

200 Day Hill Road Suite 200 Windsor, CT 06095 (860) 298-0541 (860) 298-0561 FAX

Solvents Recovery Service of New England, Inc. Superfund Site

Southington, CT

Annual State of Compliance Report #3

October 31, 2010 through October 30, 2011

January 2012

Table of Contents

A. Introduction	1
B. Background	2
C. Site Operational History	6
D. Regulatory Status	6
E. Selected Remedy	7
F. Performance Standards	8
G. Summary of Activities Completed This Reporting Period	9
H. Updated Schedule	9
I. Hydraulic Containment & Treatment System Operations and Maintenance	9
J. Institutional Controls / Access Agreements	11
K. Construction, Operation and Maintenance Activities	11
L. Habitat Restoration	12
M. Memorandum of Agreement (MOA) with Southington Water Department / Town of	of
Southington	12
N. Groundwater Monitoring Program	12
O. Recommendations of Changes to any Monitoring Program	13
P. Groundwater Containment and Treatment Optimization Studies	13
Q. Costs Incurred this Reporting Period	14
R. References	15

Tables:

Table 1 - Summary of Activities Completed - October 30, 2010 through October 31, 2011

Table N-1 - Groundwater Monitoring Network and Sampling Events

Figures:

Figure 1 - Site Location

Figure 2 - Study Area

Figure 3A - Estimated Groundwater Plume and NAPL Areas – Overburden

Figure 3B - Estimated Groundwater Plume and NAPL Areas – Bedrock

Figure 4 - Planned Remedial Activities

Figure 5- Shallow Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 6- Middle Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 7- Deep Overburden Groundwater Elevation Contours, May 10-12, 2010

Figure 8 – Shallow Bedrock Groundwater Elevation Contours, May 10-12, 2010

Figure 9- Deep Bedrock Groundwater Elevation Contours, May 10-12, 2010

Figure 10 – Cross Section Location Map

Figure 11- Geologic Cross Section A-A' with Hydraulic Head Values

Figure 12- Area Purchased for RDRA Activities

Attachments:

Attachment 1 - Project Schedule

Attachment 2 - Hydraulic Containment and Treatment System, Annual Demonstration of Compliance Report No. 3, October 31, 2010 through October 30, 2011 Attachment 3 - 2011 Groundwater Sampling and Monitored Natural Attenuation Report Acronyms and abbreviations used in this Annual Report and associated attachments:

1,1-DCE 1,1,1-TCA	1,1-dichloroethene 1,1,1-trichloroethane
1,2-DCA	1,2-dichloroethane
2,3,7,8-TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
ALEP	Action Level Exceedance Plan
AOC	Administrative Order on Consent
AQC	Air Quality Control System
ARARs	Applicable or Relevant and Appropriate Requirements
ATSDR	Agency for Toxic Substance and Disease Registry
B&M	Boston & Maine
BACT	Best Available Control Technology
BBL	Blasland, Bouck & Lee, Inc.
bas	below ground surface
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
BTU	British Thermal Unit
°C	degrees Celsius
CA	chloroethane
CBYD	Call Before You Dig
CC	cubic centimeter
cDCE	cis-1,2-dichloroethene
CD	Consent Decree
CEMS	Continuous Emissions Monitoring System
CERCLA	Comprehensive Environmental Response, Compensation and Liability
	Act
CERCLIS	Comprehensive Environmental Response, Compensation and Liability
	Information System
CH ₄	methane
CL&P	Connecticut Light & Power
CO ₂	carbon dioxide
COCs	Constituents of Concern
СТ	carbon tetrachloride
CTDEP	Connecticut Department of Environmental Protection
CTDPH	Connecticut Department of Public Health
CVOCs	Chlorinated Volatile Organic Compounds
CWA	Clean Water Act
DCE	dichloroethene
DCM	dichloromethane
DCP	Demonstration of Compliance Plan
ddms	de maximis Data Management Solutions
DHC	Dehalococcoides
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen

DQA	Data Quality Assessment
DQOs	Data Quality Objectives
DRE	Destruction/Removal Efficiency
DRO	Diesel Range Organics
EISB	Enhanced In-Situ Bioremediation
ELUR	Environmental Land Use Restriction
°F	degrees Fahrenheit
Fe(OH) ₃	ferrous hydroxide
f _{oc}	fraction of solid organic carbon in soil
FS	Feasibility Study
FSP	Field Sampling Plan
PMC	Pollutant Mobility Criteria applicable to designated Class "GA"
GAC GCTEOS	groundwater areas granular activated carbon Groundwater Containment and Treatment Evaluation and Optimization Study
gpm	gallons per minute
GRO	Gasoline Range Organics
GWPC	Groundwater Protection Criteria
GWTF	Groundwater Treatment Facility
H	Henry's Law Constant
H ₂	hydrogen
H ₂ O	water
H ₂ S	hydrogen sulfide
HAP	hazardous air pollutant
HCI	hydrochloric acid
HCTS	Hydraulic Containment and Treatment System
HDPE	High-Density Polyethylene
HLVs	Hazard Limiting Values
HZ	Heated Zone
ID	inner diameter
IFT	interfacial tension
IQAT	Independent Quality Assurance Team
IRIS	Integrated Risk Information System
ISTD	In-Situ Thermal Desorption
ISTR	In-Situ Thermal Remediation
J&E	Johnson & Ettinger
K _d	soil-water partition coefficient
ka	kilogram
K _{oc}	chemical-specific organic carbon partition coefficient
LAER	Lowest Achievable Emission Rate
Ibs	pounds
LNAPL	light non-aqueous phase liquid

MAROS	Monitoring and Remediation Optimization System
MASC	Maximum Allowable Stack Concentration
MCLs	Maximum Contaminant Levels
MCLG	Maximum Contaminant Level Goal
ma/ka	milligrams per kilogram
ma/l	milligrams per liter
MIBK	4-methyl-2-pentanone (methyl isobutyl ketone)
ml	milliliter
MNA	Monitored Natural Attenuation
MOA	Memorandum of Agreement
N ₂	nitrogen
NA	Natural Attenuation
NAPI	non-aqueous phase liquid
ng/l	nanograms per liter
NH₄ ⁺	ammonia
NOAA	National Oceanic and Atmospheric Administration
NO ₂	nitrite
NO ₃	nitrate
NSR	New Source Review
NTCRA	Non-Time-Critical Removal Action
O ₂	oxvaen
O&M	Operations and Maintenance
OD	outer diameter
OH-	hydroxyl radical
OIS	On-Site Interceptor System
OMM	Operation, Maintenance and Monitoring
ONOGU	Observed NAPL in the Overburden Groundwater Unit
ORP	oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OSWER	Office of Solid Waste and Emergency Response
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PCDDs	polychlorinated dibenzo-p-dioxins
PCDFs	polychlorinated dibenzofurans
PCE	tetrachloroethylene
PCR	Polymerase Chain Reaction
PEL	Permissible Exposure Limit
PFD	process flow diagram
PID	photoionization detector
PIPP	Pre-ISTR Preparation Plan
PLC	Programmable Logic Controller
POP	Project Operations Plan
ppb	parts per billion
PPE	personal protective equipment

ppm	parts per million
PSD	Prevention of Significant Deterioration
psia	pounds per square inch, gauge
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
R^2	correlation coefficient
RAOs	Response Action Objectives
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RDWP	Remedial Design Work Plan
RD/RA	Remedial Design/Remedial Action
Redox	Reduction-Oxidation
RDEC	Residential Direct Exposure Criteria
RH	Relative Humidity
RI	Remedial Investigation
	Record of Decision
	Record of Decision Pomodiation Standard Pogulations
	Sampling and Analysis Plan
SAF	Supplemental Containment Action Plan
SCAF	Supplemental Containment Action Flam
SCIVI SCI ²⁻	
304 SOD	Suilate Standard Operating Presedure
SOM	Statuard Operating Procedure
	Statement of Work
SPLP	Synthetic Precipitation Leaching Procedure
SKONE	Solvents Recovery Service of New England, Inc.
55U SV0C-	
SVUUS	Semi-volatile organic compounds
SWD	Southington water Department
SVVPC	Sunace water Protection Chiena
TAL	Target Analyte List
TCE	tricnioroetnylene
TCH	thermal conduction heating
	Toxicity Characteristic Leaching Procedure
TEFS	I oxic Equivalency Factors
TEQ	
TEX	I oluene, Ethylbenzene and Xylenes
TSCA	I oxic Substances Control Act
	thermal treatment zone
ug/L	micrograms per liter
USEPA	United States Environmental Protection Agency
USEWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
UV	ultraviolet
VC	vinyl chloride

VIVapor IntrusionVOCvolatile organic compoundWHOWorld Health Organization

A. Introduction

On October 30, 2008, the United States Environmental Protection Agency (USEPA) lodged a Consent Decree (CD) with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE). The CD was entered by the Court on March 26, 2009. The CD addresses Remedial Design/Remedial Action (RD/RA) activities for the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Appendix B to the CD is a Statement of Work (SOW) that defines the required RD/RA activities and deliverables.

Section VIII.B of the SOW requires the Settling Defendants to submit an Annual State of Compliance Report one year after lodging of the CD and annually thereafter, to USEPA for approval or modification, after reasonable opportunity for review and comment by Connecticut Department of Environmental Protection (CTDEP). Section 62.e of the CD requires a demonstration of the amounts of the Rolling Oversight Cost Cap and the Available Balance. This *Annual State of Compliance Report #3* (report) has been prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to the CD, to address these CD and SOW requirements. This report documents Site activities during the period of October 31, 2010 through October 30, 2011 (the "reporting period").

As specified in SOW Section VIII.B, this report includes a comprehensive evaluation of all monitoring required by this SOW, including, but not limited to:

- compliance with the Performance Standards of the Hydraulic Containment and Treatment System and Severed Plume;
- Institutional Controls;
- construction, operation and maintenance;
- habitat restoration;
- hydraulic containment;
- the Memorandum of Agreement with Southington Water Department / Town of Southington; and
- groundwater monitoring program, including monitored natural attenuation.

Also required in the report is an assessment of the progress being made towards achieving the Performance Standards, as well as recommendations for changes to any

monitoring program to address deficiencies identified during the evaluation. Proposals for reductions in monitoring, along with justifications, are provided as appropriate.

B. Background

The SRSNE Site is located on approximately 14 acres of land along Lazy Lane in Southington, Hartford County, Connecticut, approximately 15 miles southwest of the city of Hartford (Figure 1). The physical setting of the Site – including the regional geology, overburden geology, bedrock geology, hydrogeology, groundwater use and classification, drainage, and surface water use and classification – is summarized below. This information is also described in detail in prior report submittals, including the *Remedial Investigation Report* (Blasland, Bouck & Lee, Inc. [BBL] 1998) and the *Feasibility Study Report* (BBL and USEPA 2005), and the draft Remedial Design Work Plan (RDWP) (ARCADIS, April 2009).

The SRSNE Site includes portions of several properties/areas that are referred to within the RDWP consistent with terminology established in prior Site-related documents. These properties/areas include the former SRSNE Operations Area, the former Boston & Maine railroad right-of-way, the former Cianci Property, and the Town of Southington Well Field Property (Town Well Field Property). These areas are shown on Figure 2, and further described below:

- Former SRSNE Operations Area: The former SRSNE Operations Area comprises approximately 2.5 paved acres on a 3.7-acre lot South of Lazy Lane in the Quinnipiac River basin approximately 600 feet west of the Quinnipiac River channel. This is the area where SRSNE historically performed solvent recovery and related operations. The Operations Area is bordered on the east (downhill) by an abandoned railroad right-of-way and the former Cianci Property; to the north by commercial businesses; to the west (uphill) by private property; and to the south by private property, the Connecticut Light & Power (CL&P) electrical transmission line easement, and the Town Well Field Property.
- Railroad Right-of-Way: The railroad right-of-way is an approximately 50-foot wide corridor running north-south that separates the former Operations Area (to the west) from the former Cianci Property (to the east). The railroad was historically owned and operated by Boston & Maine, but is presently abandoned and the rails have been removed. CT DEP purchased the right-of-way in this area in support of extending the Farmington Canal Heritage Trail, a rails-to-trails greenway, from New Haven to the Massachusetts border (draft *Preliminary Reuse Assessment* [USEPA 2003]).
- Former Cianci Property: The former Cianci Property is a 10-acre parcel located immediately east of the Operations Area and railroad right-of-way. The Quinnipiac

River borders the eastern edge of the former Cianci Property. Lazy Lane is to the north, and the Town Well Field Property borders the property to the south.

• Town Well Field Property: The Town Well Field Property consists of approximately 28 acres of undeveloped land south of the former Cianci Property and southeast of the Operations Area. The well field is bounded to the east by the Quinnipiac River and to the south by the Quinnipiac River and Curtiss Street. The railroad right-of-way and the Delahunty Property border the western perimeter of the well field. The CL&P easement runs northwest-southeast through the northern portion of the Town Well Field Property.

Town Production Wells No. 4 and 6 are approximately 2,000 and 1,400 feet south of the SRSNE Property, respectively. The Quinnipiac River divides the area between Wells No. 4 and 6. Production Well No. 6 is accessible using dirt roads originating from Lazy Lane or Curtiss Street, while Well No. 4 is only accessible from Curtiss Street. Production Well No. 4 was installed in August 1965 and provided drinking water to the Town of Southington from July 1966 to December 1977. Production Well No. 6 was installed in April 1976 and was pumped from May through October 1978, May through July 1979, and March 1980. Both wells have been inactive since that time.

Within these areas, "the Site" includes areas where Site-related constituents have come to be present in soil (including wetland soil) and groundwater at concentrations exceeding SOW-specified cleanup levels. This includes observed and interpreted non-aqueous phase liquid- (NAPL-) containing areas, impacted soils in the Operations Area, railroad right-of-way, and Cianci Property, and areas of impacted groundwater in both the overburden and bedrock zones. These areas, shown on Figures 3A (overburden) and 3B (bedrock), are generally described as follows:

- **Overburden NAPL Area:** This is the area where NAPL has been observed or inferred to exist in overburden soils based on the findings of prior investigations. The estimated extent of the Overburden NAPL Area includes portions of the Operations Area, the railroad right-of-way, and a portion of the Cianci Property, as shown on Figure 3A. This area has been further delineated in the northwest corner of the former Operations Area as component of the pre-design investigations referenced in the RDWP.
- **Overburden Groundwater Area:** The Overburden Groundwater Area is the portion of the Site where dissolved volatile organic compounds (VOC) concentrations in the overburden aquifer exceed cleanup goals. While the overburden groundwater is typically considered in three zones (each approximately one-third of the saturated thickness), the composite extent of this area (based on *Feasibility Study Report* [BBL and USEPA 2005] data) is depicted on Figure 3A. The overburden groundwater VOC plume extends south to the Town Well Field Property. The extent

of the overburden groundwater area, particularly to the east of the Quinnipiac River, is subject to further assessment and delineation as part of the investigations referenced in the RDWP.

- Bedrock NAPL Area: The Bedrock NAPL Area is the area where NAPL has been observed or is inferred to exist based on prior site investigations. This includes a majority of the former SRSNE Operations Area and Cianci Property, as shown on Figure 3B.
- Bedrock Groundwater Area: This includes the portion of the Site where dissolved VOC concentrations in the bedrock aquifer exceed groundwater cleanup goals (based on *Feasibility Study Report* [BBL and USEPA 2005] data). The bedrock groundwater VOC plume extends south into the central portion of the Town Well Field Property (Figure 3B).
- Severed Plume: The portion of the affected groundwater zone that is outside the groundwater capture zone of the Non-Time-Critical Removal Action 1 (NTCRA 1) and NTCRA 2 extraction systems (described below), which contains Site-related constituents (primarily VOCs) above detectable levels is referred to as the severed plume. The approximate location and extent of the severed plume is shown on Figure 3A.

Other key Site features referenced include the Hydraulic Containment and Treatment System (HCTS). The HCTS consists of the on-site groundwater treatment system and the two groundwater extraction systems described as follows:

• NTCRA 1 Groundwater Extraction System: The NTCRA 1 groundwater extraction system ("NTCRA 1 system") is located within the NTCRA containment area on the Cianci Property east of the Operations Area (Figure 4). It consists of a steel sheet pile wall through the overburden to the top of bedrock, and 12 overburden groundwater extraction wells (RW-1 through RW-12) west (formerly upgradient) of the sheet pile wall. Groundwater is extracted from the wells to maintain hydraulic gradient reversal across the sheet pile wall. This system was installed in 1995 pursuant to Administrative Order on Consent (AOC) I-94-1045, effective October 4, 1994. Pumping from the NTCRA 1 system was initiated in July 1995.

In December of 2009, de maximis submitted a letter to the Agencies summarizing changes to the NTCRA-1 Demonstration of Compliance Plan (DCP) as a result of the abandonment of monitoring well CPZ-9 (one of the ten NTCRA I compliance monitoring points) and decommission of recovery wells RW-5 and RW-6. Monitoring well abandonment activities at the site have been undertaken in accordance with Attachment N of the RDWP.

• NTCRA 2 Groundwater Extraction System: The NTCRA 2 groundwater extraction system ("NTCRA 2 system") consists of two overburden extraction wells (RW-13 and RW-14) and one bedrock extraction well (RW-1R) just north of the CL&P easement (Figure 4). These wells were installed pursuant to AOC 1-97-1000, effective February 18, 1997, and began operating in 1999, 2007, and 2001, respectively. The NTCRA 2 system includes a groundwater extraction well in the bedrock (RW-1R) and two overburden groundwater extraction wells (RW-13 and RW-14). This extraction well cluster is located in the Town Well Field Property north of the CL&P easement.

In 2011, the combined NTCRA 1 and NTCRA 2 groundwater extraction systems generally pumped between 20 and 35 gallons per minute. The capture zones created by the NTCRA 1 and 2 groundwater extraction systems are shown on Figure 3A (overburden) and Figure 3B (bedrock). The operation of the combined NTCRA 1 and NTCRA 2 systems has successfully contained the overburden and bedrock VOC plumes, creating the severed plume within the Town Well Field Property. Approximately 19,703,000 gallons of groundwater were extracted, treated and discharged during this monitoring period.

On-site Groundwater Treatment System: The combined operations of the extraction systems and the treatment facility were previously referred to as the "NTCRA 1 and NTCRA 2 Groundwater Extraction and Treatment System" or "NTCRA 1/2 Groundwater System." Following entry of the CD, continued operation of the NTCRA 1/2 Groundwater System became part of the ROD-specified remedial approach for groundwater, and the system is now referred to as the HCTS (SOW Section V.A).

Groundwater extracted from the NTCRA 1 and 2 systems is treated on site with a process that was originally constructed as part of the NTCRA 1 system (Figure 4). The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility. The treatment system consists of the following unit processes: metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995. Approximately 16,626 pounds of VOCs have been removed from the groundwater since system startup.

C. Site Operational History

The SRSNE facility began operations in Southington in 1955 (ATSDR 1992). From approximately 1955 until the facility's closure in 1991, spent solvents were received from customers and distilled to remove impurities, and the recovered solvents were returned to the customer or sold to others for reuse. Based on a partial record of materials processed at the SRSNE facility (excluding pre-1967 operations files, which were destroyed in a fire), SRSNE handled in excess of 41 million gallons of waste solvents, fuels, paints, etc. Additional details regarding the operational history are provided in the *Remedial Investigation Report* (BBL 1998).

D. Regulatory Status

The SRSNE Site was added to the National Priorities List (NPL) on September 8, 1983. Since that time USEPA and the State of Connecticut have implemented a variety of enforcement, regulatory and response actions, culminating with the issuance of the Proposed Plan and Record of Decision (ROD) in September 2005. After issuing the ROD, the USEPA and SRSNE Site Group negotiated the terms of the CD.

Key regulatory milestones in the recent history of the Site, based on lists included on USEPA's project website (USEPA 2009) and in the fact sheet USEPA developed in support of the 2005 Proposed Plan (USEPA 2005b), are as follows:

Regulatory Milestone	Year
USEPA adds the Site to the NPL; SRSNE signs a consent decree with USEPA to install a groundwater recovery system and store/manage hazardous waste on site.	1983
USEPA and the State of Connecticut take enforcement action to require cleanup of the facility operations and the property.	1983-1988
USEPA initiates the Remedial Investigation for the Site, conducting three phases of investigation that are presented in a four-volume report (HNUS 1994).	1990
SRSNE operations cease.	1991
USEPA conducts a Time-Critical Removal Action to remove contaminated soils from the railroad grade drainage ditch and to remove some chemicals stored at the property to an off-site location.	1992
USEPA and the SRSNE Group enter into an Administrative Order on Consent (AOC) for Removal Action to construct and operate a pump and treat system to contain the principally contaminated overburden groundwater (the NTCRA 1 work). Other work conducted under this AOC included the construction of a mitigation wetland in the northeast corner of the Cianci Property, implementation of a full-scale	1994

phytoremediation study within the NTCRA 1 sheet pile wall, and extension of public		
water to three buildings adjacent to the Site.		
USEPA issues an Action Memorandum for a second NTCRA (NTCRA 2) to		
hydraulically contain VOC-impacted bedrock groundwater down gradient of the	1995	
NTCRA 1 system.		
USEPA and the SRSNE Site Group enter into a second AOC for Removal Action and		
Remedial Investigation/Feasibility Study (RI/FS) to expand the groundwater		
containment system and complete site investigations. Work under this AOC resulted	1006	
in the completion of the Site RI/FS, implementation of NTCRA 2, and the	1990	
decontamination, demolition and removal of the remaining buildings and tanks from		
the Operations Area.		
SRSNE Site Group operates groundwater controls in the overburden and bedrock	1996 - 2004	
aquifers, completes remedial investigations, and conducts feasibility studies.		
USEPA issues the Proposed Plan in June and holds two public meetings; the public	2005	
comment period runs from June through August.	2003	
USEPA issues the ROD for the Site, which describes the final remedy.	2005	
USEPA and SRSNE Site Group sign CD to implement the RD/RA activities.	2008	
Court enters CD; Remedial Design work initiated.	2009	
Annual Report #1	2009	
1 st Five Year Review Report	2010	
USEPA issues Remedial Design Work Plan Approval	2010	
USEPA issues approval of PIPP 100% Design and RAWP	2010	
Initiated Pre-ISTR Preparation Plan Construction Activities	2010	
Annual Report #2	2010	
ISTR Conceptual Design Approval	2011	
Approval of ISTR 100% Wellfield Design	2011	
Annual Report #3	2011	

E. Selected Remedy

The overall purpose of RD/RA activities is to design and implement the selected remedial approach for the Site. The selected remedy, developed by combining components of different alternatives for source control and management of migration to obtain a comprehensive approach for Site remediation, was described in the ROD. Key elements are summarized as follows:

• Treat waste oil and solvents – where present as NAPL in the subsurface in the overburden aquifer (i.e., the Overburden NAPL Area) – using in-situ thermal treatment.

Following in-situ thermal treatment, cap the former SRSNE Operations Area. The cap will be low-permeability and multi-layered and is to be designed, constructed, and maintained to meet the requirements of Resource Conservation and Recovery Act

(RCRA) Subtitle C. As described in the "Re-use of Excavated Material from Railroad Right of Way for ISTR Area Fill" memorandum (de maximis, inc., April 29, 2010), soils excavated from the Rail Road Right of Way will be incorporated as fill material in the Thermal Treatment Zone (TTZ). Excavation of soil in a specific portion of the former railroad right-of-way to a depth of 4 feet – followed by backfill to match surrounding grade –will meet the direct exposure criteria (DEC) and pollutant mobility criteria (PMC) requirements of the Connecticut Remediation Standard Regulations with the understanding that an Activity and Use Limitation (ELUR) would subsequently be established for this area.

