburden "N" wells).
- IV.B.5.e annual monitoring of VOCs and MNA parameters at a select subset of monitoring wells in the bedrock aquifer in the area between the railroad tracks and the NTCRA 1 sheet pile wall (i.e., bedrock "N" wells).
- IV.B.5.f annual monitoring of VOCs and biennial monitoring of MNA parameters at a select subset of monitoring wells in the overburden and bedrock aquifers in the area outside the NTCRA 1 sheet pile wall (i.e., "R" wells).

In addition to the SOW-required sampling, the background monitoring wells – specifically the "M" and "B" wells – were sampled for TAL metals. As outlined in SOW Section VIII.F, Interim Cleanup Levels (ICLs) for metals need to be established prior to submittal of the Demonstration of Compliance Report. To that end, metals will be analyzed on an annual basis to establish a dataset sufficient for determining the appropriate background metals concentrations at the Site.

In total, 45 monitoring wells were sampled as part of the 2013 monitoring event. Of these, 34 were sampled using HydraSleeve[™] samplers and the remaining 11 were sampled using low-flow methods.

2.2 Summary of Field Activities

The 2013 annual groundwater sampling event was conducted June 3-6, 2013. Procedures used for gauging and sampling the 11 monitoring wells using lowflow methods were consistent with those outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011a). HydraSleeves[™] were used to collect samples from 34 of the 45 wells,

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

consistent with the approach proposed in a memorandum dated July 7, 2011, and approved by the USEPA in a letter dated May 21, 2012. In summary, the approved HydraSleeve[™] sampling approach included the following conditions:

- Used for "routine" samples collected for tracking changes and trends in the groundwater over time. It does not apply to samples collected for specific decision points such as evaluating remedy protectiveness for five-year reviews, capture zone analysis, confirming results of modeling, risk assessments, etc.
- To be used only for sampling of VOCs and MNA parameters.
- Used for any well that has been given an "R" or "N" designation and that contains one or more constituents at a concentration greater than or equal to ten times the ICL, or, is located within the hydraulic capture zone.

Samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts, for analysis of VOCs and TAL Metals, and to Microseeps, Inc. of Pittsburgh, Pennsylvania for analysis of MNA parameters. A tabular summary of the sampling event is provided below:

SOW	Well Group	# of Wells Intended		# of Wells Sampled		Analytical	
Section		LF	HS	LF	HS	Farameters	
IV.B.5.d	Overburden "N"	0	8	0	8	VOCs, MNA	
IV.B.5.e	Bedrock "N"	0	2	0	2	Parameters	
IV.B.5.f	"R"	4	26	4	24	VOCs	
	"M"	5		4		TAL Motolo	
VIII.F	"B"	3		3		I AL MELAIS	

LF - Wells sampled using low-flow method

HS – Wells sampled using HydraSleeve[™] samplers

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Deviations from the intended scope were based on the following:

- "R" monitoring wells CPZ-8R and MW-705DR were not sampled due to the presence of dense non-aqueous phase liquid (DNAPL) in these bedrock wells.
- "M" monitoring well MW-901D was not sampled due to insufficient water in this overburden well (i.e., dry) at the time of sampling.

In addition to the above scope, two monitoring wells, MW-1003DR and PZO-2M, were re-sampled on June 19, 2013 to confirm the results of the initial June 2013 samples at these wells. Monitoring well locations in each of the five hydrostratigraphic zones are shown on Figures 2 through 6. Field sampling forms and equipment calibration logs from the sampling event are included in Appendices A and B, respectively.

2.3 Results

Groundwater analytical results from the June 2013 annual groundwater monitoring event are provided in Tables 1, 2 and 3 for VOCs (including June 19, 2013 re-sampling results), metals and MNA parameters, respectively. Groundwater data were validated consistent with the procedures outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011a). Qualifiers and modifications made via the validation process are reflected in Tables 1, 2 and 3.

2.3.1 Groundwater Elevations

Synoptic groundwater elevation measurements are only collected during fiveyear comprehensive monitoring events, and therefore were not collected during the June 2013 groundwater monitoring event. Groundwater gauging data from the initial comprehensive event (May-June 2010) were included in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011a).

2.3.2 VOCs

Groundwater VOC concentrations from the June 2013 groundwater monitoring event (and subsequent re-sampling on June 19, 2013 for the two wells discussed above) are provided in Table 1. Groundwater VOC concentrations were compared against USEPA Maximum Contaminant Levels (MCLs) and

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Connecticut Class GA Groundwater Protection Criteria (GWPC), with the lower of the two criteria, referred to as the "Action Level", used as the criterion for the comparison for each VOC. The Action Levels are based on drinking water standards. Groundwater VOC concentrations that exceeded their respective Action Levels are highlighted in Table 1. For comparison, the ICLs specified in Table L-1 of the ROD (USEPA 2005) are also listed in Table 1.

Concentrations of VOCs greater than Action Levels are generally contained within the previously estimated capture zone boundary of the Hydraulic Containment and Treatment System (HCTS). The only exception is monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary, south of the Connecticut Light & Power (CL&P) easement. Benzene was detected at this well at a concentration of 1.3 micrograms per liter (μ g/L) in the June 2013 sample, compared to the Action Level of 1.0 μ g/L. This result is consistent with the June 2012 sampling result, (1.1 μ g/L of benzene). The HCTS underwent modifications to improve deep bedrock groundwater extraction at well RW-1R in late 2012 and early 2013 (ARCADIS 2013a), and the benzene concentration at well MW-707DR will continue to be monitored to evaluate the effectiveness of the HCTS modifications.

Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at monitoring well PZO-2M at concentrations of 79 µg/L and 250 µg/L, respectively, in the June 2013 sample. These concentrations are above the Action Level of 5.0 µg/L for both compounds. This was the first detection of PCE above the Action Level at this well. TCE was detected above the Action Level at this well in June 2012 (9.9 µg/L), indicating an increase in TCE concentration between 2012 and 2013 at this location. Therefore, this well was re-sampled later in June 2013 to confirm this result; both PCE and TCE were detected at concentrations similar to those in the initial June 2013 sample. Although this well is within the interpreted capture zone of the HCTS. additional groundwater sampling was performed in July 2013 (and will continue to be performed) to further assess concentration trends in the vicinity of this well. The next interim sampling is event is planned for September 2013. Since the July and September interim events are collected outside the approved scope/methods for trend evaluation, the data will be presented under separate cover after evaluating both datasets.

Benzene, PCE and TCE were also detected at monitoring well MW-1003DR at concentrations above the respective Action Levels. This well was also re-sampled later in June 2013 and the results confirmed. This well is located in

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

the CL&P easement (downgradient of the former Operations Area) and within the interpreted HCTS capture zone. Additional groundwater sampling was performed in July 2013, and will continue to be performed to further assess concentration trends in the vicinity of this well.

As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 μ g/L) and 2012 (approximately 26,400 μ g/L). This well is located at the downgradient edge of the bedrock NAPL zone delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998), and within the HCTS capture zone. The total VOC concentration in June 2013 decreased to approximately 8,200 μ g/L, although concentrations remain elevated relative to pre-2012 results. VOC concentrations at this well will continue to be monitored as part of future sampling events.

VOC Plume Delineation

Data from the 2010-2013 groundwater monitoring events were used to update the VOC plume maps, originally presented in the Summary of Initial (2010) Comprehensive Groundwater Sampling Event (ARCADIS January 2011a), for each of the five hydrostratigraphic units. Using the approach that was initially presented in the Remedial Investigation (RI: BBL June 1998), groundwater VOC results (the most recent data available at each well) were used to derive VOC regulatory exceedance ratios by dividing detected concentrations of VOCs by the lower of the federal standard (MCL) or the state standard (GWPC), which are the ARARs-based "Action Levels"; these generally represent drinking water standards. An exceedance ratio value greater than 1.0 indicates that the detected VOC concentration exceeded the Action Level. Exceedance ratio values less than 1.0 indicate that the detected VOC concentrations were less than the Action Levels. The highest (and in some cases, the two highest) VOC exceedance ratio(s) for each well, and the specific compound associated with each ratio, are summarized for each hydrostratigraphic unit on Figures 7 through 11. These regulatory exceedance ratios were used to delineate groundwater with VOCs above MCLs or GWPCs, as shown by the light green contour lines on Figures 7 through 11.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2.3.3 SVOCs and PCBs

SVOC and PCB data are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not included in the June 2013 groundwater monitoring event. Previously collected SVOC and PCB data (May-June 2010) were evaluated in the *Monitored Natural Attenuation Report* (ARCADIS September 2010a).

2.3.4 TAL Metals

Groundwater concentrations of TAL metals during the June 2013 groundwater monitoring event are summarized in Table 2. Groundwater TAL metals concentrations were compared against the Action Levels (i.e., the lower of the MCLs and GWPCs). ICLs have not yet been developed for metals in groundwater because they are a function of background concentrations, which are to be established in the future based on background sampling performed through that time.

No metals (either total or dissolved) exceeded their respective Action Levels, with the exception of total manganese measured at MW-126B in 2013 (680 μ g/L total manganese and 702 μ g/L in a duplicate, compared to the GWPC of 500 μ g/L). MW-126B is an upgradient, background well located north of the former Operations Area of the SRSNE Site. MW-209B, which exceeded the Action Level for manganese during the 2012 sampling event, was below the Action Level in 2013 (26.8 μ g/L).

2.3.5 MNA Parameters

Concentrations and distributions of electron acceptors, electron donors, and byproducts of microbially mediated reactions are evaluated to verify the types of geochemical and biodegradation processes active in Site groundwater. Concentrations of MNA parameters during the June 2013 annual groundwater monitoring event are provided in Table 3.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

3. MNA Background

An MNA remedy requires a strong scientific basis supported by appropriate monitoring. When properly employed, MNA is an effective remedy – based on thorough analysis of site-specific data – to understand, monitor, predict, and document COC transport and NA processes.

3.1 Site Conceptual Model

For any MNA remedy to succeed, it is important to understand the Site Conceptual Model (SCM). The SCM combines available site information into a comprehensive picture of the nature and extent of the COCs and the processes controlling their transport and fate in the environment. The level of site characterization necessary to support a comprehensive evaluation of MNA can be more detailed than that needed to support active remediation.

The SCM, including information regarding the Site operational history, regulatory status, geology, hydrogeology, and surface water hydrology, and the distribution and mass of COCs in Site groundwater, including delineation of NAPL zones and dissolved-phase groundwater plume, and VOC mass estimates, is provided in Section 2 of the RDWP (ARCADIS 2009) and fulfills the requirements set forth in the SOW, Section V.C.1.I.

The MNA conceptual model for the Site may be described in terms of source condition, dissolved plume stability, and MNA processes, and is summarized as follows:

<u>Source Condition</u>: The source of groundwater-quality impacts was extensively characterized during the Remedial Investigation (RI; BBL 1998) and Feasibility Study (FS; BBL and USEPA 2005), and consists of zones containing NAPL in overburden soils and bedrock. The NAPL is a complex mixture of chlorinated and other solvents. The NAPL zones in overburden soils and bedrock contain mixtures of dissolved NAPL-related chlorinated ethenes, ethanes and methanes, as well as aromatic hydrocarbons, ketones, phthalates, ethers, furan and alcohols. These NAPL zones are currently hydraulically contained by the NTCRA 1 sheet-pile wall and overburden groundwater extraction wells and the NTCRA 2 overburden and bedrock extraction wells. Upon entry of the CD, the NTCRA 1 and NTCRA 2 systems became known as the HCTS. The NAPL zones have formed a dissolved-phase chemical plume that has been severed by the HCTS. The Overburden NAPL zone contains the majority of the Site VOCs, and will be treated with *in situ* thermal remediation to remove the vast
DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

majority of these VOCs, resulting in a greatly diminished source zone upgradient of the NTCRA 1 sheet-pile wall.

<u>Dissolved Plume Stability</u>: The dissolved-phase chemical plumes in overburden and bedrock groundwater within the source area are stable and are likely shrinking in time due to the combination of hydraulic containment and active *in situ* biodegradation processes in groundwater within the capture zone of the HCTS. *In situ* biodegradation processes within the capture zone of the HCTS were characterized as "robust" in the FS (BBL and USEPA 2005). The dissolved-phase chemical plume in overburden and bedrock groundwater in the severed portion of the plume, beyond the capture zone of the HCTS, are generally shrinking with time due to the combination of hydraulic containment of the higher concentration portions of the dissolved-phase chemical plume and NA processes. Total dissolved-phase VOC concentration trends in groundwater within the HCTS containment boundary and the severed plume indicate statistically significantly decreasing concentration trends.

<u>NA Processes</u>: Natural attenuation processes that have contributed to plume stabilization and shrinkage within the overburden and bedrock include *in situ* abiotic and biodegradation reactions, sorption to aquifer solids, flow path mixing, and matrix diffusion. Reductive dechlorination is a prominent removal mechanism that continues to operate at the Site, as evidenced by the production of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC), 1,1-dichloroethane (1,1-DCA), ethene, ethane, and chloride, which are dechlorination (i.e., "breakdown") products of tetrachloroethene (PCE), TCE, and 1,1,1-trichloroethane (TCA). There are also anaerobic oxidation reactions occurring that remove cDCE, VC, and ethene by oxidation to carbon dioxide (CO_2) .

3.2 Selection of MNA Remedy

As a result of the demonstrated efficacy of NA for treating COCs in Site groundwater, MNA was included as a component of several remedial alternatives evaluated in the FS (BBL and USEPA 2005). Based on evaluations presented in the FS, the USEPA selected MNA as a component of the remedial approach for the Site.

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

The ROD for the Site was issued by the USEPA in September 2005 (USEPA 2005). The selected remedy consists of MNA of the groundwater plume, including:

- Groundwater outside the capture zone of the HCTS until groundwater cleanup levels are achieved;
- Groundwater within the capture zone of the HCTS until groundwater cleanup levels are achieved; and
- Groundwater in the NAPL area of the overburden and bedrock aquifers, until groundwater cleanup levels are achieved.

3.3 Identified Data Gaps

The SOW identified two data gaps associated with implementing the MNA remedy component at the Site. The identified data gaps and the strategies used for addressing them are as follows:

- Incomplete plume delineation in the severed plume. This data gap has been addressed by the installation and sampling of additional groundwater monitoring wells near the eastern edge of the severed plume, east of the Quinnipiac River and in the CL&P easement as presented in the Monitoring Well Network Evaluation and Groundwater Monitoring Program (Attachment N to the RDWP) and subsequent discussions with USEPA. In addition to the new plume delineation wells installed prior to the start of the May–June 2010 comprehensive groundwater sampling (including MW-903S, MW-903M, MW-903D, MW-903R, PZ-903DR, MW-904S, MW-904D, MW-906M, MW-906D, MW-906R, PZ-906DR, and MW-910S), three other well clusters (MW-1001M/MW-1001R, MW-1002DR/MW-1002R and MW-1003DR/MW-1003R) have been installed to address this data gap.
- Long-term monitoring data demonstrating the effectiveness of MNA as a remedy component. This data gap is being addressed through the preparation, submittal, approval, and implementation of the MNA Plan.

ARCADIS

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

3.4 Objectives of MNA Performance Monitoring

The MNA Plan, in conjunction with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP), describes the monitoring and analysis steps required to meet the following objectives of MNA performance monitoring, as specified in Section VII.A.1 of the SOW:

- Complete the delineation of COCs in groundwater in three dimensions;
- Assess the temporal and spatial variations in groundwater chemistry and geochemistry;
- Assess the progress in meeting the long-term remedial goal of groundwater restoration throughout the Site to its natural quality; and
- Evaluate the effectiveness of institutional controls.

Based on the results of MNA performance monitoring, decisions related to the MNA program, described in detail in the MNA Plan, may include:

- Continuation of the performance monitoring program without change.
- Continuation of the performance monitoring program with action.
- Modification of the institutional controls.

3.5 Performance Standards

The remedial action will be implemented in compliance with applicable or relevant and appropriate requirements (ARARs) identified in the ROD (USEPA 2005). These requirements include compliance with performance standards for the affected groundwater, soil and wetland soil, and for NAPL that is present in the subsurface in the overburden and bedrock. The following subsections discuss performance standards applicable to MNA and the means for demonstrating compliance with these standards.

3.5.1 MNA-Related Performance Standards

Performance standards pertaining to MNA at the Site, as set forth in the SOW, are described in detail in the MNA Plan for Groundwater, NAPL outside of the Overburden NAPL Area, and the Severed Plume.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

3.5.2 Demonstration of Compliance Report

As specified in Section VIII.G of the SOW, a Demonstration of Compliance Report will be prepared in accordance with the evaluation procedures defined in 40 CFR Section 264.97 when groundwater COC concentrations have remained below the ICLs for three consecutive years as outlined in 40 CFR Section 264.96(c). If the USEPA, after reasonable opportunity for review and comment by the Connecticut Department of Energy and Environmental Protection (CT DEEP), approves the Demonstration of Compliance Report and agrees that the ICLs have been achieved, a risk assessment of residual groundwater conditions will be performed.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4. MNA Performance Monitoring

4.1 Introduction

The MNA Plan specified the performance monitoring program for Site groundwater as it relates to the MNA component of the remedy, while Section IV.B.5 of the SOW set forth requirements for an environmental monitoring program to be implemented to evaluate the performance of the HCTS and the overall effectiveness of the Site remedy, including the MNA component. These groundwater MNA monitoring requirements were summarized in the MNA Plan.

The following subsections describe the MNA program monitoring locations, monitoring frequency, monitoring parameters, and data quality objectives (DQOs) designed to meet the environmental monitoring program requirements set forth in Section IV.B.5 of the SOW. Groundwater monitoring is conducted to monitor changes in groundwater COC concentrations, changes in plume size and shape, and the effectiveness of NA processes in reducing concentrations of COCs in groundwater. Groundwater samples from June 2013 were collected in accordance with the monitoring frequency outlined in the MNA Plan.

4.2 Groundwater Performance Monitoring Locations

Groundwater performance monitoring locations were chosen to provide robust, three-dimensional coverage of COCs in overburden and bedrock groundwater at the Site, with monitoring well cluster locations providing vertical assessment of COC concentrations and groundwater geochemistry. Monitoring locations were identified in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and are shown on Figures 2 through 6 of this MNA Report.

In accordance with the SOW, selected MNA monitoring locations include upgradient (background) sampling locations, in-plume sampling locations (HCTS capture zones and severed plume), side-gradient sampling locations outside of plume areas, and downgradient locations. Monitoring locations are designated by well groups (e.g., "N") to define the purpose of each sampling location. Well group designations that are relevant to MNA monitoring are summarized in the MNA Plan and shown on Figures 2 through 6.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4.3 MNA Monitoring Parameters

The primary classes of data included in the MNA monitoring program are: Sitespecific groundwater COCs; groundwater MNA parameters; groundwater hydraulic information; and HCTS COC mass removal estimates. Each of these primary data classes are described below.

Site-specific COCs are the chemical constituents that were identified during Site investigations and risk assessment and are required to be addressed by the response actions set forth in the ROD (USEPA 2005). Site-specific COCs for groundwater include selected VOCs, 1,4-dioxane, TAL metals, SVOCs, and PCBs.

Groundwater MNA parameters were selected to confirm dominant biotransformation processes, evaluate the potential for continued transformation of COCs, and identify zones of dominant geochemical conditions. These parameters include: iron (ferric and ferrous), divalent manganese, light hydrocarbons (methane, ethane, ethane), alkalinity, chloride, nitrate–nitrogen, nitrite–nitrogen, pH, sulfate and TOC. In addition to laboratory-analyzed MNA parameters, the following MNA parameters are collected as field measurements: pH, DO, ORP, and temperature.

The hydraulic parameter of interest is groundwater elevation. Groundwater elevations are characterized in all five groundwater depth zones, and provide a basis to assess the horizontal and vertical components of hydraulic gradients that control three-dimensional migration of COCs. Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the June 2013 groundwater monitoring event.

Estimates of groundwater COC mass removal from the HCTS, obtained as part of the compliance monitoring program for the HCTS operations, are used to evaluate potential trends in COC mass removal from the HCTS and can be used to evaluate future efficacy of groundwater remedies, including MNA.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4.4 Monitoring Frequency

Monitoring frequencies were designed to meet requirements of the environmental monitoring program set forth in Section IV.B.5 of the SOW and are summarized in the MNA Plan. Detailed monitoring frequency information is provided in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP). Any proposed changes to the long-term monitoring program will be submitted as part of the Annual State of Compliance Report(s).

4.5 MNA Monitoring Objectives

The MNA performance monitoring program set forth in the MNA Plan was designed to evaluate the MNA monitoring objectives listed below (USEPA 1999; USEPA 2004) and described in detail in the MNA Plan.

- Provide timely warning of potential impact to receptors.
- Detect changes in plume size/concentration.
- Determine temporal variability of data.
- Detect changes in geochemistry that warn of potential changes in COC attenuation.
- Yield data necessary to reliably evaluate progress toward COC reduction objectives.

4.6 Data Quality Objectives

The DQO process is a systematic planning tool based on the scientific method that is used to establish criteria for data quality and to develop data collection designs (USEPA 1994). The DQOs for the data described in this MNA Report are provided in the *Quality Assurance Project Plan* (QAPP; [Rev. 2] ARCADIS 2012b; Attachment C to the RD Project Operations Plan [POP]).

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5. MNA Evaluation

This section evaluates the effectiveness of the MNA program based on the data collected to date (including the June 2013 groundwater monitoring event, and June 19, 2013 re-sampling of MW-1003DR and PZO-2M). Data analysis, interpretation and reporting methods were completed in accordance with the following regulatory guidance documents:

- Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water (USEPA 1998)
- Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (USEPA 1999)
- Performance Monitoring of MNA Remedies for VOCs in Ground Water (USEPA 2004)

In general, data interpretation included:

- Placing the MNA performance monitoring data in the context of time, location, sampling and analytical methods.
- Applying appropriate statistical tests to detect changes and trends in COC concentrations, and attainment of remedial objectives.

These data interpretation methods and results are presented in the following sections.

5.1 Total VOC Concentration Trends

Data collected during previous sampling events (RI and Interim Monitoring Sampling [IMS] events) and presented in the MNA Plan and the 2010-2012 MNA reports indicate an overall decline in groundwater concentrations with time, supporting the selection of MNA as a remedial measure for COCs in groundwater at the Site. This section builds upon results of the previous MNA evaluations discussed in detail in the MNA Plan and the three preceding MNA reports (2010, 2011 and 2012). Included in this section are a discussion of concentration trends for total VOCs in groundwater at select monitoring locations, estimates of bulk attenuation rates for total VOCs in groundwater at

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

locations with decreasing concentration trends, and presentation of COC mass extraction rates and cumulative mass removal for the HCTS.

5.1.1 Trend Analysis

The final IMS Report (BBL 2005) compared groundwater VOC concentrations reported in the RI with concentrations measured at 25 IMS locations during the April 2005 (final) IMS event. Trend analyses were updated using total VOC concentration data collected at 21 IMS monitoring locations (within the NTCRA 2 portion of the HCTS, the severed plume, and the interior of the VOC plume) during the RI, IMS program, 2010, 2011, and 2012 groundwater sampling events. These trend analyses have been updated with total VOC concentrations from the June 2013 annual groundwater monitoring event. The trend results are summarized in Table 4. Because only 11 of the monitoring locations with long-term time-concentration data sets were sampled during the June 2013 sampling event, only those trend analyses were updated. However, the previous trend results for wells that were not sampled in June 2013 are also included in Table 4. Results of the 2013 trend analyses are similar to the results of the trend analyses conducted in 2010 through 2012, which indicated that most of the IMS monitoring locations had statistically significant declining total VOC concentration trends.

Groundwater total VOC concentrations plotted versus time were updated for the 11 IMS monitoring locations that were sampled during the June 2013 biennial groundwater sampling event (Figures 12 through 16). As shown on the figures, total VOC concentrations are generally declining or stable at all groundwater depth intervals, consistent with previous results.

Non-parametric Mann-Kendall and Sen's slope trend analyses and parametric linear regression trend analyses were conducted to evaluate trend direction and statistical significance of the groundwater total VOC concentration trends at the Site. The Mann-Kendall test provides a yes/no determination for the existence of a slope that is significantly different from zero, while the Sen's slope test provides an estimate of the value for the slope. The linear regression test estimates slope and confidence level and quantifies how well the data correlate to the estimated trend line. Trend analyses were conducted with natural log (In) normalized total VOC concentrations using all three test methods for all sampling locations.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

A 90% confidence level with a corresponding p-value less than or equal to 0.10 was used to determine statistical significance for the trend analyses. Mann-Kendall and linear regression trend results with p-values greater than 0.10 were not considered to be statistically significant. The trend direction was defined as decreasing if total VOC concentrations decreased with time (negative slope), and increasing if total VOC concentrations increased with time (positive slope); however, the trend was not considered significant unless the relationship for the test was significant at a confidence level of 90%. For the linear regression analysis, the correlation coefficient, or R^2 , is a measure of how well the linear regression fits the data. Values close to 1 are considered to be a good fit, while R^2 values close to 0 are considered to be a poor fit.

Results of the trend analyses indicate significant decreasing total VOC concentration trends at 16 of the 21 monitoring locations (8 of the 11 wells sampled in June 2013) based on the Mann-Kendall and/or the linear regression test. The Sen's slope test indicates 13 (7 from June 2013) significant decreasing total VOC concentration trends of the 21 monitoring locations analyzed.

Monitoring wells sampled in June 2013 that indicate statistically significant decreasing total VOC concentration trends with linear regression and/or Mann-Kendall analysis include P-13, P-101C, MW-03, P-101B, MW-502, MW-704D, MW-127C, and MW-704DR (Table 4). It should be noted that although P-13 and MW-502 are currently statistically significantly decreasing, concentrations of total VOCs appear to be increasing within the past four monitoring events for P-13, and the past three monitoring events for MW-502. However, concentrations of total VOCs at both monitoring wells are below historical maxima for each monitoring well.

Monitoring well P-11A did not indicate a statistically significant concentration trend with linear regression, Mann-Kendall, or Sen's slope analyses. A decreasing trend had previously been shown at this location; however, the total VOC concentration in June 2012 (26,400 μ g/L) was higher than previous results. Although the total VOC concentration decreased in June 2013 (8,237.7 μ g/L), it continues to be elevated compared to recent analytical history.

Total VOCs in groundwater at MW-706DR decreased (2,835 μ g/L in June 2013 compared to 8,418 μ g/L in June 2012 and 10,860 μ g/L in May 2011). Although Mann-Kendall and Sen's slope tests indicate no significant trend at

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

MW-706DR, the linear regression analysis indicates a statistically insignificant decreasing concentration trend. While these results qualitatively suggest improving recent conditions, the historically consistent concentrations at this location and the lack of statistically significant concentration trends potentially indicate the presence of DNAPL in the vicinity of this deep bedrock monitoring location.

Only one location, MW-707DR, indicates a significant increasing total VOC concentration trend based on the Mann-Kendall, Sen's slope and linear regression tests using data through June 2013. This is consistent with the total VOC concentration trend results in 2010, 2011, and 2012 at this location. The maximum total VOC concentration measured at MW-707DR was 18 µg/L (April 2000) and 33% of the historical samples have been below detection for all VOC constituents, indicating generally low concentrations of VOCs in groundwater at this location. The total VOC concentration measured at MW-707DR in June 2013 was 9.59 µg/L. This total VOC concentration is higher than the June 2012 and August 2012 results (4.41 μ g/L and 5.06 μ g/L, respectively), however it is comparable to the October 2004 result (9.8 μ g/L). Linear regression, Mann-Kendall, and Sen's slope trend tests were also performed for the subset of data beginning in April 2004 to exclude the previous monitoring events in which VOC constituents were below detection. Since April 2004, total VOC concentrations do not indicate a statistically significant concentration trend, suggesting relatively stable total VOC concentrations since that time.

5.1.2 Total VOC Attenuation Rate

Results from the linear regression and Sen's slope analyses were used to estimate attenuation rates for total VOCs in groundwater at the Site. Attenuation rates were calculated in accordance with the USEPA guidance document on determining first-order attenuation rate constants for MNA studies (USEPA 2002). Following this guidance, the natural log of COC groundwater concentration versus time was used and a best-fit linear regression line was generated for total VOC concentrations for each monitoring location that had a statistically significant decreasing total VOC concentration trend. Slopes derived from the Sen's slope test were also used to estimate attenuation rates. The slope of the linear regression line and the slope from the Sen's slope test provide estimates of the total VOC attenuation rate constant (k_{point}) in groundwater at the respective monitoring locations.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

 $k_{point} = [slope of best-fit regression line]$

The half-life $(t_{1/2})$ for total VOC concentrations in groundwater was estimated for each sampling location from the equation:

$$t_{1/2} = 0.693 / k_{point}$$

where: 0.693 is the negative of the natural log of 0.5 (half of the starting total VOC concentration).

Estimated half-life values for total VOCs in groundwater range from 592 to 3,060 days (1.6 to 8.4 years) based on linear regression results and from 574 to 3,232 days (1.6 to 8.9 years) based on Sen's slope results. These estimated half-life values for total VOC concentrations compare well with literature values of attenuation rates presented for individual compounds in Appendix H of the FS (BBL and USEPA 2005) and indicate that overall COC concentrations in groundwater are attenuating.

5.2 Estimate of COC Mass Flux in Groundwater

As part of the compliance monitoring program, COC mass extraction rates and cumulative mass removal are monitored for the HCTS. With the exception of the severed plume and incidental discharge to surface water, the HCTS captures the entire dissolved phase groundwater COC plume at the Site. Therefore, the HCTS COC mass extraction rates and cumulative mass extraction data represent the total mass flux for the dissolved phase COC groundwater plume and can be used to monitor changes in groundwater total dissolved-phase COC mass flux with time.

Total VOC mass extraction rates and cumulative mass extraction for the HCTS were plotted for the July 1995 to June 2013 time period (Figure 17). Mass extraction rates are expressed in units of pounds per day and the cumulative mass extraction is expressed in units of pounds. Mass extraction rates have ranged between about 0.1 to 10 pounds per day and appear to be generally stable with time since about 2001. The total mass of VOCs removed by the HCTS between system startup in 1995 and June 2013 is approximately 17,340 pounds. The mass of COCs removed via the HCTS is small compared with the estimated mass removal that is occurring via *in situ* degradation. As described in detail in the FS (BBL and USEPA 2005) and summarized in the MNA Plan

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

(ARCADIS November 2010), the quantity of TCE and degradation products being biodegraded *in situ* was calculated to be approximately 17,000 to 41,000 pounds per year within the NTCRA 1 area alone.

The mass extraction data will continue to be collected as part of the HCTS compliance monitoring program and will be periodically evaluated as part of the MNA performance monitoring program.

5.3 Distribution of VOCs in NAPL and Groundwater

An assessment of the distribution of select VOCs in NAPL and groundwater samples was conducted as part of the 2010 comprehensive MNA report to gain insight into how VOC distributions in NAPL and Site groundwater varied by location and with time. VOCs evaluated in the assessment included:

- chlorinated ethenes (PCE, TCE, cDCE, 1,1-dichloroethene [1,1-DCE], and VC);
- chlorinated ethanes (TCA, 1,1-DCA, and chloroethane [CA]);
- ketones (2-butanone [MEK], 4-methyl-2-pentanone [MIBK], and acetone);
- toluene, ethylbenzene, and xylenes (TEX); and
- methylene chloride, styrene, tetrahydrofuran (THF), and 1,4-dioxane.

Data used for assessment of distribution of VOCs in NAPL and groundwater were presented in the 2010 comprehensive MNA report. The assessment concluded that NAPL samples were composed primarily of PCE, TCE, TCA, TEX, methylene chloride, and styrene, with lesser contributions from cDCE, 1,1-DCE, and 1,1-DCA. Ketones generally were not detected in NAPL samples. 1,4-dioxane were not analyzed for these samples. Overall, the results indicated that the detected groundwater constituents are generally consistent with NAPL constituents, with the exception of ketones. The general absence of detectable ketones in the NAPL samples likely relates to the elevated detection levels associated with the NAPL samples.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Molar VOC concentration plots were also presented in the 2010 comprehensive MNA report. In general, constituent concentrations in groundwater were greatest in the NTCRA 1 area with consistently decreasing primary constituent (e.g., TCE, TCA, ketones, and TEX) concentrations observed in directions downgradient from the NTCRA 1 area. These results clearly demonstrate that degradation of the parent compounds is occurring in Site groundwater.

Groundwater molar VOC concentration plots for select groundwater monitoring locations with samples collected during multiple sampling events illustrate that some locations have clear declining concentration trends for most or all constituents. Shifts in the relative distribution of chlorinated VOCs (CVOCs) towards greater proportions of daughter products to parent demonstrate ongoing degradation of CVOCs in Site groundwater.

In summary, molar concentration plots of select CVOCs provide a means for readily comparing the distribution of COC concentrations in Site groundwater with distance from the source area, as well as with depth and with time at discrete locations. Molar concentration plots will be updated as part of the five-year comprehensive MNA event.

5.4 Evaluation of Monitoring Objectives

5.4.1 Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA

MNA data will be used to evaluate potential changes in environmental conditions that may reduce the efficiency of MNA. Currently, the only anticipated environmental changes that may reduce the efficiency of MNA are within the capture zone of the Site NTCRA 1 groundwater containment system due to the addition of heat and removal of electron donors during *in situ* thermal treatment of the Overburden NAPL Area. Future MNA Reports will assess potential effects on MNA efficiency due to thermal treatment in the Overburden NAPL Area.

Changes in the composition and availability of electron donors with time may affect the efficiency of NA. As electron donors, such as ketones, aromatic compounds, and alcohols are consumed, the efficiency of NA may decline. As noted in the 2010 comprehensive MNA report, alcohols are currently only

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

minimally detected in Site groundwater. As concentrations of these readily available electron donors decline, other electron donor sources may be available to support continued NA of COCs in Site groundwater. Other potential electron donor sources include natural organic matter in the aquifer matrix, natural organic matter in groundwater, as well as recycling of microbial biomass. The efficiency of NA for remediation of COCs in Site groundwater will continue to be monitored via the MNA remedial program using techniques set forth in the MNA Plan and in this MNA Report including, but not limited to:

- Defining changes in the VOC regulatory plume boundaries, including exceedance of MCLs and GWPC as well as exceedance of ICLs.
- Evaluation of COC concentration trends with time.
- Assessment of changes in the distribution of COCs, especially ketones, alcohols, and aromatic compounds.
- Continued monitoring of groundwater redox conditions.

If changes in the efficiency of NA result in a loss of effectiveness of MNA as a remedy for COCs in Site groundwater, contingencies will be considered, as described in the MNA Plan.

5.4.2 Evaluation of Potentially Toxic and/or Mobile Transformation Products

Potentially toxic transformation products include regulated chemical intermediates, such as cDCE, 1,1-DCE, 1,1-DCA, CA, and VC, and regulated transition metals (e.g., manganese and arsenic). Locations with concentrations of cDCE, 1,1-DCE, 1,1-DCA, CA, VC that exceed MCLs or GWPC are within the overburden and bedrock groundwater containment boundary. With exception to the total manganese concentration at monitoring well upgradient/ background well MW-126B at (680 μ g/L and 702 μ g/L in duplicate) exceeding the screening criteria of 500 μ g/L, metals detected in groundwater samples collected in 2013 did not exceed MCLs or GWPC screening levels (Table 2).

5.4.3 Evaluation of Plume Stability

In terms of plume stability, a dissolved-phase chemical plume in groundwater may be characterized as a:

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Shrinking plume, in which the plume volume decreases through time.
- Stable plume, in which the plume volume does not change through time.
- Growing plume, in which the plume volume increases through time.

In general, shrinking plumes are indicated by decreasing chemical concentrations through time, growing plumes may be indicated by increasing or stable chemical concentrations through time, and stable plumes are indicated by plume volume estimates that do not change significantly through time. Currently available long-term monitoring data indicate that the plume of COCs in Site groundwater is generally shrinking or is stable.

5.4.4 Evaluation of No Unacceptable Impacts to Downgradient Receptors

Groundwater and surface water monitoring data collected during the RI and the IMS program indicate that there are no potential impacts to downgradient receptors. The water supply wells within the Town Well Field Property are dormant and are beyond the zone of COC concentrations in groundwater that are above drinking water standards. Therefore, there are no receptors within the vicinity of the groundwater plume with COC concentrations above drinking water standards. Monitoring of surface water in the Quinnipiac River demonstrated that surface water is not impacted by the Site COC-impacted groundwater plume. Monitoring of groundwater within the Town Well Field will continue as part of the MNA program.

5.4.5 Evaluation of New Releases of COCs

Evaluation of new releases of COCs is not needed because potential sources of new releases have been removed from the Site, the former source area is located within the capture zone of the HCTS, and the Overburden NAPL Area (also within the capture zone) is to be remediated via *in situ* thermal remediation.

5.4.6 Evaluation of Institutional Controls

The draft *Institutional Control Plan* (IC Plan), which is a remedial design submittal required by Section V.B.7 of the SOW, was initially submitted to the USEPA in February 2011. Based on comments received and further

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

coordination with the regulatory agencies, a revised draft IC Plan was provided to the USEPA in May 2013. It describes the proposed scope and monitoring program associated with institutional controls to be implemented at the Site. Once the IC Plan is approved and institutional controls are established, any observed or pending changes in land or resource uses or ownership (e.g., property ownership change, housing developments, and well installations) will be evaluated in view of their current and possible future impact on the effectiveness of the institutional controls and the performance monitoring operations.

5.4.7 COC Mass Flux / Mass Reduction

COC mass flux and mass reduction can be conservatively evaluated by monitoring groundwater COC mass recovery from the HCTS. Because extraction of groundwater COCs by the HCTS does not account for the mass of COCs degraded *in situ*, this method of estimating mass reduction provides a minimum estimate of mass reduction. With the exception of the severed plume and de minimis discharges to surface water immediately adjacent to the river, the Site-related groundwater plume is essentially contained within the HCTS capture zone. As a result, the groundwater extracted via the HCTS represents the majority of the mass flux of COCs within the plume. Groundwater extraction rate and COC concentration information collected periodically during system operation, maintenance and monitoring (OMM) activities as part of the compliance monitoring program for the HCTS will be used to evaluate changes in COC mass flux with time. As shown on Figure 17, COC mass extraction rates have been relatively stable since the early 2000s.

5.5 Contingency Measures

An evaluation of contingency measures will be performed if progress in meeting long-term groundwater restoration goals is inadequate, as determined by the USEPA. While the specific measures to be undertaken may depend on several factors (e.g., the nature, location, apparent source, or timeframe at which the inadequacy is identified), examples of possible contingency measures are provided in the MNA Plan. Any contingency measure considered will first be approved by USEPA, in consultation with CT DEEP, prior to implementation.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

6. Summary

The 2013 annual groundwater monitoring event was conducted June 3-6, 2013, and included the sampling of 45 monitoring wells for VOCs, MNA parameters and/or TAL metals. Results from the annual event indicate that:

- VOCs above Action Levels (the more stringent of the USEPA MCLs or Connecticut Class GA GWPC) are generally contained within the previously estimated containment boundary of the HCTS. The exception is at monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 1.3 µg/L in the June 2013 sample, which is slightly above the Action Level of 1.0 µg/L. This is consistent with the benzene concentration detected at well MW-707DR in June 2012 (1.1 µg/L). Note that actions were evaluated following the 2012 annual sampling event to increase the bedrock capture zone, resulting in the vertical extension of bedrock groundwater extraction well RW-1R and adjustments to its pumping equipment in late 2012 (ARCADIS 2013a; 2013b). The effect of those modifications in terms of improving groundwater quality and/or hydraulic capture at well MW-707DR are being evaluated.
- PCE and TCE were detected in middle overburden monitoring well PZO-2M at concentrations of 79 µg/L and 250 µg/L, respectively, in the June 2013 sample. These concentrations are above the Action Level of 5.0 µg/L for both compounds. This was the first detection of PCE above the Action Level at this well. TCE was detected above the Action Level at this well in June 2012 (9.9 µg/L). This well was re-sampled for confirmation purposes later in June 2013; PCE and TCE were again detected at concentrations similar to those in the initial June 2013 sample. Additional groundwater sampling was performed in July 2013 (and will continue to be performed) to further assess concentration trends in the vicinity of this well.
- Benzene, PCE and TCE were also detected at deep bedrock monitoring well MW-1003DR at concentrations above the respective Action Levels. This well was also re-sampled later in June 2013 and the results confirmed. Additional groundwater sampling was performed in July 2013 (and will continue to be performed) to further assess concentration trends in the vicinity of this well.

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- No metals (either total or dissolved) exceeded their respective MCLs or GWPC, with the exception of total manganese measured at well MW-126B in 2013 (680 μg/L total manganese, compared to the GWPC of 500 μg/L). MW-126B is an upgradient, background well located north of the former Operations Area of the SRSNE Site.
- As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 µg/L) and 2012 (approximately 26,400 µg/L). This well is located at the downgradient edge of the bedrock NAPL zone delineated during the RI (BBL June 1998), and within the HCTS capture zone. The total VOC concentration in June 2013 decreased significantly (to approximately 8,200 µg/L) relative to the June 2012, though concentrations remain elevated. VOC concentrations at this well will continue to be monitored as part of future sampling events.