- Excavate soils exceeding cleanup levels from certain discrete portions of the former Cianci Property. The estimated limits of soil removal on the former Cianci Property (five discrete excavation areas) are shown on Figure G-1 of the *Post-Excavation Confirmatory Sampling Plan* (Attachment G to the RDWP); these limits are subject to modification based on additional sampling proposed as part of remedial design. Provided that concentrations of polychlorinated biphenyls (PCBs) do not warrant offsite disposal, soils excavated from the former Cianci Property (and from other areas excavated outside the cap limits as part of other RD/RA activities) may be relocated to the former SRSNE Operations Area for placement beneath the cap.
- Capture and treat (on site) groundwater in both the overburden and bedrock aquifers that exceeds applicable federal drinking water standards and risk-based levels. This will be achieved through continued operation, maintenance, and modification (as needed) of the HCTS.
- Monitored natural attenuation of the groundwater plume outside the capture zones (i.e., the severed plume, shown on Figure 3A of the RDWP) that exceeds cleanup levels.
- Monitor natural degradation of constituents in the groundwater plume inside the capture zones and within the Bedrock NAPL Area (shown on Figure 3B of the RDWP).
- Implement institutional controls (i.e., Environmental Land Use Restrictions) to minimize the potential for human exposure to Site-related constituents in the subsurface soils and to prohibit activities that might affect the performance or integrity of the cap.
- Monitor groundwater and maintain the cap over the long term.

F. Performance Standards

Section IV of the SOW establishes Performance Standards for the various affected media at the SRSNE Site. It also establishes Performance Standards for other aspects

of the RD/RA, including subsurface NAPL in the overburden and bedrock aquifers, performance of the multi-layer cap, hydraulic containment and treatment, the severed plume, habitat restoration, environmental monitoring, and institutional controls. These non-media-specific Performance Standards are summarized and addressed (to the extent applicable at this point in the RD/RA process) in the various task-specific work plans summarized in the RDWP.

Performance Standards for soil, wetland soil, and groundwater have been reviewed and compared to the current applicable USEPA and CTDEP standards and guidance. Based on this review, it was concluded that none of the USEPA or CTDEP criteria for Site-related constituent have been revised since the ROD was issued. However, the CTDEP has published a lower detection limit for 1,2,4-trichlorobenzene in water (0.5 micrograms per liter [ug/L] rather than the prior value of 2 ug/L). Because the detection limit is the cleanup level for groundwater (discussed below), this modification is noted on the copy of Table L-1 from the ROD that is provided as Appendix 1 to the RDWP. No other modifications were warranted to Tables L-1 or L-2 of the ROD to reflect current published guidance and standards.

The only monitoring to evaluate compliance with Performance Standards during this reporting period was that conducted for the HCTS, as discussed below in section I and in Attachment 2 to this report.

G. Summary of Activities Completed This Reporting Period

A summary of activities completed during this reporting period is provided within the attached Table 1.

H. Updated Schedule

An updated project schedule is included as Attachment 1 to this report.

I. Hydraulic Containment & Treatment System Operations and Maintenance

The HCTS achieved compliance during this reporting period with the Demonstration of Compliance Requirements (see Attachment B to the SOW). Details of the operation are provided as Attachment 2 to this report.

In addition to the parameters required by the Demonstration of Compliance Requirements, groundwater temperature data have been collected within the sheetpile wall to provide a baseline dataset of temperature variation over time. These data are being collected pursuant to Section 5.3.3 of Appendix N of the RDWP (Monitoring Well Network Evaluation and Groundwater Monitoring Program). Map views and cross-sections to demonstrate hydraulic containment in accordance with EPA guidance from January 2008 entitled *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems* (EPA/600/R-08/003) are provided in Figures 5 through 9. These figures depict groundwater elevation contours measured on May 10-12, 2010 (i.e., the most current comprehensive groundwater gauging event), and generalized overburden and bedrock capture zone boundaries for the NTCRA 2 extraction wells, which are now part of the HCTS. The estimated capture zone boundaries are based on a combination of measured water level data, historical and recent groundwater modeling results and stagnation point calculations presented in the FS Report (BBL and USEPA, May 2005; Appendix A), and updated VOC concentration data at select monitoring wells (collected in May 2011). Although the extraction rates at the NTCRA 2 wells vary as a function of seasonal and long-term precipitation rates and well redevelopment events, the typical long-term average pumping rate has been approximately 20 to 30 gpm.

In April and May of 2011, average NTCRA-2 pumping rates were observed to be diminishing to approximately 20 gpm. To increase the NTCRA-2 recovery rate and maintain hydraulic control NTCRA 2 overburden extraction wells RW-13 and RW-14 were redeveloped in June 2011. Following redevelopment, the average NTCRA-2 recovery well yield increased above 30 gpm. The combined NTCRA 2 extraction rate during the reporting period averaged 28.5 gpm.

Figures 5 through 9 also show the locations of former Interim Monitoring and Sampling (IMS) wells that were used to monitor the VOC plume between the completion of the RI and the issuance of the ROD. These wells have the most complete data sets and provide the strongest assessment of statistical concentration trends. Updated VOC concentration trends at these wells were presented in the Draft 2011 MNA Report (ARCADIS, November 2011) and are summarized on Figures 5 through 9 (confidence interval of 90%). Middle overburden well MW-03 (Figure 6) and shallow bedrock well MW-127C (Figure 8) are the only monitoring wells south of the Connecticut Light & Power (CL&P) easement that contained VOC concentrations above the Interim Cleanup Levels (ICLs) before the start-up of the NTCRA 2 system, but they declined to below the ICLs following NTCRA 2 system start up. As shown on Figures 5 through 9, the VOC concentration trends at the former IMS wells are generally declining or have too many samples with no detected VOCs to support trend analysis.

The only groundwater monitoring location outside of the generalized capture zone that was not below the Action Levels (the more stringent of the Maximum Contaminant Level [MCL] or Groundwater Protection Criteria [GWPC]) for VOCs in May 2011 was deep bedrock well MW-707DR (Figure 9). Benzene was detected at a concentration of 2.5 micrograms per liter (ug/L) in the May 2011 sample, which is above the Action Level of 1.0 ug/L. This well was re-sampled in September 2011 to confirm the result; benzene was detected at a concentration of 0.67 ug/L, which is below the Action Level. Future additional sampling will provide a basis to assess groundwater quality trends at this

well. Thus, based on the most recent data, all of the wells south of the estimated NTCRA 2 capture zone boundary meet the Action Levels for VOCs.

Figure 10 shows a cross section location map and Figure 11 presents a north-south cross section drawn approximately parallel to the regional groundwater flow direction. Hydraulic head values and the generalized NTCRA 2 capture zone boundary are also shown on Figure 11.

J. Institutional Controls / Access Agreements

Institutional controls in the form of deed restrictions are already in place on the Operations Area and Cianci Properties that prohibit all uses except for those associated with environmental response actions, as further described in CD paragraph 26. No additional institution controls were implemented during this reporting period. In 2010, the SRSNE Site Group took control of the Voting Trusts that control the Operations Area Property and the Cianci Property, respectively, which allows the implementation of additional institutional controls on those properties when appropriate. Additional institutional controls will be implemented pursuant to the Institutional Control Plan that has been developed as required by SOW Section V.B.7.

Access agreements needed to conduct RD activities obtained from four (4) property owners during this reporting period. Access was granted to six properties in 2009; negotiations for access to the remaining four properties were obtained during 2010.

Following completion of the Overburden NAPL Delineation in the Northwest corner of the Operations area, the SRSNE Site Group purchased approximately 0.50 acres of property from Raymond and Yolanda Yorski. The property purchase was required to implement the ISTR portion of the remedy. The area purchased is shown on Figure 12.

K. Construction, Operation and Maintenance Activities

The following construction, Operation and Maintenance activities were completed during this reporting period:

- In August of 2010, Pre-ISTR Preparation Plan construction (PIPP) commenced.
- Completed soils excavation to a depth of four (4) feet below ground surface on West Side of the Rail Road Right of Way.
- Completed construction of thermal treatment equipment area.
- Completed 80% of PIPP grading activities in the Thermal Treat Zone.
- Upgraded water service to HCTS and installed water line to the thermal treatment system equipment area.

- Installed gas service piping from Lazy Lane to the thermal treatment system equipment area.
- Completed construction of thermal treatment discharge line to POTW.
- Provided easement for AT&T Fiber Optic Line on western edge of property. Installed conduit for Fiber Optic line within easement.
- All PIPP construction activities have ceased until the AT&T fiber optic line within the rail road right of way is relocated to the new easement constructed along the west side of the Site. A revised easement between the State of Connecticut and AT&T is forthcoming that will allow for the relocation of the line and PIPP construction activities to resume.
- All remaining work will be completed in the spring/summer of 2012.

L. Habitat Restoration

No habitat restoration activities were conducted during this reporting period. A preremediation assessment of the types, extent and condition of existing habitats on site was conducted in June 2009 pursuant to RDWP Attachment H (Habitat Restoration Work Plan).

M. Memorandum of Agreement (MOA) with Southington Water Department / Town of Southington

A draft MOA was prepared during the Annual Report #1 reporting period as required by SOW Section V.B.3. This draft MOA was submitted for EPA review on September 16, 2009 and resubmitted based upon EPA comments on June 23, 2010. EPA provided further comments on the MOA on October 28, 2011. The revised MOA was provided for further EPA review on November 15, 2011.

N. Groundwater Monitoring Program

A comprehensive groundwater monitoring program was scoped in *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010). A summary of the planned sampling frequency is provided in the attached Table N-1 from the RDWP. The following groundwater activities have been performed to date:

 The first comprehensive groundwater sampling event occurred during May/June 2010 which supported the first Five-Year Review, submitted in 2010. This sampling event provided data for the draft 1st Monitored Natural Attenuation Report which was submitted in September 2010. In accordance with Monitoring Well Network Evaluation and Groundwater Monitoring Program (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010), the 2011 annual groundwater sampling event was performed in May 2011 and included sampling of groundwater at 33 monitoring wells. The 2011 Groundwater Sampling and Monitored Natural Attenuation Report (Attachment 3) summarizes the 2011 groundwater sampling event performed in accordance with the and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.

O. Recommendations of Changes to any Monitoring Program

The following changes to the groundwater monitoring program have been recommended and/or implemented since the last Annual State of Compliance Report:

- Sulfide has not been detected in MNA-related analyses to date. Based on the highly reactive nature of sulfide and the lack of detectable concentrations of sulfide in site groundwater, along with the adequate characterization of site groundwater redox conditions using other MNA parameter data, sulfide was proposed for removal from the MNA parameter analyte list. This recommendation was originally made in the 2010 MNA Report (September 2010) and approved by the USEPA in an email to *de maximis* dated September 15, 2011.
- The proposal made in the 2010 MNA Report to eliminate monitoring for certain metals based on lack of or low detections in groundwater was retracted based on comments provided by the USEPA on September 15, 2011. Both total (unfiltered) and dissolved (filtered) metals analyses will be performed consistent with the Work Plan. However, only total (unfiltered) metals data will be used for comparison to groundwater standards. The dissolved (filtered) data will be used to assess redox conditions as part of the MNA evaluations.
- Two additional monitoring wells middle overburden well MW-1001M and shallow bedrock well MW-1001R – were installed adjacent to the access road for Oak Hill Cemetery (east of Queen Street) in December 2011. These two wells will be added to the "C" well group, which is sampled as part of the comprehensive sampling event to support five-year reviews. In addition, both wells will be sampled approximately two weeks after development.

P. Groundwater Containment and Treatment Optimization Studies

No optimization studies were conducted during this reporting period.

Q. Costs Incurred this Reporting Period

Paragraph 62 of the CD sets forth "Additional Provisions Regarding Settling Defendants' Payments of U.S. Oversight Costs and State Oversight Costs." Pursuant to this paragraph, an interest bearing "Oversight Costs Payment Subaccount" of the Remedial Trust Account was established on April 27, 2009, in the amount of \$5,700,000. The balance in this subaccount at the end of September 2011 was \$5,662,250.94 . Other defined terms in this paragraph include:

. Other defined terms in this paragraph include:

- "Rolling Oversight Cap" defined as 15% of the total costs incurred by the Settling Defendants in performing the Work through the end of the Oversight Billing Period.
- "Available Balance" equals the Rolling Oversight Cap less the sum of all Settling Defendants prior payments for U.S Oversight Cost and State Oversight Costs.

Paragraph 62.e states that the Settling Defendants shall have the burden of calculating annually the Rolling Oversight Cap and Available Balance. The following table summarizes annually the Rolling Oversight Cap and Available Balance:

Reporting Period	Total Project Costs	Rolling Oversight Cap Amount	Oversight Costs	Available Rolling Oversight Cap Amount
Annual Report #1*	\$1,880,301	\$282,045	None billed.	\$282,045
Annual Report #2*	\$3,446,824	\$517,024	\$84,290	\$714,779
Annual Report #3	\$4,065,239	\$609,786	\$82,851	\$1,241,714
Totals:	\$9,392,365	\$1,408,855	\$167,141	\$1,241,714

* Cost Revised based on Trustee expenditure updates

The total Rolling Oversight Cap amount available is: **\$1,241,714**

The total Rolling Costs Cap amount equals the available amount remaining from the Annual Report #2 period and the total amount available from the Annual Report #3 period.

R. References

BBL. 1998. Remedial Investigation Report. June 1998.

BBL. 2005. Interim Monitoring and Sampling Report No. 13. January 6, 2005.

BBL and USEPA. 2005. *Feasibility Study Report*. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, Connecticut. May 2005.

Halliburton NUS (HNUS) Environmental Corporation. 1994. Final *Remedial Investigation Report: Remedial Investigation/Feasibility Study, SRSNE Site, Southington, Connecticut.* May 1994.

Hubert, J.F., Reed, A.A., Dowdall, W.L., and Gilchrist, M.J. 1978. Guide to the Mesozoic Redbeds of Central Connecticut. State Geological and Natural History Survey of Connecticut, Department of Environmental Protection. Guidebook No. 4.

La Sala, Jr. A. M. 1961. Surficial Geology of the Southington Quadrangle, Connecticut. United States Geological Survey Map GQ-146.

Mazzaferro, D.L. 1975. Contour Map of the Bedrock Surface, Southington Quadrangle, Connecticut. United States Geological Survey (USGS) Map MF-660A.

Rogers, J. 1985. Bedrock Geological Map of Connecticut. Connecticut Geological and Natural History Survey in Cooperation with the U.S. Geological Survey.

Southington Water Department. Town of Southington Water Works Map. January 1997.

United States District Court for the District of Connecticut. 2008. Consent Decree Regarding Solvents Recovery Service of New England, Inc. Superfund Site. August 29, 2008.

USEPA. 1986. *Superfund Remedial Design and Remedial Action Guidance*, OSWER Directive 9355.0-4A. June 1986.

USEPA. 1989. Inspection Report: Solvents Recovery Service of New England. February 1-2, 1989.

USEPA. 1995a. Remedial Design/Remedial Action Handbook. OSWER Directive 9355.0-04B. June 1995.

USEPA. 1995b. Guidance for Scoping the Remedial Design. OSWER Directive 9355.0-43. March 1995.

USEPA. 1998. Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites. OSWER Directive 9200.4-26. April 1998.

USEPA. 2003. Draft Preliminary Reuse Assessment. September 2003.

USEPA. 2005a. Record of Decision Summary, Solvents Recovery Service of New England, Inc. (SRSNE) Site, Southington, Connecticut. September 2005.

USEPA. 2005b. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, CT. Proposed Plan Fact Sheet, May 2005. Available at: http://www.epa.gov/region01/superfund/sites/srs/229296.pdf.

USEPA. 2009. USEPA's project website for the Solvents Recovery Service of New England, Inc. Superfund Site. Accessed February 24, 2009. <u>http://www.epa.gov/region01/superfund/sites/srs</u>.

ARCADIS, 2009. Draft Project Operations Plans for the Solvents Recovery Service of New England, Inc. Superfund Site. April 2009.

Tables

TABLE 1.0Summary of Activities CompletedOctober 31, 2010 through October 30, 2011

Document Name / Activity	Author(s)	Date Submitted Date Approved Type		
Final RDWP and POP	ARCADIS	11/19/2010	pending	Deliverable under SOW
Response to Comments on ISTR Conceptual Design	TerraTherm	TerraTherm 12/3/2010 7/7/2011		Deliverable under SOW
Annual State of Compliance Report #2	de maximis	12/20/2010	pending	Deliverable under SOW
PIPP Winter Stabilization Plan	de maximis	12/30/2010	pending	Deliverable under SOW
Vapor Intrusion Technical Memorandum	EPA	10/27/2010	1/19/2011	Conditional Approval
Data Comparison - Groundwater Sampling Techniques	ARCADIS	1/4/2011	N/A	Technical Memorandum
Updates to Existing MODFLOW Groundwater Flow Model	ARCADIS	1/5/2011	N/A	Technical Memorandum
Data Comparison - Groundwater Sampling Techniques	ARCADIS	2/10/2011	N/A	Technical Memorandum
Draft Institutional Controls Plan	de maximis/ARCADIS	2/18/2011	pending	Deliverable under SOW
Comments on Response to Comments on ISTR Conceptual Design	EPA	3/2/2011	7/7/2011	EPA comments
PIPP Sheetpile Wall Extension Design	ARCADIS	3/21/2011	4/22/2011	Deliverable under SOW
Data Comparison - HydraSleeve vs. Low-Flow Groundwater Sampling Techniques	ARCADIS	3/22/2011	N/A	Technical Memorandum
Response to Comments on Response to Comments on ISTR Conceptual Design	TerraTherm	4/6/2011	7/7/2011	Deliverable under SOW
Bedrock Outcrop Study	ARCADIS	4/20/2011	N/A	Technical Memorandum
Supplementary Vapor Intrusion Technical Memorandum	ARCADIS	6/6/2011	pending	Deliverable under SOW
Bedrock Modeling Memorandum	ARCADIS	6/6/2011	N/A	Technical Memorandum
Comments on Vapor Intrusion Technical Memorandum	EPA	6/15/2011	pending	EPA comments
ISTR Conceptual Design Approval	EPA	7/7/2011	7/7/2011	Approval
Technical Memorandum - Proposed Use of Hydrasleeve Sampling	ARCADIS	7/8/2011	7/8/2011	Technical Memorandum
Approval of ISTR 100% Wellfield Design	EPA	9/23/2011	9/23/2011	EPA Approval
Comments on Draft Memorandum of Agreement with Town and Southington Water Department	EPA	10/28/2011	pending	EPA comments

Table N-1.Groundwater Monitoring Network and Sampling EventsSRSNE Superfund Site, Southington, CT

Well Group	# Wells	Sampling Period	Sampling Frequency	Analytical Parameters	
"C" wells	81			VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs	
"R" wells	26	first comprehensive event *		VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters	
"N" wells	10		1 event	VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters	
"M" wells	5			TAL metals, MNA parameters (background)	
"B" wells	3			TAL metals (background)	
"C" wells	81			VOCs, 1,4-dioxane, TAL metals	
"R" wells	26			VOCs, 1,4-dioxane, TAL metals, MNA parameters	
"N" wells	10	subsequent comprehensive events	every 5 years	VOCs, 1,4-dioxane, TAL metals, MNA parameters	
"M" wells	5			TAL metals, MNA parameters	
"B" wells	3			TAL metals	
"P" wolls	26	after first comprehensive event	annual	VOCs	
K wells	20	alter hist comprehensive event	biennial	MNA parameters	
"M" wells	F	after first comprehensive event	biennial	TAL metals (background)	
IVI Wells	5	alter first comprehensive event	biennial	MNA parameters (background)	
		before thermal treatment	biennial	VOCs, MNA parameters	
		during thermal treatment	annual	VOCs, MNA parameters	
"N" wells - overburden	8	after thermal, before equilibrium	after thermal, before equilibrium 3x / year VOCs, MNA parameters		
		ofter equilibrium	annual	VOCs	
		alter equilibrium	biennial	MNA parameters	
		before thermal treatment	annual	VOCs, MNA parameters	
		during thermal treatment	annual	VOCs, MNA parameters	
"N" wells - bedrock	2	after thermal, before equilibrium	3x / year	VOCs, MNA parameters	
			annual	VOCs	
			biennial	MNA parameters	
"W" wells	36	all comprehensive events	every 5 years	Water levels only - during all comprehensive events	

Notes: 1) biennial = once every two years.

* - Shallow overburden wells MW-501C, MW-903S, and MW-904S will be re-sampled approximately 6 months after the first comprehensive sampling event.

Figures

02/27/09 SYRACUSE, NY ENV/CAD DJH, LJP B0054634/0000/10000/CDR/RDWP/54634N01.CDR

LEGEND:

	PROPERTY LINE
	PROPERTY LINE - ADJOINER
	BUILDING
	BUILDING - ADJOINER
	FORMER BUILDING
*****	RAILROAD
	ROAD
	GRAVEL ROAD
	DRAINAGE SWALE
	RIVER
	EASEMENT
xx	CHAINLINK FENCE
	SHEETPILE
	NTCRA 1 CONTAINMENT AREA
	OVERBURDEN GROUNDWATER AREA
	SEVERED PLUME
00000000	OVERBURDEN NAPL AREA

NOTES:

- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN THREE MONITORED OVERBURDEN ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).

GRAPHIC SCALE

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

FIGURE

3**A**

ESTIMATED GROUNDWATER PLUME AND NAPL AREAS - OVERBURDEN

ARCADIS

LEGEND:

PROPERTY LINE
BUILDING
FORMER BUILDING
HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ROAD
GRAVEL ROAD
DRAINAGE SWALE
RIVER
EASEMENT
NTCRA 1 CONTAINMENT AREA
BEDROCK NAPL AREA
BEDROCK GROUNDWATER AREA

NOTES:

- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN TWO MONITORED BEDROCK ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).

GRAPHIC SCALE

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

ESTIMATED GROUNDWATER PLUME AND NAPL AREAS - BEDROCK FIGURE **ARCADIS**

3B

N N N

FIGURE 12

AREA PURCHASED FOR RD/RA ACTIVITIES

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

NOTES: 1. BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'. 2. ALL LOCATIONS ARE APPROXIMATE.

Attachments

Hydraulic Containment and Treatment System Annual Demonstration of Compliance Report No. 3

31 October 2010Through30 October 2011

Solvents Recovery Service of New England, Inc. Superfund Site Southington, Connecticut

> Prepared for: SRSNE PRP Group

Prepared by:

WESTON SOLUTIONS, INC. Suite 3B 124 Hebron Avenue Glastonbury, CT 06033 (860) 368-3200

30 NOVEMBER 2011

HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 3 31 OCTOBER 2010 THROUGH 30 OCTOBER 2011

DRAFT

SOLVENTS RECOVERY SERVICE OF NEW ENGLAND, INC. SUPERFUND SITE SOUTHINGTON, CONNECTICUT

TABLE OF CONTENTS

1.1NTCRA-1 BACKGROUND11.2NTRCA-2 BACKGROUND21.3GROUNDWATER TREATMENT SYSTEM21.4REPORT ORGANIZATION32.0DATA ACQUISITION AND RESULTS42.1NTCRA-1 CONTAINMENT SYSTEM MONITORING42.1.1RGT-1 RESULTS42.1.2RGT-2 RESULTS52.2NTCRA-2 CONTAINMENT SYSTEM MONITORING62.2.1CT-1 RESULTS72.2.2CT-2 RESULTS72.3TREATMENT SYSTEM MONITORING92.3.1HCTS INFLUENT AND EFFLUENT FLOW DATA92.3.2HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY10	1.0	INTRO	ODUCTION	1
1.2NTRCA-2 BACKGROUND21.3GROUNDWATER TREATMENT SYSTEM21.4REPORT ORGANIZATION32.0DATA ACQUISITION AND RESULTS42.1NTCRA-1 CONTAINMENT SYSTEM MONITORING42.1.1RGT-1 RESULTS42.1.2RGT-2 RESULTS52.2NTCRA-2 CONTAINMENT SYSTEM MONITORING62.2.1CT-1 RESULTS72.2.2CT-2 RESULTS72.3TREATMENT SYSTEM MONITORING92.3.1HCTS INFLUENT AND EFFLUENT FLOW DATA92.3.2HCTS INFLUENT AND EFFLUENT FLOW DATA93.0HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY10	1.1	NT	CRA-1 BACKGROUND	1
1.3GROUNDWATER TREATMENT SYSTEM21.4REPORT ORGANIZATION32.0DATA ACQUISITION AND RESULTS42.1NTCRA-1 CONTAINMENT SYSTEM MONITORING42.1.1RGT-1 RESULTS42.1.2RGT-2 RESULTS52.2NTCRA-2 CONTAINMENT SYSTEM MONITORING62.2.1CT-1 RESULTS72.2.2CT-2 RESULTS72.3TREATMENT SYSTEM MONITORING92.3.1HCTS INFLUENT AND EFFLUENT FLOW DATA93.0HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY10	1.2	NTI	RCA-2 BACKGROUND	2
1.4 REPORT ORGANIZATION 3 2.0 DATA ACQUISITION AND RESULTS 4 2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING 4 2.1.1 RGT-1 RESULTS 4 2.1.2 RGT-2 RESULTS 5 2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING 6 2.2.1 CT-1 RESULTS 7 2.2.2 CT-2 RESULTS 7 2.3 TREATMENT SYSTEM MONITORING 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY 10	1.3	GR	OUNDWATER TREATMENT SYSTEM	2
2.0DATA ACQUISITION AND RESULTS	1.4	REI	PORT ORGANIZATION	3
2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING. 4 2.1.1 RGT-1 RESULTS 4 2.1.2 RGT-2 RESULTS 5 2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING. 6 2.2.1 CT-1 RESULTS 7 2.2.2 CT-2 RESULTS 7 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY 10	2.0	DATA	ACQUISITION AND RESULTS	4
2.1.1RGT-1 RESULTS.42.1.2RGT-2 RESULTS.52.2NTCRA-2 CONTAINMENT SYSTEM MONITORING.62.2.1CT-1 RESULTS.72.2.2CT-2 RESULTS.72.3TREATMENT SYSTEM MONITORING.92.3.1HCTS INFLUENT AND EFFLUENT FLOW DATA.92.3.2HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA.93.0HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY.10	2.1	NT	CRA-1 CONTAINMENT SYSTEM MONITORING	4
2.1.2 RGT-2 RESULTS .5 2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING .6 2.2.1 CT-1 RESULTS .7 2.2.2 CT-2 RESULTS .7 2.3 TREATMENT SYSTEM MONITORING .9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA .9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA .9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY .10	2	.1.1	RGT-1 RESULTS	4
2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING 6 2.2.1 CT-1 RESULTS 7 2.2.2 CT-2 RESULTS 7 2.3 TREATMENT SYSTEM MONITORING 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY 10	2	.1.2	RGT-2 RESULTS	5
2.2.1 CT-1 RESULTS 7 2.2.2 CT-2 RESULTS 7 2.3 TREATMENT SYSTEM MONITORING 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY 10	2.2	NTO	CRA-2 CONTAINMENT SYSTEM MONITORING	6
2.2.2 CT-2 RESULTS 7 2.3 TREATMENT SYSTEM MONITORING 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS 10 AND MAINTENANCE SUMMARY 10	2	.2.1	CT-1 RESULTS	7
2.3 TREATMENT SYSTEM MONITORING 9 2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA 9 2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA 9 3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS 10 AND MAINTENANCE SUMMARY 10	2	.2.2	CT-2 RESULTS	7
2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA	2.3	TRI	EATMENT SYSTEM MONITORING	9
2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA	2	.3.1	HCTS INFLUENT AND EFFLUENT FLOW DATA	9
3.0 HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY	2	.3.2	HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA	9
AND MAINTENANCE SUMMARY	3.0	HYDR	RAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS	
		AND N	IAINTENANCE SUMMARY1	0
3.1 OPERATIONS AND MAINTENANCE SUMMARY10	3.1	OPE	ERATIONS AND MAINTENANCE SUMMARY1	0
3.2 FUTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS12	3.2	FUI	FURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS1	2

Tables

Table 1	Hydraulic Head Measurements End of Month Gauging
Table 2	Influent and Effluent HCTS Flow Data Summary
Table 3	Analytical Results – Process Influent
Table 4	Analytical Results – Process Effluent
Table 5	Weekly NTCRA-1 Compliance Piezometer Pair Summary

Figures

Figure 1A Overburden Hydraulic Head Contours - November 2010 Figure 1B Shallow Bedrock Hydraulic Head Contours – November 2010 Figure 1C Deep Bedrock Hydraulic Head Contours – November 2010 Figure 2A Overburden Hydraulic Head Contours - December 2010 Figure 2B Shallow Bedrock Hydraulic Head Contours – December 2010 Figure 2C Deep Bedrock Hydraulic Head Contours – December 2010 Figure 3A Overburden Hydraulic Head Contours - January 2011 Figure 3B Shallow Bedrock Hydraulic Head Contours - January 2011 Figure 3C Deep Bedrock Hydraulic Head Contours - January 2011 Figure 4A Overburden Hydraulic Head Contours - February 2011 Figure 4B Shallow Bedrock Hydraulic Head Contours - February 2011 Figure 4C Deep Bedrock Hydraulic Head Contours - February 2011 Figure 5A Overburden Hydraulic Head Contours - March 2011 Figure 5B Shallow Bedrock Hydraulic Head Contours - March 2011 Figure 5C Deep Bedrock Hydraulic Head Contours - March 2011 Figure 6A Overburden Hydraulic Head Contours - April 2011 Figure 6B Shallow Bedrock Hydraulic Head Contours - April 2011 Figure 6C Deep Bedrock Hydraulic Head Contours - April 2011 Figure 7A Overburden Hydraulic Head Contours - May 2011 Figure 7B Shallow Bedrock Hydraulic Head Contours - May 2011 Figure 7C Deep Bedrock Hydraulic Head Contours - May 2011 Figure 8A Overburden Hydraulic Head Contours - June 2011 Figure 8B Shallow Bedrock Hydraulic Head Contours - June 2011 Figure 8C Deep Bedrock Hydraulic Head Contours – June 2011 Figure 9A Overburden Hydraulic Head Contours - July 2011 Figure 9B Shallow Bedrock Hydraulic Head Contours - July 2011 Figure 9C Deep Bedrock Hydraulic Head Contours – July 2011 Figure 10A Overburden Hydraulic Head Contours – August 2011 Figure 10B Shallow Bedrock Hydraulic Head Contours - August 2011 Figure 10C Deep Bedrock Hydraulic Head Contours – August 2011 Figure 11A Overburden Hydraulic Head Contours – September 2011 Figure 11B Shallow Bedrock Hydraulic Head Contours - September 2011 Figure 11C Deep Bedrock Hydraulic Head Contours – September 2011 Figure 12A Overburden Hydraulic Head Contours - October 2011 Figure 12B Shallow Bedrock Hydraulic Head Contours - October 2011 Figure 12C Deep Bedrock Hydraulic Head Contours – October 2011 Figure 13 Hydrographs of CPZ-5 and CPZ-6 - 31 Oct. 2010 through 30 Oct. 2011 Figure 14A Hydrographs of PZR-2R and MW-704R – 31 Oct. 2010 through 30 Oct. 2011 Figure 14B Hydrographs of PZR-2DR and MW-704DR – 31 Oct. 2010 through 30 Oct. 2011

1.0 INTRODUCTION

This Demonstration of Compliance Report (DCR) was prepared by Weston Solutions, Inc. (WESTON) on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site PRP Group. The DCR documents the effectiveness of the Non-Time-Critical Removal Action No. 1 and 2 (NTCRA-1 and NTCRA-2) hydraulic containment and treatment system at the SRSNE Site in Southington, Connecticut, based on data collected during the period of 31 October 2010 through 30 October 2011. The data presented in this DCR were obtained in accordance with the United States Environmental Protection Agency (USEPA) approved Demonstration of Compliance Plans (DCP) for NTCRA-1 and NTCRA-2 (BBL, June 1995 and November 1999), respectively. The data acquisition schedule, reporting and evaluation requirements for this and future DCRs were described in these DCPs.

This is the third annual DCR to be issued after lodging of the consent decree and submitted in accordance with the Remedial Design/Remedial Action (RD/RA) Statement of Work (SOW). This DCR follows 60 previously submitted DCRs prepared initially on a quarterly basis and subsequently changed to annual submissions in 2003.

1.1 NTCRA-1 BACKGROUND

The NTCRA-1 hydraulic containment system is installed in the containment area (Figure 1A), which was defined in the NTCRA-1 SOW. The containment system originally included an array of 12 overburden groundwater extraction wells (RW-1 through RW-12) and a downgradient barrier (steel sheet piling) that hydraulically and physically contains overburden groundwater entering the containment area from the SRSNE operations area.

The pre-design investigation results and the designs of the hydraulic barrier wall, extraction wells, and treatment system are described in detail in the NTCRA-1 100% Groundwater Containment and Treatment System Design Report (100% Design Report, BBL, January 1994). The NTCRA-1 system was constructed between February and July 1995 and brought online in accordance with the USEPA-approved schedule on 19 July 1995.

The NTCRA-1 hydraulic containment and monitoring network remained as originally constructed until November 2009 when select recovery wells, monitoring wells, and piezometers were abandoned in accordance with the Monitoring Well Network Evaluation, included as Attachment N to the Remedial Design Work Plan (Arcadis, April 2009). EPA was notified that the abandoned wells and piezometers would be removed from the NTCRA-1 monitoring program and DCP on 1 November 2009 (WESTON, December 2009). The second annual DCR (31 October 2009 to 30 October 2010) summarizes the recovery wells, monitoring wells, and piezometers abandoned under this program and the rationale for abandonment of each well. As indicated in the second annual DCR, all monitoring wells and piezometers were abandoned in November and December

H:\SRS Account\Year 9 O&M\O&M Reports\Annual Report 2011\2011Annual DCR_111108.doc

2009, with exception to former recovery wells RW-5 and RW-6. These wells were permanently taken out of service in November 2009, but not abandoned until December 2010.

As a result of the recovery well abandonment activities discussed above, the NTCRA-1 containment system now consists of ten overburden groundwater extraction wells (RW-1 through RW-4, and RW-7 through RW-12).

1.2 NTRCA-2 BACKGROUND

The NTCRA-2 hydraulic containment system is installed south of the NTCRA-1 containment area (Figure 1A), as defined in the NTCRA-2 SOW. The NTCRA-2 containment area encompasses the majority of the northern portion of the Town of Southington well field property and includes the shallow and deep bedrock, extending to a depth of 100 feet below the top of bedrock in the northern portion of this property (Figure 1A). Further upgradient (north), the NTCRA-2 containment area extends over 170 feet below the top of bedrock and over 200 feet below ground surface (BBL, November 1999).

The NTCRA-2 hydraulic containment system initially included two groundwater extraction wells (RW-13 and RW-1R) that, in combination with the NTCRA-1 containment system, contain bedrock groundwater migrating from the SRSNE operations area (Figure 1A). The design of the overburden and bedrock extraction wells RW-13 and RW-1R, respectively, are described in the NTCRA-2 100% Design Report (BBL, November 1999). Overburden recovery well RW-13 has been on-line since 14 July 1999 and bedrock recovery well RW-1R has been on-line since 5 September 2001.

A third groundwater extraction well (RW-14) was added to the NTCRA-2 well field (Figure 1A) to further enhance long-term hydraulic containment of the overburden and bedrock groundwater in the NTCRA-2 well field. The design of the additional overburden extraction well is described in the RW-14 Completion Report (WESTON, November 2007). This new overburden recovery well has been on-line since 24 September 2007.

1.3 GROUNDWATER TREATMENT SYSTEM

The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility (Figure 1A). The treatment system consists of the following unit processes: influent equalization, metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995.

1.4 REPORT ORGANIZATION

Section 2 of this report summarizes the acquisition and evaluation of field data used to verify the effectiveness of the hydraulic containment and treatment system and Section 3 provides an overview of operations and maintenance activities conducted at the site during this O&M period.

2.0 DATA ACQUISITION AND RESULTS

The data required to demonstrate the effectiveness of the hydraulic containment and treatment system were obtained in the form of hydraulic head measurements from wells and piezometers installed in the area of the containment system, flow measurements from the extraction well array, treatment system flow rates, and analytical results.

2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-1 containment system is verified through two gradient tests that determine whether groundwater flow has been reversed. These tests are demonstrated by comparing hydraulic head measurements at several monitoring locations. The specific wells and piezometers used for these comparisons are discussed in Sections 2.1.1 and 2.1.2. The gradient tests are:

Reversal of Gradient Test No 1 (RGT-1): Confirms that overburden groundwater east and downgradient of the operations area is flowing in the direction of the groundwater extraction wells.

Reversal of Gradient Test No 2 (RGT-2): Confirms that overburden groundwater flow is reversed and maintained in the direction of the groundwater extraction wells within the area enclosed by the hydraulic divide installed adjacent to the hydraulic containment system. RGT-2 is more crucial to a demonstration of compliance as it requires that overburden groundwater elevations within the barrier are at least 0.3 feet lower than those outside the wall in NTCRA-1.

2.1.1 RGT-1 RESULTS

To confirm that overburden groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the groundwater extraction wells, hydraulic head measurements were collected at the following overburden wells/piezometers located in the vicinity of the groundwater containment system:

- Extraction Wells RW-1 through RW-4 and RW-7 through RW-12;
- Monitoring Wells MW-415, MWL-304, MWL-305, MWL-307, and MWL-308

Overburden groundwater elevations were also measured at the following wells to assess the hydraulic response in the area between the hydraulic barrier wall and the Quinnipiac River:

• MWL-302, MWL-306, MWL-309, MWL-311, and TW-7A.

Monthly overburden hydraulic head data measured at the specified wells and compliance monitoring points from 31 October 2010 through 30 October 2011 are presented in Table 1. The resulting groundwater contour maps are presented as Figures 1A through 12A. The contours indicate the horizontal hydraulic gradient between the SRSNE operations area and the extraction wells was eastward toward the extraction wells, fulfilling RGT-1.

The vertical hydraulic gradient between the overburden and bedrock in the vicinity of the hydraulic containment system is also evaluated to confirm satisfactory recovery well operation. Groundwater elevations were compared between bedrock well MW-416 and the adjacent overburden well (MWL-307) on the same dates. This comparison indicates that the vertical component of the hydraulic gradient between the bedrock and the overburden was generally downward from the overburden to the bedrock within the containment area.

Hydraulic head data is also compared at overburden compliance piezometers CPZ-1, CPZ-3, CPZ-5, CPZ-7, and CPZ-9 and adjacent bedrock piezometers CPZ-1R, CPZ-3R, CPZ-5R, CPZ-7R, and CPZ-9R. Monitoring indicates that the gradient was generally upward from the bedrock to the overburden in the vicinity of the pumping wells and the hydraulic barrier wall throughout the period covered by this DCR.

2.1.2 RGT-2 RESULTS

To confirm that groundwater flow is reversed and maintained in the direction of the groundwater extraction wells, hydraulic head measurements were collected weekly at eight fully penetrating overburden compliance piezometers (CPZ-1 2A, 3, 4A, 5, 6, 7, and 8). Compliance piezometers CPZ-9 and CPZ-10 were removed from RGT-2 because CPZ-9 was abandoned in December 2009. As stated in the DCP, the hydraulic gradient is considered reversed and inward across the hydraulic barrier wall when the hydraulic head data measured at each compliance piezometer located inside the hydraulic barrier wall (CPZ-1, CPZ-3, CPZ-5, and CPZ-7) is at least 0.3 feet lower than the head measured at the corresponding compliance piezometer located outside the hydraulic barrier wall (CPZ-4A, CPZ-6, and CPZ-8, respectively).

Based on weekly hydraulic head measurements, the required 0.3 feet head differential was achieved in all four pairs (CPZ-1/CPZ-2A, CPZ-3/CPZ-4A, CPZ-5/CPZ-6, and CPZ-7/CPZ-8) for thirty six (36) of the fifty two (52) weeks during the monitoring period. Compliance piezometer pairs CPZ-5/CPZ-6 and CPZ-7/CPZ-8 met the 0.3 feet head differential during the entire monitoring period. Compliance piezometer pair CPZ-1/CPZ-2A did not achieve the required 0.3 feet differential on seven weekly gauging rounds, and compliance piezometer pair CPZ-3/CPZ-4A did not achieve the required 0.3 feet differential on 14 weekly gauging rounds. See Table 5 for a summary of which weeks the 0.3 feet head differential was not maintained in one or both of these pairs. The cause of the loss of hydraulic gradient reversal at these two compliance pairs is believed to be caused by the excessively dry site conditions and a substantial localized elevation decrease in the overburden water table outside of the sheet pile wall.

In response to the decreasing and eventual loss of hydraulic gradient reversal during the summer of 2010, extraction well pumps RW-7 and RW-12 (located in close proximity to CPZ-1 and CPZ-3, respectively) were lowered to the lowest practical operating level within the recovery wells, but this adjustment was not effective in attaining hydraulic gradient reversal. All ten NTCRA-1 recovery wells were redeveloped in August 2010 to improve hydraulic control of the NTCRA-1 containment system. WESTON also redeveloped RW-7 and RW-12 again in May 2011 to maintain optimum performance of these two recovery wells and improve hydraulic containment in the area of CPZ-1 and CPZ-3.

To verify the continuity of gradient reversal, daily hydraulic head measurements are also recorded via a data logger at compliance piezometers CPZ-5 and CPZ-6.

Measurements collected in eight hour intervals (three times/day), as recorded by a data logger installed at compliance piezometers CPZ-5 and CPZ-6, also demonstrated compliance for the entire period covered in this report, with exception to one event of non-compliance encompassing a total of three days. A hydrograph of the data logger measurements from compliance pair CPZ-5 and CPZ-6 is presented as Figure 13 for the monitoring period.

A summary of NTCRA-1 non-compliance occurrences experienced between 31 October 2010 and 30 October 2011 is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-1 – Non-Compliance Summary – 31 October 2010 to 30 October 2011									
Date	Cause	Corrective Actions							
27-29 August 2011	In response to severe weather forecasts as the result of tropical storm Irene, the NTCRA-1 & 2 extraction systems and the treatment system were intentionally shut down for both employee and site safety concerns.	No corrective action was warranted. This was a scheduled shutdown due to severe weather.							

2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-2 hydraulic containment system is verified through two containment tests that compare hydraulic head measurements in NTCRA-2. The specific locations used for hydraulic head comparisons are presented in Sections 2.2.1 and 2.2.2. The containment tests are:

Containment Test Part 1 (CT-1): Confirms that within the NTCRA-2 containment area, bedrock groundwater east and downgradient of the operations area is flowing in the direction of the hydraulic containment system.

Containment Test Part 2 (CT-2): Confirms that bedrock groundwater flow downgradient of the NTCRA-2 extraction system within the containment area is reversed and maintained in the direction of the hydraulic containment system.

2.2.1 CT-1 RESULTS

To confirm that VOC-impacted bedrock groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the extraction wells, hydraulic head measurements were obtained at the following pairs of wells/piezometers located upgradient of the hydraulic containment system:

- Shallow bedrock MW-704R and MW-121A; and
- Deep Bedrock MW-704DR and MW-705DR.

The hydraulic gradient is considered to be towards the extraction wells when the hydraulic head measured at the shallow (MW-704R) and deep (MW-704DR) bedrock monitoring wells located adjacent to extraction wells RW-13, RW-1R, and RW-14 is lower than hydraulic head measurements at wells MW-121A and MW-705DR, respectively.

Monthly rounds of hydraulic head data measurements collected from 31 October 2010 to 30 October 2011 are presented in Table 1. The resulting contour maps for shallow bedrock and deep bedrock monitoring wells and piezometers are presented as contours on Figures 1B through 12B and Figures 1C through 12C, respectively. The contours indicate that groundwater flow in the shallow and deep bedrock is inward toward the NTCRA-2 extraction wells, fulfilling Containment Test Requirement No.1.

2.2.2 CT-2 RESULTS

To confirm that bedrock groundwater flow downgradient of the extraction system within the containment area is reversed and maintained in the direction of the extraction wells, hydraulic head measurements were obtained at the following locations:

- Shallow bedrock MW-704R, MW-204A, PZR-2R, and PZR-4R; and
- Deep Bedrock MW-704DR, PZR-2DR, and PZR-4DR.

The hydraulic gradient is considered reversed and inward toward the containment area when the hydraulic head measured at the shallow and deep bedrock monitoring wells MW-704R and MW-704DR, which are located adjacent to extraction wells RW-13, RW-1R, and RW-14, is lower

than the hydraulic head measurements at the remaining shallow and deep bedrock monitoring wells and piezometers listed above. Measurements taken at these locations are presented in Table 1 and as groundwater contours in Figures 1B through 12B and 1C through 12C.

To verify the continuity of gradient reversal, daily hydraulic head measurements are recorded via a data logger at the following locations:

- Shallow bedrock MW-704R and PZR-2R; and
- Deep Bedrock MW-704DR and PZR-2DR.

Daily hydraulic head measurements recorded via data loggers installed in NTCRA-2 compliance pairs MW-704R and PZR-2R (shallow bedrock) and MW-704DR and PZR-2DR (deep bedrock) indicated that the NTCRA-2 containment system met CT-2 for the monitoring period, with the exception to three periods of non-compliance outlined herein encompassing a total of 9 days.

Hydrographs of the data logger measurements obtained for shallow and deep bedrock compliance points between 31 October 2010 and 30 October 2011 are included as Figures 14A and 14B, respectively.

A summary of NTCRA-2 non-compliance occurrences experienced during the monitoring period is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-2 – Non-Compliance Summary – 31 October 2010 to 30 October 2011									
Date	Cause	Corrective Actions							
6-9 March 2011	Loss of compliance occurred as a result of excessive heavy rains, which caused NTCRA-2 recovery well flooding. Because of the severe flooding, the NTCRA-2 recovery wells were shut down until flood conditions subsided.	Compliance was restored following the rain/flood event and restarting of the NTCRA-2 recovery wells. No corrective action was required.							
6-7 June 2011	Recovery Wells RW-13 and 14 were out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities							
28-30 August 2011	In response to severe weather forecasts as the result of tropical storm Irene, the NTCRA-1 and 2 extraction systems and the treatment system were intentionally shut down for both employee and site safety concerns.	No corrective action was warranted. This was a scheduled shutdown due to severe weather.							

H:\SRS Account\Year 9 O&M\O&M Reports\Annual Report 2011\2011Annual DCR_111108.doc

2.3 TREATMENT SYSTEM MONITORING

HCTS influent and effluent flow measurements and laboratory analytical data are obtained during the monitoring period. These flow and analytical data are presented and discussed in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA

The influent and effluent flow rates of the groundwater treatment system were each recorded continuously using an in-line totalizing flow meter and strip chart recorder. The NTCRA-1 and NTCRA-2 recovery wells ran continuously throughout the monitoring period, with the exception of minor shutdowns during maintenance, individual recovery well failures, or HCTS alarm shutdowns. In June 2011, two NTCRA-1 recovery wells (RW-7 and 12) and two NTCRA-2 recovery wells (RW-13 and 14) were redeveloped to maintain drawdown and groundwater hydraulic control during the monitoring period.

Approximately 19,703,000 gallons of groundwater were extracted, treated and discharged during the monitoring period. Refer to Table 2 for a summary of influent and effluent flow rates and totals. Throughout the period covered in this report, the system treated and discharged an average of 37.3 gallons per minute.