Section 5 presents an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site, including presentation of groundwater monitoring results from the June 2013 annual groundwater monitoring event; evaluation of concentration trends for total VOCs in groundwater at select monitoring locations; estimates of bulk attenuation rates for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicate:

- Detected concentrations of VOCs above Action Levels are contained within the previously estimated containment boundary of the HCTS; the only exception is monitoring well MW-707DR, as discussed above. Groundwater quality at this well will continue to be monitored to evaluate the effects of modifications to the well depth and pumping equipment at bedrock groundwater extraction well RW-1R (ARCADIS 2013a).
- Groundwater total VOC concentrations are generally declining or remaining stable with time throughout the Site groundwater COC plume. Notable exceptions include increases in total VOC concentrations at:
 - Four of the nine overburden wells sampled within the NTCRA 1 containment area in June 2013 (MW-415, MWL-307, TW-08A and TW-08D).

ARCADIS

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Middle overburden monitoring well PZO-2M, which is located in the CL&P easement (downgradient of the former Operations Area) and within the HCTS capture zone.
- Deep bedrock monitoring well MW-1003DR, which is also located in the CL&P easement (downgradient of the former Operations Area) and within the HCTS capture zone.
- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the FS (BBL and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

7. References

ARCADIS. 2009. *Draft Remedial Design Work Plan*. Solvents Recovery Service of New England, Inc., Southington, Connecticut. April 2009.

ARCADIS. 2010a. *Monitored Natural Attenuation Report*. Solvents Recovery Service of New England, Inc. Southington, Connecticut. September 2010.

ARCADIS. 2010b. *Monitoring Well Network Evaluation and Groundwater Monitoring Program*. Solvents Recovery Service of New England, Inc. Southington, Connecticut. November 2010.

ARCADIS. 2011a. Summary of Initial (2010) Comprehensive Groundwater Sampling Event. January 2011.

ARCADIS. 2012b. *Quality Assurance Project Plan* (Rev. 2). Solvents Recovery Service of New England, Inc. Southington, Connecticut. August 2012.

ARCADIS. 2013a. *Summary of Recovery Well RW-1R Modifications*. February 2013.

ARCADIS. 2013b. RW-1R Hydraulic Test Results. April 25, 2013.

BBL. 1998. *Remedial Investigation Report.* Solvents Recovery Service of New England, Inc., Southington, Connecticut. June 1998.

BBL and USEPA. May 2005. Draft Feasibility Study, Solvents Recovery Service of New England, Inc., Southington, Connecticut.

USEPA. 1994. Guidance for the Data Quality Objectives Process. EPA/600/R-96/055 September 1994.

USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128.

USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA OSWER Directive 9200.4-17P. April 1999.

DRAFT

2013 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

USEPA. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH. November 2002.

USEPA. 2004. Performance of Monitoring of MNA Remedies for VOCs in Ground Water. EPAI600R-041027, April 2004.

USEPA. 2005. EPA Superfund Record of Decision: Solvents Recovery Service Of New England, Southington, CT. EPA/ROD/R01-05/008, EPA ID: CTD009717604. September 2005.

Tables

			Sample	e Location	CPZ	2-4A	MW	-03	MW-1	002DR	MW-1	LOO2DR	MW-	1002R	MW-1	003DR	MW-1	.003DR	MW-1	L003R	MW-1	121B
			Sar	nple Date	6/3/	2013	6/3/2	2013	6/4/	2013	6/4/	/2013	6/6/	2013	6/5/	2013	6/19/	/2013	6/6/2	2013	6/3/2	2013
			Field S	Sample ID	CPZ-4A-HS	-06032013	MW-03-0	6032013	MW-1002DR-	HS-06042013	DUP-GW-0	6042013#2	MW-1002R-	HS-06062013	3 MW-1003DR-	HS-0605201	.3MW-1003DR-	-HS-0619201	3 MW-1003R-H	HS-06062013	MW-121B-H	S-06032013
			w	ell Group/		3	F	R	I	२		R		R	I	२	I	R	F	3	R	ł
·																						
Analyte	CAS No.	Unit	Action	ICI																		
VOCs (8260B)	6,10,1101	0	Level																			
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	5	U	0.5	U	0.5	U	2.5	U	0.5	U	1	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	1.8		0.5	U	0.84	J	5	U	0.5	U	27		20		0.5	U	1	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	3.8	U	7.5	U	0.75	U	0.75	U	3.8	U	0.75	U	1.5	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	4.8		0.44	J	3.8	U	7.5	U	0.75	U	0.5	J	3.8	U	0.75	U	1.5	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.88		0.5	U	3.1		3.1	J	0.5	U	1.6		1.3	J	0.5	U	1	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	12	U	25	U	2.5	U	2.5	U	12	U	2.5	U	5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	12	U	25	U	2.5	U	2.5	U	12	U	2.5	U	5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	5	U	0.5	U	0.5	U	2.5	U	0.5	U	1	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	12	U	25	U	2.5	U	2.5	U	12	U	2.5	U	5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	25	U	50	U	5	U	2	J	25	U	5	U	10	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	25	U	50	U	5	U	5	U	25	U	5	U	10	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	25	UJ	50	U	5	U	1.7	J	25	U	5	U	10	U
Acetone	67-64-1	ug/L	700	5	5	IJ	5	UJ	25	UJ	50	UJ	5	U	14		25	U	5	U	10	UJ
Benzene	71-43-2	ug/L	1	0.5	1.9		0.16	J	2.5	U	5	U	1.1		2.6		2.3	J	0.17	J	16	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	UJ	5	UJ	10	IJ	1	UJ	0.4	J	5	U	1	UJ	2	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	25	U	50	U	16		5	U	25	U	5	U	10	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	2.5	U	5	U	0.5	U	0.5	U	2.5	U	0.5	U	1	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.92		0.5	U	2.5	U	5	U	0.5	U	0.5	U	2.5	U	0.5	U	9	
Chloroethane	75-00-3	ug/L	12.1	0.5	24	J	1	UJ	5	U	10	U	1	U	0.19	J	5	U	0.16	J	40	J
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	3.8	U	7.5	U	0.23	J	0.75	U	3.8	U	0.52	J	1.5	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	12	U	25	U	0.19	J	2.5	U	12	U	0.24	J	5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	2.5	J	0.26	J	26		26		0.5	U	5.5		5.3		0.32	J	1	UJ
Ethylbenzene	100-41-4	ug/L	700	0.5	0.81		0.71		2.5	U	5	U	0.5	U	11		8.3		0.5	U	2.5	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	3	U	6	U	0.6	U	0.6	U	3	U	0.6	U	1.2	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	3.5	J	4	J	5	U	5	U	25	U	5	U	10	U
Naphthalene	91-20-3	ug/L	280	0.5	0.23	J	0.38	J	12	U	25	U	2.5	U	2.5	U	12	U	2.5	U	5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	5	U	10	U	1	U	1.9		1.8	J	1	U	2	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	21		21		0.5	U	90		81		0.5	U	1	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	35		5	U	25	U	50	U	5	U	5	UJ	25	U	5	U	210	
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	2.5		3.8	U	7.5	U	0.75	U	86		78		0.75	U	1.5	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	3.8	U	7.5	U	0.75	U	0.75	U	3.8	U	0.75	U	1.5	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	2.5	U	5	U	0.5	U	0.5	U	2.5	U	0.5	U	1	U
Trichloroethene	79-01-6	ug/L	5	0.5	1.7		0.52		460		480		0.5	U	740		660		0.42	J	1	U
Vinyl chloride	75-01-4	ug/L	2	0.5	2.6		1	U	5	U	10	U	1	U	1	U	5	U	1	U	2	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	4.1		4.2		5	U	10	U	1	U	34		26		1	U	3	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

			Sample	e Location	MW	-121C	MW-	121M	MW-	124C	MW-	-127C	MW	-413	MW	-415	MW	/-416	MW	/-502	MW-	704D
			Sar	mple Date	6/3/	2013	6/3/	2013	6/4/	2013	6/5/2	2013	6/6/2	2013	6/6/	2013	6/6/	2013	6/4/	/2013	6/3/2	2013
			Field	Sample ID	MW-121C-H	HS-06032013	MW-121M-I	HS-06032013	MW-124C-F	IS-06042013	MW-127C	-06052013	MW-413-H	S-06062013	MW-415-H	S-06062013	MW-416-H	S-06062013	MW-502-H	S-06042013	MW-704D-H	IS-06032013
			W	Vell Group		R		R		R	F	R	١	N	1	N		N		R	F	R
				-																		
Analyte	646 N-	11	Action																			
VOCs (8260B)	CAS NO.	Unit	Level	ICL																		
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	7.7		2.4		23		38		110		0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	0.75	U	7.5	U	15	U	3.8	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U	2.4		4.3		170		500		22		0.75	U	0.57	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	4.6		1.1		1.8	J	5.3	J	39		0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	25	U	50	U	12	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.18	J	2.5	U	2.5	U	2.5	U	25	U	50	U	12	U	0.34	J	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.46	J	0.5	U	0.5	U	0.5	U	10		4.2	J	2.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.2	J	2.5	U	2.5	U	2.5	U	25	U	50	U	12	U	0.29	J	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	50	U	620		25	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	50	U	100	U	25	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	UJ	5	U	95		180		25	U	4	J	5	U
Acetone	67-64-1	ug/L	700	5	5	UJ	5	IJ	5	UJ	5	U	50	U	230		25	U	5	UJ	5	UJ
Benzene	71-43-2	ug/L	1	0.5	13		0.95		0.5	U	0.5	U	6.1		10	U	2.5	U	64		0.19	J
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	UJ	1	UJ	1	UJ	10	UJ	20	UJ	5	UJ	1	UJ	1	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	50	U	100	U	25	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	7.4		0.87		0.5	U	0.5	U	5	U	7.5	J	2.5	U	27		1.3	
Chloroethane	75-00-3	ug/L	12.1	0.5	34	J	15	J	1	U	1	U	110		900		1.1	J	61		7.5	J
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.25	J	0.75	U	7.5	U	15	U	3.8	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	2.5	U	25	U	19	J	12	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	UJ	0.5	IJ	5.9		1.4		840		1400		300		0.5	U	0.5	IJ
Ethylbenzene	100-41-4	ug/L	700	0.5	0.17	J	0.5	U	0.5	U	0.28	J	57		270		2.5	U	99		0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	0.6	U	6	U	12	U	3	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	3.2	J	120		25	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	2.5	U	25	U	50	U	12	U	1.5	J	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	10	U	20	U	5	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.28	J	0.5	U	23		10	U	17		0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	110		8.8		5	U	5	U	79		39	J	7	J	3800		3.4	J
Toluene	108-88-3	ug/L	1000	0.5	0.35	J	0.75	U	0.75	U	1.2	U	210		1300		3.8	U	5.3		0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	0.75	U	3.8	J	8.2	J	0.89	J	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.5	U	1.6		0.43	J	59		10	U	280		0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	1	U	1600		710		35		1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1.6		1	U	1	U	1.6	J	65		660		5	U	270		1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

			Sample	e Location	MW-	704DR	MW-	704M	MW-	706DR	MW-7	707DR	MW-	902D	MW-9	02M	MW	-907D	MW-9	907DR	MW-	907M
			Sar	nple Date	6/3/	2013	6/5/	2013	6/4/	2013	6/4/	2013	6/5/2	2013	6/5/2	2013	6/3/	/2013	6/3/	2013	6/3/	2013
			Field S	Sample ID	MW-704DR-	HS-06032013	MW-704M-I	HS-06052013	MW-706DR-	HS-06042013	MW-707D	R-06042013	MW-902D-H	S-06052013	MW-902M-H	S-06052013	MW-907D-I	HS-06032013	MW-907DR-	HS-06032013	MW-907M-H	HS-06032013
			w	ell Group/		R		R		R		R	N	J	N			R	I	R	F	R
				-																		
Analyte		Unit	Action																			
VOCs (8260B)	CAS NO.	onne	Level																			
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	25	U	0.5	U	5	U	5	U	5	U	500	U	20	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	25	U	0.4	J	10		20		5	U	1200		20	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	38	U	0.75	U	7.5	U	7.5	U	7.5	U	750	U	30	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	2.8		0.16	J	7.7	J	1.3		82		230		7.5	U	750	U	30	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	20	J	0.16	J	3.1	J	4.6	J	5	U	220	J	20	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	120	U	2.5	U	25	U	2.7	J	25	U	2500	U	100	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	120	U	2.5	U	25	U	3	J	25	U	2500	U	100	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.25	J	0.5	U	25	U	0.5	U	2	J	8.6		5	U	500	U	20	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	120	U	2.5	U	25	U	25	U	25	U	2500	U	100	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	250	U	5	U	21	J	160		50	U	5000	U	200	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	250	U	5	U	50	U	50	U	50	U	5000	U	200	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	250	UJ	5	UJ	5.4	J	44	J	50	U	5000	U	200	U
Acetone	67-64-1	ug/L	700	5	5	UJ	5	U	250	UJ	5	UJ	50	U	130		50	IJ	5000	UJ	200	UJ
Benzene	71-43-2	ug/L	1	0.5	2.9		0.17	J	25	U	1.3		1.6	J	9.2		29		500	U	58	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	UJ	50	UJ	1	UJ	10	UJ	10	UJ	10	IJ	1000	UJ	40	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	0.61	J	5	U	250	U	5	U	50	U	50	U	50	U	5000	U	200	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	25	U	0.5	U	5	U	5	U	5	U	500	U	20	U
Chlorobenzene	108-90-7	ug/L	100	0.5	1.7		1.6		25	U	0.5	U	5	U	5	U	14		500	U	27	
Chloroethane	75-00-3	ug/L	12.1	0.5	22	J	0.66	J	50	U	1	U	140		2100		64	J	1000	UJ	130	J
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	38	U	0.75	U	7.5	U	7.5	U	7.5	U	750	U	30	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	120	U	2.5	U	25	U	25	U	25	U	2500	U	100	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	2.9	J	0.46	J	2100		0.59		300		540		5	IJ	620	J	20	UJ
Ethylbenzene	100-41-4	ug/L	700	0.5	1		0.5	U	25	U	0.59		94		540		5	U	460	J	20	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	30	U	0.6	U	6	U	6	U	6	U	600	U	24	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	17	J	5	U	9.7	J	48	J	50	U	5000	U	200	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	120	U	0.24	J	25	U	10	J	25	U	2500	U	100	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	50	U	1	U	10	U	10	U	10	U	1000	U	40	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	31		0.5	U	5	U	5	U	5	U	5800		20	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	8.8		2.2	J	250	U	1.6	J	13	J	150	J	640		5000	U	3600	
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	18	J	1.9	U	510		2200		7.5	U	3800		30	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	38	U	0.75	U	7.5	U	3.5	J	7.5	U	750	U	30	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	25	U	0.5	U	5	U	5	U	5	U	500	U	20	U
Trichloroethene	79-01-6	ug/L	5	0.5	3.6		0.5	U	580		0.21	J	5	U	5	U	5	U	63000		20	U
Vinyl chloride	75-01-4	ug/L	2	0.5	0.24	J	0.16	J	61		1	U	250		430		10	U	1000	U	40	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1.8	J	1	U	50	U	3.2	J	140		850		10	U	1300	J	40	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

			Sample	Location	MW	L-304	MW	L-307	MW	L-309	P-1	01B	P-10	01C	P-1	.1A	P-	13	PZC	D-2D	PZO)-2D
			Sar	nple Date	6/5/	/2013	6/5/	/2013	6/6/	2013	6/4/2	2013	6/4/2	2013	6/6/3	2013	6/5/	2013	6/3/	/2013	6/3/3	2013
			Field S	Sample ID	MWL-304-ł	IS-06052013	MWL-307-H	IS-06052013	MWL-309-H	IS-06062013	P-101B-HS	-06042013	P-101C-HS	-06042013	P-11A-HS-	06062013	P-13-06	6052013	PZO-2D-HS	5-06032013	DUP-GW-06	6032013-#1
			v	ell Group		N		N		R	F	R	F	२	F	1		R		R	F	۲
r																						
Analyte	CAS No.	Unit	Action	ICL																		
VOCs (8260B)	0.101101	••	Level			-		-		-							-					
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	1.2		110		0.5	U	0.5	U	0.5	U	45		5.6		0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	75	U	0.75	U	0.75	U	0.75	U	7.5	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	8.9		760		1		1		3		8.6		1.6		0.17	J	0.2	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	72		0.5	U	0.5	U	0.5	U	37		0.66		0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	250	U	2.5	U	2.5	U	2.5	U	2.6	J	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	1200		5	U	5	U	5	U	50	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	500	U	5	U	5	U	5	U	50	UJ	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	820		5	U	5	UJ	5	U	50	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	U	260	J	5	U	5	UJ	5	UJ	50	U	5	U	5	UJ	5	UJ
Benzene	71-43-2	ug/L	1	0.5	0.54		39	J	0.5	U	4.9		0.72		20		0.22	J	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	100	UJ	1	UJ	1	UJ	1	UJ	10	UJ	1	UJ	1	UJ	1	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	0.57	J	500	U	5	U	5	U	5	U	3.2	J	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	50	U	0.5	U	1.9		0.43	J	5	U	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1.7		3000		1	U	15		1	U	11		1	U	1	UJ	1	UJ
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	75	U	0.75	U	0.75	U	0.75	U	7.5	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	21		3800		0.5	U	0.72		0.65		4000		2.1		0.26	J	0.36	J
Ethylbenzene	100-41-4	ug/L	700	0.5	8.7		1800		0.5	U	0.5	U	0.5	U	420		0.76		0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	60	U	0.6	U	0.6	U	0.6	U	6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	110	J	5	U	5	U	5	U	50	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	250	U	2.5	U	2.5	U	2.5	U	4.6	J	2.5	U	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	100	U	1	U	1	U	1	U	19		1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	410		0.51		0.22	J	0.25	J
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	UJ	120	J	5	U	4.9	J	1.9	J	54	J	5	U	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	16000		0.75	U	0.75	U	0.75	U	660		3.6		0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	24	J	0.75	U	0.75	U 	0.75	U	2.7	1	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U	0.5	U	0.5	U
Irichloroethene	79-01-6	ug/L	5	0.5	0.5	U	50	U	0.5	U	0.5	U	0.5	U	1100		0.63		1.2		1.3	
Vinyl chloride	75-01-4	ug/L	2	0.5	73		2000		1	U	1.9		1.3		600		1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1.6		3000		1	U	0.46	J	1	U	840		4.3		1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

			Sample	e Location	PZO	-2M	PZC	-2M	PZR	-2R	TW-	08A	TW	-08B	TW	08D
		Sar	nple Date	6/5/	2013	6/19,	/2013	6/5/	2013	6/5/2	2013	6/5/	2013	6/5/	2013	
			Field S	Sample ID	PZO-2M-HS	6-06052013	PZO-2M-H	6-06192013	PZR-2R-HS	-06052013	TW-08A-HS	-06052013	TW-08B-H	S-06052013	TW-08D-HS	6-06052013
			W	/ell Group	ŀ	3		R	ŀ	3	1	J		N	1	N
Analyte		Unit	Action													
VOCs (8260B)	CAS NO.	onit	Level													
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	1.2	U	0.5	U	100	U	250	U	10	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	5.8		4.8		0.5	U	310		8600		240	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	1.9	U	0.75	U	150	U	72	J	15	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	1.9	U	0.75	U	670		2100		420	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.14	J	1.2	U	0.5	U	70	J	2000		110	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	6.2	U	2.5	U	500	U	1200	U	50	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	6.2	U	2.5	U	500	U	1200	U	6.4	J
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	1.2	U	0.5	U	28	J	170	J	110	
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	6.2	U	2.5	U	500	U	1200	U	50	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	12	U	5	U	1000	U	2500	U	100	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	12	U	5	U	1000	U	2500	U	100	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	12	U	5	U	1000	U	2000	J	100	U
Acetone	67-64-1	ug/L	700	5	5	U	12	U	5	U	1000	U	870	J	89	J
Benzene	71-43-2	ug/L	1	0.5	0.5	U	1.2	U	0.5	U	36	J	370		86	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	IJ	2.5	U	1	IJ	200	UJ	500	UJ	20	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	12	U	5	U	1000	U	2500	U	9.2	J
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	1.2	U	0.5	U	100	U	250	U	10	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	1.2	U	0.5	U	100	U	250	U	10	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	2.5	U	1	U	120	J	980		520	
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	1.9	U	0.75	U	150	U	110	J	15	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	6.2	U	2.5	U	500	U	1200	U	50	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.48	J	1.2	U	0.5	U	13000		330000		7000	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.35	J	0.71	J	0.5	U	1200		3400		1200	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	1.5	U	0.6	U	120	U	300	U	12	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	12	U	5	U	120	J	660	J	39	J
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	6.2	U	2.5	U	500	U	1200	U	13	J
Styrene	100-42-5	ug/L	100	0.5	1	U	2.5	U	1	U	200	U	380	J	20	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	79		72		0.5	U	100	U	7200		10	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	IJ	12	U	5	U	1000	U	610	J	420	J
Toluene	108-88-3	ug/L	1000	0.5	1.6	U	3.5		0.75	U	2200		29000		5100	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	1.9	U	0.75	U	150	U	140	J	28	
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	1.2	U	0.5	U	100	U	250	U	10	U
Trichloroethene	79-01-6	ug/L	5	0.5	250		230		0.5	U	100	U	24000		6	J
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	2.5	U	1	U	14000		14000		15000	
Xylenes, Total	1330-20-7	ug/L	530	0.5	0.81	J	2.3	J	1	U	1800		9200		3900	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

		Sai	mple Location	MW-	126B	MW-	126B	MW-	126C	MW	-209A	MW-	209B	MW-	701DR	MW-	901R	P.	-12
			Sample Date	6/4/	2013	6/4/2	2013	6/4/	2013	6/4/	2013	6/4/2	2013	6/4/	2013	6/5/2	2013	6/3/	/2013
		Fi	eld Sample ID	MW-126B	-06042013	DUP-GW-0	6042013#1	MW-126C	-06042013	MW-209A	-06042013	MW-209B-	06042013	MW-701D	R-06042013	MW-901R-	-06052013	P-12-06	5032013
			Well Group	Ν	Л	Ν	Λ	l	3		В	E	3	٦	M	Ν	Λ		М
Analyte		Unit	Action																
Metals (SW6020)	CAS NO.	Unit	Level																
Aluminum (Dissolved)	7429-90-5	ug/L		10	U	10	U	10	U	10	U	10	U	10	U	10	U	225	
Aluminum (Total)	7429-90-5	ug/L		10	U	10	UJ	48.4		12.6		327		41.8		199		403	
Antimony (Dissolved)	7440-36-0	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.248	J	0.5	U
Antimony (Total)	7440-36-0	ug/L	6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1	U	0.5	U
Arsenic (Dissolved)	7440-38-2	ug/L		0.5	U	0.5	U	0.5	U	0.231	J	0.5	U	0.987		0.274	J	0.247	J
Arsenic (Total)	7440-38-2	ug/L	10	0.5	U	0.5	U	0.5	U	0.199	J	0.5	U	1.003		0.304	J	0.172	J
Barium (Dissolved)	7440-39-3	ug/L		565.8		563.2		418.1		221.3		149.2		104.4		243.3		174.8	
Barium (Total)	7440-39-3	ug/L	1000	599		589.2		430.5		227.7		157.8		107.9		233.5		178.4	
Beryllium (Dissolved)	7440-41-7	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Beryllium (Total)	7440-41-7	ug/L	4	0.5	υ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Cadmium (Dissolved)	7440-43-9	ug/L		0.056	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Cadmium (Total)	7440-43-9	ug/L	5	0.078	J	0.101	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chromium (Dissolved)	7440-47-3	ug/L		0.5	υ	0.5	U	0.5	U	0.567	U	0.577	U	0.869	U	0.305	J	0.5	U
Chromium (Total)	7440-47-3	ug/L	100	0.21	J	0.5	U	0.5	U	0.552	U	1.09		0.921	U	0.567		0.72	U
Cobalt (Dissolved)	7440-48-4	ug/L		0.248	J	0.278	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.26	J
Cobalt (Total)	7440-48-4	ug/L	10	0.239	J	0.258	J	0.5	U	0.5	U	0.308	J	0.5	U	0.114	J	0.366	J
Copper (Dissolved)	7440-50-8	ug/L		1.114	υ	1.787	J	1.256	UJ	1.105	UJ	1.209	J	0.778	UJ	1.09		0.926	U
Copper (Total)	7440-50-8	ug/L	1300	1.069	U	3.205		0.525	U	0.5	U	2.193		1.123	U	0.592		0.86	U
Iron (Dissolved)	7439-89-6	ug/L		50	U	50	U	50	U	50	U	50	U	50	U	50	U	273	
Iron (Total)	7439-89-6	ug/L		50	U	50	U	50	U	50	U	389		49	J	168		494	
Lead (Dissolved)	7439-92-1	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.279	J
Lead (Total)	7439-92-1	ug/L	15	0.5	U	0.5	U	0.5	U	0.5	U	0.72		0.259	J	0.231	J	0.256	J
Manganese (Dissolved)	7439-96-5	ug/L		654.5		659.7		0.693	U	0.7		2.077	U	0.773	U	1.08		22.55	U
Manganese (Total)	7439-96-5	ug/L	500	679.9		702.2		0.602		2.083		26.85		3.393		9.519		15.41	U
Nickel (Dissolved)	7440-02-0	ug/L		1.322	U	2.329	J	1.14	U	0.698	U	0.789	U	0.732	U	0.712	J	0.5	U
Nickel (Total)	7440-02-0	ug/L	100	1.285		1.269	J	0.5	U	0.176	U	1.018		0.118	U	0.329	J	0.873	U
Silver (Dissolved)	7440-22-4	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Silver (Total)	7440-22-4	ug/L	36	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Thallium (Dissolved)	7440-28-0	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Thallium (Total)	7440-28-0	ug/L	2	0.58	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vanadium (Dissolved)	7440-62-2	ug/L		0.236	J	0.305	J	0.423	J	0.754		0.274	J	7.479		0.569		1.844	
Vanadium (Total)	7440-62-2	ug/L	50	0.191	J	0.427	J	0.443	J	0.754	J	0.859		8.021	J	1.257		1.733	
Zinc (Dissolved)	7440-66-6	ug/L		14.26	U	15.56	U	10.92	U	8.498	U	12.37	U	13.68	U	13.3		12.68	U
Zinc (Total)	7440-66-6	ug/L	5000	5.638	U	16.95	U	13.8	U	18.96	U	17.94	U	21.1	U	12.29		5	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

Bold = Analyte detected above the laboratory reporting limit

	Sample	e Location	MW	-413	MW-	415	MW	-416	MW-9	02D	MW-9	902M	MWI	-304	MW	L-304	MWI	L-307	TW-	08A	TW	08B	TW-	08D
	Sai	mple Date	6/6/2	2013	6/6/2	013	6/6/	2013	6/5/2	013	6/5/2	2013	6/5/2	2013	6/5/	2013	6/5/	2013	6/5/2	2013	6/5/	2013	6/5/2	2013
	Field	Sample ID	MW-413-H	5-06062013	MW-415-HS	-06062013	MW-416-H	5-06062013	MW-902D-H	S-06052013	MW-902M-H	IS-06052013	MWL-304-H	S-06052013	DUP-GW-0	6052013-#1	MWL-307-H	IS-06052013	TW-08A-HS	-06052013	TW-08B-HS	-06052013	TW-08D-HS	6-06052013
	v	Vell Group	Ν	J	N		١	N	N		١	١	1	N		N	1	N	Ν		1	N	Ν	١
Analyte	CAS No.	Unit																						
MNA (Water)																								
Alkalinity	ALK	mg/L	124		87		106		126		175		160		153		158		223		170		153	
Chloride	16887-00-6	mg/L	27.1		17.8		9.49		13.1	J	49.4	J	4.06	J	6.36	J	58.8	J	38.9	J	265	J	63	J
Sulfate	14808-79-8	mg/L	2.43		9.83		119		3.76		1.95		13.4		12.9		2.44		2.93		6.62		2.13	
Nitrite as N	14797-65-0	mg/L	0.037	J	0.039	J	0.05	U	0.033	J	0.016	J	0.05	U	0.018	J	0.062		0.022	J	0.024	J	0.018	J
Nitrate as N	14797-55-8	mg/L	0.078	J	0.272		0.458		0.084	J	0.1	U	0.019	U	0.025	U	0.064	J	0.023	U	0.029	U	0.026	U
Iron (Dissolved)	7439-89-6	ug/L	20000		12000		100	U	14000	J	6400		13000				33000	J	30000		5900		22000	
Manganese (Dissolved)	7439-96-5	ug/L	4280		1840		26.6		3100		908	J	1840				6990	J	6670		6140		6610	
Total Organic Carbon	TOC	mg/L	6.8	J	16	J	0.63	J	6	J	18	J	5.6	J	5.6	J	51	J	16	J	28	J	34	J
MNA (Water Gas)												-												
Ethane	74-84-0	ug/L	0.65		6.1		370		60		190		3.4		2.6		16		130		45		56	
Ethene	74-85-1	ug/L	1.8		130		1500	J	200		600		81		73		470		1300	J	2300	J	5500	J
Methane	74-82-8	ug/L	78	J	460	J	1400		840		1500		750		570		770		2600		1800		1300	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

mg/L = milligrams per liter

Bold = Analyte detected above the laboratory reporting limit

Table 4 - Statistical Summary of Groundwater Total VOC Concentration TrendsSolvents Recovery Service of New England, Inc. (SRSNE) Superfund SiteSouthington, Connecticut

				Data Range					Linea	ar Regressio	on Analysis		Man	n-Kendall Aı	nalysis	Sen's S	Blope Analysis
Well	Constituent	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	% of Data Below Laboratory Minimum Detection Limit	Start Date	End Date	Correlation Coefficient, R ²	p-value of Correlation	Estimated Attenuation Half-life (days)	Trend Direction (slope of trend line)	Trend Significant?	Comments	p-value of Correlation	Trend Direction	Trend Significant?	Estimated Attenuation Half-life (days)	Trend Direction
Shallow Over	burden Wells						<u> </u>			· · · ·	<u> </u>						
P-13	Total VOCs	2.4	69	0	3/28/1995	6/5/2013	0.35	0.006	2,670	Decreasing	Yes		< 0.001	Decreasing	Yes	2,120	Decreasing
MWL-312	Total VOCs	<0.5	49	76	3/27/1995	5/20/2010	0.18	0.09	1,400	Decreasing	Yes	76% of results below detection	0.245	Decreasing	No	NA	No Trend
P-101C	Total VOCs	8.0	479	0	3/27/1995	6/4/2013	0.69	<0.001	1,774	Decreasing	Yes		< 0.001	Decreasing	Yes	1,955	Decreasing
Middle Overb	urden Wells																
MW-03	Total VOCs	0.7	120	0	12/5/1996	6/3/2013	0.15	0.098	2,111	Decreasing	Yes		0.093	Decreasing	Yes	NA	NS
MW-205B	Total VOCs	<0.5	24	12	3/23/1995	5/14/2010	0.26	0.04	1,644	Decreasing	Yes		0.008	Decreasing	Yes	1,690	Decreasing
P-101B	Total VOCs	12	187,400	0	3/27/1995	6/4/2013	0.71	<0.001	592	Decreasing	Yes		< 0.001	Decreasing	Yes	574	Decreasing
MW-127B	Total VOCs	<0.5	22	12	3/23/1995	5/19/2010	0.22	0.06	1,643	Decreasing	Yes		0.059	Decreasing	Yes	1,824	No Trend
MW-501B	Total VOCs	1.8	65	0	3/24/1995	5/24/2010	0.55	<0.001	1,022	Decreasing	Yes		0.001	Decreasing	Yes	990	Decreasing
Deep Overbu	rden Wells																
MW-204B	Total VOCs	<0.5	87	18	3/28/1995	5/17/2010	0.23	0.05	1,251	Decreasing	Yes		0.002	Decreasing	Yes	642	Decreasing
MW-502	Total VOCs	630	118,160	0	3/21/1995	6/4/2013	0.71	<0.001	1,076	Decreasing	Yes		0.001	Decreasing	Yes	2,139	Decreasing
MW-704D	Total VOCs	7.0	665	0	12/18/1996	6/3/2013	0.14	0.11	NA	Decreasing	No		0.058	Decreasing	Yes	2,276	Decreasing
MW-707D	Total VOCs	<0.5	21	56	12/6/1996	5/13/2010	<0.001	0.92	NA	No Trend	No	56% of results below detection	0.482	NS	No	NA	No Trend
Shallow Bedr	ock Wells						-										
MW-127C	Total VOCs	11.51	147	0	3/23/1995	6/5/2013	0.51	<0.001	3,013	Decreasing	Yes		0.003	Decreasing	Yes	3,222	Decreasing
MW-128	Total VOCs	3.0	15	0	3/23/1995	5/19/2010	0.46	0.003	3,060	Decreasing	Yes		0.001	Decreasing	Yes	2,310	Decreasing
MW-204A	Total VOCs	2.0	682	0	3/28/1995	5/15/2010	0.55	<0.001	773	Decreasing	Yes		< 0.001	Decreasing	Yes	654	Decreasing
MW-501A	Total VOCs	10	118	0	3/24/1995	5/21/2010	0.82	<0.001	1,590	Decreasing	Yes		< 0.001	Decreasing	Yes	1,507	Decreasing
P-11A	Total VOCs	223	26,400	0	3/27/1995	6/6/2013	0.05	0.34	NA	No Trend	No	Changed from decreasing in 2011	0.230	NS	No	NA	NS
Deep Bedroc	k Wells																
MW-703DR	Total VOCs	<0.5	8.0	81	12/9/1996	5/12/2010	<0.001	0.97	NA	No Trend	No	81% of results below detection	0.482	NS	No	NA	No Trend
MW-704DR	Total VOCs	11	455	0	12/17/1996	6/3/2013	0.49	<0.001	2,454	Decreasing	Yes		0.002	Decreasing	Yes	3,232	Decreasing
MW-706DR	Total VOCs	2,835	11,240	0	12/10/1996	6/4/2013	0.13	0.13	NA	Decreasing	No		0.245	NS	No	NA	NS
MW-707DR	Total VOCs	<0.5	18	33	12/30/1996	6/4/2013	0.28	0.01	NA	Increasing	Yes		0.010	Increasing	Yes	NA	Increasing
MW-707DR	Total VOCs	4.22	16.86	0	4/20/2004	6/4/2013	0.08	0.47	NA	No Trend	No	Using data starting in April 2004	0.381	NS	No	NA	NS

Notes and Assumptions:

µg/L = micrograms per liter

NS = no significant trend

NA = not applicable due to increasing trend or non-significant trend

Figures

F=REF, (FRZ) STEVENSON LYR: ON=*;OF SAVED: 9/4/2013 6:54 PM HOLDEN TM/TR: R. PM: J. LISTER ОВ: Р.

07/26/2013 SYRACUSE, NY-ENV/CAD-K.SARTORI B0054634/0000/02200/CDR/54634G06.CDR

Appendices

Appendix A

Field Sampling Forms

HydraSleeve™ Field Form

Project:	_	SRSNE				Site Location:	Southingt	on, CT	
Project N	No:	B0054634.0	000.01900			Well ID:	CPZ-4A		
Sample I	ID:	CPZ-4A-HS-	-06032013			Duplicate ID:	N/A		
Sample [Date:	6/3/2013 1:3	8:25 PM			Other QC:	N/A		
Well Type	e:		MW			Well Finish:			_XStick-upFlush Moun
Measurin	ng Point:		TOC			Top of Casing E	levation:	15	59.44 ft amsl
Total Dep	pth as Co	nstructed:	26.7 ft b	mp		Screened Interv	al:	11	1.51 to 25.51 ft bmp
Well Cas	sing Outer	Diameter:	2 in			Well Casing Mat	erial:	P	VC
Well Scre	een Outer	Diameter:	2 in			Well Screen Ma	terial:	P	VC
Deploym	nent								
Date/Tim	ne of Depl	oyment:		6/14/2012 12:0	5:00 PM	Weather Condi	tions:		Cloudy, Hot, Humid
Depth to	groundwa	ater at deplo	yment:	10.15 ft bmp		Total well depth	n at deployn	nent:	26.05 ft bmp
HydraSle	eeveTM D	imensions	Length:	38 in		Diameter:			1.75 in
Measure	leasurement Method: Calibrated teth					Deployment de	pth (Top of	HS):	N/A
PID:				0 ppm					
Retrieva	al								
Date/Tim	ne of Retri	eval:	6/3/2013	3 1:30:06 PM		Total # of days	deployed:		354.1
Weather	Condition	IS:	N/A			Depth to groun	dwater at re	etrieval:	N/A
PID:			1.6 ppm			Total well dept	h at retrieva	al:	N/A
Downhol	le Field Pa	arameters U	pon Retrieva	<u>al:</u>					
Temp:					0.202	om Motor qual	itv meters:	YSI	Turbidity Meter
. op.	18.44 C	ORP:	-84 mV	SCond:	0.292 115/	chi watei quai	ity motoro.	101	r dibidity motor
pH: 0	18.44 C 6.45 SU	ORP: DO:	-84 mV 18.21 mg/L	Turb:	28.2 NTU	Serial #:	ity motoro.	01K064	13 018829
pH:	18.44 C 6.45 SU	ORP:	-84 mV 18.21 mg/L	SCond: Turb: light reddish-	0.292 ms/ 28.2 NTU	Serial #:	•	01K064	13 018829
pH:	18.44 C 6.45 SU ed Sample	ORP: DO: Condition	-84 mV 18.21 mg/L Color:	SCond: Turb: light reddish- brown	0.292 ms/ 28.2 NTU Odor:	Serial #:	Appeara	01K064	13 018829 Irbid
PH: Collected	18.44 C 6.45 SU ed Sample	ORP: DO:	-84 mV 18.21 mg/L Color:	SCond: Turb: light reddish- brown	0.292 ms/ 28.2 NTU Odor:	Yes	Appeara	01K064	IS 018829
PH: Collecter	18.44 C 6.45 SU ed Sample s Para	ORP: DO: Condition	-84 mV 18.21 mg/L Color:	SCond: Turb: light reddish- brown	0.292 ms/ 28.2 NTU Odor:	Yes Number	Appeara of Containe	01K064	Indication
PH: Collected	18.44 C 6.45 SU ed Sample s Para VOC	ORP: DO: Condition	-84 mV 18.21 mg/L Color:	SCond: Turb: light reddish- brown Cont: 40 m	0.292 ms/ 28.2 NTU Odor: ainer L AG	Yes Number	Appeara of Containe 3	01K064	Preservative HCL

							Pers	onnel:	Edward	d Cimil	luca		
							Sig	nature:	E	M	CM		
A	breviat	ions:											
A	G	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm	millisiemer centimeter	ns per	MW	monitoring well	NTU	nephelometric turbidity units
C f	: t amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV	millivolts		N/A	not available	ppm PVC	parts per million polyvinyl chloride
												SU TOC	standard units top of casing

HydraSleeve™ Field Form

Project:	SRSNE				Sit	e Location:	Southingt	on, CT				
Project No:	B0054634	.0000.01900				We	ell ID:	MW-1002	2DR			
Sample ID:	MW-1002	DR-HS-06042	013			Du	plicate ID:	DUP-GW	-060420	13-#2		
Sample Date:	6/4/2013 1	1:20:00 AM				Oth	ner QC:	N/A				
Well Type:		MW				We	ell Finish:		_	S	tick-upXFlush Mount	
Measuring Point	:	TOC				То	p of Casing El	evation:	1	53.91 i	ft amsl	
Total Depth as C	Constructed:	199.5 ft	bmp			Sc	reened Interva	al:	1	170.2 to 185.2 ft bmp		
Well Casing Out	er Diameter	2 in				We	ell Casing Mate	erial:	F	٧C		
Well Screen Out	er Diameter	2 in				We	ell Screen Mat	erial:	F	٧C		
Deployment												
Date/Time of De	ployment:		6/3/201	3 11:00	:00 AM	Weather Conditions:					N/A	
Depth to ground	water at dep	loyment:	N/A			Тс	otal well depth	at deploym	nent:		N/A	
HydraSleeveTM	Dimensions	Length:	38 in			Di	ameter:			_	1.75 in	
Measurement M	ethod:		Calibra	ted tethe	ər	De	eployment dep	oth (Top of	HS):	_	N/A	
PID:			N/A									
Retrieval												
Date/Time of Re	trieval:	6/4/2013	3 11:20:00) AM		Т	otal # of days	deployed:		1.0		
Weather Conditi	ons:	N/A				D	epth to groun	dwater at re	etrieval:	56.9	98 ft bmp	
PID:		T	otal well depth	n at retrieva	d:	N/A						
Downhole Field Parameters Upon Retrieval:												
Temp: 14.20 C	ORP	33.9 mV		SCond:	0.056 mS	/cm	Water quali	ty meters:	YSI		YSI	
pH: 8.97 SL	J DO:	2.18 mg/L		Turb:	70.5 NTU		Serial #:		06G23	02 AE	01F0657 AC	
Collected Sample Condition Color: brown Odor:						No		Appeara	nce: c	loudy		

	Paramete	er	Container	Number of Containers	Preservative
	VOC (826	60)	40 mL AG	6	HCL
Rema	arks: TETHER AND	WEIGHT PULLED		Sampling Personnel: Matthew Pingitor/Christophe	er Trowbridge
Abbrevia	ations:			Signature:	
AG	amber glass	ft amsl ft above mean sea	HCL hydrochloric acid	mg/L milligrams per liter mV millivolts	N/A not available
С	degrees Celsius	ft bmp feet below measuring point	in inches	mS/cm millisiemens per MW monitoring well centimeter	NTU nephelometric turbidity units
F	degrees Fahrenheit				ppmparts per millionPVCpolyvinyl chlorideSUstandard unitsTOCtop of casing