2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA

Samples of groundwater treatment system influent and effluent were collected twice per month and analyzed for metals, VOCs, alcohols, and total suspended solids. For the process effluent, the first round each month was also analyzed for total PCBs. Once every quarter, additional effluent samples were collected and tested for dioxins/furans. Analytical results from the influent and effluent sampling are summarized in Tables 3 and 4, respectively. The effluent sampling results are compared with the discharge limits established by the CTDEP in the Substantive Requirements for Discharge, dated 6 November 1995. As shown in Table 4, the treatment system effluent water quality was below discharge limits for the monitoring period.

In addition to the analyses discussed previously, effluent samples were collected and submitted for acute and chronic toxicity analysis in January, April, July, and October 2011. The submitted effluent samples passed the acute and chronic toxicity test for both Daphnia Pulex and fathead minnows.

Process influent and effluent sampling for 1,4 dioxane was monitored quarterly during the monitoring period to collect additional data concerning this compound. Currently no discharge limit exists for 1,4-dioxane. Quarterly sample results for the year are presented on the following table.

SRSNE - 1,4-Dioxane Sampling Summary							
Date	Influent (ppb)	Effluent (ppb)					
4-Jan-11	<5	<5					
6-Apr-11	<5	<5					
6-Jul-11	53	41					
3-Oct-11	36	9					

3.0 Hydraulic Containment and Treatment System (HCTS) Operations and Maintenance Summary

The HCTS Operations and Maintenance (O&M) summary is divided into two sections. Section 3.1 highlights the major O&M related activities performed between 31 October 2010 and 30 October 2011. Section 3.2 discusses O&M issues that are on-going or anticipated during the future activities at the site.

3.1 OPERATIONS AND MAINTENANCE SUMMARY

The following briefly describes important HCTS operations and maintenance activities or capital improvements conducted during the reporting period.

- 1. November and December 2010 HCTS Modifications under the Pre-ISTR Preparation Plan (PIPP) Construction: In accordance with the PIPP plans and specifications, the following modifications were implemented to the HCTS:
 - A temporary 2-inch diameter water service was added at the treatment system building. This temporary service was extended to the ISTR Contractor's process equipment area and will be utilized during thermal treatment and remediation of the overburden.
 - A temporary telecommunications service was added at the treatment system building. This temporary service was extended to the ISTR Contractor's process equipment area and will be utilized during thermal treatment and remediation of the overburden.
 - The NTCRA-1 influent force main between the array of 10 NTCRA-1 recovery wells and the treatment system building was relocated away from the thermal treatment zone (TTZ) to allow for continued operation of the NTCRA-1 recovery system during ISTR.
 - The NTCRA-1 influent force main connections to abandoned recovery wells (RW-5 and 6) were removed and capped.

H:\SRS Account\Year 9 O&M\O&M Reports\Annual Report 2011\2011Annual DCR_111108.doc

- The NTCRA-1 recovery system electrical service between the array of 10 NTCRA-1 recovery wells and the treatment system building was relocated away from the TTZ to allow for continued operation of the NTCRA-1 recovery system during ISTR. During this work, the electrical power supplies for abandoned recovery wells (RW-5 and RW-6) were also disconnected and removed.
- Recovery wells RW-5 and RW-6 were abandoned. Equipment suitable for reuse and maintenance at other recovery wells (pumps, motors, panels, etc) were retained as stocked spares.
- 2. **February 2011 New NTCRA-1 Electrical Disconnect:** A separate NTCRA-1 electrical service disconnect was added to the treatment system building electrical distribution network. Prior to installation of this disconnect, both the NTCRA-1 and 2 recovery systems would have to be shut down in order to lockout the NTCRA-1 recovery systems.
- 3. **February 2011 Compressor System Alternator Replacement:** The compressors were running at the same time, so the alternator controlling the compressors was replaced to restore operation to normal.
- 4. **April and July 2011 Primary Carbon System Carbon Replacement:** The primary and secondary liquid phase carbon media was replaced with reactivated carbon in April and July 2011, respectively. The covers in all four carbon vessels were replaced with new covers in July 2011 due to excessive corrosion of the existing covers.
- 5. **May 2011 UV-2 Flow Meter Replacement:** The existing meter was reading low flow during normal operations resulting in system alarms. This meter was replaced to restore system operation to normal.
- 6. **June 2011 Recovery Well Redevelopment:** Two NTCRA-1 recovery wells (RW-7 and RW-12) and two NTCRA-2 recovery wells (RW-13 and 14) were redeveloped in June 2011 to maintain hydraulic performance.
- 7. **Ultraviolet Oxidation System:** The following summarizes the major maintenance performed on the UV equipment during the monitoring period:
 - Five (5) UV lamps were replaced during the reporting period. All lamps were removed or replaced due to failure, excessive amperage draw, or excessive hours. Lamps that did not operate for the minimum 3000 hour manufacture warrantee period were replaced by the manufacturer on a pro-rated, performance (actual vs. warrantee) basis.

H:\SRS Account\Year 9 O&M\O&M Reports\Annual Report 2011\2011Annual DCR_111108.doc

• Two (2) quartz tubes were replaced due to failure during the monitoring period.

At the end of this monitoring period, UV-1 had eight of twelve fully functional reactor circuits and UV-2 has seven of twelve functioning circuits. One additional reactor was taken off line because the reactor chamber (No. 23) was damaged during a lamp failure in 2008. It is believed that the ballast side of this reactor is functional.

3.2 FUTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS

WESTON will continue to evaluate the overall HCTS and make recommendations for process improvements or modifications in the coming year. These recommendations will be summarized in the Monthly Operations and Maintenance HCTS report submissions. At this time, there are no major action items or modifications planned.

Ibecation Depth in protein Depth in protein											
Location Depth to Nate Visiter Nate Depth to Nate Part to Elevation Depth to Elevation Depth to Elevation Depth to Elevation DP2-14 169.84 7.48 152.15 7.40 152.24 7.72 151.93 7.71 151.93 DP2-14 169.82 0.03 150.23 0.00 150.23 0.16 150.23 0.04 150.33 0.42 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 0.04 150.23 150.23 0.04 150.23 0.04 150.23	Measuring	Location Elevation	30-Nov-10		29-Dec-10		24-Jan-11		24-Feb-11		
DP2-14 1958.44 7.40 152.15 7.70 151.83 7.71 151.83 DP2-18 161.12 2.00 153.33 154.33 164.34 6.20 155.34 DP2-24 168.84 6.20 152.34 6.60 152.34 6.40 152.34 6.40 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 6.44 152.34 153.10 9.71 145.34 9.72 148.34 DP2-4A 158.44 9.34 150.12 5.02 152.24 143.44 152.34 142.34 143.34 153.14 152.34 142.25 142.34 143.44 152.34 142.34 143.44 152.34 142.34 143.44 152.34 142.34 143.44 152.34 142.34 143.44 152.34 143.34 152.34 143.34 152.34 143.34 152.34 143.34	Location		Depth to Water	Water Elevation							
PZ-1R 161.12 2.18 168.64 0.00 161.12 0.00 161.12 2.18 168.24 0.00 161.24 0.00 161.27 2.18 160.20 152.24 DP2-2A 160.87 1.56 159.01 0.00 160.07 0.70 160.27 2.30 158.57 DP2-3A 160.270 6.39 154.31 6.38 150.20 9.41 149.38 8.77 149.83 DP2-4A 158.80 8.18 150.20 8.41 149.38 9.77 149.24 DP2-4A 158.40 0.44 150.10 9.22 150.20 9.41 149.38 9.77 149.81 DP2-4A 158.67 168.68 15.16 143.50 152.21 140.45 152.51 143.13 152.31 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.25 143.35 143.3	CPZ-1	159.64	7.49	152.15	7.40	152.24	7.72	151.92	7.71	151.93	
DF25.5 DF35.8 L6.68 L55.9 DF36.9 DF36.9 DF36.9 DF37.9 DF32.3 DF46.9 DF36.9 DF36.9 DF36.9 DF37.9 DF32.3 DF36.9 DF36.9 <thdf36.9< th=""> DF36.9 <thdf36.9< th=""></thdf36.9<></thdf36.9<>	CPZ-1R	161.12	2.18	158.94	0.00	161.12	0.00	161.12	2.80	158.32	
CP228 100 37 156 159.01 100 37 100 37 100 37 100 37 100 37 100 37 100 37 100 37 100 38	CPZ-2 CP7-24	158.04	6.29	152.35	5.68	152.90	6.48	151.93	6.60	152.04	
CP2-3 199.21 9.16 150.05 9.08 190.13 9.71 149.50 9.971 149.20 9.971 149.24 CP2-38 106.070 6.39 165.11 6.38 150.22 10.06 143.36 8.970 149.37 CP2-4A 158.40 6.16 1.50.22 10.02 10.06 143.36 9.70 149.24 CP2-4A 158.47 6.64 1.52.1 10.02 11.05 11.05 143.31 15.20 143.48 CP2-6A 159.44 0.37 145.81 7.23 149.63 6.52 149.27 149.20 149.83 CP2-6A 159.69 7.57 155.50 7.52 155.56 129.77 155.66 2.27 149.83 CP2-7A 159.40 5.78 155.56 7.52 155.56 2.27 155.56 2.27 155.56 2.27 155.56 2.27 155.56 2.27 155.56 2.27 155.56 2.27 155.56 2.27 <t< td=""><td>CPZ-2R</td><td>160.97</td><td>1.96</td><td>159.01</td><td>0.00</td><td>160.97</td><td>0.70</td><td>160.27</td><td>2.30</td><td>158.67</td></t<>	CPZ-2R	160.97	1.96	159.01	0.00	160.97	0.70	160.27	2.30	158.67	
CPE2-8 196.20 6.39 194.31 6.38 194.32 7.60 183.10 7.21 193.40 7.50 193.10 7.21 193.80 8.77 140.83 CPE-4.4 195.44 0.34 150.10 9.52 150.12 10.06 149.36 9.77 140.83 CPE-4.8 195.80 10.17 14.08 155.5 143.13 152.0 143.43 CPE-6.8 195.80 10.71 144.90 15.07 11.01 140.97 <td< td=""><td>CPZ-3</td><td>159.21</td><td>9.16</td><td>150.05</td><td>9.08</td><td>150.13</td><td>9.71</td><td>149.50</td><td>9.97</td><td>149.24</td></td<>	CPZ-3	159.21	9.16	150.05	9.08	150.13	9.71	149.50	9.97	149.24	
CP2-4. 158.00 0.10 150.02 0.41 149.39 8.97 149.39 CP2-4.A 158.04 0.34 150.12 150.12 1008 149.36 9.70 149.34 CP2-4.R 158.04 0.32 150.12 110.30 149.30 150.2 150.14 140.36 9.70 149.74 CP2-6 158.66 0.10 143.20 150.2 149.44 150.9 141.20 147.31 CP2-6 158.66 0.57 150.05 5.02 149.46 5.23 149.47 8.22 149.83 CP2-6A 158.05 5.63 149.70 6.09 149.30 6.52 147.47 6.02 149.30 CP2-7 158.40 5.70 153.41 6.61 155.55 5.40 156.31 156.76 4.22 149.20 149.30 157.22 149.30 157.22 149.30 157.22 149.30 157.22 157.30 156.20 5.30 157.27 155.56 2.27	CPZ-3R	160.70	6.39	154.31	6.38	154.32	7.60	153.10	7.21	153.49	
CP2-AR 158.4 9.34 19.10 9.32 19.12 10.08 143.86 9.70 149.74 DP2-AR 158.676 6.64 152.21 552.9 152.64 152.06 151.66 6.670 151.81 DP2-AR 158.66 7.575 150.50 152.3 149.26 142.20 149.36 DP2-AR 158.46 3.97 150.51 50.2 149.26 142.21 149.38 DP2-AR 158.40 5.78 150.50 8.42 149.83 8.58 149.47 6.02 148.37 DP2-AR 155.56 5.78 158.56 155.61 2.77 155.60 2.77 156.31 156.32 156.31 156.30 153.32 7.70 152.20 7.30 153.32 159.41 3.30 150.32 2.73 156.33 150.60 5.70 1.40 146.70 143.33 156.70 1.40 146.70 143.31 156.70 1.40 146.70 145.36 145.30 146.40 <td>CPZ-4</td> <td>158.80</td> <td>8.18</td> <td>150.62</td> <td>8.60</td> <td>150.20</td> <td>9.41</td> <td>149.39</td> <td>8.97</td> <td>149.83</td>	CPZ-4	158.80	8.18	150.62	8.60	150.20	9.41	149.39	8.97	149.83	
L2-2 144.50 12.20 144.80 12.20 14.40 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 14.80 12.05 <t< td=""><td>CPZ-4A</td><td>159.44</td><td>9.34</td><td>150.10</td><td>9.32</td><td>150.12</td><td>10.08</td><td>149.36</td><td>9.70</td><td>149.74</td></t<>	CPZ-4A	159.44	9.34	150.10	9.32	150.12	10.08	149.36	9.70	149.74	
CP2-5R 193.0 1021 140.09 7.53 190.77 11.30 147.00 1099 147.31 CP2-5R 155.48 3.97 150.50 150.20 149.46 52.3 149.26 4.92 149.36 CP2-6R 155.49 5.53 149.47 6.02 147.47 6.02 147.47 6.02 147.47 6.02 147.47 6.02 148.37 CP2-7R 155.60 5.78 153.62 7.82 155.88 7.77 157.65 2.77 156.31 156.31 156.30 155.20 5.30 154.31 CP2-8R 160.62 6.53 154.09 7.30 153.32 7.70 152.92 7.30 153.32 CP2-101 161.03 3.35 157.68 4.25 155.61 2.71 156.40 3.12 157.32 159.64 3.12 157.32 149.65 3.00 147.14 142.24 4.40 4.02 144.76 140.01 146.76 4.00 146.76 <	CPZ-4R CPZ-5	158.68	0.04	152.12	5.92	152.64	15 55	143.13	0.95	143.48	
P2F2 6 154.48 3.97 150.51 5.02 149.46 5.23 149.27 4.62 149.86 P2F2 6A 158.05 7.55 150.00 8.42 148.30 6.52 147.47 6.02 148.83 P2F2 7 155.86 7.78 155.86 7.77 151.83 6.90 148.37 P2F2 7 155.88 15.81 157.00 1.89 156.60 3.02 155.85 7.30 153.32 7.70 152.32 7.30 153.32 155.32 7.70 152.32 7.30 153.32 156.78 4.25 156.76 4.33 156.71 4.33 156.71 4.33 156.71 4.33 156.71 4.33 159.71 4.33 159.71 4.33 159.71 4.33 159.71 4.33 159.71 4.33 159.71 4.34 159.71 4.43 159.71 4.43 149.49 4.29 146.49 4.00 146.75 4.49 4.02 146.59 4.33 145.96	CPZ-5R	158.30	10.21	148.09	7.53	150.77	11.30	147.00	10.99	147.31	
CP2-6A 158.05 7.55 150.50 8.42 148.03 0.592 147.47 6.22 148.03 CP2-7R 158.40 5.53 148.76 6.09 148.30 6.92 124.747 6.92 124.747 CP2-7R 158.86 153.86 7.62 151.58 7.77 151.53 6.99 125.24 125.24 7.90 165.242 7.90 165.35 164.049 7.30 153.22 7.30 165.32 167.02 167.02 167.02 168.04 1.30 156.14 3.12 156.04 2.11 156.06 2.17 156.14 3.12 156.04 167.02 166.70 147.33 6.03 146.38 6.04 167.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.07 5.70 146.03 116.03 </td <td>CPZ-6</td> <td>154.48</td> <td>3.97</td> <td>150.51</td> <td>5.02</td> <td>149.46</td> <td>5.23</td> <td>149.25</td> <td>4.62</td> <td>149.86</td>	CPZ-6	154.48	3.97	150.51	5.02	149.46	5.23	149.25	4.62	149.86	
CP2-ER 153.90 5.63 148.76 6.09 148.30 6.92 147.47 6.02 148.37 CP2-T 155.86 5.78 155.86 7.77 151.83 6.99 152.41 CP2-R 165.86 14.83 15.86 14.83 148.66 14.83 148.66 14.83 148.76 148.02 146.43 148.26 148.66 14.83 148.86 148.76 148.63 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 148.86 <t< td=""><td>CPZ-6A</td><td>158.05</td><td>7.55</td><td>150.50</td><td>8.42</td><td>149.63</td><td>8.58</td><td>149.47</td><td>8.22</td><td>149.83</td></t<>	CPZ-6A	158.05	7.55	150.50	8.42	149.63	8.58	149.47	8.22	149.83	
CP2-7. (59.40) 5.78 (55.66) 7.72 (51.58) (52.41) CP2-7R (60.11) 5.45 (54.66) (53.61) (65.16) (153.61) (65.61) (153.62) (27.66) (153.61) (65.61) (153.62) (27.60) (161.64) (27.66) (153.61) (161.64) (27.66) (153.61) (161.64) (27.66) (157.76) (157.66) (157.76) (157.66) (157.76) (157.66) (157.76) (157.66) (157.76	CPZ-6R	154.39	5.63	148.76	6.09	148.30	6.92	147.47	6.02	148.37	
L-Z-K 198.08 1.98 197.00 1.99 198.04 3.02 198.36 2.27 198.31 DPZ-8 196.04 6.55 194.08 7.30 153.32 7.70 152.30 7.30 153.30 2.27 132.32 7.70 152.30 153.30 150.14 4.01 159.05 159.14 4.01 159.05 159.14 4.01 159.05 159.14	CPZ-7	159.40	5.78	153.62	7.82	151.58	7.77	151.63	6.99	152.41	
CP2 36 160 82 6 3 3 154 09 7 30 153 32 7 70 152 32 7 30 153 32 CP2 310 161 00 3 35 157 68 4 22 156 70 4 30 156 70 4 30 CP2 310 162 94 3 11 159 84 3 30 159 84 300 156 70 4 30 WH-127A 157 87 2 73 155 108 7 72 155 14 3 12 1194 75 WH-128A 156 70 5 22 151 108 7 72 152 16 4 00 146 76 5 96 154 79 5 49 166 78 WH-204A 150 75 4 58 150 77 7 52 152 06 5 83 151 60 8 09 151 52 WH-704D 153 43 7 40 146 03 7 11 146 32 7 33 146 08 6 94 146 49 WW-704D 152 44 32 30 120 54 33 28 119 56 6 31 146 03 6 02 146 53 WW-704DR 152 44 3	CPZ-7R	158.58	1.58	157.00	1.89	155.69	3.02	153.50	2.27	150.31	
CPZ-10 161/03 3.35 157/88 4.25 198.76 4.33 198.70 4.01 197.02 VPZ-10R 182.94 3.11 158.98 3.10 159.84 3.20 159.66 VMV-121A 152.96 5.70 147.26 5.63 147.35 6.03 146.86 5.80 147.16 VMV-122A 155.69 2.21 155.66 2.73 145.66 7.30 149.00 VMV-20A 160.75 4.08 166.07 5.79 154.96 5.36 155.10 4.20 146.76 VMV-701D 153.43 7.40 146.32 7.35 146.03 6.09 146.36 VMV-704R 151.52 6.52 145.80 6.31 145.56 6.32 115.42 2.22 120.22 VMV-704R 151.52 6.22 145.50 7.01 154.56 7.30 152.06 7.30 155.96 4.61 155.39 VMV-705DR 152.24 2.20 7.20	CPZ-8R	160.62	6,53	154.09	7,30	153.32	7,70	152.92	7,30	153.32	
CPZ-10R 162.94 3.11 159.84 3.00 159.14 3.29 159.65 WW-12A 152.96 5.70 147.26 5.53 147.33 6.03 146.93 5.80 147.16 WW-12A 156.30 2.73 155.14 3.12 154.75 WW-2DA 150.78 4.98 146.70 4.00 146.78 4.29 146.49 4.02 146.76 WW-415 160.77 4.68 156.07 7.92 152.06 5.31 146.08 6.09 146.49 WW-7041 152.34 6.52 145.30 5.94 145.56 6.31 146.08 6.09 146.59 WW-7040R 152.44 32.30 120.54 33.28 119.56 33.42 119.42 32.62 120.52 WW-7040R 152.94 7.20 7.00 152.00 7.30 152.60 7.30 152.60 7.30 152.60 7.30 152.60 7.30 152.60 MWL30 155.14 1	CPZ-10	161.03	3.35	157.68	4.25	156.78	4.33	156.70	4.01	157.02	
NW-121A 152,96 5.70 147.26 5.63 147.33 6.03 148.39 5.80 147.16 NW-125C 155.30 5.22 151.08 7.28 149.02 7.74 148.66 7.30 148.76 NW-204A 150.78 4.08 146.70 5.79 154.96 5.96 154.79 5.49 155.26 NW-415 150.75 4.68 155.07 5.79 154.96 6.31 146.08 6.08 146.76 NW-704D 153.34 7.40 146.03 7.11 146.32 7.35 146.08 6.08 146.28 NW-704D 153.24 6.52 145.82 6.32 145.56 6.32 145.20 152.62 120.22 20.22 NW-704D 152.84 2.30 154.91 5.03 155.96 4.61 156.39 NW-205D 160.99 4.60 155.70 7.70 155.20 7.90 152.40 7.30 152.42 NWL304 159.9	CPZ-10R	162.94	3.11	159.83	3.10	159.84	3.80	159.14	3.29	159.65	
NW-125A 157.87 2.78 155.06 2.73 155.14 3.12 154.75 NW-204A 150.78 4.08 146.70 4.00 146.78 4.29 146.40 4.02 146.76 NW-415 160.75 4.68 156.07 5.79 154.96 5.96 154.79 5.44 155.26 NW-415 159.98 4.71 155.27 7.92 152.06 8.38 151.00 8.04 146.49 NW-704D 153.33 7.40 146.03 6.03 146.03 6.02 146.50 NW-704DR 155.26 145.30 5.04 145.96 5.01 155.96 4.61 156.39 NW-205DR 160.99 4.60 156.39 7.70 152.00 7.90 152.00 7.30 152.60 NWL304 158.90 148.91 154.70 3.37 154.46 3.55 155.44 NWL305 158.09 156.26 4.33 155.70 5.66 153.55 4.	MW-121A	152.96	5.70	147.26	5.63	147.33	6.03	146.93	5.80	147.16	
nww.icsu isol	MW-125A	157.87	2.78	155.09	2.21	155.66	2.73	155.14	3.12	154.75	
Improversion 190.76 4.06 196.70 190.76 4.29 190.76 190.76 MW-415 160.75 4.68 156.90 5.49 154.96 5.49 154.96 5.49 154.96 5.49 154.96 5.49 154.96 5.49 145.96 5.49 146.03 6.08 146.04 6.94 146.26 MW-704M 152.24 6.52 145.82 6.33 146.03 6.03 146.03 6.02 145.50 MW-704DR 152.24 32.30 120.54 33.28 119.56 33.42 119.42 32.62 120.22 MWU-302 161.80 5.90 155.70 7.70 152.20 7.90 152.00 7.30 152.40 7.30 154.81 4.03 155.11 MVL-305 155.91 4.89 154.71 5.46 153.55 4.73 154.28 MVL-306 158.50 3.08 152.42 4.32 150.74 4.33 151.81 MW-303 156.85 154.81 </td <td>MW-125C</td> <td>156.30</td> <td>5.22</td> <td>151.08</td> <td>7.28</td> <td>149.02</td> <td>1.74</td> <td>148.56</td> <td>7.30</td> <td>149.00</td>	MW-125C	156.30	5.22	151.08	7.28	149.02	1.74	148.56	7.30	149.00	
WW-16 159.08 4.71 155.27 7.92 152.06 6.38 151.80 6.08 151.80 WW-704D 153.43 7.40 146.03 7.11 146.32 7.35 146.08 6.94 144.64 WW-704R 152.52 6.22 145.30 5.94 145.98 6.11 146.08 6.02 148.50 WW-704R 152.54 2.22 145.30 5.94 145.98 6.19 148.33 6.02 148.50 WW-704D 152.84 2.30 120.54 3.328 119.56 3.34 119.56 3.42 152.00 7.30 152.00 WW-304 159.90 7.21 152.69 7.70 152.20 7.90 152.00 7.30 152.00 WW-306 155.39 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 WW-306 155.39 3.48 151.93 5.90 152.41 3.97 154.66 3.55 155.08 </td <td>MW-415</td> <td>160.76</td> <td>4.00</td> <td>146.70</td> <td>4.00</td> <td>140.70</td> <td>4.29</td> <td>146.49</td> <td>4.02</td> <td>140.70</td>	MW-415	160.76	4.00	146.70	4.00	140.70	4.29	146.49	4.02	140.70	
WW-704D 153.43 7.40 146.03 7.11 146.32 7.35 146.08 6.94 146.49 WW-704R 151.52 6.22 145.83 6.38 145.96 6.31 146.03 6.02 145.50 WW-704R 151.52 6.22 145.30 5.94 145.58 6.19 145.33 6.02 145.50 WW-704R 152.24 32.30 120.54 33.22 115.69 7.50 155.49 7.11 154.49 6.81 154.79 WWL-302 161.60 5.90 155.70 7.70 152.20 7.90 152.00 7.30 152.44 7.3 154.73 WWL-305 155.90 4.89 154.12 5.31 153.75 4.73 154.28 WWL-306 158.63 3.59 155.04 3.90 154.73 3.97 154.66 3.55 155.14 WWL-309 155.20 3.08 154.73 3.97 154.66 3.55 155.06 WWL-30	MW-416	159.98	4.71	155.27	7.92	152.06	8.38	151.60	8.08	151.90	
NW-704M 152,24 6.52 145,82 6.53 145,66 6.11 146.03 6.08 1445,20 NW-704DR 152,24 22,30 120,54 33,28 119,66 33,42 119,42 32,62 120,22 NW-704DR 156,99 4,60 156,99 4,00 156,97 5,03 155,90 4,61 156,39 NW-302 161,60 5,90 155,70 7,70 152,20 7,90 152,00 7,30 152,69 NWL-304 159,90 7,21 152,68 7,70 152,20 7,90 152,00 7,30 152,42 NWL-306 155,39 3,48 151,91 6,49 148,90 6,12 148,27 4,23 155,11 NWL-306 155,63 3,59 155,04 3,90 154,73 3,97 154,66 3,55 155,14 NWL-309 155,20 3,08 152,72 3,48 150,51 148,45 961 148,00 9,30 148,31	MW-704D	153.43	7.40	146.03	7.11	146.32	7.35	146.08	6.94	146.49	
WW-704R 15152 6.22 145.30 5.94 145.88 6.19 145.33 6.02 145.03 WW-70DR 160.99 4.60 156.39 4.02 156.47 5.03 155.96 4.61 156.78 WW-302 161.60 5.90 7.70 152.20 7.90 152.70 152.80 7.70 152.20 7.90 152.00 7.30 152.80 WWL-302 155.90 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 WWL-306 155.50 3.38 154.73 3.97 154.66 3.55 155.08 WWL-307 159.14 2.88 156.26 4.38 154.76 4.33 151.27 3.38 151.81 4.03 155.08 WWL-309 155.20 3.08 152.12 4.32 150.81 3.74 148.90 9.30 148.31 WW-311 157.61 8.31 149.30 9.16 148.45 9.61 148.00<	MW-704M	152.34	6.52	145.82	6.38	145.96	6.31	146.03	6.08	146.26	
WW-70DR 152,84 32,30 119,66 33,34 119,42 32,62 120,22 WW-70DR 160,99 4.60 156,39 4.02 156,97 5.03 155,596 4.61 156,38 WWL-302 161,60 5.90 155,70 7.01 154,59 7.11 154,49 6.81 154,79 WWL-306 155,90 7.21 152,20 7.30 152,200 7.30 152,200 7.30 152,20 7.30 152,200 7.30 154,28 151,14 WWL-306 155,39 3.48 151,91 6.49 148,90 6.12 149,27 4.25 151,14 WWL-308 158,63 3.59 155,04 3.80 154,73 3.97 154,66 3.56 156,18 WWL-309 155,20 3.08 152,12 4.32 150,83 7.49 148,30 5.80 148,30 5.80 148,31 150,72 1.44 150,73 146,45 7.41 146,74 146,74	MW-704R	151.52	6.22	145.30	5.94	145.58	6.19	145.33	6.02	145.50	
WW-USDR 100.99 4.60 136.39 4.02 106.37 5.03 156.36 4.01 136.36 WWL-304 156.90 7.21 152.69 7.70 152.20 7.30 152.00 7.30 152.00 WWL-306 155.39 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 WWL-306 155.39 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 WWL-306 155.61 3.39 154.66 3.35 155.64 3.30 154.77 3.38 151.18 WWL-309 155.20 3.08 152.12 4.32 150.88 3.93 151.27 3.38 151.82 WWL-311 157.33 5.40 151.93 6.80 150.83 3.93 151.27 3.38 153.42 P-5 155.378 4.80 148.98 5.48 148.30 5.80 147.98 5.31 146.74 P2R-2R <td>MW-704DR</td> <td>152.84</td> <td>32.30</td> <td>120.54</td> <td>33.28</td> <td>119.56</td> <td>33.42</td> <td>119.42</td> <td>32.62</td> <td>120.22</td>	MW-704DR	152.84	32.30	120.54	33.28	119.56	33.42	119.42	32.62	120.22	
MUL_304 150.00 7.30 152.00 7.30 155.08 WWL-300 156.20 3.08 152.12 4.32 150.053 7.99 151.04 6.58 150.075 7.84 150.075 7.84 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 148.47 V2R-2R 153.78	MWL-302	160.99	4.60	155.39	4.02	156.97	5.03	155.96	6.81	150.30	
WWL-305 159.01 4.89 154.12 5.31 153.70 5.46 153.55 4.73 154.28 MWL-306 155.39 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 MWL-306 158.63 3.59 155.04 3.90 154.73 3.97 154.66 3.55 155.08 MWL-309 155.20 3.08 152.12 4.32 150.88 3.93 151.27 3.38 151.87 MWL-301 157.61 0.31 151.93 6.60 150.53 7.49 149.84 6.58 150.75 P-5A 157.61 0.31 149.30 9.16 148.43 9.61 148.00 9.30 148.31 P-5G 153.78 4.80 148.98 5.48 148.30 5.80 147.98 5.31 148.47 P2R-2R 153.78 6.90 146.88 6.97 146.81 7.33 146.45 140.71 162.73 142.31 130.0 </td <td>MWL-304</td> <td>159.90</td> <td>7.21</td> <td>152.69</td> <td>7.70</td> <td>152.20</td> <td>7.90</td> <td>152.00</td> <td>7.30</td> <td>152.60</td>	MWL-304	159.90	7.21	152.69	7.70	152.20	7.90	152.00	7.30	152.60	
MWL-306 155.39 3.48 151.91 6.49 148.90 6.12 149.27 4.25 151.14 MWL-307 159.14 2.88 156.66 4.38 154.76 4.33 154.81 4.03 155.10 MWL-309 155.20 3.06 152.12 4.32 150.88 3.93 151.27 3.88 151.82 MWL-309 155.20 3.06 152.12 4.32 150.88 3.93 151.27 3.88 151.82 MWL-311 157.61 8.31 149.30 9.16 148.45 9.61 148.00 9.30 148.31 P-56 153.78 4.80 148.98 5.48 148.30 5.80 147.98 5.31 148.47 P2R-2R 153.78 6.60 144.89 5.80 147.98 5.61 147.16 P2R-4R 153.72 6.36 147.36 6.21 147.51 6.74 146.98 6.56 147.16 P2R-4DR 155.73 1.44	MWL-305	159.01	4.89	154.12	5.31	153.70	5.46	153.55	4.73	154.28	
MWL-307 159.14 2.88 156.26 4.38 154.76 4.33 154.81 4.03 155.16 MWL-309 155.20 3.08 152.12 4.32 150.88 3.93 151.27 3.38 151.82 MWL-301 157.33 5.40 151.83 6.80 150.53 7.49 144.84 6.58 150.75 P-SA 157.61 8.31 149.30 9.16 148.45 9.61 144.00 9.33 146.45 P-SA 158.39 4.48 153.91 6.00 152.39 5.99 152.40 4.97 153.42 P-6 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 146.74 P2R-4R 153.72 6.36 147.36 6.21 147.51 6.74 146.88 8.02 146.65 147.16 P2R-4R 152.73 1.42 151.31 1.00 151.73 1.55 151.18 RW-1 157.64	MWL-306	155.39	3.48	151.91	6.49	148.90	6.12	149.27	4.25	151.14	
MWL-308 158.63 3.59 156.04 3.90 154.73 3.97 154.66 3.55 155.08 MWL-301 157.61 3.38 151.22 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.38 151.27 3.34 146.34 6.58 146.31 148.37 148.45 7.04 146.74 P-6 153.78 4.80 148.89 5.48 144.50 5.80 147.98 5.31 148.47 7.04 146.74 P2R-2R 153.78 6.90 146.88 6.97 146.51 7.03 144.54 7.04 146.74 P2R-4PR 153.72 6.36 147.36 6.21 147.51 6.74 146.98 6.56 147.16 <	MWL-307	159.14	2.88	156.26	4.38	154.76	4.33	154.81	4.03	155.11	
WINL-309 135.20 3.06 132.12 4.32 130.86 3.33 131.27 3.36 131.82 P-5A 157.61 8.31 149.30 9.16 148.45 9.61 148.00 9.30 148.31 P-5A 157.61 8.31 149.30 9.16 148.45 9.61 148.00 9.30 148.31 P-5B 153.78 4.80 148.98 5.48 148.30 5.80 147.98 5.31 148.47 P2R-2R 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 146.65 P2R-2R 153.72 6.36 147.36 6.21 147.51 6.74 146.98 6.56 147.16 P2R-4DR 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.570 141.91 RW-1 156.49 17.03 139.46 16.12 140.37 17.65 138.84 160.9 140.40 RW-3	MWL-308	158.63	3.59	155.04	3.90	154.73	3.97	154.66	3.55	155.08	
P-SA 10.02 <th1< td=""><td>MWL-309</td><td>155.20</td><td>5.08</td><td>152.12</td><td>4.32</td><td>150.66</td><td>3.93 7.49</td><td>151.27</td><td>3.30 6.58</td><td>151.62</td></th1<>	MWL-309	155.20	5.08	152.12	4.32	150.66	3.93 7.49	151.27	3.30 6.58	151.62	
P>5B 158.39 4.48 153.91 6.00 152.39 5.99 152.40 4.97 153.42 P-6 153.78 4.80 148.98 5.48 148.30 5.80 147.98 5.31 148.47 P2R-2R 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 146.45 PZR-2R 153.78 6.36 147.36 6.21 147.51 6.74 146.38 8.02 146.65 PZR-4R 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.55 151.18 RW-1 157.61 16.15 141.46 17.02 140.37 17.65 138.84 16.09 140.40 RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.84 16.09 140.45 RW-3 156.21 15.88 142.33 13.80 144.81 15.91 142.22 12.33 145.28 RW-4	P-5A	157.61	8.31	149.30	9.16	148.45	9.61	148.00	9.30	148.31	
P-6 153.78 4.80 148.88 5.48 148.30 5.80 147.98 5.31 148.47 PZR-2R 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 146.74 PZR-2R 154.67 7.88 146.79 8.11 146.56 8.29 146.38 8.02 146.65 PZR-4R 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.55 151.18 RW-1 157.61 16.15 141.46 17.02 140.59 18.23 139.38 15.70 141.91 RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.44 16.09 140.40 RW-3 157.35 16.44 140.91 15.03 142.32 16.80 140.55 17.12 140.23 RW-4 158.21 15.88 12.23 139.63 18.87 138.08 18.44 138.51 RW-4 156.67	P-5B	158.39	4.48	153.91	6.00	152.39	5.99	152.40	4.97	153.42	
P2R-2R 153.78 6.90 146.88 6.97 146.81 7.33 146.45 7.04 146.74 P2R-2DR 154.67 7.88 146.79 8.11 146.56 8.29 146.38 8.02 146.65 P2R-4DR 153.72 6.36 147.36 6.21 147.51 6.74 146.98 6.56 147.16 P2R-4DR 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.55 151.18 RW-1 157.61 16.15 141.46 17.02 140.37 17.85 138.84 16.09 140.40 RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.84 16.09 140.40 RW-3 157.35 16.44 140.91 15.03 142.32 16.80 138.29 17.61 139.48 RW-7 157.09 17.44 139.65 16.04 141.05 18.80 18.87 138.08 18.44 138.51	P-6	153.78	4.80	148.98	5.48	148.30	5.80	147.98	5.31	148.47	
PZR-42DR 154.67 7.88 146.79 8.11 140.56 8.29 140.38 8.02 146.65 PZR-4R 153.72 6.36 147.36 6.21 147.51 6.74 146.38 6.56 147.16 PZR-4DR 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.55 151.18 RW-1 157.61 16.15 141.46 17.02 140.59 138.84 16.09 140.40 RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.84 16.09 140.40 RW-3 157.35 16.44 140.91 15.03 142.32 16.80 140.55 17.12 140.23 RW-4 158.21 15.88 142.33 13.80 144.41 15.39 142.82 12.93 145.28 RW-7 157.09 17.44 139.65 18.87 138.08 18.44 138.51 RW-8 156.95 18.12 138	PZR-2R	153.78	6.90	146.88	6.97	146.81	7.33	146.45	7.04	146.74	
PZR-4R 133.72 0.30 147.30 0.21 147.31 0.74 140.36 0.30 147.10 PZR-4DR 152.73 1.42 151.31 1.00 151.73 1.35 151.38 1.55 151.18 RW-1 157.61 16.15 141.46 17.02 140.59 18.23 139.38 15.70 141.91 RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.84 16.09 140.40 RW-3 157.35 16.44 140.91 15.03 142.32 16.80 140.55 17.12 140.23 RW-4 158.21 15.88 142.33 13.80 144.41 15.99 142.82 12.93 145.28 RW-4 156.95 18.12 138.83 17.32 139.63 18.87 138.08 18.44 138.51 RW-9 156.72 18.06 138.66 23.12 133.60 18.99 137.73 21.04 135.68 RW	PZR-2DR	154.67	7.88	146.79	8.11	146.56	8.29	146.38	8.02	146.65	
International Internaternat International Internat	PZR-4R PZR-4DR	153.72	0.30	147.30	0.21	147.51	0.74	140.90	0.00	147.10	
RW-2 156.49 17.03 139.46 16.12 140.37 17.65 138.84 16.09 140.40 RW-3 157.35 16.44 140.91 15.03 142.32 16.80 140.55 17.12 140.23 RW-4 158.21 15.88 142.33 13.80 144.41 15.39 142.82 12.93 145.28 RW-7 157.09 17.44 139.65 16.04 141.05 18.80 138.29 17.61 139.48 RW-8 156.95 18.12 138.66 23.12 133.60 18.99 137.73 21.04 135.68 RW-10 156.13 19.22 136.91 16.16 139.97 19.12 137.01 17.66 148.47 RW-11 157.82 17.04 140.78 17.33 140.49 17.06 140.76 17.66 140.16 RW-12 158.36 18.46 139.90 15.80 142.56 17.81 140.55 19.12 139.24	RW-1	157.61	16.15	141.46	17.02	140.59	18.23	139.38	15.70	141.91	
RW-3 157.35 16.44 140.91 15.03 142.32 16.80 140.55 17.12 140.23 RW-4 158.21 15.88 142.33 13.80 144.41 15.39 142.82 12.93 145.28 RW-7 157.09 17.44 139.65 16.04 141.05 18.80 138.29 17.61 139.48 RW-7 156.72 18.06 138.66 23.12 133.60 18.97 137.03 21.04 135.68 RW-10 156.13 19.22 136.91 16.16 139.97 19.12 137.01 17.66 138.47 RW-11 157.82 17.04 140.78 17.33 140.49 17.06 140.76 17.66 140.16 RW-11 157.82 17.04 140.78 17.33 142.56 17.81 140.55 19.12 139.24 RW-13 149.36 37.15 112.21 43.28 106.08 48.18 101.18 51.66 97.70	RW-2	156.49	17.03	139.46	16.12	140.37	17.65	138.84	16.09	140.40	
RW-4158.2115.88142.3313.80144.4115.99142.8212.93145.28RW-7157.0917.44139.6516.04141.0518.80138.2917.61139.48RW-8156.9518.12138.8317.32139.6318.87138.0918.44135.61RW-9156.7218.06138.6623.12133.6018.99137.7321.04135.68RW-10156.1319.22136.9116.16139.9719.12137.0117.66138.47RW-11157.8217.04140.7817.33140.4917.06140.7617.66140.16RW-12158.3618.46139.9015.80142.5617.81140.5519.12139.24RW-13149.3637.15112.2143.28106.0848.18101.1851.6697.70RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-18149.7731.26118.5132.40117.3734.60115.1733.19116.58RW-702181.3815.5715.45165.9319.10162.2816.60164.78P-8A181.2616.11165.1515.77165.4917.34163.9216.72164.54P-8A181.2616.11165.15	RW-3	157.35	16.44	140.91	15.03	142.32	16.80	140.55	17.12	140.23	
r.vv-r157.0917.44139.0516.04141.0518.80138.2917.61139.88RW-8156.9518.12138.8317.32139.6318.87138.0818.44138.51RW-9156.7218.06138.6623.12133.6018.99137.7321.04135.68RW-10156.1319.22136.9116.16139.9719.12137.0117.66138.47RW-11157.8217.04140.7817.33140.4917.06140.7617.66140.16RW-12158.3618.46139.9015.80142.5617.81140.5519.12139.24RW-13149.3637.15112.2143.28106.0848.18101.1851.6697.70RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-14154.7731.26118.5132.40117.3734.60115.1733.19116.58RW-7A158.725.61153.116.90151.827.01151.716.59152.13RW-70DR181.3815.81165.5715.45165.9319.10162.2816.60144.54P-8A181.2616.11165.1515.77165.4917.34163.9216.72164.54PZ-02D154.147.619.69146.409.36146.73146.73MW-707R156.019.11146.959.39<	RW-4	158.21	15.88	142.33	13.80	144.41	15.39	142.82	12.93	145.28	
RW-0150.5016.12150.5017.52150.5016.57150.5016.44155.11RW-9156.7218.06138.6623.12133.6018.99137.7321.04135.68RW-10156.1319.22136.9116.16139.9719.12137.0117.66138.47RW-11157.8217.04140.7817.33140.4917.06140.7617.66140.16RW-12158.3618.46139.9015.80142.5617.81140.5519.12139.24RW-13149.3637.15112.2143.28106.0848.18101.1851.6697.70RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-14151.7128.02123.6928.87122.8429.33125.7165.99152.13RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-14151.7128.02153.116.90151.827.01151.716.59152.13MW-702DR181.3815.81165.5715.45165.9319.10162.2816.60164.78P-8A181.2616.11165.1515.77165.4917.34163.9216.72164.54MW-707D156.099.14146.959.39146.709.69146.409.36146.519.20MW-707R156.0	RW-8	157.09	17.44	139.65	10.04	141.05	18.80	138.29	17.61	139.48	
RW-10155.121112111211000101101110011100101101110011100RW-11156.1319.22136.9116.16139.9719.12137.0117.66138.47RW-11157.8217.04140.7817.33140.4917.06140.7617.66140.16RW-12158.3618.46139.9015.80142.5617.81140.5519.12133.24RW-13149.3637.15112.2143.28106.0848.18101.1851.6697.70RW-14151.7128.02123.6928.87122.8429.33122.3830.03121.68RW-14149.7731.26118.5132.40117.3734.60115.1733.19116.58TW-7A158.725.61153.116.90151.827.01151.716.59152.13MW-702DR181.3815.81165.5715.45165.9319.10162.2816.60164.78P-8A181.2616.11165.1515.77165.4917.34163.9216.72164.54MW-707D156.099.14146.959.39146.709.69146.409.36146.73MW-707R156.019.11146.909.12146.899.50146.519.20146.81PZ-02D154.147.11147.037.22146.927.61146.537.37146.77PZ-02D154.14	RW-9	156.95	18.06	138.66	23.12	133.60	18.99	137.73	21.04	135.68	
RW-11 157.82 17.04 140.78 17.33 140.49 17.06 140.76 17.66 140.16 RW-12 158.36 18.46 139.90 15.80 142.56 17.81 140.55 19.12 139.24 RW-13 149.36 37.15 112.21 43.28 106.08 48.18 101.18 51.66 97.70 RW-14 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-14 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-17 31.26 118.51 32.40 117.37 34.60 115.17 33.19 116.58 TW-7A 158.72 5.61 155.11 6.90 151.82 7.01 151.71 6.59 152.13 MW-702DR 181.38 15.81 165.57 15.45 165.93 19.10 162.28 16.60 164.78 MW-707D	RW-10	156.13	19.22	136.91	16.16	139.97	19.12	137.01	17.66	138.47	
RW-12 158.36 18.46 139.90 15.80 142.56 17.81 140.55 19.12 139.24 RW-13 149.36 37.15 112.21 43.28 106.08 48.18 101.18 51.66 97.70 RW-14 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-14 149.77 31.26 118.51 32.40 117.37 34.60 115.17 33.19 116.58 RW-70 158.72 5.61 153.11 6.90 151.82 7.01 151.71 6.59 152.13 MW-702DR 181.38 15.81 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73	RW-11	157.82	17.04	140.78	17.33	140.49	17.06	140.76	17.66	140.16	
RW-13 149.36 37.15 112.21 43.28 106.08 48.18 101.18 51.66 97.70 RW-13 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-14 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-17 31.26 118.51 32.40 117.37 34.60 115.17 33.19 116.58 TW-7A 158.72 5.61 155.11 6.90 151.82 7.01 151.71 6.59 152.13 MW-702DR 181.38 15.81 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707D	RW-12	158.36	18.46	139.90	15.80	142.56	17.81	140.55	19.12	139.24	
kw-14 151.71 28.02 123.69 28.87 122.84 29.33 122.38 30.03 121.68 RW-1R 149.77 31.26 118.51 32.40 117.37 34.60 115.17 33.19 116.58 TW-7A 158.72 5.61 153.11 6.90 151.82 7.01 151.71 6.59 152.13 MW-702DR 181.38 15.81 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.81 MW-707D 156.80 9.92 146.88 10.01 146.79 10.46 146.53 7.37 146.77 <	RW-13	149.36	37.15	112.21	43.28	106.08	48.18	101.18	51.66	97.70	
NW-TOK 145.77 51.20 110.51 52.40 117.57 34.60 116.17 33.19 116.58 TW-7A 158.72 5.61 153.11 6.90 151.82 7.01 151.71 6.59 152.13 MW-702DR 181.38 15.81 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.81 MW-707D 156.80 9.92 146.88 10.01 146.79 10.46 146.53 7.37 146.73 MW-707D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 <t< td=""><td>KW-14 PW-1P</td><td>151.71</td><td>28.02</td><td>123.69</td><td>28.87</td><td>122.84</td><td>29.33</td><td>122.38</td><td>30.03</td><td>121.68</td></t<>	KW-14 PW-1P	151.71	28.02	123.69	28.87	122.84	29.33	122.38	30.03	121.68	
MW-702DR 181.38 158.11 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.57 15.45 165.93 19.10 162.28 16.60 164.78 P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.84 MW-707D 156.80 9.92 146.88 10.01 146.79 10.46 146.54 10.26 146.54 PZ-02D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 PZ-02M 154.77 7.63 147.14 7.81 146.96 8.11 146.66 7.90 146.87 <t< td=""><td>TW-7A</td><td>149.77</td><td>5.61</td><td>153 11</td><td>3∠.40 6.90</td><td>151.82</td><td>34.00 7.01</td><td>151.71</td><td>6 59</td><td>152.13</td></t<>	TW-7A	149.77	5.61	153 11	3∠.40 6.90	151.82	34.00 7.01	151.71	6 59	152.13	
P-8A 181.26 16.11 165.15 15.77 165.49 17.34 163.92 16.72 164.54 MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.81 MW-707R 156.80 9.92 146.88 10.01 146.79 10.46 146.51 9.20 146.81 MW-707DR 156.80 9.92 146.88 10.01 146.79 10.46 146.53 7.37 146.74 PZ-02D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 PZ-02M 154.77 7.63 147.14 7.81 146.96 8.11 146.66 7.90 146.87 MW-3 153.79 6.91 146.88 7.10 146.69 7.91 145.88 7.16 146.63 MW-708	MW-702DR	181.38	15.81	165.57	15.45	165.93	19.10	162.28	16.60	164.78	
MW-707D 156.09 9.14 146.95 9.39 146.70 9.69 146.40 9.36 146.73 MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.81 MW-707R 156.00 9.92 146.88 10.01 146.79 10.46 146.34 10.26 146.54 PZ-02D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 PZ-02D 154.77 7.63 147.14 7.81 146.96 8.11 146.66 7.90 146.87 MW-3 153.79 6.91 146.88 7.10 146.96 8.11 146.66 7.90 146.63 MW-708R 224.95 75.90 149.05 75.38 149.57 75.12 149.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39	P-8A	181.26	16.11	165.15	15.77	165.49	17.34	163.92	16.72	164.54	
MW-707R 156.01 9.11 146.90 9.12 146.89 9.50 146.51 9.20 146.81 MW-707DR 156.80 9.92 146.88 10.01 146.79 10.46 146.34 10.26 146.54 PZ-02D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 PZ-02D 154.77 7.63 147.14 7.81 146.96 8.11 146.66 7.90 146.83 MW-3 153.79 6.91 146.88 7.10 146.99 7.91 145.88 7.16 146.63 MW-708R 224.95 75.90 149.05 75.38 149.57 75.12 149.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-707D	156.09	9.14	146.95	9.39	146.70	9.69	146.40	9.36	146.73	
MW-707DR 156.80 9.92 146.88 10.01 146.79 10.46 146.34 10.26 146.54 PZ-02D 154.14 7.11 147.03 7.22 146.92 7.61 146.53 7.37 146.77 PZ-02D 154.77 7.63 147.14 7.81 146.92 7.61 146.63 7.90 146.87 WW-30 153.79 6.91 146.88 7.10 146.69 7.91 145.88 7.16 146.63 MW-708R 224.95 75.90 149.05 75.38 149.57 75.12 149.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-707R	156.01	9.11	146.90	9.12	146.89	9.50	146.51	9.20	146.81	
PZ-UZD 154.14 /.11 147.03 /.22 146.92 7.61 146.53 7.37 146.77 PZ-O2M 154.77 7.63 147.14 7.81 146.96 8.11 146.66 7.90 146.87 MW-3 153.79 6.91 146.88 7.10 146.96 8.11 146.66 7.90 146.83 MW-708R 224.95 75.90 149.05 75.38 149.57 75.12 149.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-707DR	156.80	9.92	146.88	10.01	146.79	10.46	146.34	10.26	146.54	
NW-708R 224.95 75.90 146.85 75.90 146.85 75.90 146.86 MW-708R 224.95 75.90 149.55 75.38 149.57 75.12 148.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	PZ-02D PZ-02M	154.14	7.11	147.03	7.22	146.92	7.61 8.11	146.53	7.37	146.77	
MW-708R 224.95 75.90 149.05 75.38 149.57 75.12 149.83 74.99 149.96 MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-3	154.77	6.91	147.14	7 10	146.90	7 91	145.88	7.90	140.07	
MW-708DR 224.19 75.94 148.25 75.90 148.29 76.11 148.08 75.80 148.39 PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-708R	224.95	75.90	149.05	75.38	149.57	75.12	149.83	74.99	149.96	
PZ-906DR 155.85 14.70 141.15 11.90 143.95 9.55 146.30 7.70 148.15	MW-708DR	224.19	75.94	148.25	75.90	148.29	76.11	148.08	75.80	148.39	
	PZ-906DR	155.85	14.70	141.15	11.90	143.95	9.55	146.30	7.70	148.15	