HydraSleeve™ Field Form

Project:	SRSNE			S	Site Location:	Southing	ton, CT					
Project No:	B0054634.0	000.01900				V	Vell ID:	MW-1002	2R			
Sample ID:	MW-1002R-	HS-0606201	3			_ C	Duplicate ID:	N/A				
Sample Date:	6/6/2013 9:2	20:00 AM				_ c	Other QC:	N/A				
Well Type:		MW				v	Vell Finish:		_	_X	Stick-up	Flush Mount
Measuring Point	t:	TOC				- т	op of Casing E	levation:	1	52.37	ft amsl	
Total Depth as 0	Constructed:	127.17 f	t bmp			- 5	Screened Interv	al:	1	07.17	' to 122.17	ft bmp
Well Casing Out	ter Diameter:	2 in				v	Vell Casing Mat	terial:	P	VC		
Well Screen Ou	ter Diameter:	2 in				V	Vell Screen Ma	terial:	Р	VC		
Deployment												
Date/Time of De	eployment:		6/4/2013	1:55	:00 AM		Weather Condi	tions:			Sunny 71	F
Depth to ground	lwater at deplo	yment:	7.23 ft bm	р			Total well depth	n at deployn	nent:		N/A	
HydraSleeveTM	Dimensions	Length:	38 in			_	Diameter:				1.75 in	
Measurement N	lethod:		Calibrated	tethe	er	_	Deployment de	pth (Top of	HS):		112 ft bm	þ
PID:			0 ppm									
Retrieval												
Date/Time of Re	etrieval:	6/6/2013	9:18:35 AM				Total # of days	deployed:		1.9		
Weather Condit	ions:	N/A					Depth to groun	dwater at re	etrieval:	N//	4	
PID:		0.02 ppm	า				Total well dept	h at retrieva	al:	N/A	4	
Downhole Field Parameters Upon Retrieval:												
Temp: 13.89 (C ORP:	67.2 mV	SC	ond:	0.054 m	S/cm	Water qual	ity meters:	YSI		Tur	oidity Meter
pH: 5.96 SI	J DO:	23.32 mg/L	Tur	b:	16 NTU		Serial #:		01F065	57	N/A	
Collected Sample Condition Color: clear Odor: N						No		Appeara	n ce: c	lear		

					Container	Number of Containers				ers	Preservative		
	VOC	(8260)				40 mL AG			3				HCL
Rema	arks: 0						Sam Pers	pling onnel:	Edward	d Cimil	luca		
							Sig	nature:	5.	hd	Cut	-	
Abbrevi	ations:												
AG	amber glass	ft	amsl	ft above mean sea level	HCL	hydrochloric acid	mg/L	milligram	s per liter	mV	millivolts	N/A	not available
С	degrees Celsiu	ıs ft	bmp	feet below measuring point	in	inches	mS/cm	millisieme	ens per er	MW	monitoring well	NTU	nephelometric turbidity units
F	degrees Fahre	nheit										ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing

HydraSleeve™ Field Form

Project:			Site	Location:	Southingt	ton, CT				
Project No:	B0054634.0	000.01900				We	I ID:	MW-1003	BDR	
Sample ID:	MW-1003DF	R-HS-06052	013			Dup	licate ID:	N/A		
Sample Date:	6/5/2013 3:1	5:06 PM				Oth	er QC:	N/A		
Well Type:		MW				We	I Finish:			XStick-upFlush Mount
Measuring Point	:	тос				- Тор	of Casing E	levation:		154.77 ft amsl
Total Depth as C	Constructed:	195.02	ft bmp			Scr	eened Interva	al:	_	179.62 to 194.62 ft bmp
Well Casing Out	er Diameter:	2 in				We	I Casing Mat	erial:		PVC
Well Screen Out	er Diameter:	2 in				We	I Screen Mat	terial:		PVC
Deployment										
Date/Time of De	ployment:		6/4/201	13 10:15	:00 AM	We	eather Condit	ions:		Sunny 69 F
Depth to ground	water at deplo	yment:	13.46 f	ft bmp		To	tal well depth	at deployn	nent:	N/A
HydraSleeveTM	Dimensions	Length:	38 in			Dia	ameter:			1.75 in
Measurement M	ethod:		Calibrated tether			De	ployment de	pth (Top of	HS):	185 ft bmp
PID:			0 ppm							
Retrieval										
Date/Time of Re	trieval:	6/5/2013	3 3:15:16	PM		Тс	otal # of days	deployed:		1.2
Weather Condition	ons:	N/A				De	epth to groun	dwater at re	etrieval:	16.22 ft bmp
PID:		N/A				Tc	otal well dept	h at retrieva	al:	N/A
Downhole Field Parameters Upon Retrieval:										
Temp: 15.14 C	ORP:	47.2 mV		SCond:	3.238 m	S/cm	Water qual	ity meters:	YSI	Turbidity Meter
pH: 10.45 S	U DO:	7.83 mg/L		Turb:	76 NTU		Serial #:		N/A	N/A
Collected Sample Condition Color: N/A Odor: N					N/A		Appeara	ince:	N/A	

Analysis

ft amsl ft above mean sea level

	Paramete	ər			Container	Num	per of Co	ntaine	rs	Preservative		
	VOC (826	0)			40 mL AG		3			l	HCL	
Rema	nrks: 0					Sampling Personnel:	Edward	d Cimillu	ıca			
						Signature:	E	M	CM			
Abbrevia	ations:					_						
AG	amber glass	ft bmp	feet below measuring point	mg/L	milligrams per liter	MW monitori	ng well	ppm	parts per million	SU	standard units	
С	degrees Celsius	HCL	hydrochloric acid	mS/cm	millisiemens per centimeter	N/A not avail	able	PVC	polyvinyl chloride	тос	top of casing	
F	degrees Fahrenheit	in	inches	mV	millivolts	NTU nephelo	netric	SCH 80	polyvinyl chloride			

turbidity units

schedule 80

HydraSleeve™ Field Form

Project:	SRSNE				Site Location:	Southing	ton, CT	
Project No:	B0054634.0	000.01900			Well ID:	MW-1003	BDR	
Sample ID:	MW-1003DF	R-HS-061920)13		Duplicate ID:	N/A		
Sample Date:	6/19/2013 1	2:45:00 PM			Other QC:	N/A		
Well Type:		MW			Well Finish:		-	XStick-upFlush Mount
Measuring Point:		TOC			Top of Casing E	levation:		154.77 ft amsl
Total Depth as C	constructed:	195.02 f	t bmp		Screened Interv	al:	-	179.62 to 194.62 ft bmp
Well Casing Oute	er Diameter:	2 in			Well Casing Ma	terial:	F	PVC
Well Screen Out	er Diameter:	2 in			Well Screen Ma	terial:	ŀ	PVC
Deployment								
Date/Time of De	ployment:		6/15/2013 12	:35:00 PM	Weather Condi	tions:		Sunny 80 F
Depth to ground	water at deplo	yment:	12.45 ft bmp		Total well depth	n at deployn	nent:	194.57 ft bmp
HydraSleeveTM	Dimensions	Length:	38 in		Diameter:			1.75 in
Measurement Me	ethod:		Calibrated te	ther	Deployment de	pth (Top of	HS):	189 ft bmp
PID:			N/A					
Retrieval								
Date/Time of Ret	trieval:	6/19/201	3 12:45:00 PM		Total # of days	deployed:		4.0
Weather Condition	ons:	N/A			Depth to grour	ndwater at re	etrieval:	11.94 ft bmp
PID:		N/A			Total well dept	h at retrieva	al:	N/A
Downhole Field I	Parameters U	<u>l:</u>						
Temp: 14.06 C	ORP:	53.3 mV	SCon	d: 0.036 mS/c	m Water qual	lity meters:	YSI	Turbidity Meter
pH: 11.74 S	U DO:	24.97 mg/L	Turb:	28.7 NTU	Serial #:		10439	11734
Collected Samp	N/A	Odor: N	J/A	Appeara	ince:	N/A		

	Paramete	er	Container	Number of Containers	Preservative
	VOC (826	60)	40 mL AG	3	HCL
Rema	ırks: 0			Sampling Personnel: Michael Skowronek	
				Signature: Mh	
Abbrevia	ations:				
AG	amber glass	ft amsl ft above mean sea level	HCL hydrochloric acid	mg/L milligrams per liter mV millivolts	N/A not available
С	degrees Celsius	ft bmp feet below in measuring point	n inches	mS/cm millisiemens per MW monitoring v centimeter	vell NTU nephelometric turbidity units
F	degrees Fahrenheit				PVC polyvinyl chloride
					SU standard units
					TOC top of casing

HydraSleeve™ Field Form

Project:	SRSNE				Site Location:	Southing	ton, CT			
Project No:	B005463	4.0000.01900			Well ID:	MW-1003	BR			
Sample ID:	MW-1003	R-HS-060620	13		Duplicate ID:	N/A				
Sample Date:	6/6/2013	8:45:00 AM			Other QC:	N/A				
Well Type:		MW			Well Finish:			_XStick-u	pFlush Mount	
Measuring Poin	t:	TOC			Top of Casing E	levation:	1	55.23 ft ams	I	
Total Depth as	Constructed	120.87	ft bmp		Screened Interva	al:	1	05.47 to 120	.47 ft bmp	
Well Casing Out	ter Diamete	r: 2 in			Well Casing Mat	erial:	PVC			
Well Screen Ou	ter Diamete	r: 2 in			Well Screen Mat	terial:	Р	VC		
Deployment										
Date/Time of De	eployment:		6/4/2013 10:4	5:00 AM	Weather Condit	ions:		Sunn	/ 69 F	
Depth to ground	lwater at de	ployment:	8.41 ft bmp		Total well depth	at deployn	nent:	N/A		
HydraSleeveTN	I Dimension	s Length:	38 in		Diameter:			1.75 i	า	
Measurement M	lethod:		Calibrated teth	ner	Deployment de	pth (Top of	HS):	110 ft	bmp	
PID:			0 ppm							
Retrieval										
Date/Time of Re	etrieval:	6/6/2013	3 8:40:19 AM		Total # of days	deployed:		1.9		
Weather Condit	ions:	N/A			Depth to groun	dwater at r	etrieval:	N/A		
PID:		3.2 ppm		Total well dept	h at retrieva	al:	N/A			
Downhole Field	Parameters									
Temp: 14.73 (P: 414.7 mV	SCond	54 mS/cm	Water qual	ity meters:	YSI		Turbidity Meter	
pH: <u>3 SU</u> DO: <u>25.76 mg/L</u> Turb: <u>9 NTU</u>					Serial #:		01F065	57	N/A	
Collected Sample Condition Color: green Odor: N					No	Appeara	nce: c	loudy		

	Parameter		Container		Numb	er of Co	ntain	ers	Preservative				
		VOC (826	0)			40 mL AG			3				HCL
Rema	arks:	0					Sam Pers	pling onnel:	Edward	d Cimi	lluca		
							Sig	nature:	4	-	Cuh		
Abbrevia	ations:												
AG	ambe	er glass	ft amsl	ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams	s per liter	mV	millivolts	N/A	not available
С	degre	ees Celsius	ft bmp	feet below measuring point	in	inches	mS/cm	millisieme centimete	ens per er	MW	monitoring well	NTU	nephelometric turbidity units
F	degre	ees Fahrenheit		0111								ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing

HydraSleeve™ Field Form

Project:	SRSNE							Site Location: Southington, CT					
Project No:	B005463	34.0	000.01900				We	II ID:	MW-121E	3			
Sample ID:	MW-121	B-H	S-06032013	5			Dup	olicate ID:	N/A				
Sample Date:	6/3/2013	3 1:3	9:25 PM				Oth	er QC:	MS/MSD				
Well Type:			MW				We	ll Finish:		_	_x_s	Stick-up	Flush Mount
Measuring Point	:		TOC				Тор	o of Casing E	levation:	1	52.91	ft amsl	
Total Depth as C	onstructe	d:	54.1 ft b	mp			Scr	eened Interva	al:	4	4.04 t	o 54.04 ft b	omp
Well Casing Out	er Diamete	er:	2 in				We	II Casing Mat	erial:	F	٧C		
Well Screen Outer Diameter: 2 in						We	II Screen Mat	terial:	F	٧C			
Deployment	loyment												
Date/Time of De	ployment:			6/14/2	2012 9:39	:00 AM	Weather Conditions: Sunny						
Depth to ground	water at de	eplo	yment:	5.69 f	t bmp		То	tal well depth	n at deployn	nent:	53.8 ft bmp		
HydraSleeveTM	Dimensio	ns	Length:	38 in			Dia	Diameter:				1.75 in	
Measurement Me	ethod:			Calib	rated tethe	er	Deployment depth (Top of HS):			HS):		N/A	
PID:				0 ppn	า								
Retrieval													
Date/Time of Re	trieval:		6/3/2013	1:38:3	9 PM		То	otal # of days	deployed:		354	.2	
Weather Condition	ons:		N/A				D	epth to groun	dwater at re	etrieval:	5.9	8 ft bmp	
PID:			0 ppm				Total well depth at retrieval: N/A						
Downhole Field	ole Field Parameters Upon Retrieval:												
Temp: 10.90 C	emp: 10.90 C ORP: -117.9 mV SCond: 0.019 mS				/cm	Water qual	ity meters:	YSI		YSI			
pH: 7.30 SU DO: 0.78 mg/L Turb: 24.0 NTU			.0 NTU Serial #: 06G2302AE 01F0657				0657						
Collected Sample Condition Color: clear Odor:						or: No Appearance: cloudy							

	Paramet	er			Container Number o			ers	Pres	ervative
	VOC (826	60)			40 mL AG		9			HCL
Rema	ks: MS/MSD					Sampling Personnel:	Matthew Pine	gitor/Christopher	Trowbri	dge
						Signature:	14			
Abbrevia	tions:									
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisieme centimete	ens per MW er	monitoring well	NTU	nephelometric turbidity units
С	degrees Celsius	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts	N/A	not available	ppm	parts per million
ft amsl	ft above mean sea level								PVC	polyvinyl chloride
									SU	standard units
									тос	top of casing

HydraSleeve™ Field Form

Project:	SRSNE				Site Location: Southington, CT							
Project No:	B0054634.0	000.01900				We	I ID:	MW-1210	2			
Sample ID:	MW-121C-H	IS-06032013	3			Dup	licate ID:	N/A				
Sample Date:	6/3/2013 11	:39:00 AM				Oth	er QC:	N/A				
Well Type:		MW				We	I Finish:		-	_X	Stick-up	Flush Mount
Measuring Point	:	тос				Тор	of Casing El	evation:		152.93	ft amsl	
Total Depth as C	Constructed:	70.7 ft b	omp			Scr	eened Interva	al:		60.65 t	to 70.65 ft l	omp
Well Casing Out	er Diameter:	2 in				We	I Casing Mat	erial:	F	PVC		
Well Screen Outer Diameter: 2 in						We	Screen Mat	erial:	ŀ	PVC		
Deployment	oyment											
Date/Time of De	ployment:		6/14/2012	8:56	:00 AM	Weather Conditions: Sunny						
Depth to ground	water at deplo	yment:	5.68 ft bm	р		Total well depth at deployment: 70.04 ft bmp					mp	
HydraSleeveTM	Dimensions	Length:	38 in			Diameter: 1.75 in						
Measurement M	ethod:		Calibrated	l teth	er	De	ployment dep	oth (Top of	HS):		N/A	
PID:			0 ppm									
Retrieval												
Date/Time of Re	trieval:	6/3/2013	3 11:39:55 A	М		Тс	otal # of days	deployed:		354	4.1	
Weather Conditi	ons:	N/A				De	epth to groun	dwater at re	etrieval:	5.9	8 ft bmp	
PID:		0 ppm				Тс	otal well depth	n at retrieva	al:	N/A	A	
Downhole Field	eld Parameters Upon Retrieval:											
Temp: 10.48 C	ORP:	-70.3 mV	SC	ond:	0.017 mS/d	cm	Water quali	ty meters:	YSI		YSI	
pH: 7.13 SU DO: 0.98 mg/L Turb: 5.72 NTU					Serial #:		06G23	802 AE	01F	0657 AC		
Collected Sample Condition Color: clear Odor:						/es		Appeara	ince:	clear		

	Paramete	er	Container	Number of Containers	Preservative		
	VOC (826	0)	40 mL AG	3	HCL		
Rema	arks: 0			Sampling Personnel: Matthew Pingitor/Christophe	er Trowbridge		
Abbrevia	ations:			Signature:	2		
AG	amber glass	ft amsl ft above mean sea	HCL hydrochloric acid	mg/L milligrams per liter mV millivolts	N/A not available		
С	degrees Celsius	ft bmp feet below measuring point	in inches	mS/cm millisiemens per MW monitoring well centimeter	NTU nephelometric turbidity units		
F	degrees Fahrenheit				ppm parts per million PVC polyvinyl chloride SU standard units TOC top of casing		

HydraSleeve™ Field Form

Project:	SRSNE				Site Location: Southington, CT					
Project No:	B0054634.0	000.01900			Well ID:	MW-121	Л			
Sample ID:	MW-121M-F	IS-0603201	3		Duplicate ID:	N/A				
Sample Date:	6/3/2013 2:0	0:00 PM			Other QC:	N/A				
Well Type:		MW			Well Finish:		_	_X_Stick	-up	Flush Mount
Measuring Point:		тос			Top of Casing I	Elevation:	1	53.83 ft ar	msl	
Total Depth as C	onstructed:	33.82 ft	bmp		Screened Interv	val:	2	3.82 to 33	.82 ft bm)
Well Casing Oute	er Diameter:	2 in			Well Casing Ma	aterial:	Р	VC		
Well Screen Oute	er Diameter:	2 in			Well Screen Ma	aterial:	Р	PVC		
Deployment										
Date/Time of Dep	ployment:		6/13/2012 8:50	:00 AM	Weather Cond	litions:		Rai	ning	
Depth to ground	water at deplo	yment:	6.71 ft bmp		- Total well depth at deploymer			30.	70 ft bmp	
HydraSleeveTM	Dimensions	Length:	38 in		Diameter:			1.7	5 in	
Measurement Me	ethod:		Calibrated tethe	er	Deployment de	epth (Top of	HS):	N/A		
PID:			.6 ppm							
Retrieval										
Date/Time of Ret	trieval:	6/3/2013	3 2:00:00 PM		Total # of day	s deployed:		355.2		
Weather Condition	ons:	N/A			Depth to grou	ndwater at re	etrieval:	6.26 ft k	omp	
PID:		0 ppm			Total well dep	oth at retrieva	al:	N/A		
Downhole Field F	Parameters U	oon Retrieva	<u>al:</u>							
Temp: 10.53 C	ORP:	-97.2 mV	SCond:	0.011 mS/c	m Water qua	ality meters:	YSI		YSI	
pH: 7.08 SU	DO:	0.85 mg/L	Turb:	42.0 NTU	Serial #:		06G23	02 AE	01F06	57 AC
Collected Samp	le Condition	Color:	light reddish- brown	Odor: Y	es	Appeara	loudy			
Analysis										
Parameter Container					Number of Containers Preservative				ative	
VO	C (8260)		40 m	L AG	3				HC	L

Rema	rks: 0					Sam Pers	pling onnel:	Matthe	v Ping	itor/Christopher	Frowbri	dge
						Sig	nature:		Ng	42		
Abbrevia	itions:											
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm	millisieme centimete	ns per r	MW	monitoring well	NTU	nephelometric turbidity units
C ft amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV	millivolts		N/A	not available	ppm PVC	parts per million polyvinyl chloride
											SU TOC	standard units top of casing

HydraSleeve™ Field Form

Project	:	SRSNE				Site Location:	Southington, C	т	
Project	No:	B0054634.0	000.01900			Well ID:	MW-124C		
Sample	D:	MW-124C-H	IS-0604201	3		Duplicate ID:	N/A		
Sample	e Date:	6/4/2013 3:0	0:00 PM			Other QC:	MS/MSD		
Well Ty	vpe:		MW			Well Finish:		X§	Stick-upFlush Mount
Measur	ring Point:		тос			Top of Casing E	levation:	158 ft a	msl
Total D	epth as C	onstructed:	48.4 ft l	omp		Screened Interv	al:	37.73 to	o 47.73 ft bmp
Well Ca	asing Oute	er Diameter:	2 in			Well Casing Ma	terial:	PVC	
Well Sc	creen Out	er Diameter:	2 in			Well Screen Ma	terial:	PVC	
Deploy	ment								
Date/Ti	me of De	oloyment:		6/12/2012 3:15	:00 PM	Weather Condi	tions:		Cloudy, Raining
Depth t	o ground	water at deplo	yment:	6.99 ft bmp		Total well deptl	n at deployment:		47.51 ft bmp
HydraS	leeveTM	Dimensions	Length:	38 in		Diameter:			1.75 in
Measur	rement Me	ethod:		Calibrated teth	er	Deployment de	pth (Top of HS):		N/A
PID:				0 ppm					
Retriev	val								
Date/Ti	me of Re	trieval:	6/4/2013	3 3:00:00 PM		Total # of days	s deployed:	357	.0
Weathe	er Conditio	ons:	N/A			Depth to grour	ndwater at retrieva	al: 6.5	ft bmp
PID:			0 ppm			Total well dept	th at retrieval:	N/A	
Downh	ole Field I	Parameters U	pon Retrieva	<u>al:</u>					
Temp:	16.91 C	ORP:	2.5 mV	SCond:	0.012 mS	/cm Water qua	lity meters: YSI		YSI
pH:	7.32 SU	DO:	6.67 mg/L	Turb:	24.8 NTU	Serial #:	06G	2302 AE	01F0657 AC
Collect	ted Samp	le Condition	Color:	light reddish- brown	Odor:	No	Appearance:	cloudy	
Analys	is								
	Pa	rameter		Cont	ainer	Number	of Containers		Preservative
	VO	C (8260)		40 m	L AG		9		HCL
Remark	<s: 0<="" td=""><td></td><td></td><td></td><td></td><td>Sampling Personnel: M</td><td>Matthew Pingitor/C</td><td>Christoph</td><td>er Trowbridge</td></s:>					Sampling Personnel: M	Matthew Pingitor/C	Christoph	er Trowbridge
						Signature:		1	
Abbreviati AG	ons: amber glass	ft bmp	feet below	in inche	s	mS/cm millisiemens	per MW mon	itoring well	NTU nephelometric

measuring point centimeter turbidity units HCL mg/L milligrams per liter mV degrees Celsius hydrochloric acid millivolts N/A not available С ppm parts per million ft amsl ft above mean sea PVC polyvinyl chloride level SU standard units тос top of casing

HydraSleeve™ Field Form

Project	:	SRSN	E					Site	Location:	South	ington, C	Г		
, Proiect	No:	B0054	634.0	00.01900				Well	ID:	MW-4	13			
Sample	e ID:	MW-4 ²	13-HS	-06062013				Dup	licate ID:	N/A				
Sample	e Date:	6/6/20	13 12:	15:28 PM				Othe	er QC:	N/A				
Well Ty	vpe:			MW				Well	Finish:			xs	stick-up	Flush Mount
Measu	ring Point	:		TOC				Тор	of Casing I	Elevation	:	160.49	ft amsl	
Total D	epth as C	Construct	ted:	22.5 ft bm	q			Scre	ened Interv	val:		17.25 to) 22.25 ft	bmp
Well Ca	asing Out	er Diame	eter:	2 in				Well	Casing Ma	aterial:		PVC		
Well So	reen Out	er Diam	eter:	2 in				Well	Screen Ma	aterial:		PVC		
Deploy	ment											-		
Date/Ti	me of De	ploymen	nt:		6/5/2013	11:10:	00 AM	We	ather Cond	litions:			Sunny 75	i F
Depth t	o ground	water at	deplo	/ment:	7.09 ft br	ηp		Tota	al well dept	th at dep	oyment:	-	N/A	
HydraS	leeveTM	Dimens	ions	Length:	38 in			Dia	meter:			_	1.75 in	
Measu	rement M	ethod:			Calibrate	d tethe	er	Dep	oloyment de	epth (Top	o of HS):	_	17 ft bmp	1
PID:					0 ppm									
Retriev	val													
Date/Ti	me of Re	trieval:		6/6/2013 1	2:15:14 F	PM		Tot	tal # of day	s deploy	ed:	1.0		
Weathe	Weather Conditions: N/A			N/A	12.10.111.11			Depth to groundwater at retrie				l: 7.08	8 ft bmp	
PID:	Weather Conditions: N/A PID: 0 ppm							Total well depth at retrieval:			N/A			
Downh	ole Field	Paramet	ers Up	oon Retrieval:				-						
Temp:	18.03 C	; o	RP:	-74.6 mV	SC	Cond:	0.012 mS/	'cm	Water qua	ality mete	rs: YSI		YS	I
pH:	6.29 SL	J D	0:	2.67 mg/L	Tu	rb:	13.6 NTU		Serial #:		06G2	2302AE	01	-0657AC
Collect	ted Samp	ole Conc	lition	Color: c	lear		Odor:	Yes		Арре	earance:	clear		
Analys	is													
	Pa	rameter	r			Conta	ainer		Number	r of Cont	ainers		Pres	servative
	VC	C (8260))			40 mL	CG			2				HCL
	Disso	lved Ga	ses			20 ml	AG			2				TSP
	To	tal Fe/M	n			75 ml	_ PE			1			ŀ	HNO3
	Disso	lved Fe/	′Mn			75 ml	_ PE			1			ŀ	HNO3
		TOC				40 mL	CG			2			F	12SO4
	Alkalini	ty (SM23	320B)			1 L	PE			1				None
	Chlo	ride (300	0.0)			100 m	LPE			1				None
	Sulfa	ate (300.	.0)			100 m	LPE			1				None
	Nitrat	e-N (300	0.0)			100 m	LPE			1				None
	Nitr	ite (300.	0)			100 m	LPE			1				None
Remarl	ks: DTW	7.08						Sam Pers	pling sonnel:	Matthew	Pingitor/V	incent W	hisker	
1								Sin	nature.		A	k		
L Abbreviati	ons:							J			/ 7/			
AG	amber glass	s 1	ft amsl	ft above mean se	ea HCL	hydrod	chloric acid	mg/L	milligrams p	er liter 🛛 🛛	1W moni	toring well	PE	polyethylene
С	degrees Cel	sius	ft bmp	feet below	ниоз	nitric a	acid	mS/cm	millisiemens	s per 🛛 🛛	I/A not a	vailable	ppm	parts per million
(G	G clear glass H2SO4 sulfuric acid in inches				centimeter mV millivolts NTU			ITU neph	elometric	PVC	polyvinyl chloride			

degrees Fahrenheit

F

standard units

trisodium phosphate dodecahydrate

top of casing

turbidity units

SU

тос

TSP

HydraSleeve™ Field Form

Proiect:		SRSN	IE					Site Location:	Southing	ton, CT			
Project	No	B0054	1634.0	000 01900				Well ID [.]	 MW-415	,			
Sample		 MW-4	15-HS	-06062013				Duplicate ID:	N/A				
Sample	Date:	6/6/20)13 12:	:40:40 PM				Other QC:	N/A				
Well Ty	pe:			MW				Well Finish:			X Stick	k-up	Flush Mount
Measur	ina Point:			TOC				Top of Casing	Elevation:		160.75 ft a	msl	
Total D	epth as C	onstruc	ted:	14.5 ft k	omp			Screened Inter	val:	-	9.34 to 14.3	34 ft bmp	
Well Ca	ising Oute	er Diam	eter:	2 in				Well Casing M	aterial:	-	PVC		
Well Sc	reen Oute	er Diam	eter:	2 in				Well Screen M	aterial:	-	PVC		
Deploy	ment									-			
Date/Ti	me of Dep	oloymer	nt:		6/5/2	013 11:20	:00 AM	Weather Cond	ditions:		Sur	nny 75 F	
Depth t	o groundv	vater at	deplo	yment:	7.20	ft bmp		Total well dep	th at deployr	nent:	N/A	1	
HydraS	leeveTM	Dimens	sions	Length:	38 in			Diameter:			1.7	5 in	
Measur	ement Me	ethod:			Calib	rated tethe	ər	Deployment d	epth (Top of	HS):	8 ft	bmp	
PID:	PID: 0 ppm												
Retriev	al												
Date/Ti	me of Ret	rieval:		6/6/2013	3 12:40:	23 PM		Total # of days deployed: 1.1					
Weathe	er Conditio	ons:		N/A				Depth to grou	Indwater at r	etrieval	7.28 ft l	bmp	
PID:				0 ppm				- Total well dep	oth at retrieva	al:	N/A		
Downho	ole Field F	arame	ters Up	pon Retrieva	al:			_					
Temp:	15.80 C	C	ORP:	-9.9 mV		SCond:	0.009 mS	/cm Water qua	ality meters:	YSI		YSI	
pH:	5.96 SU	C	00:	3.89 mg/L		- Turb:	18.2 NTU	Serial #:	-	06G2	302AE	01F06	57AC
pH: Collect	5.96 SU	Le Con	DO: dition	3.89 mg/L Color:	clear	Turb:	18.2 NTU Odor:	Serial #:	Appeara	06G2	302AE clear	01F06	57AC
pH: Collect Analys	5.96 SU ed Samp is	Le Con	DO: dition	3.89 mg/L Color:	clear	Turb:	18.2 NTU Odor:	Yes	Appeara	06G2	302AE clear	01F06	57AC
pH: Collect Analys	5.96 SU ed Samp is Pa	le Cone	DO: dition r	3.89 mg/L Color:	clear	Turb: Cont	18.2 NTU Odor: ainer	Yes Numbe	Appeara r of Contain	06G2	302AE clear	01F06	57AC
pH: Collect Analys	5.96 SU ed Samp is Par VO	le Cone ramete	DO: dition r	3.89 mg/L Color:	clear	Turb: Cont 40 m	18.2 NTU Odor: ainer L CG	Yes Numbe	Appeara r of Contain 2	06G2 ance: ers	302AE clear	01F06 Preserv HC	57AC vative
PH: Collect Analys	5.96 SU ed Samp is Pa VO Dissol	le Cond ramete C (8260 ved Ga	dition r D)	3.89 mg/L Color:	clear	Turb: 	18.2 NTU Odor: ainer L CG L AG	Yes Numbe	Appeara r of Contain 2 2	06G2 ance: ers	302AE clear	01F06 Preserv HC TS	57AC vative :L P
PH: Collect Analys	5.96 SU ed Samp is Par VO Dissol	Ie Cond ramete C (8260 ved Ga al Fe/M	DO: dition r D) ases	3.89 mg/L Color:	clear	- Turb: Cont 40 m 20 m 75 m	18.2 NTU Odor: ainer L CG L AG L PE	Yes Numbe	Appeara r of Contain 2 2 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HN0	57AC vative :L P D3
PH: Collect Analys	5.96 SU ed Samp is Pa VO Dissol Tota	Ie Cond ramete C (8260 ved Ga al Fe/M ved Fe	DO: dition r D) ases In /Mn	3.89 mg/L Color:	clear	- Turb: - 40 m 20 m 75 m 75 m	18.2 NTU Odor: ainer L CG L AG L PE L PE	Yes Number	Appeara r of Contain 2 2 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC	57AC vative :L P D3 D3
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol	IE Cond ramete C (8260 ved Ga al Fe/M ved Fe TOC	DO: dition r D) ases In /Mn	3.89 mg/L Color:	clear	Turb: Cont 40 m 20 m 75 m 75 m 40 m	18.2 NTU Odor: L CG L AG L PE L PE L CG	Yes Numbe	Appeara r of Contain 2 2 1 1 1 2	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC	57AC vative L P D3 D3 O4
pH: Collect Analys	5.96 SU ed Samp is Pa VO Dissol Tota Dissol	I C (8260 ved Ga al Fe/M ved Fe TOC y (SM2	DO: dition r D) ases ln /Mn 320B)	3.89 mg/L Color:	clear	 Turb: 	18.2 NTU Odor: ainer L CG L AG L PE L PE L CG PE	Yes Numbe	Appeara r of Contain 2 2 1 1 2 1 2 1 2 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor	57AC vative SL P D3 D3 D4 ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit	ramete C (8260 ved Ga al Fe/M ved Fe TOC y (SM2: ide (300	DO: dition r D) ases ln /Mn 320B) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 m	18.2 NTU Odor: ainer L CG L AG L PE L PE L CG PE nL PE	Yes Numbe	Appeara r of Contain 2 2 1 1 2 1 2 1 1 2 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor	57AC vative :L P D3 D3 O4 ne ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit Chlori Sulfa	Ie Cond ramete C (8260 ved Ga al Fe/M ved Fe TOC y (SM2: ide (300 te (300	DO: dition r) ases ln /Mn 320B) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 m	18.2 NTU Odor: ainer L CG L AG L PE L CG PE L CG PE L PE	Serial #: Yes Number	Appeara r of Contain 2 2 1 1 2 1 1 1 1 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor Nor	57AC vative SL P D3 D3 O4 ne ne ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tot: Dissol Alkalinit Chlori Sulfa Nitrate	E C (8260 ved Ga al Fe/M ved Fe TOC y (SM2: ide (300 te (300 c→N (30)	DO: dition r D) ases ln /Mn 320B) 0.0) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 m 100 m	18.2 NTU Odor: ainer L CG L AG L PE L CG PE L CG PE DL PE DL PE	Serial #: Yes Number	Appeara 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor Nor Nor	57AC vative CL P D3 D3 D3 O4 ne ne ne ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit Chlori Sulfa Nitrate	Ie Cond ramete C (8260) ved Ga al Fe/M ved Fe TOC y (SM2: ide (300) te (300) te (300)	DO: dition r) ases /Mn 320B) 0.0) 0.0) 0.0) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 m 100 m 100 m	18.2 NTU Odor: ainer L CG L AG L PE L CG PE L CG PE L PE DL PE DL PE	Serial #: Yes Number	Appeara 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor Nor Nor Nor	57AC vative SL P D3 D3 O4 ne ne ne ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit Chlori Sulfa Nitrate	Ie Cond ramete C (8260) ved Ga al Fe/M ved Fe TOC y (SM2: jde (300) e-N (30) je (300) 7.28	DO: dition r D) ases n /Mn 320B) 0.0) 0.0) 0.0) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 40 m 1 L 100 m 100 m 100 m	18.2 NTU Odor: ainer L CG L AG L PE L PE L CG PE DL PE DL PE DL PE	Serial #: Yes Number	Appeara r of Contain 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06G2 ance: ers	302AE clear	01F06 Preserv HC TS HNC H2S Nor Nor Nor Nor Nor	57AC vative EL P D3 D3 O4 ne ne ne ne ne
pH: Collect Analys	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit Chlori Sulfa Nitrate Nitrate	Ie Cond ramete C (8260 ved Ga al Fe/M ved Fe TOC y (SM2: ide (300) e-N (300) ie (300) 7.28	DO: dition r D) ases /Mn 320B) 0.0) 0.0) 0.0) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 m 100 m 100 m	18.2 NTU Odor: ainer L CG L AG L PE L CG PE L CG PE L PE DL PE DL PE	Serial #: Yes Number	Appeara r of Contain 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06G2 ance: ers gitor/Vir	302AE clear	01F06 Preserv HC TS HNC H2S Nor Nor Nor Nor Nor	57AC vative L P D3 D3 D4 ne ne ne ne
pH: Collect Analys Remark	5.96 SU ed Samp is Par VO Dissol Tota Dissol Alkalinit Chlori Sulfa Nitrate Nitrate	Ie Cond ramete C (8260) ved Ga al Fe/M ved Fe TOC y (SM2) ide (300) e-N (300) ie (300) 7.28	DO: dition r D) asess In /Mn 320B) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0)	3.89 mg/L Color:	clear	Turb: Turb: 40 m 20 m 75 m 40 m 1 L 100 m 100 m 100 m	18.2 NTU Odor: ainer L CG L AG L PE L CG PE L CG PE DL PE DL PE DL PE	Serial #: Yes Number	Appeara	06G2 ance: ers gitor/Vir	302AE clear	01F06 Preserv HC TS HNC HNC H2S Nor Nor Nor Nor Nor Nor Nor Nor	57AC vative SL P D3 D3 O4 ne ne ne ne ne olyethylene