DRAFT

Macauring				25.4					
Measuring Location	Elevation	Depth to	lar-11 Water	27-A Depth to	pr-11 Water	Depth to	Water	27-J Depth to	un-11 Water
		Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
CPZ-1	159.64	6.76	152.88	6.81	152.83	6.70	152.94	6.61	153.03
CPZ-IK CPZ-2	158.64	3.83	154.81	0.00 4 12	154 52	3.92	154 72	4 39	154.25
CPZ-2A	158.82	3.62	155.20	3.93	154.89	3.71	155.11	4.19	154.63
CPZ-2R	160.97	0.00	160.97	0.00	160.97	0.00	160.97	0.00	160.97
CPZ-3	159.21	9.82	149.39	9.91	149.30	9.94	149.27	10.80	148.41
CPZ-3R	160.70	4.50	156.20	4.99	155.71	4.28	156.42	5.21	155.49
CPZ-4 CPZ-4A	158.80	6.35 7.55	152.45	6.70	152.10	6.64 7.60	152.16	6.75	152.05
CPZ-4R	158.76	4.41	154.35	4.80	153.96	4.63	154.13	4.98	153.78
CPZ-5	158.68	15.18	143.50	15.96	142.72	10.95	147.73	13.68	145.00
CPZ-5R	158.30	9.37	148.93	9.70	148.60	7.71	150.59	9.70	148.60
CPZ-6	154.48	3.74	150.74	3.29	151.19	3.30	151.18	3.31	151.17
CPZ-6A	158.05	7.11	150.94	6.90	151.15	6.51	151.54	6.85	151.20
	154.39	4.52	149.87	4.26	150.13	4.28	150.11	4.51	149.88
CPZ-7R	158.58	0.00	158.58	0.00	158.58	0.00	158.58	0.00	158.58
CPZ-8	160.11	5.98	154.13	5.64	154.47	5.50	154.61	5.33	154.78
CPZ-8R	160.62	6.47	154.15	6.21	154.41	5.99	154.63	6.15	154.47
CPZ-10	161.03	3.63	157.40	3.38	157.65	3.30	157.73	3.42	157.61
CPZ-10R	162.94	1.10	161.84	1.08	161.86	1.02	161.92	1.11	161.83
IVIVV-121A MW/-125A	152.96	4.01	148.95	3.73	149.23	3.99	148.97	4.18	148.78
MW-125C	156.30	6.32	149.98	6,28	150.02	5,32	150.98	5.88	150.42
MW-204A	150.78	2.64	148.14	2.58	148.20	2.52	148.26	2.89	147.89
MW-415	160.75	4.46	156.29	4.41	156.34	4.31	156.44	4.53	156.22
MW-416	159.98	6.70	153.28	7.02	152.96	5.61	154.37	6.50	153.48
MW-704D	153.43	5.65	147.78	5.54	147.89	5.50	147.93	6.03	147.40
MW-704M	152.34	4.80	147.54	4.72	147.62	4.61	147.73	5.21	147.13
MW-704R MW-704DR	152.84	33.36	119.48	34.03	118.81	33.91	147.11	32.48	120.36
MW-705DR	160.99	2.32	158.67	2.65	158.34	2.51	158.48	2.91	158.08
MWL-302	161.60	6.67	154.93	6.28	155.32	5.97	155.63	5.84	155.76
MWL-304	159.90	6.68	153.22	6.51	153.39	6.25	153.65	6.51	153.39
MWL-305	159.01	4.63	154.38	3.74	155.27	3.69	155.32	4.27	154.74
MWL-307	159.39	4.75	156.04	3.09	156.11	3.93	156.05	3.21	155.93
MWL-308	158.63	2.81	155.82	2.80	155.83	2.69	155.94	2.99	155.64
MWL-309	155.20	3.76	151.44	3.11	152.09	3.25	151.95	3.02	152.18
MWL-311	157.33	5.29	152.04	5.24	152.09	5.28	152.05	5.38	151.95
P-5A	157.61	5.20	152.41	7.89	149.72	6.97	150.64	7.96	149.65
P-5B P-6	158.39	7.92	150.47	4.29	154.10	4.37	154.02	4.28	154.11
PZR-2R	153.78	5.00	148.06	5.05	148.07	5.00	148 17	5.80	147.98
PZR-2DR	154.67	6.83	147.84	6.82	147.85	6.52	148.15	6.94	147.73
PZR-4R	153.72	4.97	148.75	5.11	148.61	4.91	148.81	5.11	148.61
PZR-4DR	152.73	0.00	152.73	0.00	152.73	0.00	152.73	0.00	152.73
RW-1	157.61	15.14	142.47	14.40	143.21	16.10	141.51	16.04	141.57
RW-3	150.49	19.76	139.28	17 75	139.59	16.84	143.59	17.32	141.17
RW-4	158.21	17.90	140.31	14.96	143.25	14.10	144.11	14.97	143.24
RW-7	157.09	13.22	143.87	16.51	140.58	17.10	139.99	16.60	140.49
RW-8	156.95	18.76	138.19	19.31	137.64	18.40	138.55	19.04	137.91
RW-9	156.72	21.09	135.63	22.61	134.11	18.51	138.21	20.66	136.06
RW-10	156.13	15.46	140.67	18.12	138.01	18.56	137.57	18.90	137.23
RW-12	157.82	10.05	143 73	17 10	140.92	13.20	142.62	16.98	140.28
RW-13	149.36	47.81	101.55	46.85	102.51	45.08	104.28	48.04	101.32
RW-14	151.71	30.10	121.61	28.20	123.51	29.48	122.23	14.40	137.31
RW-1R	149.77	31.90	117.87	32.88	116.89	30.99	118.78	31.18	118.59
TW-7A	158.72	5.91	152.81	5.58	153.14	5.35	153.37	5.35	153.37
MW-702DR	181.38	10.92	170.46	10.91	170.47	9.18	172.20	11.06	170.32
г-бА MW-707D	181.26	10.90	147.72	8.38	1/0.58	8.55 8.32	1/2./1	10.68	147.77
MW-707R	156.09	7,99	147.72	0.30 7.97	147.71	7.89	147.77	0.32 8.04	147.77
MW-707DR	156.80	8.83	147.97	8.88	147.92	8.72	148.08	8.90	147.90
PZ-02D	154.14	6.16	147.98	6.20	147.94	6.12	148.02	6.18	147.96
PZ-O2M	154.77	6.73	148.04	6.71	148.06	6.63	148.14	6.71	148.06
MW-3	153.79	6.17	147.62	6.19	147.60	6.11	147.68	6.13	147.66
MW-708R	224.95	75.06	149.89	75.22	150.15	74.66	150.29	73.60	151.35
PZ-906DR	155.85	6.27	149.58	7.62	148.07	6.02	149.29	4,61	149.03
. = 0000010	100.00	0.21				0.02			

DRAFT

Measuring Location		27- Jpl 11		31-A	Aug-11	27-8	ep-11	25-0	25 Oct 11	
Location	Elevation	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	
CPZ-1	159.64	7.85	151.79	6.70	152.94	6.25	153.39	6.44	153.20	
CPZ-1R	161.12	3.01	158.11	0.00	161.12	0.00	161.12	0.00	161.12	
CPZ-2	158.64	6.82	151.82	4.90	153.74	4.74	153.90	4.62	154.02	
CPZ-2A	158.82	6.70	152.12	4.68	154.14	4.50	154.32	4.48	154.34	
CPZ-2R	160.97	2.80	158.17	0.00	160.97	0.00	160.97	0.00	160.97	
CPZ-3	159.21	7.67	140.20	5.81	149.20	5.66	149.14	9.79	149.42	
CPZ-4	158.80	10.07	148.73	6.39	152.41	7.41	151.39	7.50	151.30	
CPZ-4A	159.44	10.18	149.26	7.80	151.64	8.28	151.16	8.17	151.27	
CPZ-4R	158.76	7.10	151.66	5.54	153.22	5.20	153.56	4.96	153.80	
CPZ-5	158.68	15.60	143.08	15.45	143.23	14.97	143.71	13.96	144.72	
CPZ-5R	158.30	10.81	147.49	9.82	148.48	9.59	148.71	9.12	149.18	
CPZ-64	154.40	8.36	140.99	6.91	151.13	7 15	150.58	6.99	151.06	
CPZ-6R	154.39	6.35	148.04	4.31	150.08	4.97	149.42	4.72	149.67	
CPZ-7	159.40	8.12	151.28	7.37	152.03	7.03	152.37	6.29	153.11	
CPZ-7R	158.58	2.91	155.67	0.81	157.77	0.91	157.67	0.33	158.25	
CPZ-8	160.11	6.30	153.81	5.44	154.67	5.51	154.60	5.56	154.55	
	160.62	/.60	153.02	6.28	154.34	6.41	154.21	6.22	154.40	
CP7-10R	161.03	3.93	159.03	2.05	160.89	2.03	160.34	2.50	160.92	
MW-121A	152.96	5.89	147.07	4.96	148.00	4.50	148.46	4.59	148.37	
MW-125A	157.87	2.18	155.69	2.74	155.13	1.42	156.45	1.12	156.75	
MW-125C	156.30	7.60	148.70	5.95	150.35	6.26	150.04	5.92	150.38	
MW-204A	150.78	4.35	146.43	2.71	148.07	3.11	147.67	3.02	147.76	
MW-415	160.75	5.90	154.85	4.88	155.87	4.88	155.87	4.85	155.90	
MW-704D	159.90	7.62	145.81	5.73	147 70	6.20	147 23	6.02	147 41	
MW-704M	152.34	6.80	145.54	4.98	147.36	5.38	146.96	5.29	147.05	
MW-704R	151.52	6.84	144.68	5.12	146.40	5.26	146.26	5.28	146.24	
MW-704DR	152.84	32.56	120.28	32.18	120.66	32.74	120.10	32.70	120.14	
MW-705DR	160.99	4.69	156.30	3.97	157.02	3.18	157.81	2.95	158.04	
MWL-302	161.60	6.61	154.99	6.06	155.54	6.01	155.59	6.08	155.52	
MWL-304	159.90	5.03	152.10	0.04 4.59	153.20	4.52	153.10	4 23	153.16	
MWL-306	155.39	7.61	147.78	3.37	152.02	5.32	150.07	4.74	150.65	
MWL-307	159.14	4.61	154.53	2.86	156.28	3.70	155.44	3.73	155.41	
MWL-308	158.63	3.92	154.71	3.22	155.41	3.18	155.45	3.12	155.51	
MWL-309	155.20	10.91	144.29	3.08	152.12	3.47	151.73	3.78	151.42	
D-5A	157.33	8.38	148.95	4.86	152.47	5.65	151.68	5.68	151.65	
P-5B	158.39	6.58	151.81	4.40	153.99	4.62	153.77	5.06	153.33	
P-6	153.78	5.48	148.30	3.60	150.18	4.18	149.60	4.11	149.67	
PZR-2R	153.78	7.33	146.45	5.40	148.38	6.10	147.68	5.99	147.79	
PZR-2DR	154.67	8.26	146.41	6.44	148.23	7.11	147.56	6.97	147.70	
PZR-4R	153.72	6.99	146.73	4.73	148.99	5.51	148.21	5.38	148.34	
PZR-4DR RW-1	152.73	1.00	141.66	16.04	152.43	16.20	152.73	0.00	102.73	
RW-2	156.49	16.49	140.00	17.01	139.48	16.90	139.59	17.33	139.16	
RW-3	157.35	17.03	140.32	16.67	140.68	16.94	140.41	18.02	139.33	
RW-4	158.21	16.75	141.46	14.33	143.88	15.11	143.10	14.51	143.70	
RW-7	157.09	16.45	140.64	17.12	139.97	16.84	140.25	16.94	140.15	
KW-8 RW-9	156.95	18.50	138.45	18.12	138.83	18.09	138.86	18.43	138.52	
RW-10	156.12	19.51	136.62	17 44	138.69	18.39	137.74	18.09	138.04	
RW-11	157.82	17.04	140.78	15.12	142.70	18.04	139.78	17.66	140.16	
RW-12	158.36	17.67	140.69	18.10	140.26	17.03	141.33	17.04	141.32	
RW-13	149.36	53.03	96.33	46.21	103.15	44.74	104.62	52.21	97.15	
KW-14	151.71	22.74	128.97	26.18	125.53	30.46	121.25	31.95	119.76	
KVV-1K TW-7A	149.77	32.11	117.66	32.11	117.66	32./1	117.06	32.70	117.07	
MW-702DR	181.38	19 72	161.65	12 04	169.34	14.54	166.84	12 41	168.97	
P-8A	181.26	19.57	161.69	10.71	170.55	14.72	166.54	12.37	168.89	
MW-707D	156.09	9.52	146.57	8.07	148.02	8.60	147.49	8.54	147.55	
MW-707R	156.01	9.49	146.52	7.74	148.27	8.33	147.68	8.24	147.77	
MW-707DR	156.80	10.49	146.31	8.45	148.35	9.25	147.55	9.10	147.70	
PZ-02D	154.14	7.70	146.44	5.79	148.35	6.49	147.65	6.39	147.75	
PZ-02M MW-3	154./7	8.27	146.50	5.3U	148.47	7.06 6.41	147.71	6.40	147.89	
MW-708R	224.95	73.80	151.15	73.22	151.73	74.01	147.30	74.06	150.89	
MW-708DR	224.19	74.42	149.77	73.96	150.23	74.62	149.57	74.60	149.59	
PZ-906DR	155.85	3.68	152.17	3.03	152.82	2.61	153.24	2.05	153.80	

TABLE 2

31 October 2010 through 30 October 2011

Influent and Effluent GWCT System Flow Data Summary

	Influent Flow Summary (NCTRA 1 and 2 Combined)			NCTRA-1 Flow	NCTRA-2 Flow Summary			Effluent Flow Summary and 2 Combined)		(NTCRA 1
Date	Total Cumulative	Total Flow	Ava Rate	Summary ⁽²⁾	Total	Total Flow	Ava Rate	Total	Total Flow	Ava Rate
Duto	Flow (gallons)	Since Previous	Since Prev.	Since Prev.	Cumulative	Since Previous	Since	Cumulative	Since	Since
	(9)	(gallons)	(GPM)	(GPM)	Flow (gallons)	(gallons)	Prev.	Flow (gallons)	Previous	Prev.
			• •	. ,		,	(GPM)		(gallons)	(GPM)
10/29/2010	199,056,000	1,448,000	34.7	2.1	84,763,060	1,358,700	32.5	208,686,000	1,630,000	39.0
11/30/2010	200,446,000	1,390,000	30.2	2.6	86,034,960	1,271,900	27.6	210,595,000	1,909,000	41.4
12/30/2010	202,096,000	1,650,000	38.2	8.7	87,308,360	1,273,400	29.5	212,384,000	1,789,000	41.4
1/31/2011	203,477,000	1,381,000	30.0	-0.6	88,719,160	1,410,800	30.6	213,838,000	1,454,000	31.6
2/28/2011	204,593,000	1,116,000	27.7	1.1	89,789,460	1,070,300	26.5	215,032,000	1,194,000	29.6
3/31/2011	206,257,000	1,664,000	37.3	13.7	90,844,060	1,054,600	23.6	216,849,000	1,817,000	40.7
4/29/2011	207,475,000	1,218,000	29.2	6.8	91,777,960	933,900	22.4	218,283,000	1,434,000	34.3
5/31/2011	208,845,000	1,370,000	29.7	6.3	92,859,260	1,081,300	23.5	219,820,000	1,537,000	33.4
6/30/2011	210,377,000	1,532,000	35.5	0.7	94,362,510	1,503,250	34.8	221,523,000	1,703,000	39.4
7/29/2011	211,750,000	1,373,000	32.9	-4.6	95,925,660	1,563,150	37.4	223,080,000	1,557,000	37.3
8/31/2011	213,216,000	1,466,000	30.9	2.9	97,252,160	1,326,500	27.9	224,757,000	1,677,000	35.3
9/30/2011	214,849,000	1,633,000	37.8	6.8	98,591,160	1,339,000	31.0	226,598,000	1,841,000	42.6
10/31/2011	216,393,000	1,544,000	34.6	6.6	99,839,460	1,248,300	28.0	228,389,000	1,791,000	40.1
Yearly Averages (1)			32.8	4.3			28.5			37.3
Cumulative Totals:	216,393,000	17,337,000			99,839,460	15,076,400		228,389,000	19,703,000	

Notes:

1: The average yearly flows are calculated by dividing the total cumulative annual flow by the duration in minutes.

2: The NTCRA-2 Flow Meter is reading higher than actual causing the calculated NTCRA-1 flow to be lower than actual.