CG

F

clear glass

degrees Fahrenheit

H2SO4 sulfuric acid

inches

in

millivolts

mV

NTU

nephelometric

turbidity units

PVC

SU

тос

TSP

polyvinyl chloride

trisodium phosphate dodecahydrate

standard units

top of casing

HydraSleeve™ Field Form

Project:	SRS	NE				Site Location:	Southing	gton, CT			
Project No:	B005	4634.00	000.01900			Well ID:	MW-416	6			
Sample ID:	MW-4	416-HS-	-06062013			Duplicate ID:	N/A				
Sample Date:	6/6/2	013 9:3	0:34 AM			Other QC:	MS/MS)			
Well Type:			MW			Well Finish:			XStic	:k-up	Flush Mount
Measuring Po	int:		тос			Top of Casing I	Elevation:		159.98 ft a	amsl	
Total Depth as	s Constru	cted:	52 ft bmp			Screened Inter	val:		32 to 52 ft	t bmp	
Well Casing C	outer Dian	neter:	2 in			Well Casing Ma	aterial:		PVC		
Well Screen C	Outer Dian	neter:	2 in			Well Screen Ma	aterial:		PVC		
Deployment											
Date/Time of	Deployme	ent:	6/4	4/2013 2:20:00	0 PM	Weather Cond	litions:		Su	unny 75	F
Depth to grou	ndwater a	t deploy	/ment: 9.8	35 ft bmp		Total well dept	th at deploy	ment:	N/	Ά	
HydraSleeveT	M Dimen	sions l	Length: 38	in		Diameter:		1.7	75 in		
Measurement	Method:		Ca	alibrated tethe	r	Deployment de	epth (Top o	f HS):	39) ft bmp	
PID:			0	opm							
Retrieval											
Date/Time of	Retrieval:		6/6/2013 9:3	0:09 AM		Total # of day	s deployed	:	1.8		
Weather Cond	ditions:		N/A			Depth to grou	ndwater at	: 9.83 ft	bmp		
PID:			0 ppm			Total well depth at retrieval: N/A					
Downhole Fie	ld Parame	eters Up	oon Retrieval:								
Temp: 16.91	C	ORP:	43.1 mV	SCond:	0.014 mS/	cm Water qua	YSI	SI YSI			
pH: 7.27	SU	DO:	2.59 mg/L	Turb:	9.86 NTU	Serial #:		06G2	302AE	01F	0567AC
			.								
Collected Sa	mple Con	dition	Color: clea	ar	Odor:	Yes	Appear	ance:	clear		
Collected Sa	mple Con	dition	Color: clea	ar	Odor:	Yes	Appear	ance:	clear		
Collected Sa Analysis	Paramete	er	Color: clea	ar Conta	Odor:	Yes Number	Appear	ners	clear	Pres	ervative
Collected Sa Analysis	Paramete VOC (826	er 0)	Color: clea	ar Conta 40 mL	Odor: iner .CG	Yes Number	Appear of Contain	ners	clear	Pres	ervative HCL
Collected Sar	Paramete VOC (826	er 0) ases	Color: clea	ar Conta 40 mL 20 mL	Odor: iner . CG . AG	Yes Number	Appear of Contain 2 2	ners	clear	Pres	ervative HCL TSP
Collected Sa Analysis	Paramete /OC (826 solved Ga	odition er 0) ases //n	Color: clea	Conta 40 mL 20 mL 75 mL	Odor: iner . CG . AG . PE	Yes Number	Appear of Contain 2 2 1	ners		Pres	HCL TSP
Collected Sar	Paramete /OC (826 ssolved Ga Fotal Fe/N	er 0) ases //n e/Mn	Color: clea	Conta 40 mL 20 mL 75 mL 75 mL	Odor: iner . CG . AG . PE . PE	Number	Appear of Contain 2 2 1 1	ners		Pres	HCL TSP INO3
Collected Sa Analysis Dis	Paramete VOC (826 solved Ga Fotal Fe/N solved Fe TOC	er 0) ases /In e/Mn	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL	odor: iner .CG .AG .PE .PE .CG	Number	Appear of Contain 2 2 1 1 2 2	ners		Pres	HCL TSP INO3 2SO4
Collected Sar Analysis Dis Dis Alkal	Paramete VOC (826 issolved Ga Total Fe/N issolved Fe TOC inity (SM2	er 0) ases //n e/Mn 2320B)	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F	odor: iner .CG .AG .PE .PE .CG PE	Number	Appear of Contain 2 2 1 1 2 3	ners		Pres	HCL TSP INO3 INO3 2SO4 None
Collected Sar Analysis Dis Dis Alkal	Paramete VOC (826 solved Ga Solved Fe TOC inity (SM2 iloride (30	er 0) ases //n e//Mn 2320B) 00.0)	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml	Odor: iner CG AG PE CG PE LPE CG	Number	Appear of Contain 2 2 1 1 2 3 1 1	ners		Pres	ervative HCL TSP INO3 INO3 2SO4 None None
Collected Sar Analysis Dis Dis Alkal Cr S	Paramete VOC (826 isolved Ga Total Fe/N isolved Fe TOC inity (SM2 iloride (30) ulfate (30)	adition er 0) ases /In e/Mn 2320B) 00.0) 0.0)	Color: clea	Ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml	odor: iner CG AG PE CG PE LPE LPE LPE	Number	Appear of Contain 2 2 1 1 2 3 1 1 1 1	ners		Pres	HCL TSP INO3 INO3 2SO4 None None
Collected Sar Analysis Dis Dis Alkal Cr Sr Nit	Paramete VOC (826 solved Ga solved Ga solved Fe TOC inity (SM2 iloride (300 rate-N (300 inite (300)	adition er 0) ases //n e//Mn 2320B) 00.0) 00.0) 00.0)	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE	Number	Appear 2 2 1 1 2 3 1 1 1 1 1 1 1	ners		Pres	HCL TSP INO3 INO3 2SO4 None None None
Collected Sar Analysis Dis Dis Alkal Cr Si Nit	Paramete VOC (826 isolved Ga isolved Ga isolved Fe TOC inity (SM2 iloride (300 ilfate (300 rate-N (300 litrite (300	adition ases An An ases An An An An An An An An An An	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml	Odor: iner . CG . AG . PE . PE . CG PE L PE L PE L PE L PE L PE	Number	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1	ners		Pres	HCL TSP INO3 INO3 2SO4 None None None None None
Collected Sar Analysis Dis Dis Dis Alkal Cr Sar Nit Nit Remarks: CC	Paramete VOC (826 solved Ga solved Ga solved Fe TOC inity (SM2 iloride (300 rate-N (300 litrite (300 pollected r	er 0) ases //n e/Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) MS/MSD	FOR ALKALINITY.	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE	Number	Appear of Contain 2 1 2 1 2 1 1 1 1 1 1 1 1	ners	clear	Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None
Collected Sar Analysis Dis Dis Alkal Cr Si Nit N Remarks: CC	Paramete /OC (826 ssolved Ga ssolved Ga ssolved Fe TOC inity (SM2 aloride (300 ulfate (300 rate-N (300 litrite (300 DLLECTED I	adition ases An An ases An An An An An An An An An An	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE CG PE L PE L PE L PE L PE	Yes Number	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 Matthew Pin	ners	ncent Whis	Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None
Collected Sar Analysis Dis Dis Dis Alkal Cr Sar Nit Nit Remarks: CC	Paramete VOC (826 solved Ga solved Fe TOC inity (SM2 iloride (300 ulfate (300 rate-N (300 litrite (300 DLLECTED I	er 0) ases //n e//Mn 2320B) 0.0) 0.0) 0.0) 0.0) MS/MSD	FOR ALKALINITY.	Ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE	Ves Number	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 Matthew Pin	ners	ncent Whis	Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None
Collected Sar Analysis Dis Dis Dis Alkal Cr S Nit Nit N Remarks: CC	Paramete /OC (826 isolved Ga fotal Fe/N isolved Fe TOC inity (SM2 iloride (300 ulfate (300 rate-N (300 litrite (300 DLLECTED I	adition er 0) ases /In e/Mn 2320B) 00.0) 00	Color: clea	ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE CG PE L PE L PE L PE L PE	Yes Number Sampling Personnel: Signature:	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 Matthew Pin	ners	ncent Whis	Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None
Collected Sar Analysis Dis Dis Dis Alkal Cr Sar Alkal Cr Sar Nit Nit Alkal Cr Sar Alkal Cr Sar Alkal Cr Sar Alkal Cr Sar Alkal Sar Sar Alkal Sar Sar Sar Sar Sar Sar Sar Sar Sar Sar	Paramete /OC (826 isolved Ga isolved Fe TOC inity (SM2 iloride (300 inity (300 inity (300 DLLECTED I DLLECTED I	er 0) ases //n e/Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) MS/MSD	Color: clea P FOR ALKALINITY. ft above mean sea Invel	Ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE	Number Sampling Personnel: Signature: mg/L	Appear of Contain 2 1 1 2 3 1 1 1 1 1 1 Matthew Pin er liter MW	ners	clear	Pres	polyethylene
Collected Sar Analysis Dis Dis Dis Alkal Cr Si Nit Remarks: CC Abbreviations: AG amber g C degrees	Paramete /OC (826 isolved Ga isolved Ga isolved Fe TOC inity (SM2 iloride (300 ulfate (300 ulfate (300 ulfate (300 DLLECTED I DLLECTED I	tt amsl ft bmp	Color: clea	Ar 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE L PE L PE	Yes Number Sampling Personnel: Signature: mg/L ms/cm ms/cm	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 Vatthew Pin wer liter MWW sper N/A	ners	clear	Pres	Pervative HCL TSP INO3 INO3 2SO4 None None None None None None polyethylene parts per million
Collected Sar Analysis Dis Dis Dis Alkal Cr Sar Alkal Cr Sar Nit Nit Nit Alkal Cr Sar Alkal Cr Sar Alkal Cr Sar Alkal Cr Sar Cr Sar Sar Sar Sar Sar Sar Sar Sar Sar Sa	Paramete /OC (826 isolved Ga isolved Fe TOC inity (SM2 iloride (300 inity (SM2 iloride (300 crate-N (300 DLLECTED I constant constant isolved Fe TOC inity (SM2 inity (SM2	Indition er 0) asses /In e/Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 01.0) 01.0) 02.0) 00.0)	Color: clea	Ar Conta 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE L PE cid	Yes Number Sampling Personnel: Imag/L ms/cm ms/cm ms/cm millisiemens centimeter mv	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 1 Matthew Pin s per N/A NTU	ners	clear	Pres	Pervative HCL TSP INO3 INO3 2SO4 None None None None None Polyethylene parts per million polyvinyl chloride
Collected Sar Analysis Dis Dis Alkal Cr Alkal Cr S Nit Nit Remarks: CC Abbreviations: AG amber g C degrees CG clear gla F degrees	Paramete /OC (826 isolved Ga isolved Ga isolved Fe TOC inity (SM2 iloride (300 rate-N (300 iltrite (300 rate-N (300 DLLECTED I DLLECTED I	Indition ases An ases	Color: clea	Ar 40 mL 20 mL 75 mL 75 mL 40 mL 1 L F 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml	Odor: iner CG AG PE PE CG PE L PE L PE L PE L PE L PE hloric acid cid	Yes Number Sampling Personnel: Imag/L ms/cm ms/cm ms/cm milligrams p ms/cm milligrams p ms/cm milligrams p ms/cm milligrams p milligrams p milligrams p milligrams p ms/cm milligrams p milligrams p ms/cm milligrams p milligrams p	Appear of Contain 2 2 1 1 2 3 1 1 1 1 1 1 1 1 4 Matthew Pin er liter MW sper N/A NTU	ners	clear	Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None None None Polyethylene parts per million polyvinyl chloride standard units

HydraSleeve™ Field Form

Project:	SRSNE						Site Location: Southington, CT						
Project No:	B005	54634.0	000.01900				We	II ID:	MW-502				
Sample ID:	MW-	502-HS	-06042013				Dup	licate ID:	N/A				
Sample Date:	6/4/2	2013 3:2	25:44 PM				Oth	er QC:	N/A				
Well Type:			MW				We	ll Finish:		_	_XSt	ick-up	Flush Mount
Measuring Poir	it:		TOC				Тор	of Casing E	levation:	1	55.84 ft	amsl	
Total Depth as	Constru	icted:	37.6 ft b	mp			Scr	eened Interva	al:	1	7.54 to	37.54 ft b	omp
Well Casing Ou	iter Diar	neter:	2 in				We	II Casing Mat	erial:	Р	VC		
Well Screen Outer Diameter: 2 in						We	II Screen Mat	erial:	Р	VC			
Deployment	oloyment												
Date/Time of D	eployme	ent:		6/13/2	2012 12:0	3:00 PM	Weather Conditions: Humid, Cloudy					oudy	
Depth to ground	dwater a	at deplo	yment:	7.30 f	t bmp		То	tal well depth	at deployn	nent:	35.55 ft bmp		
HydraSleeveTN	1 Dimen	nsions	Length:	38 in			Dia	Diameter:			1	.75 in	
Measurement N	lethod:			Calibr	ated tethe	er	Deployment depth (Top of HS):			HS):	N	I/A	
PID:				.3 ppr	n								
Retrieval													
Date/Time of R	etrieval:		6/4/2013	3:25:36	6 PM		Тс	otal # of days	deployed:		356.1		
Weather Condi	tions:		N/A				– De	epth to groun	dwater at re	etrieval:	7.16	ft bmp	
PID:			0 ppm				Tc	otal well dept	n at retrieva	d:	N/A		
Downhole Field Parameters Upon Retrieval:													
Temp: <u>15.25 C</u> ORP: <u>-102.2 mV</u> SCond: <u>0.027 mS</u>					/cm	Water qual	ty meters:	YSI		YSI			
pH: 6.70 SU DO: 1.79 mg/L Turb: 4.51 NTU			1 NTU Serial #: 06G2302 AE 0F10657 AC				0657 AC						
Collected Sample Condition Color: brown Odor:						r: Yes Appearance: cloudy							

	Parameter				Container Number of Containers				s	Preservative		
	VOC (826	60)			40 mL AG		3	HCL			HCL	
Rema	arks: 0					Sampling Personnel:	Matthe	w Pingit	or/Christopher	Trowbri	dge	
Abbrevia	ations:					Signature:		6				
AG	amber glass	ft bmp	feet below	in	inches	mS/cm millisieme	ens per	MW	monitoring well	NTU	nephelometric turbidity units	
C ft amsl	degrees Celsius It above mean sea Ievel	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts	-	N/A	not available	ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing	

HydraSleeve™ Field Form

Project:	SRSNE						Site Location: Southington, CT							
Project No:	B00546	34.0	000.01900				Wel	ID:	MW-704)				
Sample ID:	MW-704	4D-H	S-06032013	3			Dup	licate ID:	N/A					
Sample Date:	6/3/201	3 11:	55:21 AM				Othe	er QC:	N/A					
Well Type:			MW				Wel	l Finish:		_	_X\$	Stick-up	Flush Mount	
Measuring Point	:		TOC				Тор	of Casing E	levation:	1	50.98).98 ft amsl		
Total Depth as C	Constructe	ed:	65.6 ft b	mp			Scre	ened Interva	al:	55	5.41 to 65.41 ft bmp			
Well Casing Out	er Diamet	ter:	2 in				Wel	Casing Mat	erial:	P	VC			
Well Screen Out	Outer Diameter: 2 in						Wel	Screen Mat	terial:	P	VC			
Deployment														
Date/Time of De	e of Deployment: 6/14/2012 6:50:00 AM							ather Condit	tions:			Humid, W	indy, Sunny	
Depth to ground	water at d	leplo	yment:	7.09 f	t bmp		Tot	al well depth	n at deployn	nent:		64.00 ft br	np	
HydraSleeveTM	Dimensio	ons	Length:	38 in			Diameter: 1.75 in							
Measurement M	ethod:			Calib	rated tethe	ər	Deployment depth (Top of HS):					N/A		
PID:				0 ppn	า									
Retrieval														
Date/Time of Re	trieval:		6/3/2013	3 11:50:	58 AM		То	tal # of days	deployed:		354	.2		
Weather Conditi	ons:		N/A				De	pth to groun	dwater at re	etrieval:	N/A			
PID:		0.3 ppm					Total well depth at retrieval:			d:	N/A			
Downhole Field	Paramete	arameters Upon Retrieval:												
Temp: 70 C	OF	RP:	-25.6 mV		SCond:	0.217 mS	′cm	Water qual	ity meters:	YSI		Turt	bidity Meter	
pH: 6.57 SL	.57 SU DO: 332.9 mg/L Turb: 0.74 NTU				74 NTU Serial #: 01K0643 018829				829					
Collected Sample Condition Color: clear Odor:					Yes		Appeara	nce: cl	ear					

	Parameter Co					Numb	er of Co	ntainers	Preservative		
	VOC (8260) 40						3	HCL			
Rema	rks: 0					Sampling Personnel:	Edward	d Cimilluca			
						Signature:	<u>E</u> l	El an			
Abbrevia	tions:										
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisieme centimete	ens per er	MW monitoring well	NTU	nephelometric turbidity units	
C ft amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts		N/A not available	ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing	

HydraSleeve™ Field Form

Project:	SRSNE					Sit	Site Location: Southington, CT						
Project No:	B0054634.	000.01900				We	ell ID:	MW-704	DR				
Sample ID:	MW-704DF	R-HS-060320	13			_ Du	plicate ID:	N/A					
Sample Date:	6/3/2013 8	49:39 AM				Ot	her QC:	N/A					
Well Type:		MW				We	ell Finish:		_	_XSti	ck-up	Flush Mount	
Measuring Point	:	TOC				– To	p of Casing E	levation:	1	152.84 ft amsl			
Total Depth as C	Constructed:	134.5 ft	bmp			Sc	reened Interv	al:	1	 104.27 to 134.27 ft bmp			
Well Casing Out	er Diameter:	2 in				We	ell Casing Mat	terial:	F	PVC			
Well Screen Out	er Diameter:	2 in				We	ell Screen Ma	terial:	F	VC			
Deployment													
Date/Time of De	eployment: 6/14/2012 7:14:00 AM						/eather Condi	tions:		Н	Humid, Windy, Sunny		
Depth to ground	water at depl	oyment:	36.72 ft b	mp		Т	otal well depth	n at deployn	nent:	1:	36.51 ft	bmp	
HydraSleeveTM	Dimensions	Length:	38 in			D	Diameter:				.75 in		
Measurement M	ethod:		Calibrate	d tethe	ər	D	Deployment depth (Top of HS):				/A		
PID:			N/A										
Retrieval													
Date/Time of Re	trieval:	6/3/2013	3 8:46:20 AN	Ν		_ т	otal # of days	deployed:		354.1			
Weather Conditi	ons:	N/A				C	Depth to groun	ndwater at re	etrieval:	58.4 f	t bmp		
PID:	N/A					т	Total well depth at retrieval:			N/A			
Downhole Field	Parameters Upon Retrieval:												
Temp: 10.68 C	ORP:	13.5 mV	SC	Cond:	0.005 m	S/cm	Water qual	ity meters:	YSI		Tur	bidity Meter	
pH: 7.29 SU	7.29 SU DO: 31.69 mg/L Turb: 17 NTU			NTU Serial #: 01K0643 1356-3711				6-3711					
Collected Sam	ted Sample Condition Color: brown Odor:				r: No Appearance: cloudy								

Parameter Container						Numb	er of Co	Preservative		
	VOC (826		40 mL AG		3		HCL			
Rema	rks: 0					Sampling Personnel:	Edward	Cimilluca		
						Signature:	E.			
Abbrevia AG	tions: amber glass	ft bmp	feet below	in	inches	mS/cm millisieme	ens per	MW monitoring well	NTU	nephelometric
C ft amsl	degrees Celsius ft above mean sea level	HCL	measuring point hydrochloric acid	mg/L	milligrams per liter	centimete mV millivolts	er	N/A not available	PVC SU	turbidity units polyvinyl chloride standard units
									тос	top of casing

HydraSleeve™ Field Form

Project:	SRSNE					Site							
Project No:	B0054634.	0000.01900				Well	ID:	MW-704N	Л				
Sample ID:	MW-704M-	HS-0605201	3			Dup	licate ID:	N/A					
Sample Date:	6/5/2013 2:	00:35 PM				Othe	er QC:	N/A					
Well Type:		MW				Well	Finish:			XStick-upFlush Mount			
Measuring Point	:	TOC				Тор	of Casing Ele	vation:		152.34 ft amsl			
Total Depth as C	Constructed:	49.1 ft b	omp			Scre	ened Interval	:	;	38.66 to 48.66 ft bmp			
Well Casing Out	er Diameter:	2 in				Well	Casing Mate	rial:		PVC			
Well Screen Out	er Diameter:	2 in				Well	Screen Mate	rial:		PVC			
Deployment													
Date/Time of De	ployment:		:11 AM	We	ather Conditio	ons:		Cloudy 68 F					
Depth to ground	water at deple	oyment:	7.10 ft	bmp		Tot	al well depth a	at deployn	nent:	47 ft bmp			
HydraSleeveTM	Dimensions	Length:	38 in			Diameter:				1.75 in			
Measurement M	ethod:		Calibra	ted tethe	er	Deployment depth (Top of HS):				42 ft bmp			
PID:			0.2 ppn	n									
Retrieval													
Date/Time of Re	trieval:	6/5/2013	3 2:00:57	PM		To	tal # of days c	leployed:		2.1			
Weather Conditi	ons:	N/A				De	pth to ground	water at re	etrieval:	7.25 ft bmp			
PID:	N/A					Total well depth at retrieval:			ıl:	N/A			
Downhole Field	Parameters Upon Retrieval:												
Temp: 15.38 C	ORP:	ORP:53.8 mV SCond:347 mS/					Water quality	/ meters:	YSI	Turbidity Meter			
pH: 7.18 SL	8 SU DO: 16.26 mg/L Turb: 11 NTU			TU Serial #: N/A N/A				N/A					
Collected Samp	ollected Sample Condition Color: clear Odor: I				r: N/A Appearance: N/A				N/A				

	Parameter					Container	Number of Containers				Preservative		
		VOC (826	0)			40 mL AG			3		HCL		
Rema	arks:	0					Sam Pers	pling sonnel:	Edward	l Cimilluca			
							Sig	jnature:	É.	arcm			
Abbrevi	ations:												
AG	ambe	er glass	ft amsl	ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams	s per liter	mV millivolts	N/A	not available	
С	degre	ees Celsius	ft bmp	feet below measuring point	in	inches	mS/cm	millisieme centimete	ens per er	MW monitoring well	NTU	nephelometric turbidity units	
F	degre	ees Fahrenheit									ppm PVC SU	parts per million polyvinyl chloride standard units	
											TOC	top of casin	

HydraSleeve™ Field Form

Project	:	SRSNE				Site Location:						
Project	No:	B0054634.0	0000.01900			Well ID:	MW-706D	R				
Sample	e ID:	MW-706DR	-HS-060420	13		Duplicate ID:	N/A					
Sample	e Date:	6/4/2013 9:	10:00 AM			Other QC:	N/A					
Well Ty	/pe:		MW			Well Finish:		_	_XStick-upFlush Mount			
Measu	ring Point:		тос			Top of Casing E	Elevation:	1	49.91 ft amsl			
Total D	epth as C	onstructed:	128.6 ft	bmp		Screened Interv	/al:	1	18.23 to 128.23 ft bmp			
Well Ca	asing Oute	er Diameter:	2 in			Well Casing Ma	iterial:	P	PVC			
Well So	creen Out	er Diameter:	2 in			Well Screen Material:			PVC			
Deploy	vment											
Date/Ti	ime of De	oloyment:		6/14/2012 9:45	:00 AM	Weather Cond	itions:		Cloudy, Hot, Humid			
Depth t	o ground	vater at deplo	oyment:	2.9 ft bmp		Total well dept	h at deploym	ent:	128.76 ft bmp			
HydraS	SleeveTM	Dimensions	Length:	38 in		Diameter:			1.75 in			
Measu	rement Me	ethod:		Calibrated teth	er	Deployment de	epth (Top of I	HS):	N/A			
PID:				0 ppm								
Retriev	/al											
Date/Ti	ime of Re	rieval:	6/4/2013	3 9:10:00 AM		Total # of days	s deployed:		355.0			
Weathe	er Conditio	ons:	N/A			Depth to grou	ndwater at re	trieval:	1.82 ft bmp			
PID:			0 ppm			Total well dep	th at retrieva	l:	N/A			
Downh	ole Field I	Parameters U	pon Retrieva	<u>al:</u>								
Temp:	13.58 C	ORP:	250.8 mV	SCond:	0.049 mS/	cm Water qua	lity meters:	YSI	YSI			
pH:	3.88 SU	DO:	2.71 mg/L	Turb:	8.21 NTU	Serial #:		06G23	02 AE 01F0657 AC			
0.11.			Ostar	light reddish-	0.1	1-	•		Le contra			
Collect		le Condition	Color:	brown	Odor:	NO	Appeara	nce: c	loudy			
Analys	is											
	Pa	rameter		Cont	ainer	Number	of Containe	ers	Preservative			
	VO	C (8260)		40 m	L AG		3		HCL			
Remark	<s: 0<="" td=""><td></td><td></td><td></td><td></td><td>Sampling Personnel:</td><td>/latthew Ping</td><td>itor/Chri</td><td>stopher Trowbridge</td></s:>					Sampling Personnel:	/latthew Ping	itor/Chri	stopher Trowbridge			
						Signature:	Ø					

Signature: Abbreviations: amber glass ft bmp feet below inches mS/cm millisiemens per NTU nephelometric AG in MW monitoring well measuring point centimeter turbidity units HCL С degrees Celsius hydrochloric acid mg/L milligrams per liter mV millivolts N/A not available ppm parts per million ft amsl ft above mean sea PVC polyvinyl chloride level standard units SU тос top of casing

HydraSleeve™ Field Form

Project No: E Sample ID: M Sample Date: 6 Well Type: Measuring Point: Total Depth as Cor Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Date/Time of Retrie Weather Conditions PID: Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis	B0054634.00 MW-902D-H: 6/5/2013 2:11 nstructed: Diameter: Diameter: Diameter: Diameter: diameter: Diameter: Diameter: Diameter: Diameter: diameter: limensions limens	000.01900 S-06052013 6:30 PM MW TOC 27.37 ft 2 in 2 in 2 in 2 m 4 5 6/5/2013 N/A 0 ppm	3 bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM	Well ID: Duplicate ID: Other QC: Well Finish: Top of Casing E Screened Interv Well Casing Ma Well Screen Ma Well Screen Ma Uvell Screen Ma Diameter: Deployment de	MW-902D N/A MS/MSD Elevation: val: tteria	XStick-upFlush Mount 159.96 ft amsl 21.37 to 26.37 ft bmp SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Sample ID: M Sample Date: 6 Well Type: Measuring Point: Total Depth as Corr Well Casing Outer Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Pate/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	MW-902D-H 6/5/2013 2:10 nstructed: Diameter: Diameter: Diameter: oyment: ater at deploy imensions I hod: eval: us:	S-06052013 6:30 PM MW TOC 27.37 ft 2 in 2 in 2 in /ment: Length: 6/5/2013 N/A 0 ppm	3 bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM er	Duplicate ID: Other QC: Well Finish: Top of Casing E Screened Interv Well Casing Ma Well Screen Ma Well Screen Ma Diameter: Deployment de	N/A MS/MSD Elevation: val: trail: tterial: tteri	XStick-upFlush Mount 159.96 ft amsl 21.37 to 26.37 ft bmp SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Sample Date: 6 Well Type: Measuring Point: Total Depth as Cor Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	6/5/2013 2:11 nstructed: Diameter: Diameter: Diameter: ater at deploy imensions I hod: eval: us:	6:30 PM MW TOC 27.37 ft 2 in 2 in 2 in 2 m constant 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n	bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM	Other QC: Well Finish: Top of Casing E Screened Interv Well Casing Ma Well Screen Ma Well Screen Ma Weather Condi Total well dept Diameter: Deployment de	MS/MSD Elevation: ral: tterial: tterial: titions: h at deployment: epth (Top of HS):	XStick-upFlush Mount 159.96 ft amsl 21.37 to 26.37 ft bmp SS SS <u>Hot, Humid, Sunny</u> 21.42 ft bmp 1.75 in N/A 355.1
Well Type: Measuring Point: Total Depth as Cor Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	nstructed: Diameter: Diameter: oyment: ater at deploy imensions I hod: eval: eval: is:	MW TOC 27.37 ft 2 in 2 in 2 in 2 in 2 m cment: Length: 6/5/2013 N/A 0 ppm	bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM er	Well Finish: Top of Casing E Screened Interv Well Casing Ma Well Screen Ma Well Screen Ma Ueather Condi Total well depti Diameter: Deployment de	Elevation: ral: ral: iterial: iterial: tions: h at deployment: epth (Top of HS): s deployed:	XStick-upFlush Mount 159.96 ft amsl 21.37 to 26.37 ft bmp SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Measuring Point: Total Depth as Cor Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	nstructed: Diameter: Diameter: oyment: ater at deploy imensions I hod: eval: eval: us:	TOC 27.37 ft 2 in 2 in 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM er	Top of Casing E Screened Interv Well Casing Ma Well Screen Ma Weather Condi Total well dept Diameter: Deployment de	Elevation: val: tterial: tterial: itions: h at deployment: epth (Top of HS): s deployed:	159.96 ft amsl 21.37 to 26.37 ft bmp SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Total Depth as Cor Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	nstructed: Diameter: Diameter: oyment: ater at deploy imensions I hod: eval: eval: us:	27.37 ft 2 in 2 in /ment: _ength: 6/5/2013 N/A 0 ppm	bmp 6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm 3 2:16:20 PM	1:00 PM er	Screened Interv Well Casing Ma Well Screen Ma Weather Condi Total well depti Diameter: Deployment de	ral:	21.37 to 26.37 ft bmp SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Well Casing Outer Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	Diameter: Diameter: oyment: ater at deploy imensions I hod: eval: us:	2 in 2 in 2 in /ment: _ength: 	6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm	1:00 PM er	Well Casing Ma Well Screen Ma Weather Condi Total well depti Diameter: Deployment de	tterial: itions: h at deployment: pth (Top of HS): s deployed:	SS SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Well Screen Outer Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	Diameter: oyment: ater at deploy imensions I hod: eval: eval: us:	2 in /ment: _ength: 	6/15/2012 12:1 8.49 ft bmp 38 in Calibrated tethe 10.8 ppm	1:00 PM er	Well Screen Ma Weather Condi Total well depti Diameter: Deployment de	itions: h at deployment: epth (Top of HS):	SS Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Deployment Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	oyment: ater at deploy imensions I hod: eval: eval: us:	/ment: _ength: 	6/15/2012 12:1 8.49 ft bmp 38 in Calibrated teth 10.8 ppm	1:00 PM er	_ Weather Condi _ Total well depti _ Diameter: _ Deployment de	itions: h at deployment: epth (Top of HS):	Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Date/Time of Deplo Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	oyment: ater at deploy imensions I hod: eval: eval: us:	/ment: _ength: 	6/15/2012 12:1 8.49 ft bmp 38 in Calibrated teth 10.8 ppm	1:00 PM	Weather Condi Total well depti Diameter: Deployment de	itions: h at deployment: epth (Top of HS):	Hot, Humid, Sunny 21.42 ft bmp 1.75 in N/A 355.1
Depth to groundwa HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	ater at deploy imensions I hod: eval: us:	/ment: _ength: 	8.49 ft bmp 38 in Calibrated teth 10.8 ppm 3 2:16:20 PM	er	Total well deptl Diameter: Deployment de	h at deployment: epth (Top of HS):	21.42 ft bmp 1.75 in N/A 355.1
HydraSleeveTM Di Measurement Meth PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	imensions I hod: eval: us:	_ength: 6/5/2013 N/A 0 ppm	38 in Calibrated teth 10.8 ppm 3 2:16:20 PM	er	_ Diameter: _ Deployment de 	epth (Top of HS):	1.75 in N/A
Measurement Meth PID: Retrieval Date/Time of Retrieval Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	eval: eval: us:	6/5/2013 N/A 0 ppm	Calibrated tethe	er	_ Deployment de	epth (Top of HS):	<u>N/A</u>
PID: Retrieval Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	eval: IS:	6/5/2013 N/A 0 ppm	10.8 ppm 3 2:16:20 PM		Total # of days	s deployed:	355.1
Retrieval Date/Time of Retrieval Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	eval: IS:	6/5/2013 N/A 0 ppm	3 2:16:20 PM		Total # of days	s deployed:	355.1
Date/Time of Retrie Weather Conditions PID: Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	eval: IS: arameters Lir	6/5/2013 N/A 0 ppm	3 2:16:20 PM		Total # of days	s deployed:	355.1
Weather Conditions PID: <u>Downhole Field Pa</u> Temp: <u>19.21 C</u> pH: <u>6.69 SU</u> Collected Sample Analysis Para VOC	IS: arameters I Ir	N/A 0 ppm					
PID: <u>Downhole Field Pa</u> Temp: <u>19.21 C</u> pH: <u>6.69 SU</u> Collected Sample Analysis Para VOC	arameters I Ir	0 ppm			Depth to grour	ndwater at retrieval:	11.23 ft bmp
Downhole Field Pa Temp: 19.21 C pH: 6.69 SU Collected Sample Analysis Para VOC	arameters I In				Total well dept	th at retrieval:	N/A
Temp: <u>19.21 C</u> pH: <u>6.69 SU</u> Collected Sample Analysis Para VOC		on Retrieva	al:		_		
pH: 6.69 SU Collected Sample Analysis Para VOC	ORP:	-91.2 mV	SCond:	0.016 mS	S/cm Water qua	lity meters: YSI	YSI
Collected Sample Analysis Para VOC	DO:	2.65 mg/L	Turb:	20.6 NTL	J Serial #:	06G23	302AE 01F0657AC
Analysis Para VOC	Condition	Color:	brown	Odor:	Yes	Appearance:	clear
Para VOC							
VOC	meter		Cont	ainer	Number	of Containers	Preservative
	(8260)		40 m	L CG		2	HCL
Dissolve	ed Gases		20 m	L AG		6	TSP
Total	Fe/Mn		75 m	L PE		1	HNO3
Dissolve	ed Fe/Mn		75 m	IL PE		1	HNO3
Т	OC		40 m	LCG		2	H2SO4
Alkalinity ((SM2320B)		1 L	PE		1	None
Chloride	e (300.0)		100 n	nL PE		1	None
Sulfate	e (300.0)		100 n	nL PE		1	None
Nitrate-I	N (300.0)		100 n	nL PE		1	None
Nitrite	(300.0)		100 n	nL PE		1	None
Remarks: DTW 11	1.23. MS/MS F	FOR DISSOLV	'E GAS		Sampling Personnel: <u>N</u>	Matthew Pingitor/Ch	ristopher Trowbridge
					Signature:		É
Abbreviations:					. –		

mV

MW

millivolts

monitoring well

NTU

PE

nephelometric

turbidity units

polyethylene

SS

SU

тос

TSP

stainless steel

standard units

trisodium phosphate dodecahydrate

top of casing

degrees Celsius

clear glass

ft amsl ft above mean sea

level

С

CG

H2SO4 sulfuric acid

hydrochloric acid

HCL

in

inches

mg/L milligrams per liter

HydraSleeve™ Field Form

Project:	SRSN	E			Site Location: Southington, CT					
Project No:	B0054	634.000	0.01900		Well ID:					
Sample ID:	MW-9	02M-HS	-06052013		Duplicate ID:	N/A				
Sample Date:	6/5/20	13 1:50:	:00 PM		Other QC:	MS/MSD				
Well Type:			MW		Well Finish:		XStick-u	upFlush Mount		
Measuring Poir	nt:		тос		Top of Casing E	levation:	160.39 ft am	sl		
Total Depth as	Construc	ted:	22 ft bmp		Screened Interv	al:	15 to 20 ft br	np		
Well Casing Ou	uter Diam	eter:	2 in		Well Casing Ma	terial:	SS			
Well Screen Ou	uter Diam	eter:	2 in		Well Screen Ma	terial:	SS			
Deployment										
Date/Time of D	eploymer	nt:	6/	/15/2012 11:20:00 AM	Weather Condi	tions:	Hot, Humid, Sunny			
Depth to groun	dwater at	deployn	nent: 8.	.21 ft bmp	Total well depth	n at deployment:	26.03 ft bmp			
HydraSleeveTN	M Dimens	ions Le	ength: 38	8 in	Diameter:		1.75	in		
Measurement I	Method:		Ca	alibrated tether	Deployment de	pth (Top of HS):	N/A			
PID:			.2	2 ppm						
Retrieval	val									
Date/Time of R	Retrieval:		6/5/2013 1:5	53:22 PM	Total # of days	deployed:	355.1			
Weather Condi	itions:		N/A		Depth to grour	ndwater at retrieva	al: 10.59 ft bmp			
PID:			N/A		Total well dept	h at retrieval:	N/A			
Downhole Field	d Paramet	ters Upo	on Retrieval:		-					
Temp: 20.64	c c)RP: -8	80.9 mV	SCond: 0.017 mS	cm Water qual	ity meters: YSI		YSI		
pH: 6.53 S	SU D	0: 2	2.42 mg/L	Turb: 91.2 NTU	Serial #:	06G2	2302 AE	01F0657 AC		
			liah	nt reddish-						
Collected Sam	anla Cone	dition	Color: bro	Odor:	Voc	Appoaranco:	turbid			
Collected Sam	nple Cond	dition	Color: bro	own Odor:	Yes	Appearance:	turbid			
Collected Sam Analysis	nple Conc	dition r	Color: bro	own Odor:	Yes	Appearance:	turbid	Preservative		
Collected Sam	Parameter	dition r	Color: bro	Own Odor: Container 40 mL CG	Yes Number	Appearance: of Containers	turbid	Preservative HCL		
Collected Sam	Parameter OC (8260 solved Ga	dition r)) ses	Color: bro	Own Odor: Container 40 mL CG 20 mL AG	Yes Number	Appearance: of Containers	turbid	Preservative HCL TSP		
Collected Sam	Parameter OC (8260 solved Ga	dition r)) ses n	Color: bro	Container 40 mL CG 20 mL AG 75 mL PE	Yes Number	Appearance: of Containers 2 2 1	turbid	Preservative HCL TSP HNO3		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/Mi solved Fe/	dition r)) ses n /Mn	Color: bro	OWN Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE	Yes Number	Appearance: of Containers 2 2 1 1	turbid	Preservative HCL TSP HNO3 HNO3		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/M solved Fe/ TOC	dition r)) ses n /Mn	Color: bro	own Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG	Ves Number	Appearance: of Containers 2 2 1 1 2 2	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/Mi solved Fe/ TOC nity (SM23	r n /Mn 320B)	Color: bro	OWN Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE	Number	Appearance: of Containers 2 2 1 1 2 1 2 1	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300	dition r)) ses n /Mn 320B)).0)	Color: bro	wn Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE	Ves Number	Appearance: of Containers 2 2 1 1 2 1 2 1 3	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None		
Collected Sam Analysis F V Diss T Diss Alkalin Chl	Parameter OC (8260 solved Ga total Fe/Mi solved Fe/ TOC nity (SM23 oride (300	dition r)) ses n //Mn 320B) 0.0) .0)	Color: bro	wm Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE	Number	Appearance: of Containers 2 2 1 1 2 1 3 3 3	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lfate (300) ate-N (300)	dition r)) ses n /Mn 320B)).0) .0) .0)	Color: bro	wn Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE	Number	Appearance: of Containers 2 2 1 1 2 1 2 1 3 3 3 3		Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lifate (300 ate-N (300	dition r)) sess n (/Mn 320B) 320B) 0.0) 0.0) 0.0)		Odor: Container 40 mL CG 20 mL AG 75 mL PE 40 mL CG 10 mL CG 100 mL PE 100 mL PE	Number	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 3 3 3		Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/M solved Fe/ TOC nity (SM23 oride (300 lfate (300) ate-N (300) trite (300)	dition r)) ses n //Mn 320B) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0)	Color: bro	Odor: Container 40 mL CG 20 mL AG 75 mL PE 40 mL CG 11 L PE 100 mL PE	Number	Appearance: of Containers 2 2 1 2 1 3 3 3 3 3 3		Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lifate (300 ate-N (300 trite (300.) w 10.59	dition r)) ses n //Mn 320B) 0.0) 0.0) 0.0) 0.0) 0.0) MSMSD (0)	Color: bro	Odor: Container 40 mL CG 20 mL AG 75 mL PE 40 mL CG 100 mL CG 100 mL PE	Number	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 Matthew Pingitor/C	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lfate (300 ate-N (300 trite (300.	dition r)) ses n /Mn 320B)).0) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0)	Color: bro	Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 10 mL CG 100 mL PE	Number Number Sampling Personnel: M	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 4 Atthew Pingitor/C	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/Mi solved Fe/ TOC nity (SM23 oride (300) lifate (300) ate-N (300) w 10.59	dition r)) ses n (/Mn 320B) (/Mn 320B) (/) () () () () () () () () () () () () ()	Color: bro	Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 10 mL CG 100 mL PE	Yes Number Sampling Personnel: M Signature:	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 Atthew Pingitor/C	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lfate (300. trite (300. w 10.59	dition r)) ses n /Mn 320B)).0) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) 0	Color: bro	Oddor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE	Yes Number Sampling Personnel: M Signature:	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 Atthew Pingitor/C	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None owbridge		
Collected Sam	Parameter OC (8260 solved Ga fotal Fe/Mi solved Fe/ TOC nity (SM23 oride (300 lifate (300 lifate (300) ate-N (300 w 10.59	dition r)) ses n //Mn 320B)).0) 0.0) 0.0) 0.0) 0.0) mSMSD 0 ft bmp fe H2S04 c	Color: bro	Own Odor: Container 40 mL CG 20 mL AG 75 mL PE 40 mL CG 10 mL CG 1 L PE 100 mL PE	Yes Number Sampling Personnel: Signature: mS/cm mS/cm millipidemens centimeter millipidemens millipidemens centimeter	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 Matthew Pingitor/Cl	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None None None None None None None		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300) lfate (300) ate-N (300) w 10.59	dition r)) ses n /Mn 320B) 0.0) 0.0) 0.0) 0.0) MSMSD 0 ft bmp fe m H2SO4 su	Color: bro	Odor:Container40 mL CG20 mL AG75 mL PE75 mL PE40 mL CG10 mL CG1 L PE100 mL PE	Yes Number Sampling Personnel: M Signature: M Signature: M ms/cm millisiemens centimeter M mv millivolts	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 Matthew Pingitor/C Per N/A not av NTU nepho turbic	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None None owbridge		
Collected Sam	Parameter OC (8260 solved Ga otal Fe/Mi solved Fe/ TOC nity (SM23 oride (300) lfate (300) ate-N (300) trite (300) w 10.59 w 10.59 solved Fe/ mass solved Fe/ trite (300) trite (300) t	dition r ses n /Mn 320B) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) ft bmp fe m H2S04 su HCL hy	Color: bro	wn Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE 100 mL PE 100 mL PE	Yes Number Sampling Personnel: M Signature: M ms/cm millisiemens centimeter M MW monitoring w	Appearance: of Containers 2 2 1 1 2 1 3 3 3 3 3 4 Atthew Pingitor/C Per N/A not av NTU nepho turbic PE polye	turbid	Preservative HCL TSP HNO3 HNO3 H2SO4 None None None None None None None Some parts per million Ss stainless steel SU standard units FOC top of casing		

HydraSleeve™ Field Form

Project:	SRSN	RSNE						Site Location: Southington, CT					
Project No:	B0054	634.0	000.01900				We	II ID:	MW-907)			
Sample ID:	MW-9	07D-H	S-06032013	3			- Dup	Duplicate ID: N/A					
Sample Date:	6/3/20	13 3:0	0:37 PM				Oth	er QC:	N/A				
Well Type:			MW				We	ll Finish:		_	_XStic	k-up	_Flush Mount
Measuring Point	t:		TOC				Тор	o of Casing E	levation:	1	54.75 ft amsl		
Total Depth as 0	Construc	ted:	51.94 ft	bmp			Scr	eened Interv	al:	4	41.94 to 51.94 ft bmp		
Well Casing Out	ter Diam	eter:	2 in				We	II Casing Mat	erial:	Р	PVC		
Well Screen Ou	ter Diam	eter:	2 in				We	II Screen Ma	terial:	Р	PVC		
Deployment													
Date/Time of De	eploymer	nt:		6/14/2	2012 10:5	9:00 AM	W	eather Condi	tions:		Su	nny	
Depth to ground	lwater at	deplo	yment:	7.48 f	t bmp		То	tal well depth	n at deployn	nent:	52	.46 ft bmj)
HydraSleeveTM	l Dimens	ions	Length:	38 in			Dia	Diameter:				75 in	
Measurement M	lethod:			Calib	ated tethe	ər	Deployment depth (Top of HS):				N//	A	
PID:				0 ppn	า								
Retrieval													
Date/Time of Re	etrieval:		6/3/2013	3 3:00:2	7 PM		Т	otal # of days	deployed:		354.2		
Weather Condition	ions:		N/A				D	epth to groun	dwater at re	etrieval:	7.57 ft	bmp	
PID:		0 ppm					Total well depth at retrieval:			al:	N/A		
Downhole Field	Parame	Parameters Upon Retrieval:											
Temp: 9.70 C	ORP:183.2 mV SCond:0.023 m					0.023 mS	/cm	Water qual	ity meters:	YSI		YSI	
pH: 7.28 Sl	7.28 SU DO: 0.64 mg/L Turb: 13 NTU				NTU Serial #: 06G2302AE 01F0657					357			
Collected Sample Condition Color: clear Odor:				r: No Appearance: clear									

	Paramet			Container	Numb	per of Con	tainers	Preservative			
	VOC (826	60)			40 mL AG		3		HCL		
Rema	irks: 0					Sampling Personnel:	Matthew	Pingitor/Christopher	Trowbri	idge	
						Signature:		de			
Abbrevia AG	ations: amber glass	ft bmp	feet below	in	inches	mS/cm millisiem	ens per	MW monitoring well	NTU	nephelometric	
C ft amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts		N/A not available	ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing	
HydraSleeve™ Field Form

Project:	SRSNE				Site	e Location:	Southing	on, CT				
Project No:	B0054634	.0000.01900				We	II ID:	MW-907	DR			
Sample ID:	MW-907D	R-HS-060320	13			Du	plicate ID:	N/A				
Sample Date:	6/3/2013 2	:21:34 PM				Oth	ner QC:	N/A				
Well Type:		MW				We	ell Finish:		_	_X_Sti	ck-up	Flush Mount
Measuring Point	:	TOC				- Top	o of Casing E	levation:	1	54.04 ft	amsl	
Total Depth as C	Constructed:	177.98	ft bmp			Sci	reened Interv	al:	1	62.78 to	177.78	ft bmp
Well Casing Out	er Diameter:	2 in				We	ell Casing Mat	terial:	F	PVC		
Well Screen Out	Well Screen Outer Diameter: 2 in Doployment 2					We	ell Screen Ma	terial:	F	PVC		
Deployment												
Date/Time of De	ployment:		6/15/20	12 10:0	8:00 AM	W	eather Condi	tions:		Н	lot, Humi	d, Sunny
Depth to ground	water at dep	loyment:	3.28 ft b	omp		To	otal well depth	n at deployn	nent:	1	72.59 ft l	omp
HydraSleeveTM	Dimensions	Length:	38 in			Di	ameter:			1	.75 in	
Measurement M	ethod:		Calibrat	ed tethe	ər	_ De	eployment de	pth (Top of	HS):	N	/A	
PID:			0 ppm									
Retrieval												
Date/Time of Re	trieval:	6/3/201	3 2:19:42 F	РΜ		Т	otal # of days	deployed:		353.2		
Weather Conditi	ons:	N/A				D	epth to groun	ndwater at re	etrieval:	0.05 f	it bmp	
PID:		0 ppm				Т	otal well dept	h at retrieva	al:	N/A		
Downhole Field Parameters Upon Retrieval:			<u>al:</u>									
Temp: 10.55 C ORP: -13.6 mV		S	Cond:	0.086 mS	S/cm	Water qual	ity meters:	YSI		YSI		
pH: 8.47 SU	J DO:	0.32 mg/L	т	urb:	15.1 NTL	J	Serial #:		06G23	02AE	01F	0657
Collected Sample Condition Color: clear Odor:						No		Appeara	nce: c	lear		

	Parameter				Container	Numb	er of Conta	iners	Pres	servative
	VOC (826	60)			40 mL AG		3			HCL
Rema	rks: 0					Sampling Personnel:	Matthew F	ingitor/Christopher	Trowbr	idge
Abbrevia	ntions:					Signature:	4			
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisieme centimete	ens per M er	N monitoring well	NTU	nephelometric turbidity units
C ft amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts	N/	A not available	ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing

HydraSleeve™ Field Form

Project:	SRSN	SRSNE						Location:	Southing	on, CT			
Project No:	B0054	4634.0	000.01900				Wel	I ID:	MW-907	Л			
Sample ID:	MW-9	07M-H	IS-06032013	3			- Dup	licate ID:	N/A				
Sample Date:	6/3/20)13 2:4	8:01 PM				Oth	er QC:	N/A				
Well Type:			MW				Wel	l Finish:		_	_XSt	ick-up	Flush Mount
Measuring Poin	t:		тос				Тор	of Casing E	levation:	1	54.47 ft	amsl	
Total Depth as	Construc	ted:	40.69 ft	bmp			Scre	eened Interva	al:	3	0.69 to	40.69 ft k	omp
Well Casing Ou	ter Diam	eter:	2 in				Wel	I Casing Mat	erial:	P	VC		
Well Screen Ou	Well Screen Outer Diameter: 2 in						Wel	I Screen Mat	erial:	P	VC		
Deployment													
Date/Time of De	eployme	nt:		6/14/2	2012 10:3	0:00 AM	We	eather Condit	ions:		S	Sunny	
Depth to ground	dwater at	t deplo	yment:	8.34 f	t bmp		Tot	tal well depth	at deployn	nent:	2	6.03 ft br	np
HydraSleeveTM	1 Dimens	sions	Length:	38 in			Dia	ameter:			1	.75 in	
Measurement N	lethod:			Calibr	ated tethe	er	De	ployment de	oth (Top of	HS):	Ν	I/A	
PID:				0 ppm	1								
Retrieval													
Date/Time of R	etrieval:		6/3/2013	8 2:46:53	3 PM		To	tal # of days	deployed:		354.2	2	
Weather Condit	ions:		N/A				De	epth to groun	dwater at re	etrieval:	N/A		
PID:			0 ppm				Тс	tal well deptl	n at retrieva	al:	N/A		
Downhole Field Parameters Upon Retrieval:													
Temp: 10.22 C ORP: -137.6 mV		SCond:	0.039 mS	/cm	Water quali	ty meters:	YSI		YSI				
pH: 6.77 S	U [00:	1.13 mg/L		Turb:	47.5 NTL		Serial #:		06G23	02AE	01F	0657
Collected Sample Condition Color: orange Odor:							Yes		Appeara	nce: c	loudy		

	Paramet	er			Container	Numb	per of Co	ontaine	ers	Pres	ervative
	VOC (826	60)			40 mL AG		3				HCL
Rema	Remarks: 0					Sampling Personnel:	Matthe	ew Ping	gitor/Christopher	Trowbri	dge
						Signature:			de		
Abbrevia	tions:										
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisiem centimet	ens per er	MW	monitoring well	NTU	nephelometric turbidity units
С	degrees Celsius	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts		N/A	not available	ppm	parts per million
ft amsl	ft above mean sea									PVC	polyvinyl chloride
	level										
										SU	standard units
										тос	top of casing

HydraSleeve™ Field Form

Project: SRSNE								Site	e Location:	Sout	thington	, CT			
Project	No:	B0054	4634.0	000.01900				We	ell ID:	MWI	304				
Sample	D:	MWL	-304-H	S-06052013				_ Du	plicate ID:	DUP	-GW-0	60520	13-#1		
Sample	Date:	6/5/20	013 10	:30:07 AM				_ Otł	ner QC:	N/A					
Well Ty	pe:			MW				We	ell Finish:			_	_X_Stic	:k-up	Flush Mount
Measur	ing Point	:		TOC				 	p of Casing E	Elevatio	n:	1	63.12 ft a	amsl	
Total D	epth as C	Construc	cted:	13.3 ft b	mp			Sci	reened Interv	/al:		3	.02 to 13	.02 ft bi	mp
Well Ca	asing Out	er Diam	neter:	2 in				We	ell Casing Ma	aterial:		F	PVC		
Well Sc	reen Out	ter Diam	neter:	2 in				We	ell Screen Ma	aterial:		F	VC		
Deploy	ment														
Date/Ti	me of De	ployme	nt:		6/4/2	013 10:00	0:00 AM	W	eather Cond	itions:			N/	A	
Depth t	o ground	water a	t deplo	yment:	N/A			_ Тс	otal well dept	h at de	ployme	nt:	N/.	A	
HydraS	leeveTM	Dimens	sions	Length:	38 in			_ Di	ameter:				1.7	75 in	
Measur	ement M	ethod:			Calib	rated teth	er	_ De	eployment de	epth (To	op of HS	S):	N/.	A	
PID:	PID: Retrieval				N/A										
Retriev	val														
Date/Ti	me of Re	trieval:		6/5/2013	3 10:30:	55 AM		т	otal # of day	s deplo	yed:		1.0		
Weathe	er Conditi	ons:		N/A				D	epth to grou	ndwate	r at retri	ieval:	9.37 ft	bmp	
PID:				0 ppm				— т	otal well dep	th at re	trieval:		N/A		
Downho	ole Field	Parame	eters U	pon Retrieva	al:										
Temp	21.65 C	: (-ססר	61.2 m		00		• '							
romp.			JKF.	-01.2 IIIV		SCond:	0.011 m	S/cm	Water qua	lity met	ers: Y	′SI		YSI	
pH:	6.59 SL	J [DO:	2.83 mg/L		_ SCond: Turb:	0.011 m 65.1 NT	S/cm J	Water qua Serial #:	llity met	ers: Y	'SI 6G23	02AE	951 01F	0657AC
pH:	6.59 SL	J J Die Con	DO:	2.83 mg/L	brown	Turb:	0.011 m 65.1 NT	S/cm J No	Water qua Serial #:	Apr	ers: Y	'SI 16G23 :e: 0	02AE	01F	0657AC
pH: Collect	6.59 SL	J [DO:	2.83 mg/L	brown	_ SCond: _ Turb:	0.011 m 65.1 NT Odor:	J No	Water qua Serial #:	App	ers: Y	'SI 16G23 :e: c	02AE loudy	01F	0657AC
pH: Collect	6.59 SL eed Samp is	ble Con	dition	2.83 mg/L Color:	brown	_ SCond: _ Turb: 	0.011 m 65.1 NT Odor:	J No	Water qua Serial #: 	App of Cor	ers: <u></u> 0 pearanc	'SI 16G23 :e: c	02AE loudy	951 01F Pres	0657AC
pH: Collect	6.59 SL eed Samp is Pa	Die Con aramete	dition er	2.83 mg/L Color:	brown	_ SCond: _ Turb: Cont 40 m	0.011 m 65.1 NT Odor: cainer	S/cm J No	Water qua Serial #: Number	App of Cor	pearanc	'SI 16G23 :e: _c	02AE	Pres	ervative
PH: Collect	6.59 SL eed Samp is Pa VO Disso	aramete DC (8260	dition dition er 0)	2.83 mg/L Color:	brown	Turb: 	0.011 m 65.1 NT Odor: cainer L AG	J No	Water qua Serial #: 	App of Cor 3 4	ers: <u></u> 0 pearanc	'SI 16G23 :e: c	02AE	Pres	0657AC ervative HCL TSP
PH: Collect Analys	6.59 SL eed Samp is Pa VO Disso	Die Con aramete DC (826) Dived Ga tal Fe/M	dition dition er 0) ases	2.83 mg/L Color:	brown	Turb: 	0.011 m 65.1 NT Odor: ainer AL AG AL AG	S/cm J No	Water qua Serial #: 	App of Cor 3 4 1	ers: <u>Y</u> O pearanc	'SI 16G23 2e: c	02AE	Pres	ervative HCL TSP
PH: Collect	6.59 SL eed Samp is Pa VO Disso Tot Disso	J [ble Con aramete DC (826) DC (826) D	dition dition er 0) ases 1n	-61.2 mV 2.83 mg/L Color:	brown	SCond: Turb: 	0.011 m 65.1 NT Odor: AL AG AL AG AL PE	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1	pearance	'SI 16G23 :e: c	02AE	Pres	ervative HCL TSP INO3 INO3
Collect	6.59 SL eed Samp is Pa VO Disso Tot Disso	J [ple Con aramete DC (8266 blved Ga tal Fe/M blved Fe TOC	dition dition er 0) ases 1n e/Mn	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 	0.011 m 65.1 NT Odor: AL AG AL AG AL PE AL PE AL CG	S/cm J No	Water qua Serial #: 	App of Cor 3 4 1 1 3	ers: <u>Y</u> <u>0</u> pearanc	'SI 16G23 :e: c	02AE	Pres	ervative HCL TSP INO3 INO3 2SO4
Analys	6.59 SL eed Samp is Pa VC Disso Tot Disso Alkalinit	J [ble Con aramete DC (8260 blved Ga tal Fe/M blved Fe TOC ty (SM2	dition dition er 0) ases 1n 2/Mn	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 40 m 1 L	0.011 m 65.1 NT Odor: AL AG AL AG AL PE AL PE AL CG PE	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1 3 2	ers: Y	'SI 16G23 :e: c	02AE	Pres	ervative HCL TSP INO3 INO3 2SO4 None
Analys	6.59 SL eed Samp is Pa VO Disso Tot Disso Alkalinit Chlor	J [ble Con aramete DC (8266 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (30	dition dition er 0) ases 1n e/Mn 320B) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 40 m 1 L 100 n	d.011 m 65.1 NT Odor: Color: AL AG AL AG AL PE AL PE AL CG . PE nL PE	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1 3 2 2 2	ers: Y 0 pearanc	'SI 16G23 5 5	02AE	YSI 01F Press I	ervative HCL TSP INO3 INO3 2SO4 None None
Analys	6.59 SL eed Samp is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa	J [ple Con aramete DC (8266 blved Ga blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (30) ate (30)	dition dition er 0) ases In e/Mn 320B) 0.0) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 75 m 70 m 1 L 100 n 100 n	0.011 m 65.1 NT Odor: al AG al AG al PE al CG .PE nL PE nL PE nL PE	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1 3 2 2 2 2	ers: Y	(SI 6G23 5 5 5	02AE	YSI 01F Press H H N N N	ervative HCL TSP INO3 2SO4 None None None
Analys	6.59 SL eed Samp is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa	Dele Con Dele C	dition dition er 0) asses In e/Mn e/320B) 0.0) 0.0) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: 	C.011 m 65.1 NTI Odor: Cainer A AG A AG A AG A C A C A C A C A C A C A C A C	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1 3 2 2 2 2 2 2	ers: Y 0 pearanc	(SI 6G23 56: 0 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	02AE	YSI 01F Press I	ro657AC ervative HCL TSP INO3 INO3 2SO4 None None None None
Analys	6.59 SL eed Samp is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa Nitrat	J [ple Con aramete DC (8266 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (300 ate (300 ate (300 ate (300	dition dition er 0) ases 1n e/Mn e/Mn e/320B) 0.0) 0.0) 0.0) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 75 m 75 m 75 m 75 m 70 m 1 L 00 n 00 n 00 n 00 n 00 n	0.011 m 65.1 NT Odor: Codor: C	S/cm J No	Water qua Serial #: Number	App of Cor 3 4 1 1 3 2 2 2 2 2 2 2 2	ers: Y 0 pearano	(SI 6G23 28: 0 5 5 5	02AE	YSI 01F Press H H N N N N N N	r0657AC ervative HCL TSP INO3 INO3 2SO4 None None None None
Remark	6.59 SL eed Samp is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat	J [Dele Con Aramete DC (8260 Dived Ga tal Fe/M Dived Fe TOC ty (SM2 ride (300 ate (30	dition dition er 0) ases 1n e/Mn 2320B) 0.0) 0.0) 0.0) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 75 m 75 m 75 m 70 m 100 n 00 n 00 n	0.011 m 65.1 NTI Odor: al AG al AG al PE al PE al CG nL PE nL PE nL PE nL PE nL PE	S/cm J No Sal	Water qua Serial #: Number 	App of Cor 3 4 1 1 3 2 2 2 2 2 2 2 2 4 4 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	v Pingito	SI 6623	02AE	YSI 01F Pres	ervative HCL TSP INO3 INO3 2SO4 None None None None None None
Analys Remark Abbreviatid	6.59 SL ed Samp is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat Nitrat	aramete DC (826) DVC (826) DVC (826) DVC Ga tal Fe/M DVcd Fe TOC ty (SM2 ride (300 ate (300 ate (300 ate (300 ate (300 ate (300 ate (300	dition dition er 0) ases 1n e/Mn e/Mn 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0)	-61.2 mv 2.83 mg/L Color:	brown	SCond: Turb: 40 m 75 m 75 m 75 m 75 m 75 m 75 m 75 m 70 m	0.011 m 65.1 NTI Odor: cainer IL AG IL AG IL PE IL CG PE IL PE IL PE IL PE IL PE IL PE IL PE	S/cm J No Sal	Water qua Serial #: Number 	App of Cor 3 4 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	v Pingita	/SI 6G23 28: 0 5 5 5 5 7 7 7	02AE	Pres Pres	i0657AC ervative HCL TSP INO3 INO3 2SO4 None None None None None
Abbreviatid AG a	6.59 SL eed Samp is Pa VC Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat	J [ble Con aramete DC (8260 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (300 ite (300 ite (300 ite (300	dition dition o) ases ln a/Mn ases 0.0) o.0) o.0) o.0) dition	feet below measuring poi	brown	SCond: Turb: 40 m 75 m 75 m 75 m 75 m 75 m 75 m 70 m 	0.011 m 65.1 NTI Odor: ainer A AG A AG A PE A AG A A	S/cm J No Sal	Water qua Serial #: 	App of Cor 3 4 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	v Pingito	rSI 6G23 ce: c 5 5 pr/Chr	02AE	Pres	ervative HCL TSP INO3 2SO4 None None None None None None None None

monitoring well

PE

polyethylene

mg/L milligrams per liter MW

CG

clear glass

ft amsl ft above mean sea

level

HCL

hydrochloric acid

HydraSleeve™ Field Form

Project:	SRS	NE			Site Location:	Southington, C	T
Project N	lo: B00	54634.0	000.01900		Well ID:	MWL-307	
Sample II	D: MWI	L-307-H	S-06052013		Duplicate ID:	N/A	
Sample D	Date: 6/5/2	2013 2:5	5:45 PM		Other QC:	MS/MSD	
Well Type	e:		MW		Well Finish:		XStick-upFlush Mount
Measurin	ng Point:		TOC		Top of Casing E	levation:	159.14 ft amsl
Total Dep	pth as Constru	ucted:	12.6 ft bmp		Screened Interv	al:	2.51 to 12.51 ft bmp
Well Casi	ing Outer Dia	meter:	2 in		Well Casing Mat	terial:	PVC
Well Scre	een Outer Dia	meter:	2 in		Well Screen Ma	terial:	PVC
Deploym	nent						
Date/Tim	e of Deploym	ent:	6/4	4/2013 2:00:00 PM	Weather Condi	tions:	Sunny 75 F
Depth to	groundwater	at deploy	yment: 5.8	37 ft bmp	- Total well depth	at deployment:	N/A
HydraSle	eveTM Dimer	nsions	Length: 38	in	- Diameter:		1.75 in
Measurer	ment Method:		Ca	alibrated tether	- Deployment de	pth (Top of HS):	6 ft bmp
PID:			0	opm	-		
Retrieval	I						
Date/Tim	e of Retrieval	:	6/5/2013 2:4	5:17 PM	Total # of days	deployed:	1.0
Weather	Conditions:		N/A		 Depth to groun 	dwater at retriev	al: 5.88 ft bmp
PID:			0 ppm		Total well dept	h at retrieval:	N/A
Downhole	e Field Param	eters Up	oon Retrieval:		_		
Temp: 2	20.67 C	ORP:	-63.9 mV	SCond: 0.019 mS	/cm Water qual	ity meters: YSI	YSI
рН: (6.84 SU	DO:	3.66 mg/L	Turb: 10.3 NTL	Serial #:	030	2302AE 0F10657AC
Collected	d Sample Co	ndition	Color: clea	ar Odor:	Yes	Appearance:	clear
Analysis	d Sample Co	ndition	Color: clea	ar Odor:	Yes	Appearance:	clear
Analysis	d Sample Co S Paramet	ndition	Color: clea	ar Odor: Container	Yes Number	Appearance: of Containers	clear Preservative
Analysis	d Sample Co B Paramet VOC (820	ndition ter 60)	Color: clea	ar Odor: Container 40 mL CG	Yes Number	Appearance: of Containers	clear Preservative HCL
Analysis	d Sample Co Paramet VOC (820 Dissolved G	ndition ter 60) Gases	Color: clea	Ar Odor: Container 40 mL CG 20 mL AG	Yes Number	Appearance: of Containers 2 2	clear Preservative HCL TSP
Analysis	d Sample Co Paramet VOC (820 Dissolved C Total Fe/	ndition ter 60) Gases Mn	Color: clea	ar Odor: Container 40 mL CG 20 mL AG 75 mL PE	Yes Number	Appearance: of Containers 2 2 1	clear Preservative HCL TSP HNO3
Analysis	d Sample Co Paramet VOC (820 Dissolved C Total Fe/ Dissolved F	ndition ter 60) Gases Mn Fe/Mn	Color: clea	Ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE	Yes Number	Appearance: of Containers 2 2 1 1	clear Preservative HCL TSP HNO3 HNO3
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC	ndition ter 60) Gases Mn Te/Mn	Color: clea	Ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG	YesNumber	Appearance: of Containers 2 2 1 1 6	clear Preservative HCL TSP HNO3 HNO3 H2SO4
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM	ndition ter 60) Gases Mn 'e/Mn 2320B)		ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE	Yes Number	Appearance: of Containers 2 2 1 1 6 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 H2SO4 None
Analysis	d Sample Co Paramete VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (3	ndition her 60) Gases Mn ce/Mn 2320B) 00.0)		ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 1 6 1 1 1 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 H2SO4 None None
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (3 Sulfate (30	ndition ter 60) Gases Mn Ee/Mn 2320B) 00.0)		ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 H2SO4 None None None
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (30 Sulfate (30 Nitrate-N (3	ndition ter 60) Gases Mn 2320B) 00.0) 00.0)		ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 HNO3 H2SO4 None None None None None
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (30 Sulfate (30 Nitrate-N (3 Nitrate (30)	ndition ter 60) Gases Mn ce/Mn 2320B) 00.0) 00.0) 00.0) 00.0)		ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 H2SO4 None None None None None None
Analysis	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (30 Sulfate (30 Nitrate-N (3 Nitrate 30)	ndition ter 60) Gases Mn ce/Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0)	Color: clea	ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	Clear
Analysis Analysis Remarks: Abbreviations	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (30 Nitrate-N (3 Nitrite (30) : DTW 5.88. f	ndition ter 60) Gases Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) MS/MSD	Color: clea	ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE	Yes Number	Appearance:	Clear
Analysis Abbreviations AG am	d Sample Co Paramet VOC (820 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (3) Sulfate (30 Nitrate-N (3) Nitrate-N (3) Nitrate (30) : DTW 5.88. f	ndition ter 60) Gases Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0) 00.0)	Color: clea	Ar Odor: Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 40 mL CG 1 L PE 100 mL PE 100 mL PE 100 mL PE 100 mL PE	Yes Number	Appearance: of Containers 2 2 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	Preservative HCL TSP HNO3 HNO3 HNO3 HNO3 None None None None None None None
Analysis Analysis Remarks: Abbreviations AG am C dep	d Sample Co Paramete VOC (824 Dissolved G Total Fe/ Dissolved F TOC Alkalinity (SM Chloride (3) Sulfate (30 Nitrate-N (3 Nitrate-N (3 Nitrate (30) : DTW 5.88.1	ndition ter 60) Gases Mn 2320B) 00.0) 00.0) 00.0) 00.0) 00.0) MS/MSD	Color: clea	Arr Odor: arr Container 40 mL CG 20 mL AG 75 mL PE 75 mL PE 75 mL PE 40 mL CG 100 mL PE 100 mL PE 100 mL PE 100 mL PE	Yes Number Sampling Personnel: M Signature: mg/L milligrams pe mS/cm millisiemens centimeter	Appearance: of Containers 2 2 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	clear Preservative HCL TSP HNO3 HNO3 HNO3 HNO3 H2SO4 None None None None None None None None

/EDCWater/SRSNE/HydraSleeveTM_Log

degrees Fahrenheit

F

standard units

trisodium phosphate dodecahydrate

top of casing

SU

тос

TSP

HydraSleeve™ Field Form

Project:	SRSNE				Site	Location:	Southingt	on, CT				
Project No:	B0054634.0	0000.01900				Wel	I ID:	MWL-309)			
Sample ID:	MWL-309-H	IS-06062013	3			Dup	licate ID:	N/A				
Sample Date:	6/6/2013 9:0	00:44 AM				Othe	er QC:	N/A				
Well Type:		MW				Wel	l Finish:		_	_X	Stick-up	Flush Mount
Measuring Point	:	TOC				Тор	of Casing E	levation:	1	55.2 1	ft amsl	
Total Depth as C	Constructed:	13 ft br	np			Scre	eened Interv	al:	3	6.51 to	o 13.51 ft br	np
Well Casing Out	er Diameter:	2 in				Wel	I Casing Mat	terial:	F	٧C		
Well Screen Out	Well Screen Outer Diameter: 2 in					Wel	I Screen Ma	terial:	F	VC		
Deployment												
Date/Time of De	ployment:		6/13/20)12 12:4	0:00 PM	We	ather Condi	tions:			Cloudy, H	ot, Humid
Depth to ground	water at deplo	yment:	5.10 ft l	bmp		Tot	al well depth	n at deployn	nent:		13.11 ft br	np
HydraSleeveTM	Dimensions	Length:	38 in			Dia	meter:				1.75 in	
Measurement M	ethod:		Calibra	ted tethe	er	De	ployment de	pth (Top of	HS):		N/A	
PID:			0 ppm									
Retrieval												
Date/Time of Re	trieval:	6/6/2013	3 9:00:15	AM		То	tal # of days	deployed:		35	7.8	
Weather Conditi	ons:	N/A				- De	pth to groun	ndwater at re	etrieval:	4.3	ft bmp	
PID:		0 ppm				То	tal well dept	h at retrieva	al:	N/A	4	
Downhole Field Parameters Upon Retrieval:												
Temp: 14.53 C	ORP:	52.0 mV	5	SCond:	0.014 mS/	′cm	Water qual	ity meters:	YSI		YSI	
pH: 6.84 SL	J DO:	7.54 mg/L		Turb:	113 NTU		Serial #:		06G23	02AE	01F	0657AC
Collected Sample Condition Color: brown Odor:								Appeara	nce: c	loudy	,	

	Paramet		Container		Numbe	er of Co	ntaine	rs	Pres	ervative		
	VOC (826	60)			40 mL AG			3				HCL
Rema	rks: 0					Sampli Person	ing nnel:	Edward	d Cimill	uca		
						Signa	ature:	5.	Ind	Cut	-	
Abbrevia	tions:											
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm m	nillisieme entimete	ns per r	MW	monitoring well	NTU	nephelometric turbidity units
С	degrees Celsius	HCL	hydrochloric acid	mg/L	milligrams per liter	mV m	nillivolts		N/A	not available	ppm	parts per million
ft amsl	ft above mean sea										PVC	polyvinyl chloride
	level										SU	standard units
											тос	top of casing

HydraSleeve™ Field Form

Project:	SRSN	RSNE						Location:	Southingt	on, CT			
Project No:	B0054	634.0	000.01900				Wel	I ID:	P-101B				
Sample ID:	P-101E	3-HS-	06042013				Dup	licate ID:	N/A				
Sample Date:	6/4/201	13 9:2	25:00 AM				Oth	er QC:	N/A				
Well Type:			MW				Wel	l Finish:		_	_x_s	Stick-up	Flush Mount
Measuring Point	:		тос				Тор	of Casing E	levation:	1	50.48	ft amsl	
Total Depth as C	Construct	ed:	46.6 ft b	omp			Scre	eened Interv	al:	3	5.95 to	o 45.95 ft l	omp
Well Casing Out	er Diame	eter:	2 in				Wel	I Casing Mat	erial:	F	VC		
Well Screen Out	Well Screen Outer Diameter: 2 in						Wel	I Screen Ma	terial:	F	VC		
Deployment													
Date/Time of De	ploymen	t:		6/14/2	2012 9:15	:00 AM	We	ather Condi	ions:			Cloudy, H	ot, Humid
Depth to ground	water at	deplo	yment:	2.30 f	t bmp		Tot	al well depth	at deploym	nent:		46.65 ft b	mp
HydraSleeveTM	Dimensi	ons	Length:	38 in			Dia	meter:			_	1.75 in	
Measurement M	ethod:			Calibr	ated tethe	er	De	ployment de	pth (Top of	HS):	-	N/A	
PID:				0 ppm	า								
Retrieval													
Date/Time of Re	trieval:		6/4/2013	3 9:25:00	D AM		То	tal # of days	deployed:		355	.0	
Weather Conditi	ons:		N/A				De	epth to groun	dwater at re	etrieval:	2.28	3 ft bmp	
PID:			0 ppm				То	tal well dept	h at retrieva	al:	N/A		
Downhole Field Parameters Upon Retrieval:													
Temp: 13.16 C ORP: -5.8 mV SCon		SCond:	0.013 mS/	cm	Water qual	ity meters:	YSI		YSI				
pH: 6.93 SL	J D	0:	2.18 mg/L		Turb:	11.9 NTU		Serial #:		06G23	02 AE	01F	0657 AC
Collected Sample Condition Color: brown Odor:							No		Appeara	nce: c	lear		

	Paramete	er			Container	Numb	er of Conta	iners	Pres	servative
	VOC (826	0)			40 mL AG		3			HCL
Rema	Remarks: 0					Sampling Personnel:	Matthew P	ingitor/Christopher	Trowbri	dge
						Signature:	-			
Abbrevia	tions:									
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisieme centimete	ens per 🛛 MV er	/ monitoring well	NTU	nephelometric turbidity units
С	degrees Celsius	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts	N/A	not available	ppm	parts per million
ft amsl	ft above mean sea								PVC	polyvinyl chloride
	level								su	standard units
									TOC	top of casing

HydraSleeve™ Field Form

Project:	SRSNE				Sit	e Location:	Southingt	ton, CT				
Project No:	B0054634	.0000.01900				We	ell ID:	P-101C				
Sample ID:	P-101C-H	S-06042013				Du	plicate ID:	N/A				
Sample Date:	6/4/2013 9	:39:13 AM				Otl	her QC:	N/A				
Well Type:		MW				We	ell Finish:		_	_XS	tick-up	Flush Mount
Measuring Point	:	TOC				– To	p of Casing E	levation:	1	50.61 f	t amsl	
Total Depth as 0	Constructed:	15.4 ft l	omp			Sc	reened Interv	al:	4	.89 to 1	14.89 ft br	np
Well Casing Out	er Diameter:	2 in				We	ell Casing Mat	erial:	F	٧C		
Well Screen Outer Diameter: 2 in						We	ell Screen Ma	terial:	F	VC		
Deployment												
Date/Time of De	ployment:		6/14/20	012 10:1	9:00 AM	W	eather Condi	ions:		(Cloudy, H	ot, Humid
Depth to ground	water at dep	loyment:	4.86 ft l	bmp		То	otal well depth	at deployn	nent:	,	15.26 ft br	np
HydraSleeveTM	Dimensions	Length:	38 in			Di	iameter:			-	1.75 in	
Measurement M	ethod:		Calibra	ted tethe	ər	_ D	eployment de	pth (Top of	HS):	1	N/A	
PID:			0 ppm									
Retrieval												
Date/Time of Re	etrieval:	6/4/201	3 9:31:16	AM		Т	otal # of days	deployed:		355.	0	
Weather Condition	ons:	N/A				D	Pepth to groun	dwater at re	etrieval:	3.33	ft bmp	
PID:		0 ppm				Т	otal well dept	h at retrieva	al:	N/A		
Downhole Field Parameters Upon Retrieval:												
Temp: 12.47 C ORP: -21.9 mV			5	SCond:	0.007 mS	S/cm	Water qual	ity meters:	YSI		YSI	
pH: 7.15 Sl	J DO:	2.32 mg/L		Turb:	99.0 NTU	J	Serial #:		06G23	02AE	01F	0657AC
Collected Sample Condition Color: brown Odor:								Appeara	n ce: c	loudy		

	Paramete	er			Container	Numb	per of Co	ontainers	Pres	servative
	VOC (826	60)			40 mL AG		3			HCL
Rema	rks: 0					Sampling Personnel:	Matthe	w Pingitor/Christopher	Trowbri	dge
						Signature:				
Abbrevia	tions:									
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisiem centimet	ens per er	MW monitoring well	NTU	nephelometric turbidity units
С	degrees Celsius	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts		N/A not available	ppm	parts per million
ft amsl	ft above mean sea level								PVC	polyvinyl chloride
									SU	standard units
									TOC	top of casing

HydraSleeve™ Field Form

Project:	SR	SNE					Site	Location:	Southingt	on, CT			
Project No:	B00	054634.0	000.01900				We	II ID:	P-11A				
Sample ID:	P-1	11A-HS-0	6062013				Dup	olicate ID:	N/A				
Sample Date:	6/6	6/2013 8:3	0:00 AM				Oth	er QC:	N/A				
Well Type:			MW				We	ll Finish:		_	_x_s	tick-up	Flush Mount
Measuring Po	int:		TOC				– Top	o of Casing E	levation:	1	52.73 f	t amsl	
Total Depth as	s Const	ructed:	70 ft br	ıp			Scr	eened Interva	al:	5	9.59 to	69.59 ft k	omp
Well Casing C	Outer Dia	ameter:	2 in				We	II Casing Mat	erial:	Р	VC		
Well Screen C	Duter Di	ameter:	2 in				We	II Screen Mat	terial:	Р	VC		
Deployment													
Date/Time of I	Deployr	ment:		6/14/2	2012 12:5	0:00 PM	We	eather Condit	ions:		(Cloudy, H	ot, Humid
Depth to grou	ndwate	r at deplo	yment:	5.64 f	t bmp		То	tal well depth	at deployn	nent:	(68.38 ft bi	np
HydraSleeveT	M Dime	ensions	Length:	38 in			Dia	ameter:			-	1.75 in	
Measurement	Method	d:		Calibr	ated tethe	er	De	ployment de	pth (Top of	HS):	1	N/A	
PID:				0 ppm	า								
Retrieval													
Date/Time of I	Retrieva	al:	6/6/2013	3 8:30:53	3 AM		То	otal # of days	deployed:		356.	8	
Weather Cond	ditions:		N/A				D	epth to groun	dwater at re	etrieval:	5.72	ft bmp	
PID:			0 ppm				То	otal well dept	h at retrieva	al:	N/A		
Downhole Fie	ld Para	meters U	oon Retrieva	al:									
Temp: 13.5	С	ORP:	12.1 mV		SCond:	0.017 mS	S/cm	Water qual	ity meters:	YSI		YSI	
pH: 6.47	SU	DO:	2.56 mg/L		Turb:	11.7 NTU	J	Serial #:		06G23	02 AE	01F	0657 AC
Collected Sa	mple C	ondition	Color:	brown		Odor:	Yes		Appeara	nce: c	loudy		

	Paramet	er			Container	Numb	er of Contai	ners	Pres	servative
	VOC (826	60)			40 mL AG		3			HCL
Rema	rks: 0					Sampling Personnel:	Matthew Pi	ngitor/Vincent Whi	sker	
Abbrevia	ntions:					Signature:	\neg	\		
AG	amber glass	ft bmp	feet below measuring point	in	inches	mS/cm millisieme	ens per MW er	monitoring well	NTU	nephelometric turbidity units
C ft amsl	degrees Celsius ft above mean sea level	HCL	hydrochloric acid	mg/L	milligrams per liter	mV millivolts	N/A	not available	ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing

HydraSleeve™ Field Form

Project:	S	SRSNE					Site	Location:	Southingt	on, CT			
Project No:	E	30054634.0	0000.01900				Wel	I ID:	PZO-2D				
Sample ID:	F	ZO-2D-HS	6-06032013				Dup	licate ID:	DUP-GW	-060320	13-#1		
Sample Date	e: 6	6/3/2013 11	:01:00 AM				Oth	er QC:	N/A				
Well Type:			MW				Wel	l Finish:		_	_x_s	Stick-up	Flush Mount
Measuring F	Point:		TOC				Тор	of Casing El	evation:	1	54.14	ft amsl	
Total Depth	as Con	structed:	86.8 ft b	omp			Scre	eened Interva	d:	7	6.76 to	o 86.76 ft b	omp
Well Casing	Outer	Diameter:	2 in				Wel	I Casing Mate	erial:	F	VC		
Well Screen	Outer	Diameter:	2 in				Wel	I Screen Mate	erial:	F	VC		
Deploymen	t												
Date/Time o	f Deplo	yment:		6/13/2	2012 2:22	:00 PM	We	eather Conditi	ons:			Cloudy	
Depth to gro	oundwa	ter at deplo	yment:	7.18 f	t bmp		Tot	al well depth	at deploym	nent:		85.22 ft bi	np
HydraSleeve	eTM Di	mensions	Length:	38 in			Dia	ameter:			_	1.75 in	
Measureme	nt Meth	nod:		Calib	rated tethe	ər	De	ployment dep	oth (Top of	HS):	_	N/A	
PID:				0 ppn	n								
Retrieval													
Date/Time o	of Retrie	eval:	6/3/2013	3 11:01:	20 AM		Тс	tal # of days	deployed:		354	.9	
Weather Co	nditions	S:	N/A				De	epth to ground	dwater at re	etrieval:	7.2	ft bmp	
PID:			0 ppm				Тс	tal well depth	at retrieva	ıl:	N/A		
Downhole F	ield Pa	rameters U	pon Retrieva	<u>al:</u>									
Temp: 9.03	8 C	ORP:	0.5 mV		SCond:	0.009 mS/c	m	Water qualit	ty meters:	YSI		YSI	
pH: 7.04	4 SU	DO:	9.89 mg/L		Turb:	21.3 NTU		Serial #:		06G23	02 AE	01F	0657 AC
Collected S	ample	Condition	Color:	clear		Odor: N	lo		Appeara	nce: c	loudy		

	Paramet	er			Container	Nu	ımbe	r of Co	ontaine	ers	Pres	servative
	VOC (826	60)			40 mL AG			3				HCL
Rema	rks: 0					Sampling Personne) el:	Matthe	w Ping	gitor/Christopher	Trowbri	dge
						Signatu	re:	2	6	44		
Abbrevia	tions:	1		1		I						
AG	amber glass	ft bmp	feet below	in	inches	mS/cm millis	iemen	is per	MW	monitoring well	NTU	nephelometric
C ft amsl	degrees Celsius ft above mean sea	HCL	hydrochloric acid	mg/L	milligrams per liter	mV milliv	olts		N/A	not available	ppm PVC	parts per million polyvinyl chloride
											SU TOC	standard units top of casing

HydraSleeve™ Field Form

Project:	SRSNE					Site	Location:	Southingt	ton, CT	
Project No:	B0054634.	0000.01900				Wel	ID:	PZO-2M		
Sample ID:	PZO-2M-H	S-06052013				Dup	licate ID:	N/A		
Sample Date:	6/5/2013 2:	30:16 PM				Othe	er QC:	N/A		
Well Type:		MW				Wel	Finish:			XStick-upFlush Mount
Measuring Poin	t:	TOC				Тор	of Casing Ele	vation:		154.77 ft amsl
Total Depth as	Constructed:	58.1 ft b	omp			Scre	ened Interval	:	-	48.07 to 58.07 ft bmp
Well Casing Ou	ter Diameter:	2 in				Wel	Casing Mate	rial:	_	PVC
Well Screen Ou	ter Diameter:	2 in				Wel	Screen Mate	rial:		PVC
Deployment										
Date/Time of De	eployment:		6/3/2013	3 2:05:3	2 PM	We	ather Conditic	ons:		Hot, Humid, Sunny 80 F
Depth to ground	water at depl	oyment:	7.70 ft b	mp		Tot	al well depth a	at deployn	nent:	56 ft bmp
HydraSleeveTM	1 Dimensions	Length:	38 in			Dia	meter:			1.75 in
Measurement M	lethod:		Calibrat	ed tethe	er	Dep	oloyment dept	h (Top of	HS):	51 ft bmp
PID:			2.0 ppm	1						
Retrieval										
Date/Time of Re	etrieval:	6/5/2013	3 2:30:26 F	РМ		То	tal # of days d	leployed:		2.0
Weather Condit	ions:	N/A				De	pth to ground	water at re	etrieval:	8.70 ft bmp
PID:		N/A				То	tal well depth	at retrieva	al:	N/A
Downhole Field	Parameters L	Jpon Retrieva	<u>al:</u>							
Temp: 14.69 (C ORP:	28.1 mV	S	Cond:	.413 mS/cr	n	Water quality	/ meters:	YSI	Turbidity Meter
pH: 6.62 S	U DO:	15.71 mg/L	. т	urb:	36 NTU		Serial #:		N/A	N/A
Collected Sam	ple Conditior	Color:	N/A		Odor: N	I/A		Appeara	ince:	cloudy

		Paramete	ər			Container		Numb	er of Co	ntaine	ers	Pres	servative
		VOC (826	0)			40 mL AG			3				HCL
Rema	arks:	0					Sam Pers	pling onnel:	Edward	d Cimil	luca		
							Sig	nature:	E	M	CM_		
Abbrevi	ations:												
AG	ambe	er glass	ft amsl	ft above mean sea level	HCL	hydrochloric acid	mg/L	milligram	s per liter	mV	millivolts	N/A	not available
С	degre	ees Celsius	ft bmp	feet below measuring point	in	inches	mS/cm	millisieme centimete	ens per er	MW	monitoring well	NTU	nephelometric turbidity units
F	degre	ees Fahrenheit										ppm PVC SU TOC	parts per million polyvinyl chloride standard units top of casing

HydraSleeve™ Field Form

Project:	SRSNE					Site	Location:	Southing	ton, CT			
Project No:	B0054634.0	000.01900				Wel	I ID:	PZO-2M				
Sample ID:	PZO-2M-HS	-06192013				Dup	licate ID:	N/A				
Sample Date:	6/19/2013 1	2:30:00 PM				Othe	er QC:	N/A				
Well Type:		MW				Wel	l Finish:			_X_Sti	ck-up	Flush Mount
Measuring Point:	:	TOC				Тор	of Casing El	evation:		154.77 ft	amsl	
Total Depth as C	constructed:	58.1 ft b	mp			Scre	eened Interva	al:	-	48.07 to \$	58.07 ft k	omp
Well Casing Oute	er Diameter:	2 in				Wel	I Casing Mate	erial:		PVC		
Well Screen Out	er Diameter:	2 in				Wel	I Screen Mat	erial:	_	PVC		
Deployment												
Date/Time of De	ployment:		6/15/2013	12:1	5:00 PM	We	ather Conditi	ions:		S	unny 80	F
Depth to ground	water at deplo	yment:	5.54 ft bm)		Tot	al well depth	at deployn	nent:	5	8.12 ft br	np
HydraSleeveTM	Dimensions	Length:	38 in			Dia	meter:			1	.75 in	
Measurement Me	ethod:		Calibrated	tethe	er	De	ployment dep	oth (Top of	HS):	5	5.18 ft br	np
PID:			N/A									
Retrieval												
Date/Time of Ret	trieval:	6/19/201	3 12:30:00 F	м		То	tal # of days	deployed:		4.0		
Weather Condition	ons:	N/A				De	epth to ground	dwater at re	etrieval:	6.32 f	t bmp	
PID:		N/A				То	tal well depth	n at retrieva	al:	N/A		
Downhole Field I	Parameters U	pon Retrieva	<u>l:</u>									
Temp: 16.01 C	ORP:	80.8 mV	SCo	ond:	0.193 mS/c	m	Water quali	ty meters:	YSI		Tur	bidity Meter
pH: 8.01 SU	DO:	26.73 mg/L	Tur	o:	1.91 NTU		Serial #:		10439		117	34
Collected Samp	le Condition	Color:	N/A		Odor: N	/A		Appeara	ince:	N/A		