31 October 2010 through 30 October 2011

Page 1 of 1

SRSNE HCTS - Influent Results

	Sample Dates			
Parameter/ Concentration (mg/L)	11/2/2010	11/15/2010		
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	<0.01	<0.01		
Tetrachloroethene (mg/L)	<0.01	<0.01		
Toluene (mg/L)	1.76	0.94		
Ethylbenzene (mg/L)	0.61	0.3		
Xylenes, Total (mg/L)	0.46	0.26		
Vinyl chloride (mg/L)	0.54	0.43		
1,1-Dichloroethene (mg/L)	0.02	<0.01		
Tetrahydrofuran (mg/L)	<0.50	<0.50		
1.2-Dichloroethene ^[1] (ma/L)	1.09	0.47		
1,2-Dichloroethane (mg/L)	<0.01	<0.01		
1,1,1-Trichloroethane (mg/L)	0.04	0.02		
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01		
Methylene chloride (mg/L)	0.03	0.03		
Styrene (mg/L)	<0.01	<0.01		
Alcohols		•		
Ethanol (mg/L)	<5.0	<5.0		
Methanol (mg/L)	<5.0	<5.0		
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0		
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0		
Ketones				
Acetone (mg/L)	<0.50	<0.50		
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50		
4-Methyl-2-pentanone (Methyl	-0.50	-0.50		
Isobutyl Ketone) (ma/L)	<0.50	<0.50		
Total VOCs ^[2]	4.55	2.45		
B. INORGANIC PARAMETERS				
Metals		T		
Copper, Total (mg/L)	<0.01	<0.01		
Iron, Total (mg/L)	4.76	3.07		
Lead, Total (mg/L)	<0.005	<0.005		
Nickel, Total (mg/L)	<0.05	<0.05		
Zinc, Total (mg/L)	<0.05	<0.05		

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

SRSNE HCTS - Influent Results

	Sample Dates			
Parameter/ Concentration (mg/L)	12/6/2010	12/17/2010		
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	<0.01	<0.01		
Tetrachloroethene (mg/L)	<0.01	<0.01		
Toluene (mg/L)	0.37	0.72		
Ethylbenzene (mg/L)	0.13	0.5		
Xylenes, Total (mg/L)	0.09	0.39		
Vinyl chloride (mg/L)	0.13	0.43		
1,1-Dichloroethene (mg/L)	<0.01	<0.01		
Tetrahydrofuran (mg/L)	<0.50	<0.50		
1.2-Dichloroethene ^[1] (ma/L)	0.11	0.61		
1,2-Dichloroethane (mg/L)	<0.01	<0.01		
1,1,1-Trichloroethane (mg/L)	<0.01	0.02		
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01		
Methylene chloride (mg/L)	0.01	0.025		
Styrene (mg/L)	<0.01	<0.01		
Alcohols		•		
Ethanol (mg/L)	<5.0	<5.0		
Methanol (mg/L)	<5.0	<5.0		
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0		
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0		
Ketones				
Acetone (mg/L)	<0.50	<0.50		
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50		
4-Methyl-2-pentanone (Methyl	-0.50	<0.50		
Isobutyl Ketone) (ma/L)	<0.50	<0.50		
Total VOCs ^[2]	0.84	2.695		
B. INORGANIC PARAMETERS				
Metals				
Copper, Total (mg/L)	<0.01	<0.01		
Iron, Total (mg/L)	1.41	4.99		
Lead, Total (mg/L)	<0.005	<0.005		
Nickel, Total (mg/L)	<0.05	<0.05		
Zinc, Total (mg/L)	<0.05	<0.05		

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

DRAFT January 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	1/4/2011	1/20/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.002	<0.01
Tetrachloroethene (mg/L)	<0.001	<0.01
Toluene (mg/L)	0.224	1.30
Ethylbenzene (mg/L)	0.069	0.46
Xylenes, Total (mg/L)	0.056	0.35
Vinyl chloride (mg/L)	0.056	0.40
1,1-Dichloroethene (mg/L)	<0.001	<0.01
Tetrahydrofuran (mg/L)	<0.05	<0.50
1.2-Dicbloroethene ^[1] (ma/L)	0.09	0.80
1,2-Dichloroethane (mg/L)	<0.001	<0.01
1,1,1-Trichloroethane (mg/L)	0.004	0.03
1,1,2-Trichloroethane (mg/L)	<0.001	<0.01
Methylene chloride (mg/L)	0.003	0.02
Styrene (mg/L)	<0.001	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.50
4-Methyl-2-pentanone (Methyl	~0.050	<0.50
Isobutyl Ketone) (ma/L)	<0.000	<0.50
Total VOCs ^[2]	0.504	3.36
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	0.02	<0.01
Iron, Total (mg/L)	2.42	3.68
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	< 0.05	< 0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	2/4/2011	2/18/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.25	2.25
Ethylbenzene (mg/L)	0.48	1.02
Xylenes, Total (mg/L)	0.36	0.77
Vinyl chloride (mg/L)	0.34	0.85
1,1-Dichloroethene (mg/L)	<0.01	0.02
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	1	1.12
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.04	0.07
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.03	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	-0.50	-0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	3.5	6.14
B. INORGANIC PARAMETERS		
Metals		· · · · · · · · · · · · · · · · · · ·
Copper, Total (mg/L)	0.02	<0.01
Iron, Total (mg/L)	5.34	6.37
Lead, Total (mg/L)	<0.005	< 0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

March 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	3/4/2011	3/18/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.52	2.39
Ethylbenzene (mg/L)	0.37	0.57
Xylenes, Total (mg/L)	0.22	0.38
Vinyl chloride (mg/L)	0.30	0.49
1,1-Dichloroethene (mg/L)	0.01	0.02
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.9	1.14
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.06	0.11
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.04	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		-
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		-
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	3.42	5.14
B. INORGANIC PARAMETERS		
Metals		-
Copper, Total (mg/L)	<0.01	0.01
Iron, Total (mg/L)	3.53	5.78
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	< 0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

April 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	4/6/2011	4/21/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	2.43	1.51
Ethylbenzene (mg/L)	0.63	0.37
Xylenes, Total (mg/L)	0.38	0.21
Vinyl chloride (mg/L)	0.95	0.47
1,1-Dichloroethene (mg/L)	0.02	0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.81	1.11
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.06	0.11
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.04	0.03
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	~0.50	~0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	5.32	3.82
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	3.29	4.41
Lead, Total (mg/L)	< 0.005	< 0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	< 0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

May 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	5/5/2011	5/20/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	2.41	2.34
Ethylbenzene (mg/L)	0.52	0.81
Xylenes, Total (mg/L)	0.25	0.44
Vinyl chloride (mg/L)	0.73	1.12
1,1-Dichloroethene (mg/L)	0.01	0.04
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.87	1.77
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.11	0.17
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.04	0.08
Styrene (mg/L)	<0.01	<0.01
Alcohols		-
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	4.94	6.77
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	0.02
Iron, Total (mg/L)	7.39	8.71
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

June 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	6/3/2011	6/17/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	0.02
Toluene (mg/L)	2.62	3.06
Ethylbenzene (mg/L)	0.56	0.68
Xylenes, Total (mg/L)	0.29	0.28
Vinyl chloride (mg/L)	0.49	0.62
1,1-Dichloroethene (mg/L)	0.02	0.02
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	1.14	1.52
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.04	0.07
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	<0.01	0.1
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	~0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	5.16	6.37
B. INORGANIC PARAMETERS		
Metals		-
Copper, Total (mg/L)	<0.01	0.02
Iron, Total (mg/L)	11	5.31
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

July 2011

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	7/6/2011	7/14/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	3.02	0.35
Ethylbenzene (mg/L)	0.44	0.08
Xylenes, Total (mg/L)	0.19	0.05
Vinyl chloride (mg/L)	0.37	0.09
1,1-Dichloroethene (mg/L)	0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.77	0.12
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.02	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.14	0.05
Styrene (mg/L)	<0.01	<0.01
Alcohols		-
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		-
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	4.96	0.74
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	0.01
Iron, Total (mg/L)	6.97	4.83
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

August 2011

DRAFT

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	8/5/2011	8/19/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	3.03	2.28
Ethylbenzene (mg/L)	0.79	0.56
Xylenes, Total (mg/L)	0.55	0.47
Vinyl chloride (mg/L)	0.56	0.96
1,1-Dichloroethene (mg/L)	0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	1.75	1.44
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.03	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.09	0.11
Styrene (mg/L)	<0.01	<0.01
Alcohols		-
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	6.81	5.84
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	6.49	4.12
Lead, Total (mg/L)	<0.005	< 0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L)	Sample Dates	
	9/2/2011	9/15/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	0.33	1.65
Ethylbenzene (mg/L)	0.06	0.36
Xylenes, Total (mg/L)	0.04	0.38
Vinyl chloride (mg/L)	0.08	0.57
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.20	0.89
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	<0.01	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.03	0.04
Styrene (mg/L)	<0.01	<0.01
Alcohols		-
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	CO.30
Total VOCs ^[2]	0.74	3.91
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	3.17	0.11
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	< 0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.
October 2011

DRAFT

SRSNE HCTS - Influent Results

	Sample Dates	
Parameter/ Concentration (mg/L)	10/3/2011	10/19/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01	<0.01
Toluene (mg/L)	1.49	1.31
Ethylbenzene (mg/L)	0.34	0.37
Xylenes, Total (mg/L)	0.28	0.29
Vinyl chloride (mg/L)	0.45	0.32
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/L)	0.67	0.62
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.02	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.02	0.03
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	3.27	2.94
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	7.29	5.71
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

[2] = Total VOCs is the total sum of detected compounds (mg/l)

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		11/2/2010	11/15/2010
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Iotal (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetranydroturan (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.001	0.006
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Irichloroethane (mg/L)	4.000	<0.001	0.002
1,1,2-1 richloroethane (mg/L)	0.250	<0.001	<0.001
Netrylene chloride (mg/L)	15.000	0.003	0.001
	0.500	<0.001	<0.001
Ethonol (mg/l)	20.0	-5.0	-5.0
Linanoi (mg/L)	20.0	<5.0	<5.0
Nethanol (mg/L)	10.0	<5.0	<5.0
2-Dutation (Sec-Dutation) (Ing/L)	<u>30.0</u>	<5.0	<5.0
Ketones	10.0	< 5.0	<5.0
Acetone (mg/l)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	~0.05	~0.05
4-Methyl-2-pentanone (Methyl	10.0		
Leobuty/ Ketopo) (mg/l)	2.0	<0.05	<0.05
		0.004	0.000
		0.004	0.009
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or 2.26 g/day	<0.01 mg/l or <2.26 g/day
Iron, Total (mg/l)	5.0	0.3	0.3
Lead, Total (ɑ/dav) ^[3]	3.2 g/day	<0.005 mg/l or <1.13 g/day	<0.005 mg/l or <1.13 g/day
Nickel. Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <11.29 g/day	<0.05 mg/l or <11.29 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	0.2
ITotal PCBs (ug/L)	NI	<1 0	NS
initiation in the second se	6.0 - 9.0 s.u	6.9	6.87
Total Suspended Solids (mg/L)	30	<1	1
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		12/6/2010	12/17/2010
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.009	0.011
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.002	0.003
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl	~ ~	0.05	0.05
Isobutyl Ketone) (ma/L)	2.0	<0.05	<0.05
Total VOCs ^[2]	•	0.011	0.014
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.26 g/day	<0.01 mg/l or< 2.26 g/day
Iron, Total (mg/l)	5.0	0.2	0.2
Lead Total (g/dav) ^[3]	3.2 a/dav	<0.005 mg/l or <1.13 g/day	<0.005 mg/l or <1.13 g/day
Nickel. Total (mg/l)	0.5	<0.05	<0.05
Zing, Total $(a/day)^{[3]}$	40.3 g/day	< 0.05 mg/l or < 11.29 g/day	< 0.05 mg/l or < 11.29 g/day
	40.0 grady		
Hydrogen Peroxide (mg/L)	10	0.2	0.2
Total PCRs (ug/L)	I.U NI	<u> </u>	
		<u> </u>	6 62
Total Suspended Solids (mg/L)	<u>0.0 - 9.0 5.0.</u> 20	~1	<u>0.02</u>
Dioving (ng/L)	JU NI		
Eurone (ng/L)			
	INL	- CVI	E I I I I I I I I I I I I I I I I I I I

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		1/4/2011	1/20/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1 2-Dichloroethene ^[1] (mg/L)	5.000	0.018	0.018
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.004	0.005
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	0.001
Styrene (ma/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0		1010
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/l)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.022	0.024
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/day) ^[3]	15.8 q/dav	<0.01 mg/l or <1.72 g/day	<0.01 mg/l or <1.72 g/day
Iron, Total (mg/l)	5.0	0.17	0.20
Lead, Total (g/dav) ^[3]	3.2 q/day	<0.005 mg/l or <0.86 g/day	<0.005 mg/l or <0.86 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total (a/day) ^[3]	40.3 g/day	<0.05 mg/l or <8.6 g/day	<0.05 mg/l or <8.6 g/day
	iono grady		
Hydrogen Peroxide (mg/L)	1.0	0.2	0.2
Total PCBs (ug/L)	I.U NI	<u></u>	
		7 35	7 18
Total Suspended Solids (mg/l)	<u>0.0 - 9.0 S.U.</u> 20	<u> </u>	-1 0
	JU NI	<1.0	<u> </u>
		<30 -F1	
rurans (pg/L)	NL	<51	INS I

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		2/4/2011	2/18/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.019	0.027
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.005	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			•
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			•
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl	~ ~	0.05	0.05
Isobutyl Ketone) (ma/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.024	0.027
B INORGANIC PARAMETERS			
Metals	(ma/L) or (a/dav)	(ma/L) or (a/dav)	(ma/L) or (a/dav)
Copper Total (g/day) ^[3]	15.8 g/day	0.01 mg/l or 1.61 g/day	<0.01 mg/l or <1.61 g/day
Iron. Total (mg/l)	5.0	0.19	0.91
Lead Total $(a/a_{N})^{[3]}$	3.2 g/day	<0.005 mg/l or <0.81 g/day	<0.005 mg/l or <0.81 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
\mathbf{Z}_{rac} \mathbf{T}_{rac} \mathbf{T}_{rac}	40.3 g/day	< 0.05 mg/l or < 8.07 g/day	< 0.05 mg/l or < 8.07 g/day
	40.5 g/uay	<0.05 mg/1 01 <0.07 g/uay	<0.03 mg/1 01 <8.07 g/uay
UINER Hudrogon Dorovido (mg/L)	4.0	0.2	0.2
	1.0		U.2
10(a) FODS (µy/L)		< 1.0	
Pri (s.u.)	6.0 - 9.0 S.U.	1.03	0.4ð
Diaving (ng/L)	3U		
	NL		
Fulans (pg/L)	NL	6VI	CVI

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		3/4/2011	3/18/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1 2-Dichloroethene ^[1] (mg/L)	5.000	0.044	0.047
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.015	0.017
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.008	0.007
Styrene (ma/L)	0.500	<0.001	<0.001
Alcohols	0.000		· · · · · · ·
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0		
Acetone (ma/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/l)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.067	0.071
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/day) ^[3]	15.8 q/day	<0.01 mg/l or <2.22 g/day	0.01 mg/l or 2.22 g/day
Iron, Total (mg/l)	5.0	0.24	0.4
Lead, Total (g/dav) ^[3]	3.2 q/day	<0.005 mg/l or <1.11 g/day	<0.005 mg/l or <1.11 g/day
Nickel, Total (mg/l)	0.5	0.07	<0.05
Zinc. Total $(\alpha/day)^{[3]}$	40.3 g/day	<0.05 mg/l or <11.09 g/day	<0.05 mg/l or <11.09 g/day
	ioro grady		letter fight of kinds grady
Hydrogen Peroxide (mg/L)	1.0	0.2	0.2
Total PCBs (ug/L)	I.U NI	<u> </u>	NS
		6 79	6 08
Total Suspended Solids (mg/l)	<u>0.0 - 9.0 S.U.</u> 20	<u> </u>	1
	JU NI	<u> </u>	l
	NL		
rulans (pg/L)	NL	EN S	EVI CI

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

SRSNE HCTS - Effluent Results

	Substantivo	Sample Dates	
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	4/6/2011	4/21/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Letrachloroethene (mg/L)	0.106	<0.001	<0.001
loluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyi chioride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
	0.500	<0.050	<0.050
1.2-Dichlornethene ^[1] (ma/l.)	5.000	0.046	0.065
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.019	0.03
1,1,2-1 richloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.005	0.005
Styrene (mg/L)	0.500	<0.001	<0.001
Ethopol (mg/L)	20.0	-5.0	-5.0
Mothanal (mg/L)	20.0	<5.0	<5.0
Internation (Ing/L)	10.0	<5.0	<5.0
2-Dutanoi (Sec-Dutanoi) (119/L)	<u>30.0</u> 10.0	<5.0	<5.0
Ketones	10.0	<3.0	<3.0
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl	10.0		
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.07	0.10
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper_Total (n/dav) ^[3]	15.8 g/day	<0.01 mg/l or <1.87 g/day	<0.01 mg/l or <1.87 g/day
Iron, Total (mg/l)	5.0	0.27	0.24
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.94 g/day	<0.005 mg/l or <0.94 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.36 g/day	<0.05 mg/l or <9.36 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	0.2	0.2
Total PCBs (µg/L)	NL	<1	NS
pH (s.u.)	6.0 - 9.0 s.u.	6.77	6.60
Total Suspended Solids (mg/L)	30	2	<1.0
Dioxins (pg/L)	NL	<36	NS
Furans (pg/L)	NL	<51	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		5/5/2011	5/20/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.017	0.015
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1.1.1-Trichloroethane (mg/L)	4.000	0.009	0.014
1.1.2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (ma/L)	15,000	0.003	0.014
Styrene (mg/L)	0 500	<0.001	<0.001
Alcohols	0.000		
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0		40.0
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (ma/l)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.029	0.043
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper Total (g/day) ^[3]	15.8 g/dav	<0.01 mg/l or <1.82 g/day	0.01 mg/l or 1.82 g/day
Iron, Total (mg/l)	5.0	0.65	0.6
Lead Total (g/dav) ^[3]	3.2 g/day	<0.005 mg/l or <0.91 g/day	<0.005 mg/l or <0.91 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
	40.2 a/day	<0.05 mg/l or <0.00 g/dov	< 0.05
	40.5 g/uay	<0.05 mg/1 01 <9.09 g/day	<0.05 mg/1 01 <9.09 g/day
	4.0	0.2	0.3
Tatal DCDa (ug/L)	1.0	0.2	U.2
	NL	<1	
	6.0 - 9.0 s.u.	6.80	6.68
Liotal Suspended Solids (mg/L)	30	1	2
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		6/3/2011	6/17/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	0.002
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	0.002	0.023
1,1-Dichloroethene (mg/L)	0.058	<0.001	0.002
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1 2-Dichloroethene ^[1] (mg/L)	5.000	0.038	0.13
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.025	0.039
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	0.04
Styrene (ma/L)	0.500	<0.001	<0.001
Alcohols	0.000		· · · · · · ·
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0		
Acetone (ma/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/l)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.065	0.236
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/day) ^[3]	15.8 q/day	<0.01 mg/l or <2.15 g/day	0.01 mg/l or 2.15 g/day
Iron, Total (mg/l)	5.0	1.07	0.08
Lead, Total (g/dav) ^[3]	3.2 g/day	<0.005 mg/l or <1.07 g/day	<0.005 mg/l or <1.07 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc. Total (a/day) ^[3]	40.3 g/day	<0.05 mg/l or <10.74 g/day	<0.05 mg/l or <10.74 g/day
OTHER		;	;
Hydrogen Peroxide (mg/L)	10	0.2	0.2
Total PCBs (ug/L)	NI	<u>, -</u> <1	NS
		7 21	7 05
Total Suspended Solids (mg/L)	<u>0.0 - 3.0 S.u.</u> 20	1	1
Diovine (ng/L)	JU	NS	NS
$E_{\rm range}$ (ng/L)			NO NO
	NL	- INO	6VI

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		7/6/2011	7/14/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	0.002
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.267	0.186
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.019	0.017
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.023	0.023
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.05	< 0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl	~ ~	0.05	0.05
Isobutyl Ketone) (ma/L)	2.0	<0.05	<0.05
Total VOCs ^[2]	•	0.309	0.228
B INORGANIC PARAMETERS			
Metals	(ma/L) or (a/dav)	(mɑ/L) or (ɑ/dav)	(ma/L) or (a/dav)
Copper Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.03 g/day	<0.01 mg/l or <2.03 g/day
liron. Total (mg/l)	5.0	0.41	0.23
Load Total $(a/day)^{[3]}$	3 2 g/dav	<0.005 mg/l or <1.02 g/day	<0.005 mg/l or <1.02 g/day
Nickel Total (mg/l)	0.2 graay	<0.05	<0.05
	0.0 40.2 a/day	<0.05 co.05	<0.05
	40.5 g/uay	<0.05 mg/1 01 < 10.10 g/uay	<0.05 mg/1 01 < 10.10 g/uay
	4.0	-0.2	0.2
	1.0	<0.2	U.2
	NL	< 1	
pr (s.u.)	6.0 - 9.0 s.u.	0.84	0.97
Diavina (ng/L)	30	1	<1
	NL	<36	INS NO
Furans (pg/L)	NL	<51	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		8/5/2011	8/19/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.001	0.012
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	0.001
1.1.2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (ma/L)	15.000	<0.001	0.016
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols	0.000		
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/l)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0	10.0	60.0
Acetone (mg/L)	35.0	<0.05	<0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.00	<0.00
4-Methyl-2-pentanone (Methyl	2.0	~0.05	~0.05
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.001	0.029
B INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper_Total (n/dav) ^[3]	15.8 q/day	<0.01 mg/l or <1.92 g/day	<0.01 mg/l or <1.92 g/day
Iron, Total (mg/l)	5.0	0.11	0.52
Lead, Total (g/dav) ^[3]	3.2 g/day	<0.005 mg/l or <0.96 g/day	<0.005 mg/l or <0.96 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (q/day) ^[3]	40.3 g/dav	<0.05 mg/l or <9.62 g/day	<0.05 mg/l or <9.62 g/day
OTHER			,
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (ug/L)	NI	<1	NS
	60-00 5 11		6.81
Total Suspended Solids (mg/L)	<u>0.0 - 3.0 3.u.</u> 30	<1	<1
Dioxins (ng/L)	JU NI	NS	NS
Furans (ng/L)	NI	NS	NS
B. INORGANIC PARAMETERS Metals Conner. Total (n/dav) ^[3] Iron, Total (mg/l) Lead, Total (mg/l) Zinc, Total (g/dav) ^[3] OTHER Hydrogen Peroxide (mg/L) Total PCBs (µg/L) pH (s.u.) Total Suspended Solids (mg/L) Dioxins (pg/L) Furans (pg/L)	(mg/L) or (g/day) 15.8 g/day 5.0 3.2 g/day 0.5 40.3 g/day 1.0 NL 6.0 - 9.0 s.u. 30 NL NL	(mg/L) or (g/day) <0.01 mg/l or <1.92 g/day 0.11 <0.005 mg/l or <0.96 g/day <0.05 <0.05 mg/l or <9.62 g/day <0.2 <1 6.89 <1 NS NS	(mg/L) or (g/day) <0.01 mg/l or <1.92 g/day 0.52 <0.005 mg/l or <0.96 g/day <0.05 <0.05 mg/l or <9.62 g/day <0.2 NS 6.81 <1 NS NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive Requirement Discharge Limits	Sample Dates	
Parameter/ Concentration (mg/L)		9/2/2011	9/15/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1 2-Dichloroethene ^[1] (mg/L)	5.000	0.023	0.075
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.002	0.004
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.022	0.015
Styrene (ma/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (ma/L)	35.0	<0.05	< 0.05
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05
Total VOCs ^[2]		0.047	0.094
B INORGANIC PARAMETERS			
Metals	(mq/L) or (q/day)	(mg/L) or (g/day)	(mq/L) or (q/day)
Copper Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or 2.32 g/day	<0.01 mg/l or <2.32 g/day
Iron. Total (mg/l)	5.0	0.13	0.10
Lead Total $(\alpha/day)^{[3]}$	3.2 g/day	<0.005 mg/l or <1.16 g/day	<0.005 mg/l or <1.16 g/day
Nickel Total (mg/l)	0.5	<0.05	<0.05
	40.2 g/day	< 0.05	< 0.05
	40.5 g/uay	<0.05 mg/101 <11.01 g/uay	<0.05 mg/1 01 < 11.01 g/uay
UINER Hydrogon Dorovido (mg/l.)	4.0	0.2	0.2
	1.0	<u>U.2</u>	U.2
	NL	<1	
pr (s.u.)	6.0 - 9.0 s.u.	0.//	6.75
Total Suspended Solids (mg/L)	30	<1	14
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive Requirement Discharge Limits	Sample Dates		
		10/3/2011	10/19/2011	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.149	0.202	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.007	0.006	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.009	0.002	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones				
Acetone (mg/L)	35.0	<0.05	<0.05	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.05	<0.05	
4-Methyl-2-pentanone (Methyl		-0.0E	-0.05	
Isobutyl Ketone) (mg/L)	2.0	<0.05	<0.05	
Total VOCs ^[2]	•	0.165	0.211	
B INORGANIC PARAMETERS				
Metals	(ma/L) or (a/dav)	(mɑ/L) or (ɑ/dav)	(ma/L) or (a/dav)	
Copper Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.19 g/day	<0.01 mg/l or <2.19 g/day	
Iron. Total (mg/l)	5.0	0.18	0.16	
Lead Total (a/dav) ^[3]	3.2 g/day	<0.005 mg/l or <1.09 g/day	<0.005 mg/l or <1.09 g/day	
Nickel Total (mg/l)	0.5	<0.05	<0.05	
\mathbf{Z}_{rac} \mathbf{T}_{rac} \mathbf{T}_{rac}	40.3 g/day	< 0.05 mg/l or < 10.03 g/day	< 0.05 mg/l or < 10.03 g/day	
	40.5 g/uay	<0.05 mg/1 01 < 10.95 g/uay	<0.05 mg/1 01 < 10.95 g/day	
Hydrogon Dorovido (mg/L)	10	0.2	0.2	
	1.0	<u> </u>	U.2 NS	
		<u> </u>		
pri (s.u.) Total Suspandad Salida (mg/l.)	0.0 - 9.0 S.U.	0.00	0.00	
	3U NU	<u></u>		
	NL	< <u>ა</u> ე -50		
rulans (pg/L)	NL	<52	INS INS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