	Paramete	er	Container	Number of Containers	Preservative
	VOC (826	0)	40 mL AG	3	HCL
Rema	ırks: 0			Sampling Personnel: Michael Skowronek	
				Signature: Mh	
Abbrevia	ations:				
AG	amber glass	ft amsl ft above mean sea level	HCL hydrochloric acid	mg/L milligrams per liter mV millivolts	N/A not available
С	degrees Celsius	ft bmp feet below measuring point	in inches	mS/cm millisiemens per MW monitoring wel centimeter	I NTU nephelometric turbidity units
F	degrees Fahrenheit				PVC polyvinyl chloride SU standard units TOC top of casing

HydraSleeve™ Field Form

Project:	SRSNE					Site	Location:	Southingt	on, CT			
Project No:	B0054634	1.0000.01900				We	II ID:	PZR-2R				
Sample ID:	PZR-2R-H	IS-06052013				Dup	olicate ID:	N/A				
Sample Date:	6/5/2013	2:45:43 PM				Oth	er QC:	N/A				
Well Type:		MW				We	ll Finish:		-	_x_s	Stick-up	Flush Mount
Measuring Point	:	TOC				Тор	o of Casing E	levation:		153.78	ft amsl	
Total Depth as C	Constructed:	139.5 ft	bmp			Scr	eened Interv	al:	-	122.23	to 142.23	ft bmp
Well Casing Out	er Diameter	: 2 in				We	II Casing Mat	terial:	Ī	PVC		
Well Screen Out	er Diameter	:: 2 in				We	II Screen Ma	terial:	-	PVC		
Deployment												
Date/Time of De	ployment:		6/4/2013	3 11:00	:00 AM	We	eather Condi	tions:			Sunny 70	F
Depth to ground	water at dep	oloyment:	7.23 ft b	mp		То	tal well depth	n at deployn	nent:		140.5 ft bi	np
HydraSleeveTM	Dimensions	s Length:	38 in			Dia	ameter:				1.75 in	
Measurement M	ethod:		Calibrate	ed teth	er	De	ployment de	pth (Top of	HS):		130 ft bm	þ
PID:			0 ppm									
Retrieval												
Date/Time of Re	trieval:	6/5/2013	3 2:45:03 F	M		Тс	otal # of days	deployed:		1.2		
Weather Conditi	ons:	N/A				_ De	epth to groun	dwater at re	etrieval:	7.85	5 ft bmp	
PID:		0 ppm				Tc	otal well dept	h at retrieva	al:	N/A		
Downhole Field	Parameters	Upon Retrieva	<u>al:</u>									
Temp: 18.24 C	CRP	: 109 mV	S	Cond:	.241 mS/c	m	Water qual	ity meters:	YSI		YSI	
pH: 6.65 SL	J DO:	10.96 mg/L	. т	urb:	N/A		Serial #:		06G23	302 AE	01F	0657 AC
Collected Samp	ole Conditio	on Color:	N/A		Odor:	N/A		Appeara	nce:	N/A		

	Paramete	er	Container	Number of Containers	Preservative
	VOC (826	50)	40 mL AG	3	HCL
Rema	arks: 0			Sampling Personnel: Edward Cimilluca	
				Signature: EMCM	
Abbrevi	ations:				
AG	amber glass	ft amsl ft above mean sea HCL level	L hydrochloric acid	mg/L milligrams per liter mV millivolts	N/A not available
С	degrees Celsius	ft bmp feet below in measuring point	inches	mS/cm millisiemens per MW monitoring well centimeter	ppm parts per million
F	degrees Fahrenheit				PVC polyvinyl chloride
					SU standard units
					TOC top of casing

HydraSleeve™ Field Form

Project:	SRSNE				Site Location:	Southington, Cl	Г
Project No:	B0054634.0	000.01900			Well ID:	TW-08A	
Sample ID:	TW-08A-HS	-06052013			Duplicate ID:	N/A	
Sample Date:	6/5/2013 9:2	0:28 AM			Other QC:	N/A	
Well Type:		MW			Well Finish:		XStick-upFlush Mount
Measuring Point	t:	TOC			Top of Casing E	levation:	161.97 ft amsl
Total Depth as 0	Constructed:	17.53 ft	bmp		Screened Interv	al:	6.53 to 16.53 ft bmp
Well Casing Out	ter Diameter:	2 in			Well Casing Mat	terial:	SS
Well Screen Out	ter Diameter:	2 in			Well Screen Ma	terial:	SS
Deployment							
Date/Time of De	ployment:		6/14/2012 2:53	:00 PM	Weather Condi	tions:	Cloudy
Depth to ground	water at deploy	yment:	6.12 ft bmp		Total well depth	n at deployment:	14.50 ft bmp
HydraSleeveTM	Dimensions	Length:	38 in		Diameter:		1.75 in
Measurement M	lethod:		Calibrated teth	er	Deployment de	pth (Top of HS):	N/A
PID:			2.7 ppm				
Retrieval							
Date/Time of Re	etrieval:	6/5/2013	9:20:45 AM		Total # of days	deployed:	355.8
Weather Conditi	ions:	N/A			Depth to groun	ndwater at retrieva	l: 7.87 ft bmp
PID:		3.7 ppm			- Total well dept	h at retrieval:	N/A
Downhole Field	Parameters Up	oon Retrieva	<u>l:</u>		-		
Temp: 18.99 C	C ORP:	-44.1 mV	SCond:	0.017 mS/	cm Water qual	ity meters: YSI	YSI
pH: 6.30 SL	J DO:	3.26 mg/L	Turb:	871 NTU	Serial #:	06G2	2302AE 01F065AC
Collected Sam	ole Condition	Color:	brown	Odor:	Yes	Appearance:	cloudy
Analysis							
Pa	arameter		Cont	ainer	Number	of Containers	Preservative
VC	DC (8260)		40 m	LCG		3	HCL
Disso	olved Gases		20 m	L AG		2	TSP
То	tal Fe/Mn		75 m	L PE		1	HNO3
Disso	olved Fe/Mn		75 m	L PE		1	HNO3
	TOC		40 m	L CG		2	H2SO4
Alkalini	ity (SM2320B)		1 L	PE		1	None
Chlo	ride (300.0)		100 n	nL PE		1	None
Sulf	ate (300.0)		100 n	nL PE		1	None
Nitra	te-N (300.0)		100 n	nL PE		1	None
Nitr	rite (300.0)		100 n	nL PE		1	None
Remarks: DTW	/ 7.87				Sampling Personnel: M	latthew Pingitor/C	hristopher Trowbridge

dodecahydrate

HydraSleeve™ Field Form

Project:	SRSNE				Site Location:	Southington, CT	г
Project No:	B0054634.0	000.01900			Well ID:	TW-08B	
Sample ID:	TW-08B-HS	-06052013			Duplicate ID:	N/A	
Sample Date:	6/5/2013 8:5	50:11 AM			Other QC:	N/A	
Well Type:		MW			Well Finish:		XStick-upFlush Mount
Measuring Point	:	TOC			Top of Casing E	levation:	162.01 ft amsl
Total Depth as C	Constructed:	35.09 ft	bmp		Screened Interv	al:	24.09 to 34.09 ft bmp
Well Casing Out	er Diameter:	2 in			Well Casing Mat	erial:	SS
Well Screen Out	er Diameter:	2 in			Well Screen Mat	terial:	SS
Deployment							
Date/Time of De	ployment:		6/15/2012 10:4	1:00 AM	Weather Condit	tions:	Sunny, Humid
Depth to ground	water at deplo	yment:	6.63 ft bmp		Total well depth	at deployment:	28.82 ft bmp
HydraSleeveTM	Dimensions	Length:	38 in		Diameter:		1.75 in
Measurement M	ethod:		Calibrated tethe	ər	Deployment de	pth (Top of HS):	N/A
PID:			56.8 ppm				
Retrieval							
Date/Time of Re	trieval:	6/5/2013	8:50:48 AM		Total # of days	deployed:	354.9
Weather Conditi	ons:	N/A			Depth to groun	dwater at retrieva	l: 7.87 ft bmp
PID:		2.2 ppm			Total well dept	h at retrieval:	N/A
Downhole Field	Parameters U	pon Retrieva	<u>l:</u>		-		
Temp: 16.49 C	ORP:	31.9 mV	SCond:	0.033 mS/	cm Water qual	ity meters: YSI	YSI
pH: 6.30 SL	J DO:	3.15 mg/L	Turb:	80.6 NTU	Serial #:	06G2	2302AE 01F0657AC
Collected Sam	ole Condition	Color:	brown	Odor:	Yes	Appearance:	cloudy
Analysis							· · · · ,
Pa	arameter		Cont	ainer	Number	of Containers	Preservative
VC	DC (8260)		40 m	L AG		3	HCL
Disso	lved Gases		20 m	L AG		2	TSP
То	tal Fe/Mn		75 m	L PE		1	HNO3
Disso	olved Fe/Mn		75 m	L PE		1	HNO3
	TOC		40 m	L CG		2	H2SO4
Alkalini	ty (SM2320B)		1 L	PE		1	None
Chlo	ride (300.0)		100 m	າL PE		1	None
Sulf	ate (300.0)		100 m	າL PE		1	None
Nitrat	te-N (300.0)		100 m	າL PE		1	None
Nitr	ite (300.0)		100 m	ιL PE		1	None
Remarks: DTW	7.87				Sampling Personnel: M	latthew Pingitor/C	hristopher Trowbridge
					Signature	A	S

AG	amber glass	ft bmp	feet below	HNO3	nitric acid	mS/cm	millisiemens per	N/A	not available	ppm	parts per million
С	degrees Celsius	H2SO4	sulfuric acid	in	inches	mV	millivolts	NTU	nephelometric	SS	stainless steel
CG ft amsl	clear glass ft above mean sea	HCL	hydrochloric acid	mg/L	milligrams per liter	MW	monitoring well	PE	polyethylene	SU TOC	standard units top of casing
	lever									TSP	trisodium phosphate dodecahydrate

HydraSleeve™ Field Form

Project:	:	SRSN	١E					Site	Location:	Sout	hington,	СТ			
Project	No:	B005	4634.0	000.01900				We	II ID:	TW-0	08D				
Sample	D:	TW-0	8D-HS	-06052013				— Dup	olicate ID:	N/A					
Sample	Date:	6/5/20	013 8:1	5:30 AM				Oth	er QC:	N/A					
Well Ty	pe:			MW				We	ll Finish:			X	Stick-	-up	Flush Mount
Measur	ing Point	:		TOC				— Тор	of Casing	Elevatio	n:	161	.48 ft an	ารเ	
Total D	epth as C	Construc	cted:	26.58 ft	bmp			Scr	eened Inter	val:		19.5	58 to 24.	58 ft b	mp
Well Ca	asing Out	er Diam	neter:	2 in				We	II Casing Ma	aterial:		SS			
Well Sc	reen Out	ter Diam	neter:	2 in				We	II Screen M	aterial:		SS			
Deploy	ment							_							
Date/Ti	me of De	ployme	nt:		6/15/2	2012 9:20	:00 AM	We	eather Cond	ditions:			Sun	ny, Hu	mid
Depth t	o ground	water a	t deplo	yment:	5.69 f	t bmp		To	tal well dep	th at dep	oloyment		25.8	7 ft br	ιp
HydraS	leeveTM	Dimens	sions	Length:	38 in			Dia	ameter:				1.75	in	
Measur	ement M	ethod:			Calib	rated teth	er	_ De	ployment d	epth (To	p of HS)	:	N/A		
PID:					2.3 pp	om									
Retriev	val														
Date/Ti	me of Re	trieval:		6/5/2013	8:15:5	1 AM		Тс	otal # of day	s deploy	/ed:	:	355.0		
Weathe	er Conditi	ons:		N/A				De	epth to grou	Indwater	at retrie	val:	7.39 ft b	mp	
PID:				2.9 ppm				— Тс	otal well dep	oth at ret	rieval:		N/A		
Downho	ole Field	Parame	eters U	pon Retrieva	<u>l:</u>							-			
Temp	13 64 C			440.4		00									
romp.	10.04 0	, ,	JRP:	446.4 mv		SCond:	0.053 m	S/cm	Water qua	ality met	ers: YS	5l		YSI	
pH:	2.13 SL	י י)RP: DO:	3.95 mg/L		_ SCond: Turb:	0.053 m 11.30 N	S/cm TU	_Water qua Serial #:	ality met	ers: <u>Y</u> S 06	61 G2302/	AE	01FC	0657AC
pH:	2.13 SL	ן שניין סופ Con	JRP: DO: dition	3.95 mg/L Color:	clear	_ SCond: _ Turb: _	0.053 m 11.30 N Odor:	S/cm TU Yes	_ Water qua _ Serial #:	Ality met App	ers: YS	G2302/ cicclea	AE	01FC	0657AC
pH: Collect	2.13 SL 2.13 SL	ble Con	DRP: DO: dition	3.95 mg/L Color:	clear	_ SCond: _ Turb:	0.053 m 11.30 N Odor:	S/cm TU Yes	_Water qua _Serial #:	Ality met	ers: YS	G2302/ clea	AE ar	01F(0657AC
pH: Collect Analys	2.13 SL ed Samp is	ble Con	ORP: DO: dition	446.4 mV 3.95 mg/L Color:	clear	_ SCond: _ Turb: _ Cont	0.053 m 11.30 N Odor: ainer	S/cm TU Yes	_ Water qua _ Serial #: 	App	ers: <u>Y</u> <u>06</u> earance tainers	G2302/	AE ar	Prese	0657AC
PH: Collect	2.13 SL 2.13 SL is Pa	Die Con aramete	DRP: DO: dition er	<u>446.4 mv</u> <u>3.95 mg/L</u> Color:	clear	_ Scona: _ Turb: _ Cont 40 m	0.053 m 11.30 N ² Odor: ainer L CG	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3	ers: <u>Y</u> <u>06</u> earance tainers	G2302/	AE ar	91F0 01F0 Prese	0657AC
PH: Collect	2.13 SL 2.13 SL is Pa VO Disso	Die Con aramete DC (826 blved Ga	DRP: DO: dition er 0) ases	446.4 mV 3.95 mg/L Color:	clear	Turb: 	0.053 m 11.30 N Odor: ainer L CG L AG	S/cm TU Yes	_Water qua _Serial #: 	App r of Con 3 2	ers: <u>Y</u> 06 earance tainers	G2302/	AE	YSI 01FC Prese H	0657AC ervative ICL SP
PH: Collect Analys	2.13 SL 2.13 SL is Pa VO Disso	Die Con aramete DC (826 Dived Ga tal Fe/M	DRP: DO: dition er 0) ases 1n	446.4 mV 3.95 mg/L Color:	clear	 Turb: Cont 40 m 20 m 75 m	0.053 m 11.30 N 0dor: ainer L CG L AG L PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1	ers: <u>Y</u> § <u>06</u> earance tainers	G2302/ :: clea	AE	Prese H T	0657AC ervative ICL SP NO3
PH: Collect Analys	2.13 SL 2.13 SL is Pa VO Disso Tot Disso	Die Con aramete DC (826 Dived Ga tal Fe/M Dived Fe	ORP: DO: dition er 0) asses 1n e/Mn	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 20 m 75 m 75 m	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L PE	S/cm TU Yes	_Water qua _Serial #: 	App r of Con 3 2 1 1	ers: <u>Y</u> <u>O</u> earance tainers	G2302/	AE ar	Prese H T H	0657AC ervative ICL SP NO3 NO3
PH: Collect Analys	2.13 SL 2.13 SL is Pa VO Disso Tot Disso	J [] aramete DC (826 blved Ga tal Fe/M blved Fe TOC	DRP: DO: dition er 0) ases 1n 2/Mn	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 75 m 40 m	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L PE L CG	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2	ers: <u>Y</u> § <u>06</u> earance	G2302/ G2302/ :: clea	AE ar	Prese H T Hr Hr H2	0657AC Prvative ICL SP NO3 NO3 SO4
PH: Collect Analys	2.13 SL 2.13 SL is Pa VO Disso Tot Disso	J [ple Con aramete DC (826 blved Ga blved Ga tal Fe/M blved Fe TOC ty (SM2	DRP: DO: dition er 0) ases 1n 2/Mn 2/320B)	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 75 m 40 m 1 L	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L PE L CG PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2 1 2 1	ers: <u>Y</u> <u>06</u> earance	G2302/ :: clea	AE	Prese H T HI HI H2	0657AC ervative ICL SP NO3 NO3 SO4 one
Analys	2.13 SL 2.13 SL is Pa VO Disso Tot Disso Alkalinit Chlor	J I aramete DC (826 DC (826 DVed Ga tal Fe/M DIved Fe TOC ty (SM2 ride (30	DRP: DO: dition dition er 0) asses In e/Mn 320B) 0.0)	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 n	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L CG PE hL PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2 1 1 2 1 1	ers: <u>Y</u> § <u>06</u> earance tainers	G2302/	AE ar	Prese H T HI H2 N	0657AC ervative ICL SP NO3 NO3 SO4 one one
Analys	2.13 SL 2.13 SL is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa	J I ble Con aramete DC (826 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (30 ate (300	DRP: DO: dition er 0) asses 1n e/Mn e/320B) 0.0) 0.0)	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 75 m 75 m 40 m 1 L 100 n 	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L CG PE nL PE nL PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2 1 1 2 1 1 1 1	ers: <u>Y</u> § <u>06</u> earance tainers	G2302/ :: clea	AE	Prese H T HI HI N N	0657AC Prvative ICL SP NO3 NO3 SO4 one one one
Analys	2.13 SL 2.13 SL is Pa VC Disso Tot Disso Alkalinit Chlor Sulfa	J I ple Con paramete DC (826 plved Ga tal Fe/M plved Fe TOC ty (SM2 ride (300 ate (300 ate (300	DRP: DO: dition dition er 0) asses In a/Mn 320B) 0.0) 0.0) 0.0) 0.0) 0.0)	446.4 mV 3.95 mg/L Color:		 Turb: 40 m 20 m 75 m 40 m 1 L 100 n 100 n	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L CG PE nL PE nL PE nL PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2 1 1 2 1 1 1 1 1 1 1	ers: <u>Y</u> § <u>06</u> earance tainers	G2302/	AE	YSI 01FC Prese H T HI H2 N N N	0657AC ervative ICL SP NO3 NO3 SO4 one one one
Analys	2.13 SL 2.13 SL is Pa VC Disso Tot Disso Alkalinit Chlor Sulfa Nitrat	J I ple Con aramete DC (826 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (300 ate (300 ate (300	DRP: DO: dition er 0) ases 1n e/Mn e/Mn e/2008) 0.0) 0.0) 0.0) 0.0)	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 75 m 75 m 40 m 1 L 100 n 100 n 100 n	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L CG PE L CG PE nL PE nL PE nL PE nL PE	S/cm TU Yes	_ Water qua _ Serial #: 	App r of Con 3 2 1 1 2 1 1 1 1 1 1 1 1 1 1	ers: <u>Y</u> § <u>06</u> earance tainers	G2302/	AE	YSI 01FC Prese H T HI HI HI No No No	0657AC Prvative ICL SP NO3 NO3 SO4 one one one one one
Remark	2.13 SL 2.13 SL is Pa VC Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat	J I ple Con aramete DC (826 plved Ga tal Fe/M plved Fe TOC ty (SM2 ride (300 ate (300 ate (300 ate (300 ate (300 ate (300) ate (300) ate (300) ate (300) blue (300) ate (300) blue	Adition dition er 0) asses In a/Mn a320B) 0.0) 0.0) 0.0) 0.0) 0.0)	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 20 m 75 m 75 m 40 m 1 L 100 n 100 n 100 n	0.053 m 11.30 N 0dor: ainer L CG L AG L PE L CG PE nL PE nL PE nL PE nL PE	S/cm TU Yes San Per Sig		App r of Con 3 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1	ers: YS 06 earance tainers	G2302/ :: clea	AE ar	Prese H T HI HI N N N N N N	D657AC
Abbreviatio	2.13 SL 2.13 SL is Pa VC Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat	J I ple Con aramete DC (826 plved Ga tal Fe/M plved Fe TOC ty (SM2 ride (300 te-N (30 te-N (30) te (300) te (300)	DRP: DO: dition dition ases in ase	446.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 75 m 75 m 40 m 1 L 100 n 100 n 100 n	0.053 m 11.30 N Odor: ainer L CG L AG L PE L CG PE nL PE nL PE nL PE nL PE nL PE	S/cm TU Yes San Per Sig	Water qua Serial #: Number 	App r of Con 3 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ers: YS 06 earance tainers	G2302/ :: clea	AE ar	Prese H T HI HI N N N N N N N	D657AC
Abbreviatic AG a	2.13 SL 2.13 SL is Pa VO Disso Tot Disso Alkalinit Chlor Sulfa Nitrat Nitrat Sulfa Nitrat	J I ple Con aramete DC (826 blved Ga tal Fe/M blved Fe TOC ty (SM2 ride (300 te-N (300 te-N (300 te (300) te (30)	DRP: DO: dition ases in ases ases ases ases ases ases ases ases ases ase ase ase <tr< td=""><td>440.4 mV 3.95 mg/L Color:</td><td>clear</td><td> Turb: 40 m 20 m 20 m 75 m 75 m 100 n 100 n 100 n 100 n</td><td>0.053 m 11.30 N Odor: ainer L CG L AG L PE L CG PE nL PE nL PE nL PE nL PE nL PE acid</td><td>S/cm TU Yes San Per Sig</td><td>Water qua Serial #: Number </td><td>App r of Con 3 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 5 per</td><td>Pingitor</td><td>si G2302/ :: clea //Christo</td><td>AE ar opher Tr</td><td>Prese H T HI HI N N N N N N N N</td><td>p657AC Prvative ICL SP NO3 NO3 SO4 one one one one one one one parts per million</td></tr<>	440.4 mV 3.95 mg/L Color:	clear	 Turb: 40 m 20 m 20 m 75 m 75 m 100 n 100 n 100 n 100 n	0.053 m 11.30 N Odor: ainer L CG L AG L PE L CG PE nL PE nL PE nL PE nL PE nL PE acid	S/cm TU Yes San Per Sig	Water qua Serial #: Number 	App r of Con 3 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 5 per	Pingitor	si G2302/ :: clea //Christo	AE ar opher Tr	Prese H T HI HI N N N N N N N N	p657AC Prvative ICL SP NO3 NO3 SO4 one one one one one one one parts per million

standard units

top of casing

SU

тос

TSP

CG

clear glass

ft amsl ft above mean sea

level

HCL

hydrochloric acid

mg/L milligrams per liter MW

PE

polyethylene

monitoring well

Project:	SRSN	1E			Site Locat	e Location: Southington, CT							
Project No	B0054	4634.0	000.01	900	Well ID:	I	MW-03	3		Sample ID:	: MV	N-03-0603201	3
Sample Da	ate: 6/3/20	013			Duplicate:	: 1	N/A			Other QC:	N//	A	
Sample Ti	me: 11:50	AM			Weather:		N/A						
Instrumen	t Identificati	on											
Water Qua	lity Meter 1:		YSI			Wa	ter Qu	ality Meter 2	:	Turbidity Meter			
Measuring Point: TOC						Purge Method:				Bladder Pu	mp		
Casing Ma	terial:		PVC			Screen Interval:			55.51 to 85	.51 ft	bmp		
Casing Dia	ameter:		1.5 in			Pu	mp Int	ake Depth:		Initial: 67.7	5 ft br	mp Final: 67.7	75 ft bmp
Measured	Well Depth:		N/A			Pu	rge Tiı	ne:		11:15 AM		to 11:50	AM
Depth to V	Vater:		6.96 ft	bmp		PID	Read	ling:		N/A			
				Fie	eld Paramete	er Meas	ureme	ents During F	Purging				
Time	Cuml Time (min)	Flow (mL/ı	Rate nin)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)		Spec Cond (mS/cm)	ORP (mV)	DO (mg/	'L)	Turb (NTU)	DTW (ft)
11:15 AM	0	50		0	13.47	6.93		0.010	42.3	0.73		0.70	6.96
11.20 AM	5	50		0.07	13 14	7 01		0.010	62.1	0.43		0.43	6.96

11:20 AM	5	50	0.07	13.14	7.01	0.010	62.1	0.43	0.43	6.96
11:25 AM	10	50	0.13	13.32	7.16	0.010	61.6	0.37	0.42	6.96
11:30 AM	15	50	0.20	13.24	7.28	0.010	62.1	0.33	0.43	6.96
11:35 AM	20	50	0.26	13.28	7.35	0.010	67.4	0.33	0.43	6.96
11:40 AM	25	50	0.33	13.29	7.41	0.010	69.4	0.34	0.42	6.96
11:45 AM	30	50	0.40	13.49	7.47	0.010	72.6	0.35	0.42	6.96
11:50 AM	35	50	0.46	13.64	7.54	0.010	74.1	0.37	0.42	6.96

					Collected Sa	ample	Condition					
Color	: clear		Odo	": <u>No</u>			Appearance:	clea	ır			
	Paramete	r		Co	ntainer		Number of Cont	ainers	5	Pres	servative	
	VOC (8260	D)		40	mL AG		3				HCL	
			Comments			S: Pe	ampling rsonnel: Matthev	v Ping	tor/Christopher Tr	rowbrid	lge	
						Si	gnature:					
Abbrevia	tions:											
AG	amber glass	ft bmp	feet below measuring point	mg/L	milligrams per liter	mV	millivolts	NTU	nephelometric turbidity units	SU	standard units	
С	degrees Celsius	gal	gallons	mL/m	in milliliters per minute	MW	monitoring well	ppm	parts per million	тос	top of casing	
ft	feet	HCL	hydrochloric aci	i mS/cn	n millisiemens per centimeter	N/A	not available	PVC	polyvinyl chloride			
ft amsl	ft above mean sea level	in	inches									

Project:	SRSNE		Site Location:	Southington, CT			
Project No:	B0054634.	0000.01900	Well ID:	MW-126B	Sample ID:	MW-126B-06042013	
Sample Date:	6/4/2013		Duplicate:	DUP-GW-06042013-#1	Other QC:	N/A	
Sample Time:	10:35 AM		Weather:	N/A			
Instrument Ider	ntification						
Water Quality M	Vater Quality Meter 1: YSI			Water Quality Meter 2:	Turbidity Me	ter	
Measuring Poir	nt:	тос		Purge Method:	Bladder Pun	η	
Casing Materia	I:	PVC		Screen Interval:	6.9 to 11.9 ft bmp		
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 9 ft br	np Final: 9 ft bmp	
Measured Well	ured Well Depth: N/A			Purge Time:	9:41 AM	to 10:25 AM	
Depth to Water	pth to Water: N/A			PID Reading:	0.4 ppm		

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
9:41 AM	0	125	0.16	13.19	5.44	0.459	165.1	19.16	56	2.80
9:50 AM	9	125	0.32	13.10	5.63	0.471	166.0	16.98	45	2.80
9:55 AM	14	125	0.48	13.07	5.71	0.481	169.9	16.66	17	2.80
10:00 AM	19	125	0.64	12.06	5.79	0.483	171.1	16.56	15	2.80
10:05 AM	24	125	0.80	13.04	5.87	0.484	175.4	16.48	10	2.80
10:10 AM	29	125	0.96	12.81	5.88	0.482	177.3	16.53	8	2.80
10:15 AM	34	125	1.12	12.84	5.92	0.482	180.0	16.42	9	2.80
10:20 AM	39	125	1.28	12.00	5.97	0.483	180.0	16.42	9	2.80
10:25 AM	44	125	1.44	13.05	5.98	0.483	178.7	16.04	9	2.80

Collected Sample Condition

Color: clear	Odor: Yes	Appearance:	clear	
Parameter	Container	Number of Conta	ainers Preservative	
Dissolved TAL Metals	250 mL PE	1	HNO3	
Total TAL Metals	250 mL PE	1	HNO3	

Comments

Sampling Personnel: Edward Cimilluca

Signature:

Abbreviations: degrees Celsius gal gallons mL/min milliliters per minute MW monitoring well PE polyethylene ниоз mS/cm millisiemens per parts per million feet nitric acid N/A not available ppm centimeter ft amsl ft above mean sea in inches mV millivolts NTU nephelometric PVC polyvinyl chloride turbidity units level ft bmp feet below mg/L milligrams per liter

measuring point

С

ft

SU

тос

standard units

top of casing

Project:	SRSNE		Site Location:	Southington, CT	
Project No:	B0054634.	0000.01900	Well ID:	MW-126C	Sample ID: MW-126C-06042013
Sample Date:	6/4/2013		Duplicate:	N/A	Other QC: N/A
Sample Time:	12:10 PM		Weather:	N/A	
Instrument Ider	entification				
Water Quality M	Auality Meter 1: YSI Water Quality Meter 2:		Water Quality Meter 2:	Turbidity Meter	
Measuring Poir	nt:	TOC		Purge Method:	Bladder Pump
Casing Materia	I:	PVC		Screen Interval:	23.41 to 33.41 ft bmp
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 29 ft bmp Final: N/A
Measured Well	Measured Well Depth: N/A			Purge Time:	11:25 AM to 12:05 PM
Depth to Water	Depth to Water: N/A			PID Reading:	0.2 ppm

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
11:25 AM	0	150	0.19	14.68	6.72	0.373	170.1	38.10	26	2.70
11:30 AM	4	150	0.38	14.87	6.61	0.380	175.9	19.02	22	2.70
11:35 AM	9	150	0.57	14.99	6.61	0.383	178.6	17.15	19	2.80
11:40 AM	15	150	0.76	15.17	6.62	0.385	179.2	16.77	10	2.70
11:45 AM	19	150	0.95	15.26	6.61	0.384	181.5	16.50	11	2.70
11:50 AM	24	150	1.14	15.24	6.60	0.382	184.0	16.41	8	2.70
11:55 AM	29	150	1.33	15.21	6.59	0.379	187.3	16.32	5	2.70
12:00 PM	34	150	1.52	15.34	6.57	0.379	190.2	16.27	5	2.70
12:05 PM	39	150	1.71	15.53	6.57	0.378	193.7	16.12	5	2.70

Collected Sample Condition

Color: clear	Odor:	No	Appearance:	clear	
Parameter		Container	Number of Cont	ainers	Preservative
Dissolved TAL Metals		250 mL PE	1		HNO3
Total TAL Metals		250 mL PE	1		HNO3

N/A

NTU

Comments

Sampling Personnel: Edward Cimilluca

Signature:

PVC

Abbreviations: degrees Celsius gal gallons mL/min milliliters per minute MW ниоз mS/cm millisiemens per feet nitric acid centimeter ft amsl ft above mean sea in inches mV millivolts

milligrams per liter

mg/L

monitoring well PE not available ppm nephelometric turbidity units

polyethylene SU parts per million тос standard units top of casing

polyvinyl chloride

С

ft

level ft bmp feet below

measuring point

Project:	SRSNE		Site Location:	Southington, CT			
Project No:	B0054634.	.0000.01900	Well ID:	MW-127C	Sample ID:	MW-127C-06052013	
Sample Date:	6/5/2013		Duplicate:	N/A	Other QC:	N/A	
Sample Time:	9:05 AM		Weather:	N/A			
Instrument Ider	tification						
Water Quality M	r Quality Meter 1: YSI			Water Quality Meter 2:	Turbidity Meter		
Measuring Poir	nt:	тос		Purge Method:	Bladder Pum	η	
Casing Materia	l:	PVC		Screen Interval:	93.93 to 103	.93 ft bmp	
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 96 ft b	omp Final: 96 ft bmp	
Measured Well	I Depth: N/A			Purge Time:	urge Time: 8:25 AM to 9		
Depth to Water	ater: N/A			PID Reading:	0.1 ppm		
	Field		Field Parameter Me	easurements During Purgin	Ig		

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
8:25 AM	0	150	0.19	10.40	7.07	0.265	81.6	8.68	8	3.50
8:30 AM	5	150	0.38	10.39	7.15	0.266	82.0	8.25	4	3.50
8:35 AM	10	150	0.57	10.41	7.15	0.266	82.3	8.24	4	3.50
8:40 AM	14	150	0.76	10.46	7.19	0.265	83	8.12	1	3.50
8:40 AM	14	150	0.95	10.56	7.28	0.263	86.1	7.93	1	3.50
8:45 AM	19	150	1.14	10.63	7.30	0.263	86.4	7.78	0	3.50
8:50 AM	24	150	1.33	10.21	7.30	0.263	86.7	7.73	0	3.50
8:55 AM	29	150	1.52	10.35	7.30	0.263	86.9	7.73	0	3.50
9:00 AM	35	150	1.71	10.22	7.30	0.263	87.2	7.73	0	3.50

			Collecte	d Sample Condition	
Color:	clear	Odor:	No	Appearance: clear	
	Parameter		Container	Number of Containers	Preservative
	VOC (8260)		40 mL AG	3	HCL
	Cc	omments		Sampling Personnel: Edward Cimilluca	
Abbreviatio	15:			Signature:	m

AG	amber glass	ft bmp	feet below	mg/L	milligrams per liter	mV	millivolts	NTU	nephelometric	SU	standard units
С	degrees Celsius	gal	gallons	mL/min	milliliters per minute	мw	monitoring well	ppm	parts per million	тос	top of casing
ft	feet	HCL	hydrochloric acid	mS/cm	millisiemens per	N/A	not available	PVC	polyvinyl chloride		
ft amsl	ft above mean sea level	in	inches		centimeter						

Project:	SRSNE		Site Location:	Southington, CT					
Project No:	B0054634.0	0000.01900	Well ID:	MW-209A	Sample ID:	MW-209A	-06042013		
Sample Date:	6/4/2013		Duplicate:	N/A	Other QC:	N/A			
Sample Time:	3:05 PM		Weather:	N/A					
Instrument Ider	ntification								
Water Quality Meter 1:		YSI		Water Quality Meter 2:	Turbidity Me	ter			
Measuring Poir	Measuring Point:			Purge Method:	urge Method: Bladder Pump				
Casing Materia	I:	PVC		Screen Interval:	creen Interval: 20.12 to 40.12 ft bmp				
Casing Diameter:		2 in		Pump Intake Depth:	Initial: N/A Final: N/A				
Measured Well	Depth:	N/A		Purge Time:	2:32 PM	to	3:05 PM		
Depth to Water	:	21.79 ft bmp		PID Reading:	N/A	_			

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
2:32 PM	0	100	0	12.29	6.28	0.006	164.8	7.06	2.34	21.80
2:35 PM	2	100	0.05	12.42	6.27	0.006	165.8	6.96	1.82	21.80
2:40 PM	7	100	0.18	12.38	6.27	0.006	166.0	6.92	1.50	21.80
2:45 PM	13	100	0.34	12.39	6.26	0.006	165.3	6.90	1.16	21.80
2:50 PM	18	100	0.48	12.31	6.26	0.006	165.3	6.89	0.91	21.80
2:56 PM	24	100	0.63	12.20	6.25	0.006	164.9	6.86	0.44	21.80
3:02 PM	30	100	0.79	12.36	6.25	0.006	166.4	6.86	0.44	21.80
3:05 PM	32	100	0.85	12.44	6.25	0.006	166.7	6.84	0.44	21.80

	Collected Sample Condition											
Color:	clear	Odor:	No	Appearance:	clear							
	Parameter		Container	Number of Conta	ainers	Preservative						
C	Dissolved TAL Metals		250 mL PE	1		HNO3						
Total TAL Metals			250 mL PE	1		HNO3						

Comments

Sampling Personnel: Vince Whisker

Signature:

Incell

Abbrevia	tions:										
С	degrees Celsius	gal	gallons	mL/min	milliliters per minute	MW	monitoring well	PE	polyethylene	SU	standard units
ft	feet	HNO3	nitric acid	mS/cm	millisiemens per	N/A	not available	ppm	parts per million	тос	top of casing
					centimeter						
ft amsl	ft above mean sea	in	inches	mV	millivolts	NTU	nephelometric	PVC	polyvinyl chloride		
	level						turbidity units				
ft bmp	feet below	mg/L	milligrams per liter								
	measuring point										

Proje	Project: SRSNE			Site Location:		South	nington, CT									
Proje	ct No:	B0054	1634.0	000.01	900	Well ID:		MW-2	209B		Sample ID:	MW-2098	3-06042	013		
Samp	le Date:	6/4/20	13			Duplicate	:	N/A			Other QC:	N/A				
Samp	le Time:	12:40	PM			Weather:		N/A								
Instru	ıment Ide	entificatio	on													
Water	Quality	Meter 1:		YSI			W	later Q	uality Meter 2	:	Turbidity Met	er				
Meas	uring Poi	int:		тос			Р	urge M	lethod:		Bailer					
Casin	g Materia	al:		PVC			S	creen l	nterval:		14.25 to 17.25 ft bmp					
Casin	g Diamet	ter:		2 in			Р	ump In	take Depth:		Initial: N/A Final: N/A					
Meas	ured Well	I Depth:		17.191	ft bmp		Р	urge Ti	ime:		12:40 PM	to	12:40	PM		
Depth	n to Wate	r:		15.68	ft bmp		Р	ID Rea	ding:		N/A					
					F	ield Paramet	eld Parameter Measurements During Purging									
	Cuml Time Flow Rate Cuml Vol						asurem	Spac Cond								
Time	e (min) (mL/min) Purged (gal) Temp (C) pl		pH (Sl	J)	(mS/cm)	ORP (mV)	DO (mg/L)	Turb	(NTU)	DTW (ft)						
12:40	PM 0		50		0	10.94	pH (SU) (mS/cm) ORP (mV) 7.47 0.003 141.8			5.35	10.5 ²	1	15.68			
								<u> </u>	0							
Color					Odor: N	Colle	ected	Sample	Appearance							
Color						0										
	Pa	arameter				Container			Number of C	ontainers	s Preservative					
	Dissolve	ed TAL M	letals			250 mL PE			1			F	INO3			
	Total	TAL Met	als			250 mL PE			1			F	INO3			
				~ommo	nte											
HAD	TO USE	BAILER		Johnne	1113			S	ampling	ont Whick	or					
								6	ianaturo	1	1	11				
Abbroulot	None.							3			Nº Le					
C ft	degrees Ce feet	elsius {	gal HNO3	gallons nitric acio	d m	L/min milliliters S/cm millisieme	per minu ns per	ute MW N/A	monitoring wel not available	I PE PVC	polyethylene polyvinyl chloric	TOC le	top of ca	asing		
ft amsl	amsl ft above mean sea level hmn_feet below				NTU	nephelometric turbidity units	su	standard units								
it billp	bmp feet below mg/L milligrams per liter measuring point															

Project:	SRSNE		Site Location:	Southington, CT		
Project No:	B0054634.	0000.01900	Well ID:	MW-701DR	Sample ID:	MW-701DR-06042013
Sample Date:	6/4/2013		Duplicate:	N/A	Other QC:	N/A
Sample Time:	11:45 AM		Weather:	N/A		
Instrument Ider	strument Identification					
Water Quality M	Vater Quality Meter 1:			Water Quality Meter 2:	Turbidity Me	ter
Measuring Poir	nt:	тос		Purge Method:	Bladder Pun	np
Casing Materia	I:	PVC		Screen Interval:	95.76 to 110).26 ft bmp
Casing Diamete	Casing Diameter:			Pump Intake Depth:	Initial: 100 ft	bmp Final: 100 ft bmp
Measured Well	Depth:	107.43 ft bmp		Purge Time:	10:35 AM	to 11:45 AM
Depth to Water	:	17.24 ft bmp		PID Reading:	N/A	

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
10:35 AM	0	120	0	11.34	6.8	0.008	62.8	5.44	11.31	18.60
10:50 AM	15	120	0.48	11.34	7.06	0.008	63.5	5.43	7.85	18.75
10:55 AM	20	120	0.63	11.52	7.15	0.008	70.0	5.42	6.06	18.35
11:00 AM	25	120	0.79	12.10	7.33	0.008	67.0	5.41	5.36	18.35
11:05 AM	30	120	0.95	12.35	7.44	0.008	69.6	5.39	4.77	18.35
11:10 AM	35	120	1.11	12.58	7.52	0.008	76.7	5.37	4.85	18.35
11:20 AM	45	120	1.43	12.55	7.69	0.008	84.3	5.18	2.36	18.35
11:25 AM	50	120	1.59	12.50	7.70	0.008	87.0	5.16	1.89	18.35
11:30 AM	55	120	1.74	12.43	7.70	0.008	90.4	5.12	2.30	18.35
11:40 AM	65	120	2.06	12.41	7.71	0.008	93.5	5.07	2.45	18.35
11:45 AM	70	120	2.22	12.31	7.70	0.008	98.6	5.0	2.43	18.35

	Collected Sample Condition											
Color:	clear	Odor:	No	Арре	arance:	clear						
	Parameter		Container	Numbe	er of Cont	ainers	Preservative					
	Dissolved TAL Metals		250 mL PE		1		HNO3					
	Total TAL Metals	250 mL PE			HNO3							
	Comm	ents		Sampling Personnel	: Vincent	Whisker						
				Signature	:	Ллл	MM					

Abbrevia	tions:											
С	degrees Celsius	gal	gallons	mL/min	milliliters per minute	MW	monitoring well	PE	polyethylene	тос	top of casing	
ft	feet	ниоз	nitric acid	mS/cm	millisiemens per centimeter	N/A	not available	PVC	polyvinyl chloride			
ft amsl	ft above mean sea level	in	inches	mV	millivolts	NTU	nephelometric turbidity units	SU	standard units			
ft bmp	feet below measuring point	mg/L	milligrams per liter									

Project:	SRSNE		Site Location:	Southington, CT		
Project No:	B0054634.	.0000.01900	Well ID:	MW-707DR	Sample ID:	MW-707DR-06042013
Sample Date:	6/4/2013		Duplicate:	N/A	Other QC:	N/A
Sample Time:	3:40 PM		Weather:	N/A		
Instrument Ider	ntification					
Water Quality M	leter 1:	YSI		Water Quality Meter 2:	Turbidity Me	ter
Measuring Poir	nt:	тос		Purge Method:	Bladder Pun	ηp
Casing Materia	I:	PVC		Screen Interval:	162.92 to 19	2.92 ft bmp
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 177 ft	bmp Final: 177 ft bmp
Measured Well	Depth:	N/A		Purge Time:	2:50 PM	to 3:40 PM
Depth to Water	:	N/A		PID Reading:	1.7 ppm	

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
2:50 PM	0	250	0.33	12.35	6.85	0.497	-233.3	21.95	41	10.25
2:55 PM	4	250	0.66	11.81	6.29	0.516	-248.6	5.25	8	10.30
3:00 PM	9	250	0.99	11.84	6.26	0.516	-255.4	5.30	4	10.35
3:05 PM	14	250	1.32	11.80	6.29	0.516	-248.9	5.20	4	10.40
3:11 PM	20	250	1.65	11.72	6.35	0.514	-255.4	5.20	3	10.45
3:15 PM	24	250	1.98	11.61	6.37	0.514	-256.8	5.20	5	10.50
3:20 PM	29	250	2.31	11.65	6.53	0.513	-259.0	5.19	2	10.55
3:25 PM	34	250	2.64	10.40	6.55	0.500	-271.8	5.20	4	10.60
3:30 PM	40	250	2.97	11.0	6.55	0.512	-271.9	5.2	4	10.65
3:35 PM	44	250	3.30	11.10	6.55	0.512	-272.3	5.21	5	10.70
3:40 PM	50	250	3.63	11.05	6.55	0.512	-272.8	5.22	6	10.77

					Collected Sa	ample	Condition					
Color	clear		Odor:	Yes			_ Appearance:	cle	ear			
	Paramete	r		Cor	tainer		Number of Con	taine	rs	Pre	servative	
	VOC (8260))		40 r	nL AG		3				HCL	_
			Comments			Sa Pei	ampling rsonnel: Edward	l Cim	illuca			
						Sig	gnature:	Ń				_
Abbrevia	tions:											
AG	amber glass	ft bmp	feet below measuring point	mg/L	milligrams per liter	mV	millivolts	NTU	nephelometric turbidity units	SU	standard units	
С	degrees Celsius	gal	gallons	mL/min	milliliters per minute	мw	monitoring well	ppm	n parts per million	тос	top of casing	
ft	feet	HCL	hydrochloric acid	mS/cm	millisiemens per centimeter	N/A	not available	PVC	polyvinyl chloride			
ft amsl	ft above mean sea level	in	inches									

Project:	SRSNE		Site Location:	Southington, CT		
Project No:	B0054634.0	0000.01900	Well ID:	MW-901R	Sample ID:	MW-901R-06052013
Sample Date:	6/5/2013		Duplicate:	N/A	Other QC:	N/A
Sample Time:	10:30 AM		Weather:	N/A		
Instrument Ider	ntification					
Water Quality M	leter 1:	YSI		Water Quality Meter 2:	Turbidity Me	ter
Measuring Poir	nt:	тос		Purge Method:	Bladder Pum	η
Casing Materia	l:	PVC		Screen Interval:	27.44 to 42.4	14 ft bmp
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 32.5 f	t bmp Final: 32.5 ft bmp
Measured Well	Depth:	42.40 ft bmp		Purge Time:	9:31 AM	to 10:30 AM
Depth to Water	:	17.89 ft bmp		PID Reading:	N/A	

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
9:31 AM	0	120	0	11.19	5.73	4	158.7	30.45	32.4	17.90
9:35 AM	4	120	0.13	11.23	5.81	4	161.1	30.57	19.7	17.89
9:40 AM	9	120	0.29	11.29	5.86	4	160.4	30.56	18.3	17.89
9:45 AM	14	120	0.44	11.29	5.89	4	163.2	30.58	17.8	17.90
9:50 AM	19	120	0.60	11.24	5.88	4	164.2	30.49	16.7	17.89
9:55 AM	24	120	0.76	11.31	5.90	4	165.6	30.53	11.4	17.90
10:00 AM	29	120	0.92	11.33	5.92	4	166.1	30.47	12.9	17.90
10:05 AM	34	120	1.08	11.32	5.95	4	167.1	30.39	12.4	17.89
10:11 AM	41	120	1.30	11.39	5.96	4	167.7	30.33	11.6	17.89
10:15 AM	44	120	1.39	11.30	5.98	4	168.5	30.33	11.48	17.89
10:20 AM	49	120	1.55	11.29	6.00	4	170.1	30.29	10.91	17.89
10:25 AM	54	120	1.71	11.32	6.01	4	170.9	30.28	9.89	17.89
10:28 AM	57	120	1.81	11.23	6.03	4	172.2	30.22	9.69	17.89
10:30 AM	59	120	1.87	11.32	6.05	4	173.4	30.14	9.65	17.89

Collected Sample Condition Color: clear Odor: No Appearance: cloudy Parameter Container **Number of Containers** Preservative **Dissolved TAL Metals** 250 mL PE HNO3 1 250 mL PE 1 HNO3 **Total TAL Metals** Comments Sampling

DO meter calibrated prior to sampling; readings questionable.

Personnel: Vincent Whisker

11/1m Signature:

Abbrevia	tions:										
С	degrees Celsius	gal	gallons	mL/min	milliliters per minute	MW	monitoring well	PE	polyethylene	SU	standard units
ft	feet	HNO3	nitric acid	mS/cm	millisiemens per centimeter	N/A	not available	ppm	parts per million	тос	top of casing
ft amsl	ft above mean sea level	in	inches	mV	millivolts	NTU	nephelometric turbidity units	PVC	polyvinyl chloride		
ft bmp	feet below measuring point	mg/L	milligrams per liter								

Project:	SRSNE		Site Location:	Southington, CT		
Project No:	B0054634.	0000.01900	Well ID:	P-12	Sample ID:	P-12-06032013
Sample Date:	6/3/2013		Duplicate:	N/A	Other QC:	MS/MSD
Sample Time:	3:50 PM		Weather:	N/A		
Instrument Ider	ntification					
Water Quality M	leter 1:	YSI		Water Quality Meter 2:	Turbidity Me	ter
Measuring Poir	nt:	тос		Purge Method:	Bladder Pun	ıp
Casing Materia	I:	PVC		Screen Interval:	11.55 to 16.	55 ft bmp
Casing Diamete	er:	2 in		Pump Intake Depth:	Initial: 11.5 f	t bmp Final: N/A
Measured Well	Depth:	N/A		Purge Time:	3:05 PM	to 3:50 PM
Depth to Water	:	6.73 ft bmp		PID Reading:	N/A	

Field Parameter Measurements During Purging

Time	Cuml Time (min)	Flow Rate (mL/min)	Cuml Vol Purged (gal)	Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)	Turb (NTU)	DTW (ft)
3:05 PM	0	120	0	14.35	6.32	0.011	84.4	1.00	59.6	6.93
3:10 PM	5	120	0.16	13.94	6.19	0.011	141.4	0.68	43.2	6.93
3:15 PM	10	120	0.32	13.98	6.16	0.011	154	0.64	35.4	6.93
3:20 PM	15	120	0.48	14.45	6.15	0.011	167.8	0.60	52.9	6.93
3:25 PM	20	120	0.63	14.69	6.19	0.011	171.6	0.58	39.8	6.93
3:30 PM	25	120	0.79	14.71	6.20	0.011	173	0.57	38.2	6.93
3:35 PM	30	120	0.95	14.59	6.20	0.011	173.7	0.57	37.8	6.93
3:40 PM	35	120	1.11	15.58	6.20	0.011	169.4	0.57	38.5	6.93
3:50 PM	45	120	1.27	15.91	6.20	0.011	169	0.56	40.0	6.93

Collected Sample Condition

Color: clear	Odor:	No	Appearance:	clear	
Parameter		Container	Number of Conta	ainers	Preservative
Dissolved TAL Metals		250 mL PE	1		HNO3
Total TAL Metals		250 mL PE	1		HNO3

Comments

Sampling Personnel: Vincent Whisker

1 Signature: \sim

Abbreviations: С degrees Celsius gal gallons mL/min milliliters per minute MW monitoring well PE polyethylene SU standard units ниоз mS/cm millisiemens per parts per million тос ft feet nitric acid N/A not available top of casing ppm centimeter ft amsl ft above mean sea in inches mV millivolts NTU nephelometric PVC polyvinyl chloride turbidity units level ft bmp feet below mg/L milligrams per liter measuring point

			J	LOW		Cicanama		ipiling Eo	3	
Projec	:t: <u></u>	RSNE		Site Locat	ion: S	outhington, CT				
Projec	t No: E	0054634.0	000.01900	Well ID:	P	-13		Sample ID:	P-13-06052013	
Sampl	e Date: 6	/5/2013		Duplicate:	. <u>N</u>	/A		Other QC:	N/A	
Sampl	e Time: 1	2:00 PM		Weather:	N	/A				
Instru	ment Identif	cation								
Water	Quality Met	er 1:	YSI 01K0643		Wate	er Quality Meter 2	2:	Turbidity Me	ter 1356-3711	
Measu	ring Point:		ТОС		Purge Method:			N/A		
Casing	g Material:		PVC		Screen Interval:			6.74 to 16.74	l ft bmp	
Casing	g Diameter:		2 in		Pum	p Intake Depth:		Initial: 10 ft b	mp Final: 10 ft b	mp
Measu	red Well De	pth:	N/A		Purg	je Time:		11:20 AM	to 11:50	AM
Depth	to Water:		N/A		PID I	Reading:		1.3 ppm		
				Field Paramete	er Measu	rements During F	Puraina			
Time	Cuml Ti (min)	me Flow (mL/r	Rate Cuml Vol nin) Purged (ga	l) Temp (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	DO (mg/L)) Turb (NTU)	DTW (ft)
11:20	AM 0	100	0.13	15.01	7.20	0.217	71.2	15.28	856	10.20
11:24	AM 4	100	0.26	15.53	7.30	0.219	96.4	8.32	265	10.22
11:30	AM 10	100	0.39	15.57	7.43	0.220	102.5	7.51	198	10.24
11:35	AM 15	100	0.52	15.30	7.43	0.220	110.1	7.41	75	10.26
11:40	AM 20	100	0.65	15.30	7.46	0.220	120.2	7.33	77	10.30
11:45	AM 25	100	0.78	15.01	7.40	0.219	121.9	7.30	75	10.32
11:50	AM 30	100	0.91	15.03	7.40	0.219	122.5	7.22	76	10.37
Color:	brown Paran	eter	Odor:	Colle Yes Container	ected San	nple Condition Appearanc Number of C	ce: <u>cloud</u> Containers	dy	Preservativ	e
	VOC (8	3260)		40 mL AG		3			HCL	
		c	Comments			Sampling				
						Personnel: Edv	vard Cimillu	ca		
Abbreviati	Signature:									
AG	amber glass	ft bmp	feet below r	ng/L milligrams	per liter n	nV millivolts	NTU	nephelometric	SU standar	d units
с	degrees Celsius	gal	measuring point gallons r	nL/min milliliters p	er minute N	/W monitoring wel	ll ppm	turbidity units parts per millior	n TOC top of c	asing
ft	feet	HCL	hydrochloric acid r	mS/cm millisiemer	cm millisiemens per N/A not available PVC polyvinyl chloride			5		
ft amsl	ft above mean s level	ea in	inches	centimeter						

Appendix B

Equipment Calibration Logs

DATE: 6/3/13

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: GSO MDS	Serial Number:	OIKOG43 (Sende)
Brand:	Model:	Serial Number:	

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00) 7.00 10.01	4.00 7.00 10.00	4.00 <u>4.08</u> 7.00 <u>7.11</u> 10.00 <u>9.95</u>
10rbidity (NT 0 10 100	<u> </u>	0 2 2	0 <u>1.2</u> 10 <u>11.6</u>
1:413 (In 1:413 (In) (In 1:413 (In) (In) (In) (In) (In) (In) (In) (In)	(pphos/cm)	n 1.413	10 ms/cm
Dissolved Ox Barametric Pre in.H ₂ O*25.4=	ygen (mg/L) ess <u>ure 760.7</u> mmHg	Not Applicable	Not Applicable
REDOX (mV) (Zobel Solutior Temperature (LigHs	n) 262.7/240 (°C) 19.61 - 427.6	Chart 1	Chart 1 271 /240 Lights - 438.1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1.0

DATE: 06/03/13

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 600XL /650 MDS	Serial Number:
Brand: La Motte	<u>Model:</u> 2020 ve	Serial Number: 1859-0412

CALIBRATION RECORD

Morning	Collibution		
morning	Gampration	Aπernoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)			
4.00	4.10	4.00	4.00 <u>4.03</u>
7.00	6.97	7.00	7.00 7-00
10.00	10.06	10.00	10.00 9.94
Turbidity (NT			
0	0.00	0	0 004
10	10.05	10	
1	1.06		
Conductivity ((µmhos/cm)		
4.413-	10	1.413	10 142 10
10 45/cm	7.6		9.7
Dissolved Oxy	gen (mg/L)		
Barametric Pre	ssure 7 <i>549</i>	Not Applicable	Not Applicable
in.H ₂ O*25.4=	99.7 .mmHg	%	
REDOX (mV)		Chart ¹	Chart 1
(Zobel Solution) 230.4/24	0	2381/240
Temperature (°C)21.80		2176
Light's Salutio	434.1		43774

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 6/3/17

INSTRUMENT IDENTIFICATION

LaMotte	2020me	924-2111
Brand: YS	Model: 600×C	Serial Number: 0110657 AC
Brand: (51	Model: 650 MDS	Serial Number: 0662302 AE

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration	326	
Standard Successful	Standard Reading	Standard Reading
pH (S L upits)		
$400 + 30 \rightarrow (100)$	4.00	
7.00 (64 9.00	4.00	4.00 4.12
7.00 6.44 - 7.00	7.00	7.00 7.21
$10.00 \ 9.8 \rightarrow 10.00$	10.00	10.00 <u>10.04</u>
Turbidity (NTUs)		<u> </u>
	0	
10 10 10 10	10	· <u> </u>
100	10	10 <u>(D</u>
Conductivity (umhos/cm)		
10.0 -> 10.0	1.413	10.0
Dissolved Oxvgen (ma/L)		
	Not Applicable	
in.H ₂ O*25.4=mmHg		Not Applicable
REDOX (mV)	Chart 1	Chart 1
(Zobel Solution) 240		2410,1
Temperature (°C) 22.0		77.10
Light Solution 404.0 +4	75.10	Light - 409.0

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 06/04/13

INSTRUMENT IDENTIFICATION

Brand: YST	Model: 650 NOS/600 XLM	Serial Number:
Brand: Marmane Hach	Model: 2100 Q	17698/05/c340 Serial Number: 12050C017682

CALIBRATION RECORD

Morning	Calibration	Aftornoon Check	
	geanbracion	Anemoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)			
4.00 7.00	<u>4.10</u> 6.96	4.00 7.00	4.00 4.11
10.00	_/0.11	10.00	10.00 9.98
i urbiaity (N)	Us)		
0 0 0 0 0 0 0 0	<u> </u>	0 10	10 <u>9.99</u> 20 <u>20.00</u>
Conductivity	(umhos/cm)		100 99.91
10 Jus/cm	<u> 10 </u> <u> 8.4 </u>	1.413	10 µS/cm
Dissolved Oxy	ygen (mg/L)		
Barametric Pre in.H ₂ O*25.4=	essure (1977) 9 756 • 2_mmHg	Not Applicable	Not Applicable
REDOX (mV)		Chart 1	Chart 1
(Zobel Solution	255.6/240		249.1 /240
emperature (⁽⁾ 18.81		1894
Lights Solutio	an <u>429.1</u>		Lights Solation 439.4

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

-

DATE: 6-4-13

INSTRUMENT IDENTIFICATION

Brand: VSI 650 MDS	Model: WADD 7554	Serial Number: 0601751AA
Brand: LAMOTTE	Model: 2020WE	Serial Number: 984-2111

CALIBRATION RECORD

Morning	a Calibration	Afternoon Check	
	geanoration	Alternooli Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)			
4.00	414 4.14	4.00	4.00 4.05
7.00	6.19	7.00	7.00 7,07
10.00	10.0	10.00	10.00 10.31
Turbidity (NT	Us)		
0	0.09	0	0 0.07
10 100-1	9.60	10	10 9.87
Conductivity	(µmhos/cm)		0,71
19493- 101111/101	<u> </u>	1.413	1.413 10/14/cm
Dissolved Ox	ygen (mg/L)		
Barametric Pre in.H ₂ O*25.4=_	essure <u>75</u> 1.2 <u>46.4</u> mmHg	Not Applicable	Not Applicable
REDOX (mV)		Chart 1	Chart 1
(Zobel Solutior	1) 266.3		7.1 24.7
Temperature ((°C) <u>\4.</u> 41		[goz] <u>[q.30</u>

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 6/4/13____

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 650 MDS	Serial Number: 06 62302 AE
Brand: YS	Model: 600 XL	Serial Number: 01 F0657 AC
LaMotte		

CALIBRATION RECORD

Morning Calibration	Affering on Oha als	
morning calibration	Alternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units)		· · · · · · · · · · · · · · · · · · ·
4.00 $4 \underbrace{1}{\rightarrow} 4.00$	4.00	4.00 4.25
10.00 <u>9.93</u> *	0 10.00	7.00 <u>7.69</u> 10.00 <u>10,28</u>
Turbidity (NTUs)		
0 - 0.07 - 0.00	0	00
$100 9.92 \rightarrow 10.0$	10	10 1.23
Conductivity (µmhos/cm)	1.413	1 413
14 -> 10 molen		<u></u>
Dissolved Oxygen (mg/L)		
Barametric Pressure <u> 01,1 → </u> 04 in.H₂O*25.4= <u>759-5</u> mmHg	Not Applicable	Not Applicable
REDOX (mV)	Chart 1	Chart 1
(Zobel Solution) 224		7226
Temperature (°C) 18.48		19.46
Light Solution 356.5		349.3

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

۶.

. ;

calibration logs xls YSI

DATE: 06/05/13

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 650 nos / 600xL	Serial Number: 06 6 2 302 AF/OIF 0657 AC
Brand: Brand Bach	Model: Model: Model: 2100 Q	Serial Number: 12050C017682

CALIBRATION RECORD

Morning	Calibration	Afterneen Charle	
into ming	Cambration	Alternoon Uneck	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)			
4.00	4.01	4.00	4.00 4.06
7.00	7.00	7.00	7.00 7.09
10.00	9.96	10.00	10.00 9.98
Turbidity (NTU	s)		
10	10.10	O	10 9 99
20	20.04	10	30 30 00
100	100.0		
Conductivity (umhos/cm)		100 100.17
io pis/cm	// 10.4	1.413	10 µs/cm 1.413 10.4 10.1
Dissolved Oxy	gen (mg/L)		
Barametric Pres in.H₂O*25.4= _%	sure / <i>02.1</i> /4.9mmHg	Not Applicable	Not Applicable
REDOX (mV)		Chart 1	Chart 1
(Zobel Solution)	227.4/240		2cbel 236.1/240
Temperature (°	C) /6.60		17/9
Lights Solution	439.4		Lights Solution 440.6

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

.,

YSI & Turbidity Meter Calibration Log

DATE: 6/6/13

INSTRUMENT IDENTIFICATION

Brand: YSE	Model: 660 M DS	Serial Number: 0601751 AA
Brand: LAMOTTE	Model: 2020we	Serial Number: 1859 - 0412

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Objects
moning ourbration	Alternoon check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units)		·
4.00 4.0	4.00	4.00 4.07
7.00	7.00	7.00 7.12
10.00	10.00	10.00 9.97
Turbidity (NTUs)		
0 0.02	0	0 0.0
10 10.63	10	10 10.23
400~ 1.70		
Conductivity (µmhos/cm)		
1/4/3	1.413	- 1.413
18 ms/cm 10		io al s/lm 10
Dissolved Oxygen (mg/L)		
Barametric Pressure	Not Applicable	Not Applicable
in.H ₂ O*25.4= <u>1611</u> mmHg		in the product of
REDOX (mV)	Chart ¹	Chart 1
(Zobel Solution) 230		2000 230
Temperature (°C) [6.19		T(°C) 17.34
Light Sola: 402-7		Light: yoi.4

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 4(3/13

INSTRUMENT IDENTIFICATION

Brand: ¥51	Model: GTU MDJ	Serial Number: 01K0643
Brand:	Model:	<u>Serial Number:</u>

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 <u>4.00</u> 7.00 <u>7.00</u> 10.00 <u>9.94</u>	4.00 7.00 10.00	4.00 <u>4.01</u> 7.00 <u>6.92</u> 10.00 <u>4.84</u>
Turbidity (NTUs) 0 <u> </u>	0 10	0 <u>1.2</u> 10 <u>9.91</u>
Conductivity (µmhos/cm) 4413 10 10 m lun 10 10 m lun 10 10 m lun 10 10 m lun 10	1.413	10 ms/cm - 9.3 10 ms/cm - 8:8
Dissolved Oxygen (mg/L) Barametric Pressu <u>re 7</u> (0.	Not Applicable	Not Applicable
REDOX (mV) 236.4 243 (Zobel Solution) 426-2 Temperature (°C)	Chart ¹	Light 429.7
Light south = 426.2		Zanhel - 235.1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

0= 98.6 %

ł

YSI & Turbidity Meter Calibration Log

DATE: 05/06/13

INSTRUMENT IDENTIFICATION

Brand: KSI	Model: 650 MQS/600XL	Serial Number:
Brand: Hach	Model: 2100Q	<u>Serial Number:</u> 20 50 CO [76PZ

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 4.22 7.00 6.89 10.00 9.94	4.00 7.00 10.00	4.00 7.00 10.00
Turbidity (NTUs) 10 _10.09 20 _20.11 100 _100.41	0 10	0 10
$\frac{1.448}{1.448} = \frac{10}{9.1}$	1.413	1.413
Dissolved Oxygen (mg/L) Barametric Press <u>ure</u> in.H₂O*25.4≃mmHg	Not Applicable	Not Applicable
REDOX (mV) (Zobel Solution) <u>241.3/24</u> Temperature (°C) <u>17.28</u> Lights Solution <u>432.6</u>	0 Chart 1	Chart *

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1

YSI & Turbidity Meter Calibration Log

DATE: 6/6/13

INSTRUMENT IDENTIFICATION

Brand: $\sqrt{\$}$	Model: 06D1751 AA	Serial Number: 650 MDS
Brand: YS)	Model: 01F0657 AB	Serial Number: 600 XC

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 @3.94 → 4.00 7.00 6.89 → 7.00 10.00 10.19 → 10.0	4.00 7.00 10.00	4.00 <u>4.03</u> 7.00 <u>6.85</u> 10.00 <u>18.00</u>
Turbidity (NTUs) 0 <u>0.03</u> 10 1.0 100 10.62 Conductivity (µmhos/cm)	0 10	0 <u>- 8:01</u> 10 <u>18:41</u> 1: 1:06.
1.413 q <u>→ 10.0</u>	1.413	.010 -011
Dissolved Oxygen (mg/L) Barametric Pressure 762.1 in.H ₂ O*25.4= <u>100.3</u> mmHg	Not Applicable	Not Applicable
REDOX (mV) (Zobel Solution) <u>૧୯೩৩</u> Temperature (°C <u>) (୫.୦୩</u> <i>૨૬</i> <u>२</u> .୨	Chart 1	Chart 1 Zobel <u>240.1</u> T(°C) <u>23.35</u> Light: 485.4

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1

Pine Environmental Services, LLC.

7332 S. Alton Way, Bldg. 13, Suite E. Centennial, CO 80112 Toll-free: (866) 960-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	12301		
Description	Solinst IP		
Calibrated	5/30/2013 5:59:06PM		
Manufacturer	Solinst	State Certified	······································
Model Number	IP	Status	Fail
Serial Number/ Lot	122009157-1	Temp °C	23
Number		-	
Location	Colorado	Humidity %	22
Department			
Group	Calibrati	on Specifications	
Group Nan	ne		
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used D	uring the Calibration		(As Of Cal Entry Date)
Test Standard ID Descript	<u>iion Manufacturer</u>	<u>Serial Number</u> <u>Model Number</u> <u>Lot Number</u>	/ <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Wilson Burton III

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

6

1

1

1:

Pine Environmental Services, LLC.

3470 Gardner Court Burnaby, BC V5G 3K4 Toll-free: (877) 678-8383

Pine Environmental Services, Inc.

Instrument Descript	ID 2538 ion MiniRae 2000	5·30DM					
Calibrat Manufactu: Model Numl Serial Number/ I Numl Locat Departme	rer Rae Systems per PGM7600 Lot 110-005880 per fon British Columb	ia		State Certified Statu Temp °C Humidity %	1 s Pass 2 20 6 52		
Gr Group J Stated	oup # 1 Name Isobutylene Accy Pct of Readi	<u>Calibra</u>	tion Specification R	<u>s</u> Range Acc % eading Acc % Plus/Minus	0.0000 3.0000 0.00	Davily	Desc(Deil
<u>Nom In Val / In Val</u> 100.00 / 100.00	<u>In Type</u> PPM	<u>Out Val</u> 100.00	<u>Out Type</u> PPM	99.50	<u>Lit As</u> 99.50	<u>Dev%</u> -0.50%	Pass/Fail Pass
Test Instruments User <u>Test Standard ID</u> Dese BC - ISO 100 BC PPM	I During the Calib cription - ISO - 100 ppm	<u>ration</u> <u>Manufacturer</u> Calgaz	<u>Model Number</u> GP11015	<u>Serial Number</u> Lot Number 1397421 Cylinder 50	(As er / Last Open	Of Cal Entr <u>Ne</u> Cal Date/ Ex ned Date 11.	y Date) xt Cal Date / piration Date /30/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jason Murray

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

1

1

Pine Environmental Services, LLC.

3470 Gardner Court Burnaby, BC V5G 3K4 Toll-free: (877) 678-8383

Pine Environmental Services, Inc.

Instrume	nt ID 6085									
Descri	ption MiniRae 2000									
Calib	rated 5/29/2013 4:2	0:55PM								
Manufac	turer Rae Systems			State Certifie	ed					
Model Nu	mber PGM7600			Statu	is Pass					
Serial Number	r/Lot 110-011362			Temp °	C 20					
Nu	mber									
Loc	ation British Columb	bia		Humidity 9	6 52					
Depart	ment									
		Calibra	tion Specification	S						
(Group # 1			Range Acc %	0.0000					
Grou	p Name Isobutylene		R	eading Acc %	3.0000					
State	ed Accy Pct of Readi	ing		Plus/Minus	0.00					
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail			
100.00 / 100.00	PPM	100.00	PPM	98.50	98.50	-1.50%	Pass			
<u>Test Instruments U</u>	Test Instruments Used During the Calibration (As Of Cal Entry Date)									
Test Standard ID D	escription	<u>Manufacturer</u>	Model Number	<u>Serial Numb</u> Lot Number	<u>er /</u> <u>Las</u> Ope	<u>Nex</u> t Cal Date/ Exp ened Date	<u>xt Cal Date /</u> piration Date			
BC - ISO 100 B PPM	C - ISO - 100 ppm	Calgaz	GP11015	1397421 Cylinder 50	<u></u>	11/	30/2015			

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jason Murray

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

14

h

h es

Pine Environmental Services, LLC.

3470 Gardner Court Burnaby, BC V5G 3K4 Toll-free: (877) 678-8383

Pine Environmental Services, Inc.

Instrument ID	17109				
Description	MiniRae 2000				
Calibrated	5/29/2013 4:21	:22PM			
Manufacturer	Rae Systems			State Certified	
Model Number	PGM7600			Status	Pass
Serial Number/ Lot Number	110-902837			Temp °C	20
Location	British Columb	ia		Humidity %	52
Department				-	
		Calibra	tion Specification	<u>s</u>	
Group	# 1			Range Acc % 0.0	0000
Group Nan	ne Isobutylene		R	eading Acc % 3.0	0000
Stated Acc	ey Pct of Readin	ıg	6	Plus/Minus 0.0	00
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As Lf	<u>t As Dev% Pass/Fail</u>
100.00 / 100.00	PPM	100.00	PPM	99.10 99	.10 -0.90% Pass
Test Instruments Used Du	iring the Calib	ration			(As Of Cal Entry Date)
Test Standard ID Descript	ion	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
BC - ISO 100 BC - ISO PPM	O - 100 ppm	Calgaz	GP11015	1397421 Cylinder 50	11/30/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Jason Murray

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru Des Ca Manu Model Serial Num	ment ID 18829 scription LaMotte 2020 librated 5/30/2013 5:1 facturer LaMotte Number 2020WE ber/ Lot 1356-3711 Number	WE 4:09PM		State Certific State Temp °	ed 18 Pass C 22			
I Dep	ocation Massachusetts artment		_	Humidity 9	% 52			
	Calibration Specifications							
Gr Si	Group # 1 roup Name Turbidity tated Accy Pct of Read	ing		Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.00			
<u>Nom In Val / In V</u>	Val <u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	Pass/Fail	
1.00 / 1.00 10.00 / 10.00	NTU NTU	1.00 10.00	NTU NTU	1.00 10.00	1.00 10.00	0.00% 0.00%	Pass Pass	
<u>Test Instruments</u>	Used During the Calib	oration			<u>(As Of</u>	Cal Entr	y Date)	
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	Model Number	<u>Serial Numb</u> Lot Number	<u>er /</u> Last Ca	<u>Ne</u> al Date/ Ex	<u>xt Cal Date /</u> piration Date	
MA 0 NTU AUTOCAL PH 4.49	MA 0 NTU Autocal C54820	GFS		C359243	<u>Opened</u>	<u>1 Date</u> 2/1	/2014	
MA 1 NTU LAMOTTE	Ma 1 NTU Lot C254964	GFS	8577	C254964	10/11/2	2012 8/1	/2013	
MA 10 NTU GFS	Ma 10 NTU Lot C254965	GFS	8578	C254965	10/11/2	2012 8 /1	/2013	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru	ment ID 19378	(0000HUE)						
Des	cription Laivio	te 2020WE						
Ca	librated 5/30/2	013 5:14:57P	M					
Manu	facturer LaMot	te			State Certifie	d		
Model	Number 2020W	Æ			Statu	is Pass	5	
Serial Num	ber/ Lot 1859-0	412	Temp °C 22					
J	Number	-1			TT 114 0			
L	ocation Massa	cnusetts			Humidity ?	% 52		
			<u>Calibrati</u>	ion Specificatio	<u>ns</u>			
	Group # 1				Range Acc %	0.0000)	
Gr	oup Name Turl	oidity			Reading Acc %	3.0000)	
SI	ated Accy Pct	of Reading			Plus/Minus	0.00		
<u>Nom In Val / In V</u>	<u>al In Type</u>	<u>Out</u>	Val	<u>Out Type</u>	<u>Fnd As</u>	<u>Lft As</u>	Dev?	<u>6 Pass/Fail</u>
1.00 / 1.00	NTU	1.00)	NTU	1.00	1.00	0.00	% Pass
10.00 / 10.00	NTU	10.0	0	NTU	10.00	10.00	0.00	% Pass
Tast Instance of								
<u>1 est instruments</u>	Used During th	e Calibration	<u>l</u>			<u>(</u> /	As Of Cal E	<u>ntry Date)</u>
<u>Test Standard ID</u>	Description	Man	<u>ufacturer</u>	<u>Model Number</u>	<u>Serial Numb</u> Lot Number	<u>er /</u>	ast Cal Date/	<u>Next Cal Date /</u> Expiration Date
MA 0 NTU	MA 0 NTU Au	tocal GFS			C359243	<u>U</u>	pened Date	2/1/2014
AUTOCAL PH	C34820							
MA 1 NTU	Ma 1 NTU Lot	GFS		8577	C254964	1(0/11/2012	8/1/2013
LAMOTTE	C254964				020 000			
MA 10 NTU GFS	Ma 10 NTU Lo C254965	t GFS		8578	C254965	10	0/11/ 2012	8/1/2013

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru Des Ca Manu	ment ID 18082 cription LaMotte 2020 librated 5/30/2013 4:5 facturer LaMotte	WE 9:33PM		State Certifie	d		
Model]	Number 2020WE			Statu	is Pass		
	oer/ Lot 984-2111 Number			Temp ^o ,	C 22		
I	ocation Massachusetts			Humidity 9	6 52		
Depa	artment			-			
		Calibra	tion Specificatio	ns			
	Group # 1			Range Acc %	0.0000		
Gr	oup Name Turbidity		1	Reading Acc %	3.0000		
Si	ated Accy Pct of Readi	ng		Plus/Minus	0.00		
Nom In Val / In V	<u>/al In Type</u>	<u>Out Val</u>	Out Type	<u>Fnd As</u>	<u>Lft As</u>	Dev%	Pass/Fail
	NTU	1.00	NTU	1.00	1.00	0.00%	Pass
10.00 / 10.00	N1U	10.00	NTU	10.00	10.00	0.00%	Pass
<u>Test Instruments</u>	Used During the Calib	ration			<u>(As O</u>	f Cal Enti	ry Date)
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Numb</u> Lot Number	<u>er /</u> Last C	<u>Ne</u> <u>al Date/ Es</u> d Date	ext Cal Date / piration Date
MA 0 NTU	MA 0 NTU Autocal	GFS		C359243	Opene	<u>u Date</u> 2/	1/2014
AUTOCAL PH 4.49	C54820						
MA 1 NTU	Ma 1 NTU Lot	GFS	8577	C254964	10/11/	'2012 8 /	1/2013
MA 10 NTU GFS	C254964 Ma 10 NTU Lot C254965	GFS	8578	C254965	10/11/	2012 8/1	1/2013

Notes about this calibration

Calibration ResultCalibration SuccessfulWho CalibratedSheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 2635						
Descript	ion YSI 600 X	L					
Calibra	ted 5/30/2013	4:07:14PM					
Manufactu	rer YSI			State Certific	ed		
Model Num	ber 600 XL			Stat	us Pass		
Serial Number/ I	Lot 01K0643A	Е		Temp °	C 22		
Numi	ber						
Locati Departme	ent	etts		Humidity	% 52		
		Calil		ations		<u>_</u>	
Gr	oup# 1	<u>Uulli</u>		Range Acc %	0.0000		
Group I	Name PH			Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	РН	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
Gre	oup#2			Range Acc %	0.0000		
Group	Name Conduct	ivity		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	oup#3			Range Acc %	0.0000		
Group N	Name Redox (C)RP)		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	oup # 4			Range Acc %	0.0000		
Group N	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
Gro	oup # 5	• -					
Group N Test Performed: N/A	ame Disolved	Oxygen Zero		4 7 4 5 5			
rest Periormea: N/A	As Foun	a Result:		As Left Result	t:		

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2635 Description YSI 600 XL Calibrated 5/30/2013 4:07:14PM

Test Instruments	Test Instruments Used During the Calibration (As Of Cal Entry Date)													
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	Last Cal Date	<u>Next Cal Date /</u> / Expiration Date								
MA 1413 COND.	MA 1.413 MS/CM	Pine Environmental Services, Inc.		2AC129	Opened Date	3/1/2014								
MA ORP 240MV 5245	MA ORP SOLUTION 240 mV	Hanna	240 mV	5245		11/1/2017								
MA PH10 3AC002	MA PH10 SOLUTION	AquaPhoenix Scientific	PH10	3AC002		3/1/2015								
MA PH4 3AB480	MA PH4 SOLUTION	AquaPhoenix Scientific	MA PH4	3AB480		3/1/2015								
MA PH7 3AB462	Ma pH 7.00	AquaPhoenix Scientific		3AB462		3/1/2015								

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 2159											
Descripti	ion YSI 600 X	L										
Calibrat	ted 5/30/2013	4:19:53PM										
Manufactur	rer YSI			State Certific	ed							
Model Numb	oer 600 XL		Status Pass									
Serial Number/ I	Lot 01F0657		Temp °C 22									
INUME	on Massachus	~***~		TY	V 50							
Departme	ent	eus		Humidity	70 32							
		Calil	pration Specific	ations		· _ ·						
Gro	oup#1			Range Acc %	0.0000							
Group N	Name PH			Reading Acc %	3.0000							
Stated	Accy Pct of Re	eading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	Pass/Fail					
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass					
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass					
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass					
Gro	oup# 2			Range Acc %	0.0000							
Group N	Name Conducti	ivity		Reading Acc %	3.0000							
Stated .	Accy Pct of Re	ading		Plus/Minus	0.000							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail					
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass					
Gro	up#3			Range Acc %	0.0000							
Group N	ame Redox (C	DRP)		Reading Acc %	3.0000							
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	<u>Fnd As</u>	<u>Lft As</u>	Dev%	Pass/Fail					
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass					
Gro	up#4			Range Acc %	0.0000							
Group N	ame Disolved	Oxygen Span		Reading Acc %	3.0000							
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>					
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass					
Gro	up#5											
Group N	ame Disolved	Oxygen Zero										
1 est reriormed: N/A	As Found	d Kesuit:		As Left Result	•							

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2159 Description YSI 600 XL Calibrated 5/30/2013 4:19:53PM

Test Instruments	Used During the Calib		(As Of Cal Entry Date)				
Test Standard ID	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date		
MA 1413 COND.	MA 1.413 MS/CM	Pine Environmental Services, Inc.		2AC129	<u>Opened Date</u> 3/1/2014		
MA ORP 240MV 5245	MA ORP SOLUTION 240 mV	Hanna	240 mV	5245	11/1/2017		
MA PH10 3AC002	MA PH10 SOLUTION	AquaPhoenix Scientific	PH10	3AC002	3/1/2015		
MA PH4 3AB480	MA PH4 SOLUTION	AquaPhoenix Scientific	MA PH4	3AB480	3/1/2015		
MA PH7 3AB462	Ma pH 7.00	AquaPhoenix Scientific		3AB462	3/1/2015		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	D 2132											
Descripti	ion YSI 600 X	L										
Calibrat	ted 5/28/2013	4:52:52PM										
Manufactur	rer YSI			State Certific	ed							
Model Numb	oer 600 XL		Status Pass									
Serial Number/ I	Lot 01F0657A0	2	Temp °C 20									
Numb	ber											
Locati	on Massachuse	etts		Humidity '	% 34							
		<u>Calib</u>	oration Specific	ations								
Gro	oup#1			Range Acc %	0.0000							
Group N	Name PH			Reading Acc %	3.0000							
Stated	Accy Pct of Re	ading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail					
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass					
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass					
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass					
Gro	oup # 2			Range Acc %	0.0000							
Group N	Name Conducti	vity		Reading Acc %	3.0000							
Stated .	Accy Pct of Re	ading		Plus/Minus	0.000							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail					
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass					
Gro	up# 3			Range Acc %	0.0000							
Group N	lame Redox (C	ORP)		Reading Acc %	3.0000							
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail					
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass					
Gro	up# 4			Range Acc %	0.0000	1,41,1,417,1,417,17						
Group N	ame Disolved	Oxygen Span		Reading Acc %	3.0000							
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00							
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail					
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass					
Gro	up # 5											
Group N	ame Disolved	Oxygen Zero										
Test Performed: N/A	As Found	I Result:		As Left Result	t:							

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2132 Description YSI 600 XL Calibrated 5/28/2013 4:52:52PM

Test Instruments	Used During the Calib		(As Of Cal Entry Date)				
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> <u>Lot Number</u>	Last Cal Date	<u>Next Cal Date /</u> / Expiration Date	
MA 1413 COND.	MA 1.413 MS/CM	Pine Environmental Services, Inc.		2AC129	Openeo Date	3/1/2014	
MA ORP 240MV 5245	MA ORP SOLUTION 240 mV	Hanna	240 mV	5245		11/1/2017	
MA PH10 3AC002	MA PH10 SOLUTION	AquaPhoenix Scientific	PH10	3AC002		3/1/2015	
MA PH4 3AB480	MA PH4 SOLUTION	AquaPhoenix Scientific	MA PH4	3AB480		3/1/2015	
MA PH7 3AB462	Ma pH 7.00	AquaPhoenix Scientific		3AB462		3/1/2015	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

YSI & Turbidity Meter Calibration Log

DATE: 6-19-13

INSTRUMENT IDENTIFICATION

Brand: VS1	Model: 600 XLM	Serial Number: 10430
Brand: LaMotte	Model: 2020e	Serial Number: Ma 11 734

CALIBRATION RECORD

Morning C	alibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	<u>4.09</u> <u>7-04</u> 9.92	$\begin{array}{r} 4.00 & \underline{4.10} \\ 7.00 & \underline{7.06} \\ 10.00 & \underline{10.02} \end{array}$	4.00 7.00 10.00
Turbidity (NTUs 10 47000	0.98 0.98	10 <u>9-78</u>	0 10
Conductivity (µ 1.413 10 yrs/cm	mhos/cm) <u>1,413</u> 10	1.413 <u>-</u> <u>10</u>	1.413
Dissolved Oxyg Barametric Pres in.H ₂ O*25.4= <u>8</u> ,	gen (mg/L) sure /☆mmHg	Not Applicable	Not Applicable
REDOX (mV) (Zobel Solution) Temperature (% Lights Solution	$\frac{235.0}{(n)}$	Chart 1 230.9 25.08 Lights Solution: 431-5	Chart 1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1

Pine Environmental Services, LLC.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrun Desc Cal	nent ID 11764 ription LaMotte 2020 ibrated 6/17/2013 3:5	E 3:13PM										
Manuf	acturer LaMotte			State Certifie	d							
Model N	umber 2020E			Statu	s Pass							
Serial Numb	oer/ Lot ME 11734		Temp °C 24.7									
N	lumber				20							
L	ocation Massachusetts			Humidity %	0 39							
Depa	irtment											
		Calibra	tion Specification	IS								
	Group # 1			Range Acc %	0.0000							
Gr	oup Name Turbidity		F	Reading Acc %	3.0000							
St	ated Accy Pct of Read	ing		Plus/Minus	0.00							
Nom In Val / In V	al In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail					
1.00 / 1.00	NTU	1.00	NTU	1.00 1.00		0.00%	Pass					
10.00 / 10.00	NTU	10.00	NTU	10.00	9.98	-0.20%	Pass					
Test Instruments	Used During the Cali	bration		6 I.N I	<u>(As</u>	Of Cal Enti	ry Date)					
Test Standard ID	Description	Manufacturer	Model Number	Lot Number	<u>Last</u>	t Cal Date/ Es	piration Date					
MA 0 NTU AUTOCAL PH 4 49	MA 0 NTU Autocal C54820	GFS	C359243			2/	1/2014					
MA I NTU	Ma 1 NTU Lot	GFS	8577	C254964	10/	11/2012 8/	1/2013					
MA 10 NTU GFS	Ma 10 NTU Lot C254965	GFS	8578	C254965	10/1	11/2012 8/	1/2013					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Amy Adams

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, LLC.

3902 Corporex Park Drive, Suite 450 Tampa, FL 33619 Toll-free: (877) 259-PINE (7463)

Pine Environmental Services, Inc.

Instrument I Descriptio Calibrate	D 2176 n YS1600 XL d 6/17/2013 5	M :24:31PM					
Manufacture Model Number Serial Number/ Lo	er YSI er 600 XLM ot 01G0853AA			State Certified Statu Temp °C	d s Pass C 28		
Locatio Departmen	n Florida nt			Humidity %	6 41		
		Calib	ration Specific:	ations			
Gro Group N Stated /	up# 1 ame PH Accv PctofRe	ading		Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.00		
<u>Nom In Val / In Val</u> 7.00 / 7.00 4.00 / 4.00 10.00 / 10.00	In Type PH PH PH PH	Out Val 7.00 4.00 10.00	<u>Out Type</u> PH PH PH	<u>Fnd As</u> 7.00 4,00 9.97	Lft As 7.00 4.00 9.97	Dev% 0,00% 0.00% -0.30%	<u>Pass/Fail</u> Pass Pass Pass
Gro Group N Stated	up#2 ame Conducti Accy Pct of Re	vity ading		Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.000		
<u>Nom In Val / In Val</u> 1.413 / 1.413	<u>In Type</u> ms/cm	<u>Out Val</u> 1.413	<u>Out Type</u> ms/cm	<u>Fnd As</u> 1.414	<u>Lft As</u> 1.414	<u>Dev%</u> 0.07%	<u>Pass/Fail</u> Pass
Gro Group N Stated	up#3 ame Redox(C Accy Pct of Re	DRP) ading		Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.00		
<u>Nom In Val / In Val</u> 240,00 / 240.00	<u>In Type</u> mv	<u>Out Val</u> 240.00	<u>Out Type</u> mv	<u>Fnd As</u> 240.20	<u>Lft As</u> 240.20	<u>Dev%</u> 0.08%	<u>Pass/Fail</u> Pass
Gro Group N Stated	up # 4 Name Disolved Accy Pct of Re	Oxygen Span ading		Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.00		
<u>Nom In Val / In Val</u> 100.00 / 100.00	<u>In Type</u> %	<u>Out Val</u> 100.00	Out Type %	<u>Fnd As</u> 100.10	Lft As 100.10	<u>Dev%</u> 0.10%	Pass/Fail Pass
Gro Group N Test Performed: N/A	ame Disolved As Foun	Oxygen Zero d Result:		As Left Resu	lt:		

Pine Environmental Services, LLC.

3902 Corporex Park Drive, Suite 450 Tampa, FL 33619 Toll-free: (877) 259-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2176 Description YSI 600 XLM Calibrated 6/17/2013 5:24:31PM

Test Instruments	Fest Instruments Used During the Calibration											
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date							
FL 1.413 COND		Aurical		10115	1/14/2014							
10115 FL ORP 240MV	FL ORP 240MV	Hanna	SL50005-500	4769	7/31/2017							
4769 FL PH10	HANNA FL pH 10 2211639	VWR		2211639	5/31/2014							
2211639 FL PH4	FL pH 4 2210176	VWR		2210176	9/30/2014							
2210176 FL PH7		VWR		2208038	7/31/2014							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Patrick Bingaman

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

MEMO

To: Bruce Thompson *de maximis, inc.* 200 Day Hill Road, Suite 200 Windsor, CT 06095 ^{Copies:} Jessie McCusker, *de maximis, inc.* John Hunt, *de maximis, inc.* Mike Gefell, ARCADIS

From: Jeffrey S. Holden, P.E., LEP Principal Engineer

Date: October 7, 2013 ARCADIS Project No.: B0054634.0000.01900

Subject: Supplemental HydraSleeveTM Groundwater Sampling Results SRSNE Superfund Site, Southington, CT

As described in the Draft 2013 Groundwater Sampling and Monitored Natural Attenuation Report, ARCADIS performed additional groundwater sampling at a subset of monitoring wells to assess concentration trends in the vicinity of wells PZO-2M and MW-1003DR. Samples collected from these well in June 2013 contained benzene, tetrachloroethene (PCE) and/or trichloroethene (TCE) at concentrations above their respective Action Levels (the lower of the United States Environmental Protection Agency [USEPA] Maximum Contaminant Level [MCL] and the Connecticut Class GA Groundwater Protection Criteria [GWPC]), with concentrations up to three orders of magnitude higher than prior results. Each well was resampled later in June 2013, with results similar to those in the initial June sample (see Table 1). To further assess concentration trends in these and other nearby wells, two additional rounds of groundwater sampling were performed: one in July 2013 and the second in September 2013. The scope and findings of these supplemental sampling events are summarized below.

July 2013 HydraSleeve[™] Sampling

The first of the two supplemental HydraSleeve[™] sampling events took place on July 12-17, 2013. Samples from 41 monitoring wells representing all five hydrostratigraphic zones were collected and submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts for analysis of volatile organic compounds (VOCs). Groundwater analytical data are summarized in Table 1. Monitoring wells locations are shown on Figure 1.

ARCADIS U.S., Inc. 160 Chapel Road Suite 201 Manchester Connecticut 06042-1625 Tel 860 645 1084 Fax 860 645 1090

Supplemental HydraSleeve[™] Groundwater Sampling Results

SRSNE Superfund Site Southington, Connecticut

September 2013 HydraSleeve[™] Sampling

Based on the results from the July sampling event, another round of sampling was performed on September 17-19, 2013. Ten monitoring wells were sampled during this event, including nine of the wells sampled in July 2013, plus MW-903M. Consistent with the July 2013 event, samples were collected using HydraSleeve[™] and submitted to Alpha for analysis of VOCs. Groundwater analytical data from this event are summarized in Table 1 and well locations are shown on Figure 1.

Results and Discussion

The July 2013 sampling indicated PCE and TCE concentrations in PZO-2M and MW-1003DR remained above Action Levels at concentrations generally consistent with the June 2013 data; concentrations were slightly higher at PZO-2M and slightly lower at MW-1003DR.

In September, PCE and TCE concentrations remained above Action Levels at monitoring wells PZO-2M and MW-1003DR, although concentrations were lower than during the June and July events.

Based on the results of the July and September sampling events, Table 2 summarizes concentrations of key VOCs for key wells, as well as recent prior data from these wells to facilitate review of recent trends at these locations. In addition to the VOC concentration trends for wells PZO-2M and MW-1003DR discussed above, the table also presents data for MW-707DR and MW-1002DR. MW-707DR, which is located outside of the inferred hydraulic capture zone, has contained benzene at a concentration at, near or slightly above the Action Level of 1 microgram per liter (ug/L). The September 2013 sample indicated no VOCs above Action Levels. MW-1002DR is a deep bedrock well upgradient of MW-1003 and has also contained PCE and TCE at concentrations above the Action Levels.

Apart from the wells and specific VOCs discussed above, the supplemental sampling of 41 wells in July 2013 and 10 wells in September 2013 did not indicate any additional noteworthy results. In general, other data were consistent with prior results, and indicate hydraulic containment of wells with concentrations exceeding Action Levels.

Recommendation

Based on the results of the July and September 2013 groundwater sampling events and the recent declining concentrations at wells MW-1003DR and PZO-2M, it is recommended that interim HydraSleeve[™] sampling events continue on a focused basis. Pending your concurrence, we propose additional HydraSleeve[™] sampling at the four wells indicated in Table 2 (PZO-2M, MW-707DR, MW-1002DR and MW-1003DR) in November 2013.

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	CPZ	<u>Z</u> -4A	CW	-1-78	CW	B-77	MW	V-03	MW	/-03	MV	V-03	MW-1	.002DR	MW-1	LOO2DR
			Sam	ple Date	6/3/	2013	7/17	/2013	7/17	/2013	6/3/	2013	7/17/	/2013	9/22	/2013	6/4/	2013	6/4/	/2013
			Field Sa	ample ID	CPZ-4A-HS	5-06032013	CW-1-78-H	S-07172013	CW-B-77-H	S-07172013	MW-03-0	06032013	MW-03-HS	-07172013	MW-03-H	5-09192013	DUP-GW-0	6042013#2	MW-1002DR-HS-06042013	
			We	ell Group		R	١	N	W		R		R		R		R		R	
				-																
Analyte			Action																	
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	2.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	1.8		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	0.84	J
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	7.5	U	3.8	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	4.8		0.2	J	0.75	U	0.44	J	0.75	U	0.182	J	7.5	U	3.8	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.88		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	3.1	J	3.1	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	25	U	12	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	25	U	12	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	2.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	25	U	12	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	5	U	5	U	50	U	25	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	5	U	5	U	50	U	25	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	5	U	5	U	5	U	50	U	25	UJ
Acetone	67-64-1	ug/L	700	5	5	UJ	5	U	5	U	5	UJ	5	U	1.79	J	50	IJ	25	UJ
Benzene	71-43-2	ug/L	1	0.5	1.9		0.5	U	0.5	U	0.16	J	0.5	U	0.175	J	5	U	2.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	U	1	U	1	UJ	1	U	1	U	10	UJ	5	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	5	U	5	U	50	U	25	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	2.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.92		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	2.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	24	J	1	U	1	U	1	UJ	1	U	1	U	10	U	5	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	7.5	U	3.8	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	25	U	12	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	2.5	J	0.5	U	0.5	U	0.26	J	0.19	J	0.5	U	26		26	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.81		0.5	U	0.5	U	0.71		0.5	U	0.5	U	5	U	2.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	6	U	3	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	5	U	4	J	3.5	J
Naphthalene	91-20-3	ug/L	280	0.5	0.23	J	2.5	U	2.5	U	0.38	J	2.5	U	2.5	U	25	U	12	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	1	U	1	U	10	U	5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	21		21	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	35		5	U	5	U	5	U	5	U	5	U	50	U	25	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	0.75	U	2.5		0.75	U	1.34		7.5	U	3.8	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	7.5	U	3.8	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	2.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	1.7		0.5	U	0.5	U	0.52		0.51		0.256	J	480		460	
Vinyl chloride	75-01-4	ug/L	2	0.5	2.6		1	U	1	U	1	U	1	U	1	U	10	U	5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	4.1		1	U	1	U	4.2		1	U	0.474	J	10	U	5	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-1	002DR	MW-1	002DR	MW-1	.002R	MW-:	1002R	MW-1	003DR	MW-1	.003DR	MW-1	003DR	MW-1	003DR
			Sam	ple Date	7/16/	/2013	9/22,	/2013	6/6/	2013	7/16/	/2013	6/5/2	2013	6/19	/2013	7/16,	/2013	9/23/	/2013
			Field Sa	ample ID	MW-1002DR-	HS-07162013	MW-1002DR-	HS-09192013	MW-1002R-I	IS-06062013	MW-1002R-I	HS-07162013	MW-1003DR-	HS-06052013	MW-1003DR	-HS-06192013	MW-1003DR-HS-07162013		MW-1003DR-	HS-09192013
			We	ell Group	F	3		R	F	R	ŀ	२	R R		R		R			
Analyte		l lmit	Action																	
VOCs (8260C)	CAS NO.	Onit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	2.5	U	5	U	2.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	2.5	U	2.5	U	0.5	U	0.5	U	27		20		12		9.1	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	3.8	U	3.75	U	0.75	U	0.75	U	0.75	U	3.8	U	7.5	U	3.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	3.8	U	3.75	U	0.75	U	0.75	U	0.5	J	3.8	U	7.5	U	3.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	3.5		3.12		0.5	U	0.5	U	1.6		1.3	J	5	U	0.732	J
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	12	U	12.5	U	2.5	U	2.5	U	2.5	U	12	U	25	U	12.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	12	U	12.5	U	2.5	U	2.5	U	2.5	U	12	U	25	U	12.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	2.5	U	5	U	2.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	12	U	12.5	U	2.5	U	2.5	U	2.5	U	12	U	25	U	12.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	25	U	25	U	5	U	5	U	2	J	25	U	50	U	25	U
2-Hexanone	591-78-6	ug/L	140	5	25	U	25	U	5	U	5	U	5	U	25	U	50	U	25	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	25	U	25	U	5	U	5	U	1.7	J	25	U	50	U	25	U
Acetone	67-64-1	ug/L	700	5	25	U	25	U	5	U	5	U	14		25	U	50	U	22	J
Benzene	71-43-2	ug/L	1	0.5	2.5	U	2.5	U	1.1		1.2		2.6		2.3	J	2.4	J	1.72	J
Bromomethane	74-83-9	ug/L	9.8	0.5	5	U	5	U	1	UJ	1	U	0.4	J	5	U	10	U	5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	25	U	25	U	16		7.1		5	U	25	U	50	U	25	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	2.5	U	5	U	2.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	2.5	U	5	U	2.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	5	U	5	U	1	U	1	U	0.19	J	5	U	10	U	5	U
Chloroform	67-66-3	ug/L	6	0.5	3.8	U	3.75	U	0.23	J	0.38	J	0.75	U	3.8	U	7.5	U	3.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	12	U	12.5	U	0.19	J	2.5	U	2.5	U	12	U	25	U	12.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	30		26.8		0.5	U	0.5	U	5.5		5.3		4.1	J	5.59	
Ethylbenzene	100-41-4	ug/L	700	0.5	2.5	U	2.5	U	0.5	U	0.23	J	11		8.3		4.9	J	3.4	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	3	U	3	U	0.6	U	0.6	U	0.6	U	3	U	6	U	3	U
Methylene chloride	75-09-2	ug/L	5	0.5	4	J	1.68	J	5	U	5	U	5	U	25	U	5.7	J	1.7	J
Naphthalene	91-20-3	ug/L	280	0.5	12	U	12.5	U	2.5	U	2.5	U	2.5	U	12	U	25	U	12.5	U
Styrene	100-42-5	ug/L	100	0.5	5	U	5	U	1	U	1	U	1.9		1.8	J	10	U	5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	18		16.7		0.5	U	0.5	U	90		81		43		29.7	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	25	U	25	U	5	U	5	U	5	UJ	25	U	50	U	25	U
Toluene	108-88-3	ug/L	1000	0.5	1.2	J	3.75	U	0.75	U	1.8		86		78		49		32.1	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	3.8	U	3.75	U	0.75	U	0.75	U	0.75	U	3.8	U	7.5	U	3.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	2.5	U	5	U	2.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	440		438		0.5	U	0.5	U	740		660		440		294	
Vinyl chloride	75-01-4	ug/L	2	0.5	5	U	5	U	1	U	1	U	1	U	5	U	10	U	1.82	J
Xylenes, Total	1330-20-7	ug/L	530	0.5	5	U	5	U	1	U	1.4	J	34		26		15	J	10.6	J

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	1003R	MW-	1003R	MW	-121B	MW	121B	MW-	121C	MW	-121C	MW-	121M	MW-	121M
			Sam	ple Date	6/6/	2013	7/16	/2013	6/3/	2013	7/17,	/2013	6/3/	2013	7/16	/2013	6/3/	2013	7/16/	/2013
			Field Sa	ample ID	MW-1003R-	HS-06062013	MW-1003R-	HS-07162013	MW-121B-H	IS-06032013	MW-121B-H	IS-07172013	MW-121C-H	IS-06032013	MW-121C-H	IS-07162013	MW-121M-H	HS-06032013	MW-121M-H	IS-07162013
			We	ell Group		R		R		R		R	F	२		R	I	R	I	२
Analyte	646 N-	1114	Action	101																
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	1	U	0.5	U								
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	1	U	0.5	U								
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	1.5	U	0.75	U								
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U	1.5	U	0.75	U	0.75	U	0.75	U	0.75	U	0.2	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	1	U	0.5	U								
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	5	U	2.5	U								
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	5	U	0.18	J	0.18	J	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	1	U	0.5	U	0.46	J	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	5	U	0.21	J	0.2	J	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	10	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	10	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	10	U	5	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	U	4.3	J	10	UJ	5	U	5	IJ	5	U	5	UJ	5	U
Benzene	71-43-2	ug/L	1	0.5	0.17	J	0.58		16		15		13		2		0.95		0.91	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	U	2	UJ	1	U	1	UJ	1	U	1	UJ	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	0.31	J	10	U	5	U	5	U	0.42	J	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	1	U	0.5	U								
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	9		7.3		7.4		1.1		0.87		0.52	
Chloroethane	75-00-3	ug/L	12.1	0.5	0.16	J	1	U	40	J	34		34	J	5.2		15	J	8.7	
Chloroform	67-66-3	ug/L	6	0.5	0.52	J	0.46	J	1.5	U	0.75	U								
Chloromethane	74-87-3	ug/L	2.7	0.5	0.24	J	0.19	J	5	U	2.5	U								
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.32	J	0.5	U	1	UJ	0.5	U	0.5	UJ	0.5	U	0.5	UJ	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.21	J	2.5		0.5	U	0.17	J	0.26	J	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	1.2	U	0.6	U								
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	10	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	5	U	2.5	U								
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	2	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	1	U	0.5	U								
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	210		170		110		33		8.8		6.2	
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.8		1.5	U	0.21	J	0.35	J	0.22	J	0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	1.5	U	0.75	U								
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	1	U	0.5	U								
Trichloroethene	79-01-6	ug/L	5	0.5	0.42	J	0.22	J	1	U	0.5	U								
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	2	U	1	U	1	U	0.15	J	1	U	0.19	J
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	0.69	J	3		2.2		1.6		1	U	1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	-124C	MW	-127B	MW-1	127C	MW	127C	MW-	127C	MW	/-128	MW-	204A	MW-	204B
			Sam	ple Date	6/4/	2013	7/16	/2013	6/5/2	2013	7/16	/2013	9/22/	2013	7/17,	/2013	7/16	/2013	7/16/	/2013
			Field Sa	ample ID	MW-124C-F	IS-06042013	MW-127B-H	IS-07162013	MW-127C-	06052013	MW-127C-H	IS-07162013	MW-127C-H	S-09192013	MW-128-H	S-07172013	MW-204A-H	IS-07162013	MW-204B-H	IS-07162013
			We	ell Group		R		С	R			R	F	3		с	(С	(С
				-																
Analyte	CAC N-		Action	101																
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	7.7		0.37	J	2.4		2		0.813		0.24	J	0.34	J	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	2.4		0.24	J	4.3		5		2.83		0.24	J	0.27	J	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	4.6		0.5	U	1.1		1.7		0.549		0.45	J	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	UJ	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	UJ	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	U	1	UJ	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.25	J	0.23	J	0.75	U	0.3	J	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	5.9		0.5	U	1.4		1.8		0.81		0.2	J	0.68		0.49	J
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.28	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.28	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.44	J	0.24	J
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	1.2	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	1.6		0.5	U	0.43	J	0.44	J	0.296	J	0.5	U	1.9		1	
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1.6	J	1	U	1	U	1	U	1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	-205A	MW	-205B	MW	/-413	MW	-415	MW	-416	MW	-502	MW-	703D	MW-7	703DR
			Sam	ple Date	7/16	/2013	7/16	/2013	6/6/	/2013	6/6/	2013	6/6/	2013	6/4/	2013	7/17	/2013	7/17/	/2013
			Field S	ample ID	MW-205A-H	IS-07162013	MW-205B-H	IS-07162013	MW-413-H	IS-06062013	MW-415-H	S-06062013	MW-416-H	5-06062013	MW-502-H	S-06042013	MW-703D-F	IS-07172013	MW-703DR-I	HS-07172013
			We	ell Group	۱. ۱	N		с		N	1	N	1	J		R	(С	(0
Analyte	CACNE	11	Action																	
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	23		38		110		0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	7.5	U	15	U	3.8	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.45	J	0.75	U	170		500		22		0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	1.8	J	5.3	J	39		0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	25	U	50	U	12	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	25	U	50	U	12	U	0.34	J	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	10		4.2	J	2.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	25	U	50	U	12	U	0.29	J	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	50	U	620		25	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	50	U	100	U	25	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	95		180		25	U	4	J	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	U	5	U	50	U	230		25	U	5	UJ	5	U	5	U
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	6.1		10	U	2.5	U	64		0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	10	UJ	20	UJ	5	UJ	1	UJ	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	50	U	100	U	25	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	5	U	7.5	J	2.5	U	27		0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	110		900		1.1	J	61		1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	7.5	U	15	U	3.8	U	0.75	U	0.16	J	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	25	U	19	J	12	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	840		1400		300		0.5	U	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	57		270		2.5	U	99		0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	6	U	12	U	3	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	3.2	J	120		25	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	25	U	50	U	12	U	1.5	J	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	10	U	20	U	5	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	23		10	U	17		0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	79		39	J	7	J	3800		5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	210		1300		3.8	U	5.3		0.75	U	0.2	J
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	3.8	J	8.2	J	0.89	J	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	5	U	10	U	2.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.35	J	0.22	J	59		10	U	280		0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1600		710		35		1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	65		660		5	U	270		1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	704D	MW	-704D	MW-	704DR	MW-7	704DR	MW-	704M	MW-	704M	MW-	-704R	MW-	704S
			Sam	ple Date	6/3/	2013	7/17	/2013	6/3/	/2013	7/17/	2013	6/5/	2013	7/17,	/2013	7/17,	/2013	7/17/	2013
			Field Sa	ample ID	MW-704D-H	IS-06032013	MW-704D-I	HS-07172013	MW-704DR-	HS-06032013	MW-704DR-	HS-07172013	MW-704M-H	IS-06052013	MW-704M-I	HS-07172013	MW-704R-F	IS-07172013	MW-704S-H	S-07172013
			We	ell Group		२		R		R	F	3	F	3		R	(С	0	2
Analyte		l lmit	Action																	
VOCs (8260C)	CAS NO.	Onit	Level																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U												
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.16	J	0.5	U	0.64		0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U												
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.57	J	1.8		2.8		3.5		0.16	J	0.16	J	0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	0.61		0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U												
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U												
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.25	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U												
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	UJ	5	U	5	UJ	5	U	5	U	5	U	34		5	U
Benzene	71-43-2	ug/L	1	0.5	0.19	J	0.5	U	2.9		1.2		0.17	J	0.5	U	0.28	J	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	U	1	UJ	1	U	1	UJ	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	0.4	J	0.61	J	0.33	J	5	U	5	U	22		0.31	J
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U												
Chlorobenzene	108-90-7	ug/L	100	0.5	1.3		0.33	J	1.7		0.62		1.6		1.2		0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	7.5	J	1.4		22	J	8.5		0.66	J	0.43	J	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	5.5		0.75	U										
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U												
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	UJ	0.24	J	2.9	J	6.2		0.46	J	0.37	J	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	1		1.3		0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U												
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	5	U	0.7	J	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U												
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.3	J	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	3.4	J	1.4	J	8.8		7		2.2	J	3	J	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.44	J	0.75	U										
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U												
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U												
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.5	U	3.6		9.7		0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	0.24	J	1	U	0.16	J	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1.8	J	1.7	J	1	U	1	U	1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	706DR	MW-	707D	MW-7	07D	MW-7	'07DR	MW-7	'07DR	MW-	707DR	MW-	707M	MW-	707M
			Sam	ple Date	6/4/	2013	7/16,	/2013	9/22/2	2013	6/4/2	2013	7/16/	2013	9/22,	/2013	7/16,	/2013	9/22/	2013
			Field S	ample ID	MW-706DR-	HS-06042013	MW-707D-H	IS-07162013	MW-707D-H	5-09192013	MW-707DF	8-06042013	MW-707DR-I	IS-07162013	MW-707DR-	HS-09192013	MW-707M-I	HS-07162013	MW-707M-H	IS-09192013
			We	ell Group		R	(C	C		F	R	F	2	I	R	(С	(2
Analyte		Unit	Action																	
VOCs (8260C)	CAS NO.	Onit	Level																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	25	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	25	U	0.5	U	0.5	U	0.4	J	0.24	J	0.173	J	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	38	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	7.7	J	0.75	U	0.75	U	1.3		1.5		1.22		0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	20	J	0.5	U	0.5	U	0.16	J	0.16	J	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	120	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	120	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	25	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	120	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	250	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	250	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	250	UJ	5	U	5	U	5	UJ	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	250	UJ	5	U	5	U	5	UJ	5	U	5.94		5	U	5	U
Benzene	71-43-2	ug/L	1	0.5	25	U	0.5	U	0.5	U	1.3		1		0.804		0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	50	UJ	1	U	1	U	1	UJ	1	U	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	250	U	5	U	5	U	5	U	0.36	J	0.462	J	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	25	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	25	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	50	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	38	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	120	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	2100		0.5	U	0.5	U	0.59		0.63		0.517		0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	25	U	0.5	U	0.5	U	0.59		0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	30	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	17	J	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	120	U	2.5	U	2.5	U	0.24	J	2.5	U	2.5	U	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	50	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	31		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	250	U	5	U	5	U	1.6	J	5	U	5	U	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	18	J	0.75	U	0.75	U	1.9	U	0.28	J	0.75	U	0.36	J	0.871	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	38	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	25	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	580		0.38	J	0.216	J	0.21	J	0.5	U	0.5	U	0.43	J	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	61		1	U	1	U	1	U	1	U	0.143	J	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	50	U	1	U	1	U	3.2	J	1	U	1	U	1	U	0.352	J

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW	-707R	MW	-707R	MW-7	707S	MW-	902D	MW-	902M	MW-	903M	MW-	-907D	MW-	907DR
			Sam	ple Date	7/16	/2013	9/24	/2013	7/16/2	2013	6/5/	2013	6/5/	2013	9/22	/2013	6/3/	2013	6/3/	2013
			Field S	ample ID	MW-707R-F	IS-07162013	MW-707R-F	HS-09192013	MW-707S-HS	S-07162013	MW-902D-F	IS-06052013	MW-902M-H	IS-06052013	MW-903M-I	HS-09192013	MW-907D-F	IS-06032013	MW-907DR-	HS-06032013
			We	ell Group		с	(с	C	2	1	١	1	N		с		R		R
				-																
Analyte	CAC N-		Action																	
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	500	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.5	U	10		20		0.5	U	5	U	1200	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	7.5	U	7.5	U	0.75	U	7.5	U	750	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U	0.75	U	82		230		0.698	J	7.5	U	750	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	3.1	J	4.6	J	0.5	U	5	U	220	J
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	25	U	2.7	J	2.5	U	25	U	2500	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	25	U	3	J	2.5	U	25	U	2500	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	2	J	8.6		0.5	U	5	U	500	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2500	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	21	J	160		5	U	50	U	5000	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	50	U	50	U	5	U	50	U	5000	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	5.4	J	44	J	5	U	50	U	5000	U
Acetone	67-64-1	ug/L	700	5	5	U	5	U	5	U	50	U	130		5	U	50	UJ	5000	UJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.906		0.5	U	1.6	J	9.2		0.177	J	29		500	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	1	U	10	UJ	10	UJ	1	U	10	UJ	1000	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	0.467	J	5	U	50	U	50	U	5	U	50	U	5000	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	500	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	5	U	5	U	0.5	U	14		500	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	1	U	140		2100		1	U	64	J	1000	UJ
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.75	U	7.5	U	7.5	U	0.75	U	7.5	U	750	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2500	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.39	J	0.5	U	0.5	U	300		540		1.17		5	UJ	620	J
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	94		540		0.245	J	5	U	460	J
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	6	U	6	U	0.6	U	6	U	600	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	9.7	J	48	J	5	U	50	U	5000	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	25	U	10	J	2.5	U	25	U	2500	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	10	U	10	U	1	U	10	U	1000	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	5	U	5	U	0.187	J	5	U	5800	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	5	U	13	J	150	J	5	U	640		5000	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	0.26	J	510		2200		2.04		7.5	U	3800	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	7.5	U	3.5	J	0.75	U	7.5	U	750	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	500	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.65		0.299	J	0.66		5	U	5	U	3.88		5	U	63000	
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	250		430		1	U	10	U	1000	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1	U	140		850		0.55	J	10	U	1300	J

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	MW-	907M	MW	L-304	MW	L-307	MWI	-309	P-1	01B	P-1	01C	P-1	L1A	P-1	13
			Sam	ple Date	6/3/	2013	6/5/	2013	6/5,	2013	6/6/	2013	6/4/	2013	6/4/	2013	6/6/	2013	6/5/2	2013
			Field Sa	ample ID	MW-907M-H	HS-06032013	MWL-304-F	IS-06052013	MWL-307-ł	IS-06052013	MWL-309-H	IS-06062013	P-101B-HS	-06042013	P-101C-HS	-06042013	P-11A-HS-	-06062013	P-13-06	052013
			We	ell Group	I	R		N		N	I	3	l I	२		R	F	R	R	R
Analyte	CAS No	Unit	Action																	
VOCs (8260C)	CAS NO.	onic	Level																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	20	U	1.2		110		0.5	U	0.5	U	0.5	U	45		5.6	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	30	U	0.75	U	75	U	0.75	U	0.75	U	0.75	U	7.5	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	30	U	8.9		760		1		1		3		8.6		1.6	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	20	U	0.5	U	72		0.5	U	0.5	U	0.5	U	37		0.66	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	100	U	2.5	U	250	U	2.5	U	2.5	U	2.5	U	2.6	J	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	100	U	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	100	U	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	200	U	5	U	1200		5	U	5	U	5	U	50	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	200	U	5	U	500	U	5	U	5	U	5	U	50	UJ	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	200	U	5	U	820		5	U	5	UJ	5	U	50	U	5	U
Acetone	67-64-1	ug/L	700	5	200	UJ	5	U	260	J	5	U	5	UJ	5	UJ	50	U	5	U
Benzene	71-43-2	ug/L	1	0.5	58		0.54		39	J	0.5	U	4.9		0.72		20		0.22	J
Bromomethane	74-83-9	ug/L	9.8	0.5	40	UJ	1	LU	100	UJ	1	UJ	1	UJ	1	LU	10	UJ	1	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	200	U	0.57	J	500	U	5	U	5	U	5	U	3.2	J	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	27		0.5	U	50	U	0.5	U	1.9		0.43	J	5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	130	J	1.7		3000		1	U	15		1	U	11		1	U
Chloroform	67-66-3	ug/L	6	0.5	30	U	0.75	U	75	U	0.75	U	0.75	U	0.75	U	7.5	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	100	U	2.5	U	250	U	2.5	U	2.5	U	2.5	U	25	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	20	UJ	21		3800		0.5	U	0.72		0.65		4000		2.1	
Ethylbenzene	100-41-4	ug/L	700	0.5	20	U	8.7		1800		0.5	U	0.5	U	0.5	U	420		0.76	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	24	U	0.6	U	60	U	0.6	U	0.6	U	0.6	U	6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	200	U	5	U	110	J	5	U	5	U	5	U	50	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	100	U	2.5	U	250	U	2.5	U	2.5	U	2.5	U	4.6	J	2.5	U
Styrene	100-42-5	ug/L	100	0.5	40	U	1	U	100	U	1	U	1	U	1	U	19		1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	410		0.51	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	3600		5	UJ	120	J	5	U	4.9	J	1.9	J	54	J	5	U
Toluene	108-88-3	ug/L	1000	0.5	30	U	0.75	U	16000		0.75	U	0.75	U	0.75	U	660		3.6	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	30	U	0.75	U	24	J	0.75	U	0.75	U	0.75	U	2.7	J	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	20	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	1100		0.63	
Vinyl chloride	75-01-4	ug/L	2	0.5	40	U	73		2000		1	U	1.9		1.3		600		1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	40	U	1.6		3000		1	U	0.46	J	1	U	840		4.3	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	PZO-2	204M	PZC)-2D	PZO-	-2D	PZC	-2D	PZO	-2M	PZO	-2M	PZO	-2M	PZO	-2M
			Sam	ple Date	7/16/	/2013	6/3/	2013	6/3/2	013	7/17/	/2013	6/5/2	2013	6/19/	/2013	7/17/	/2013	9/23/	/2013
			Field S	ample ID	PZO-204M-H	IS-07162013	DUP-GW-0	6032013-#1	PZO-2D-HS-	06032013	PZO-2D-HS	-07172013	PZO-2M-HS	-06052013	PZO-2M-H	5-06192013	PZO-2M-HS	5-07172013	PZO-2M-HS	5-09192013
			We	ell Group	(2		R	R		F	3	F	8		R	F	3	F	۲
				-																
Analyte			Action																	
VOCs (8260C)	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.5	U	0.5	U	5.8		4.8		9		7.56	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	1.9	U	3.8	U	3.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.54	J	0.2	J	0.17	J	0.38	J	0.75	U	1.9	U	3.8	U	3.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.14	J	1.2	U	2.5	U	2.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	12	U	12.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	12	U	12.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	12	U	12.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	5	U	12	U	25	U	25	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	5	U	12	U	25	U	25	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	5	U	5	U	12	U	25	U	25	U
Acetone	67-64-1	ug/L	700	5	5	U	5	UJ	5	UJ	5	U	5	U	12	U	25	U	8.14	J
Benzene	71-43-2	ug/L	1	0.5	0.39	J	0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	UJ	1	UJ	1	U	1	UJ	2.5	U	5	U	5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	5	U	12	U	25	U	25	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	3.8		0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	0.36	J	1	UJ	1	UJ	1	U	1	U	2.5	U	5	U	5	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	1.9	U	3.8	U	3.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	12	U	12.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1		0.36	J	0.26	J	0.55		0.48	J	1.2	U	2.5	U	1.65	J
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.35	J	0.71	J	2.5	U	2.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	1.5	U	3	U	3	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	12	U	25	U	1.92	J
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	6.2	U	12	U	12.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	1	U	2.5	U	5	U	5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.25	J	0.22	J	0.22	J	79		72		90		56	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	7		5	U	5	U	5	U	5	UJ	12	U	25	U	25	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	0.75	U	0.75	U	1.6	U	3.5		3.8	U	3.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	1.9	U	3.8	U	3.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.2	U	2.5	U	2.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	1.3		1.2		1.5		250		230		360		179	
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	1	U	1	U	2.5	U	5	U	5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1	U	1	U	0.81	J	2.3	J	5	U	5	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

			Sample	Location	PZC)-3D	PZC)-3M	PZO-	-4D	PZO	-4M	PZR-	2DR	PZF	R-2R	PZR	R-2R	PZR	-3R
			Sam	ple Date	7/17,	/2013	7/17,	/2013	7/17/2	2013	7/17/	/2013	7/17/	2013	6/5/	2013	7/17/	/2013	7/17/	2013
			Field S	ample ID	PZO-3D-HS	6-07172013	PZO-3M-H	S-07172013	PZO-4D-HS-	07172013	PZO-4M-HS	5-07172013	PZR-2DR-HS	5-07172013	PZR-2R-HS	-06052013	PZR-2R-HS	-07172013	PZR-3R-HS	-07172013
			W	ell Group		С		С	C		(2	(2	I	R	F	२	(
Analyte		11	Action																	
VOCs (8260C)	CAS NO.	Unit	Level																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.3	J	0.2	J	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	1	U	1	U	1	U	1	UJ	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.16	J	0.17	J	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.19	J	0.23	J	0.75	U	0.75	U	0.18	J	0.75	U	0.18	J	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.17	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

			Sample	Location	PZI	R-4R	PZF	R-5R	TW	-08A	TW-	08B	TW-	08D
			Sam	ple Date	7/17	/2013	7/16	/2013	6/5/	2013	6/5/	2013	6/5/2	2013
			Field S	ample ID	PZR-4R-HS	5-07172013	PZR-5R-HS	5-07162013	TW-08A-HS	5-06052013	TW-08B-HS	6-06052013	TW-08D-HS	6-06052013
			We	ell Group		С		С	ı I	N	1	N	١	N
Analyte			Action	1										
	CAS No.	Unit	Level	ICL										
1 1 1 2 Tetrachloroethane	620-20-6	ug/I	1	0.5	0.5		0.5		100		250	11	10	
1 1 1-Trichloroethane	71-55-6	ug/L	200	0.5	24		2.6		310		8600		240	
1 1 2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75		0.75		150		72		15	
1 1-Dichloroethane	75-34-3		70	0.5	2		7.8		670		2100		420	
1 1-Dichloroethene	75-35-4	ug/L	7	0.5	0.76		5.8		70	1	2000		110	
1.2.4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	500	U U	1200	U	50	U
1 2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U U	2.5	U U	500	U U	1200	U	6.4	U
1.2-Dichloroethane	107-06-2	ug/l	1	0.5	0.5	U	0.5	U	28	1	170		110	
1.4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	500	U	1200	U	50	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	1000	U	2500	U	100	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	1000	U	2500	U	100	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	1000	U	2000	J	100	U
Acetone	67-64-1	ug/L	700	5	5	U	5	U	1000	U	870	J	89	J
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	36	J	370		86	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	200	IJ	500	UJ	20	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	1000	U	2500	U	9.2	J
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	100	U	250	U	10	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	100	U	250	U	10	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	120	J	980		520	
Chloroform	67-66-3	ug/L	6	0.5	0.16	J	0.75	U	150	U	110	J	15	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	500	U	1200	U	50	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1.1		4.2		13000		330000		7000	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	1200		3400		1200	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	120	U	300	U	12	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	120	J	660	J	39	J
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	500	U	1200	U	13	J
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	200	U	380	J	20	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.21	J	100	U	7200		10	υ
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	1.5	J	1000	U	610	J	420	J
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U	2200		29000		5100	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	150	U	140	J	28	
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	100	U	250	U	10	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.99		100	U	24000		6	J
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	14000		14000		15000	
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1800		9200		3900	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWP

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Table 2 – Comparison of June 2013 Sampling Results Versus Previous Results at Select WellsSolvents Recovery Service of New England, Inc. (SRSNE) Superfund Site

Southington, Connecticut

		MW-	707DR				PZC	-2M		
	June 2012	June 2013	July 2013	Sept 2013	June 2012	August 2012	June 2013	June 2013	July 2013	Sept 2013
	а	b					а	b		
PCE	-	-	-	-	.4J	-	79	72	90	56
TCE	-	0.21	-	-	9.9J	.5J	250	230	360	179
Benzene	1.1	1.3	1.0	0.804	-	-	_	-	-	-

			MW-1003DR				MW-1	002DR	
	Oct 2012	June 2013	June 2013	July 2013	Sept 2013	June 2012	June 2013	July 2013	Sept 2013
		а	b			а	b		
PCE	-	90	81	43	29.7	13	21	18	16.7
TCE	-	740	660	440	294	380	460	440	438
Benzene	0.88	2.6	2.3	2.4	1.72	-	_	_	-

Notes:

- = not detected

PCE = tetrachloroethene

TCE = trichloroethene

J = indicates an estimated value

a = initial sample

b = resample

All results reported in micrograms per liter (ug/L)