31 October 2010 through 30 October 2011

Weekly NTCRA-1 Compliance Piezometer Pair Summary

Date	CPZ-1/CPZ-2A	CPZ-3/CPZ-4A	CPZ-5/CPZ-6	CPZ-7/CPZ-8	
01-Nov-10	-0.53	-1.48	4.61	1.66	
09-Nov-10	-1.06	-1.56	4.44	1.58	
17-Nov-10	-1.52	-0.85	5.12	1.26	
20-Nov-10	-0.38	-0.91	5.91	1.93	
30-Nov-10	0.59	0.05	7.01	1.04	
04-Dec-10	0.57	0.08	7.02	1.37	
15-Dec-10	1.62	0.97	7.23	2.19	
22-Dec-10	1.15	0.54	6.45	2.46	
29-Dec-10	0.99	-0.01	6.06	2.03	
03-Jan-11	0.43	0.28	6.71	1.83	
10-Jan-11	0.53	0.00	6.10	1.70	
16-Jan-11	0.61	0.06	6.12	1.76	
24-Jan-11	0.42	-0.14	6.12	1.87	
04-Feb-11	0.43	-0.12	5.89	1.88	
09-Feb-11	0.32	-0.03	5.89	2.20	
16-Feb-11	-0.04	0.18	5.96	2.03	
24-Feb-11	0.41	0.50	6.38	1.90	
02-Mar-11	1.42	1.59	7.20	2.15	
09-Mar-11	2.39	3.19	8.25	2.76	
15-Mar-11	2.12	2.33	7.87	2.02	
23-Mar-11	2.55	3.01	7.58	1.78	
28-Mar-11	2.32	2.50	7.24	2.25	
04-Apr-11	2.11	2.31	7.18	2.21	
09-Apr-11	1.76	2.08	7.05	2.05	
18-Apr-11	1.67	1.90	7.88	2.20	
27-Apr-11	2.06	1.44	8.47	1.86	
02-May-11	1.86	2.12	7.02	2.30	
13-May-11	1.86	1.92	7.13	2.40	
18-May-11	1.05	1.75	7.40	1.36	
27-May-11	2.17	2.57	3.45	0.81	
01-Jun-11	1.07	2.28	4.79	1.19	
06-Jun-11	1.75	2.05	4.67	1.75	
13-Jun-11	1.36	2.69	6.00	1.76	
20-Jun-11	1.07	2.46	5.34	1.70	
27-Jun-11	1.60	3.11	6.17	1.66	
04-Jul-11	0.89	2.24	7.39	1.65	
13-Jul-11	0.41	1.49	6.57	2.46	
20-Jul-11	0.59	1.44	6.40	2.28	
27-Jul-11	0.33	1.01	5.91	2.53	
01-Aug-11	0.38	0.80	5.88	2.06	
08-Aug-11	0.26	0.92	6.35	2.43	
16-Aug-11	0.29	1.18	7.33	2.48	
22-Aug-11	0.45	0.77	6.87	2.38	
31-Aug-11	1.20	2.44	7.90	2.64	
06-Sep-11	0.87	1.83	0.91	2.01	
10 Son 14	1.07	2.31	1.33 E E 0	2.31	
19-Sep-11	1.04	2.17	0.00 6 07	1.08	
21-Sep-11	0.93	2.02	6.74	2.23	
10 Oct 11	0.90	2.42	6 00	1.92	
10-00-11	1.00	1.94	5.00	2 10	
25_Oct_11	1 1/	1.00	6.07	1 //	
Highlighted Cells - are weeks that the 0.30-foot hydraulic gradient reversal standard for a specific					
Compliance Piezometer Pair was not maintained during weekly gauging.					

M:\Design\DWG\SRSNE\Nov 30 2010\shallow bedrock.dwg, Layout1, 11/8/2011 2:39:28 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Nov 30 2010\deep bedrock.dwg, Layout1, 11/8/2011 2:48:40 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Dec 29 2010\deep bedrock.dwg, Layout1, 11/8/2011 3:19:02 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 24 2011\overburden.dwg, Layout1, 11/8/2011 3:31:01 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 24 2011\shallow bedrock.dwg, Layout1, 11/8/2011 3:24:36 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jan 24 2011\deep bedrock.dwg, Layout1, 11/8/2011 3:39:18 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 24 2011\shallow bedrock.dwg, Layout1, 11/8/2011 4:03:22 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 24 2011\deep bedrock.dwg, Layout1, 11/8/2011 4:07:12 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Mar 28 2011\deep bedrock.dwg, Layout1, 11/8/2011 4:21:08 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Apr 27 2011\deep bedrock.dwg, Layout1, 11/8/2011 4:30:32 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\May 27 2011\shallow bedrock.dwg, Layout1, 11/8/2011 4:39:28 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\May 27 2011\deep bedrock.dwg, Layout1, 11/8/2011 4:42:31 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 27 2011\overburden.dwg, Layout1, 11/9/2011 9:26:44 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 27 2011\shallow bedrock.dwg, Layout1, 11/9/2011 9:24:44 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Jul 27 2011\deep bedrock.dwg. Layout1, 11/9/2011 9:28:50 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Sept 27 2011\overburden.dwg, Layout1, 11/9/2011 9:41:28 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Sept 27 2011\deep bedrock.dwg, Layout1, 11/9/2011 9:42:38 AM, girardeb, 1:1

DRAFT 31 Oct. 2010 through 30 Oct. 2011

Date

FIGURE 14A

31 Oct. 2010 through 30 Oct. 2011

Hydraulic Gradient Between MW-704R and PZR-2R NTCRA-2 Shallow Bedrock Compliance Pair

Date

FIGURE 14B

DRAFT 31 Oct. 2010 through 30 Oct. 2011

Hydraulic Gradient Between MW-704DR and PZR-2DR NTCRA-2 Deep Bedrock Compliance Pair

Date

DRAFT

SRSNE Site Group

2011 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

November 2011

Disclaimer: This document is a DRAFT document prepared by the Settling Defendants under a government Consent Decree. This document has not undergone formal review by the EPA and CT DEEP. The opinions, findings, and conclusions, expressed are those of the author and not those of the U.S. Environmental Protection Agency or the CT Department of Energy and Environmental Protection.

2011 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Prepared for: SRSNE Site Group

Prepared by:

ARCADIS 1687 Cole Blvd. Suite 200 Lakewood Colorado 80401 Tel 303.231.9115 Fax 303.231.9571

Our Ref.: B0054634.0000.02200

Date: November 2011

DRAFT

Table of Contents

Ex	Executive Summary iv					
1.	Introd	uction	1			
	1.1	Purpose	1			
	1.2	Scope	1			
	1.3	Document Organization	3			
2.	Annua	4				
	2.1	Scope of Work	4			
	2.2	Summary of Field Activities	4			
	2.3	Results	5			
		2.3.1 Groundwater Elevations	5			
		2.3.2 VOCs	6			
		2.3.3 SVOCs and PCBs	6			
		2.3.4 Metals	6			
		2.3.5 MNA Parameters	7			
3.	MNA E	8				
	3.1	Site Conceptual Model	8			
	3.2	Selection of MNA Remedy	9			
	3.3	Identified Data Gaps	10			
	3.4	Objectives of MNA Performance Monitoring	10			
	3.5	Performance Standards	11			
		3.5.1 MNA-Related Performance Standards	11			
		3.5.2 Demonstration of Compliance Report	11			
4.	Perfor	mance Monitoring	13			
	4.1	Introduction 1				
	4.2	Groundwater Performance Monitoring Locations	13			

DRAFT

Table of Contents

	4.3	MNA Monitoring Parameters	14			
	4.4	Monitoring Frequency	14			
	4.5	MNA Monitoring Objectives				
	4.6	Data Quality Objectives	15			
5.	MNA E	MNA Evaluation				
	5.1	Fotal VOC Concentration Trends				
		5.1.1 Trend Analysis	17			
		5.1.1.1 Trend Analysis Results	18			
		5.1.2 Total VOC Attenuation Rate	19			
	5.2	Estimate of COC Mass Flux in Groundwater	20			
	5.3	Distribution of VOCs in NAPL and Groundwater	21			
	5.4	Evaluation of Monitoring Objectives				
		5.4.1 Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA	22			
		5.4.2 Evaluation of Potentially Toxic and/or Mobile Transformation Products	23			
		5.4.3 Evaluation of Plume Stability	23			
		5.4.4 Evaluation of No Unacceptable Impacts to Downgradient Receptors	24			
		5.4.5 Evaluation of New Releases of COCs	24			
		5.4.6 Evaluation of Institutional Controls	24			
		5.4.7 COC Mass Flux / Mass Reduction	25			
	5.5	Contingency Measures	25			
6.	Summary					
7.	References					

DRAFT

Table of Contents

Tables

- 1 VOCs Groundwater Sample Summary Results May/September 2011
- 2 Metals Groundwater Sample Summary Results May 2011
- 3 MNA Parameters Groundwater Sample Summary Results May 2011
- 4 Statistical Summary of Groundwater Total VOC Concentration Trends

Figures

- 1 Site Location Map
- 2 Groundwater Monitoring Locations Shallow Overburden
- 3 Groundwater Monitoring Locations Middle Overburden
- 4 Groundwater Monitoring Locations Deep Overburden
- 5 Groundwater Monitoring Locations Shallow bedrock
- 6 Groundwater Monitoring Locations Deep Bedrock
- 7 Groundwater Total VOC Concentrations with Time Shallow Overburden
- 8 Groundwater Total VOC Concentrations with Time Middle Overburden
- 9 Groundwater Total VOC Concentrations with Time Deep Overburden
- 10 Groundwater Total VOC Concentrations with Time Shallow Overburden
- 11 Groundwater Total VOC Concentrations with Time Deep Overburden
- 12 Total Mass of VOCs Removed by NTCRA 1 and NTCRA 2 Groundwater Extraction Wells

Appendices

- A Field Sampling Forms
- B Equipment Calibration Logs

SRSNE Superfund Site Southington, Connecticut

Executive Summary

This 2011 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) has been prepared to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) activities at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Specifically, this report summarizes the 2011 groundwater sampling event performed in accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010), and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Siterelated constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits. Monitored natural attenuation is a component of the overall remedial strategy for Site groundwater as set forth in the United States Environmental Protection Agency's (USEPA's) 2005 Record of Decision (ROD) for the Site.

In accordance with the Work Plan, the 2011 annual groundwater sampling event was performed in May 2011 and included sampling of groundwater at 33 monitoring wells. Having been sampled for the full suite of potential site-related constituents in 2010 as part of the "comprehensive" event, the analytical suite for these wells in 2011 included only volatile organic compounds (VOCs), target analyte list (TAL) metals, and/or MNA parameters, as indicated in the Work Plan. Results indicate that:

 VOCs above USEPA Maximum Contaminant Levels (MCLs) or Connecticut Class GA Groundwater Protection Criteria (GWPC) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS). The exception is in monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 2.5 micrograms per liter (µg/L) in the May 2011 sample, which is above the Action Level (the more stringent of the MCL or GWPC criteria) of 1.0 µg/L. This well was re-sampled in September 2011 to confirm this result; benzene was detected at a concentration of 0.67 µg/L, which is below the Action Level. Future additional sampling will provide a basis to assess groundwater quality trends at this well.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

• No metals (either total or dissolved) exceeded their respective MCLs or GWPC. In fact, neither antimony nor cadmium was detected above the laboratory reporting limit in either the 2010 or 2011 sampling events.

This MNA Report fulfills the requirement set forth in Section VII.A.2 of the SOW and the reporting approach outlined in the MNA Plan that was presented as Attachment L to the RDWP (ARCADIS 2009). This MNA Report presents results of an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluation (presented in the 2010 MNA Report), this evaluation considers groundwater monitoring results from the May 2011 annual groundwater monitoring event for VOCs, TAL metals and MNA parameters at a subset of monitoring wells; evaluation of current concentration trends for total VOCs in groundwater at select monitoring locations; estimates of bulk attenuation rates for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicated:

- Detected concentrations of VOCs, greater than MCLs or GWPC are contained within the previously estimated containment boundary of the HCTS. The exception is in monitoring well MW-707DR, as discussed above.
- Groundwater total VOC concentrations are generally declining or remaining constant with time throughout the Site groundwater COC plume.
- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the FS (Blasland, Bouck & Lee, Inc. [BBL] and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

One modification to the MNA monitoring program will be implemented based on the results of the 2010 and 2011 MNA monitoring. Namely, sulfide was originally proposed for monitoring in support of the MNA evaluations; it is not a site-related COC or used for compliance monitoring. Sulfide was not detected

SRSNE Superfund Site Southington, Connecticut

in MNA-related analyses to date. Based on the highly reactive nature of sulfide and the lack of detectable concentrations of sulfide in site groundwater, along with the adequate characterization of site groundwater redox conditions using other MNA parameter data, sulfide will be removed from the MNA parameter analyte list for subsequent MNA sampling events. This recommendation was originally made in the 2010 MNA Report, and was approved by the USEPA in an email to *de maximis* dated September 15, 2011.

The proposal made in the 2010 MNA Report to eliminate monitoring for certain metals based on lack of or low detections in groundwater has been retracted based on comments provided by the USEPA on September 15, 2011. Both total (unfiltered) and dissolved (filtered) metals analyses will be performed consistent with the Work Plan. However, only total (unfiltered) metals data will be used for comparison to groundwater standards. The dissolved (filtered) data will be used to assess redox conditions as part of the MNA evaluations.

SRSNE Superfund Site Southington, Connecticut

1. Introduction

1.1 Purpose

This 2011 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to a Consent Decree (CD), to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site) (Figure 1). The CD was lodged on October 30, 2008 with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE) and was entered by the Court on March 26, 2009.

This MNA Report presents the results and evaluation of data collected during the May 2011 annual groundwater monitoring event conducted in accordance with the Remedial Design Work Plan (RDWP) and the MNA Plan (Attachment L to the RDWP [ARCADIS 2009]), and in fulfillment of the requirements of the SOW (Sections IV.B.5.e and IV.B.5.f). It also presents the results for September 2011 resampling at one well (MW-707DR) based on the May 2011 result at this well.

Section VII.A.2 of the SOW requires the submittal of annual MNA Reports as part of the Annual State of Compliance Reports. Monitored natural attenuation is a component of the overall remedial strategy set forth for the Site in the Record of Decision (ROD) (United States Environmental Protection Agency [USEPA] 2005) for groundwater containing Site-related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.

1.2 Scope

In accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the RDWP [ARCADIS 2010]), the 2011 annual groundwater sampling event was performed in May 2011 and included sampling of groundwater from 23 "R", 5 "M", 3 "B" and 2 "N"-designated monitoring wells. As further described in Section 2.1, the letter designations generally pertain to the locations of monitoring wells, although they are also indicative of a well group's sampling frequency. Having been sampled for all parameters in 2010, the analytical suite for these wells in 2011 included only volatile organic compounds (VOCs), target analyte list (TAL)

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

metals, and/or MNA parameters, as indicated in the Work Plan for each well designation.

Monitored natural attenuation refers to the reliance on natural attenuation (NA) processes, within the context of a carefully controlled and monitored site cleanup approach, to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by more active methods. Natural attenuation is the reduction in mass or concentration of COCs in groundwater over time or distance from the source of the impact due to naturally occurring processes. Attenuation processes include nondestructive physical processes (e.g., advection, dilution, dispersion, volatilization, dissolution, and sorption) and destructive chemical and biological processes.

The MNA remedy at the Site applies to the underlying groundwater and residual non-aqueous phase liquid (NAPL) and addresses the following areas of the Site, in accordance with the SOW:

- Groundwater and saturated glacial deposits (gravel, sand, silt and clay) in the "Overburden Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria; and
- Groundwater and fractured rock in the "Bedrock Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria.

As part of the MNA remedy, COCs in overburden and bedrock groundwater are monitored. The Site COCs include VOCs including chlorinated ethenes and ethanes, ketones, aromatic compounds and 1,4-dioxane; TAL metals; semi-volatile organic compounds (SVOCs); and polychlorinated biphenyls (PCBs).

In addition to monitoring COC concentrations, the MNA Plan specifies longterm monitoring of a suite of geochemical parameters ("MNA parameters") to confirm geochemical evidence of NA and to verify that biochemical processes in support of COC degradation continue to occur in Site groundwater. The MNA parameters monitored at the Site include anions (sulfate, sulfide, chloride, nitrate, nitrite), total organic carbon (TOC), iron (ferric, ferrous), divalent manganese, light hydrocarbons (methane, ethane, ethene), dissolved oxygen (DO), oxidation/reduction potential (ORP), pH, alkalinity, and temperature.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

1.3 Document Organization

The remainder of this MNA Report is organized into the following sections:

- Section 2 Annual Groundwater Sampling Event 2011: summarizes the groundwater sampling activities performed in May 2011 and evaluates the data.
- Section 3 MNA Background: describes the MNA performance monitoring program at the Site, including the Site conceptual model, MNA remedy, and performance standards.
- Section 4 Performance Monitoring: describes the MNA performance monitoring program at the Site, including monitoring locations, parameters, frequency and objectives.
- Section 5 MNA Evaluation: evaluates Site data based on results from the May 2011 annual sampling event, and discusses the analysis of performance monitoring data, including the data quality assessment process, data interpretation approach, and statistical procedures.
- Section 6 Summary: presents a summary of conclusions from the MNA evaluation and provides recommendations for action.
- Section 7 References: lists the references cited within this MNA Report.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2. Annual Groundwater Sampling Event - 2011

2.1 Scope of Work

The 2011 annual groundwater sampling event was conducted to satisfy the requirements of SOW Sections IV.B.5.e and IV.B.5.f. A brief summary of the requirements of each of these sections is presented below:

- **IV.B.5.e** annual monitoring of VOCs and MNA parameters at a select subset of monitoring wells in the bedrock aquifer in the area between the railroad tracks and the non-time critical removal action (NTCRA) 1 sheet pile wall (i.e., "N" wells).
- IV.B.5.f annual monitoring of VOCs and biennial monitoring of MNA parameters at a select subset of monitoring wells in the overburden and bedrock aquifers in the area outside the NTCRA 1 sheet pile wall (i.e., "R" wells).

In addition to the SOW-required sampling, the background monitoring wells – specifically the "M" and "B" wells – were sampled for TAL metals. As outlined in SOW Section VIII.F, Interim Cleanup Levels (ICLs) for metals need to be established prior to submittal of the Demonstration of Compliance Report. To that end, metals will be analyzed on an annual basis to establish a dataset sufficient for determining the appropriate background metals concentrations at the Site.

2.2 Summary of Field Activities

The 2011 annual groundwater sampling event was conducted May 23-26, 2011. Procedures used for gauging and sampling monitoring wells were consistent with those outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011). A tabular summary of the sampling event is provided below:

SRSNE Superfund Site Southington, Connecticut

SOW Section	Well Group	# of Wells Intended	# of Wells Sampled	Analytical Parameters
IV.B.5.e	"N"	2	2	VOCs, MNA Parameters
IV.B.5.f	"R"	26	23	VOCs
	"M"	5	5	
VIII.F	"B"	3	3	I AL WIELAIS

The rationale for deviations from the intended approach is summarized below:

- Monitoring wells CPZ-8R and MW-705DR ("R" wells) were not sampled due to the presence of dense non-aqueous phase liquid (DNAPL) in the wells at the time of sampling.
- Monitoring well MW-127C ("R" well) was not sampled due to flooding in the vicinity of this well, thereby making the well inaccessible at the time of the sampling event.

Field sampling forms and equipment calibration logs from the sampling event are included in Appendices A and B, respectively.

2.3 Results

Groundwater analytical results from the May 2011 annual groundwater monitoring event are provided in Tables 1 through 3 for VOCs, metals and MNA parameters, respectively. All groundwater data were validated consistent with the procedures outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011). All qualifiers and modifications made via the validation process are reflected in Tables 1 through 3.

2.3.1 Groundwater Elevations

Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the May 2011 groundwater monitoring event. Groundwater gauging data from the initial comprehensive event (May-June

SRSNE Superfund Site Southington, Connecticut

2010) were included in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011).

2.3.2 VOCs

Groundwater VOC concentrations from the May 2011 groundwater monitoring event are provided in Table 1. Groundwater VOC concentrations were compared against USEPA Maximum Contaminant Levels (MCLs) and Connecticut Class GA Groundwater Protection Criteria (GWPC), with the lower of the two criteria used as the criterion for the comparison. Groundwater VOC concentrations that exceeded their respective groundwater criterion are highlighted in Table 1. Groundwater VOC concentrations were also compared to the ICLs specified in Table L-1 of the ROD (USEPA 2005), and concentrations that exceeded their respective ICLs are highlighted in Table 1.

Concentrations of VOCs greater than MCLs or GWPC are generally contained within the previously estimated containment boundary of the Hydraulic Containment and Treatment System (HCTS). The exception is in monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 2.5 micrograms per liter (μ g/L) in the May 2011 sample, which is above the Action Level (the more stringent of the MCL or GWPC criteria) of 1.0 μ g/L. This well was re-sampled in September 2011 to confirm this result; benzene was detected at a concentration of 0.67 μ g/L (Table 1), which is below the Action Level. Future additional sampling will provide a basis to assess groundwater quality trends at this well.

2.3.3 SVOCs and PCBs

SVOC and PCB data are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not included in the May 2011 groundwater monitoring event. Previously collected SVOC and PCB data (May-June 2010) were evaluated in the *Monitored Natural Attenuation Report* (ARCADIS September 2010).

2.3.4 Metals

Groundwater concentrations of TAL metals during the May 2011 groundwater monitoring event are provided in Table 2. Groundwater TAL metals concentrations were compared against MCLs and GWPC; ICLs have not yet been developed for metals in groundwater because they are a function of

SRSNE Superfund Site Southington, Connecticut

background concentrations, which are still being established for the Site. No metals (either total or dissolved) exceeded their respective MCLs or GWPC.

2.3.5 MNA Parameters

Concentrations and distributions of electron acceptors, electron donors, and byproducts of microbially mediated reactions are evaluated to verify the types of geochemical and biodegradation processes active in Site groundwater. Concentrations of MNA parameters during the May 2011 annual groundwater monitoring event are provided in Table 3.

SRSNE Superfund Site Southington, Connecticut

3. MNA Background

An MNA remedy requires a strong scientific basis supported by appropriate monitoring. When properly employed, MNA is an effective remedy – based on thorough analysis of site-specific data – to understand, monitor, predict, and document COC transport and NA processes.

3.1 Site Conceptual Model

For any MNA remedy to succeed, it is important to understand the Site Conceptual Model (SCM). The SCM combines available site information into a comprehensive picture of the nature and extent of the COCs and the processes controlling their transport and fate in the environment. The level of site characterization necessary to support a comprehensive evaluation of MNA can be more detailed than that needed to support active remediation.

The SCM, including information regarding the Site operational history, regulatory status, geology, hydrogeology, and surface water hydrology, and the distribution and mass of COCs in Site groundwater, including delineation of NAPL zones and dissolved-phase groundwater plume, and VOC mass estimates, is provided in Section 2 of the RDWP (ARCADIS 2009) and fulfills the requirements set forth in the SOW, Section V.C.1.I.

The MNA conceptual model for the Site may be described in terms of source condition, dissolved plume stability, and MNA processes, and is summarized as follows:

<u>Source Condition</u>: The source of groundwater-quality impacts was extensively characterized during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] 1998) and FS, and consists of zones containing NAPL in overburden soils and bedrock. The NAPL is a complex mixture of chlorinated and other solvents. The NAPL zones in overburden soils and bedrock contain mixtures of dissolved NAPL-related chlorinated ethenes, ethanes and methanes, as well as aromatic hydrocarbons, ketones, phthalates, ethers, furan and alcohols. These NAPL zones are currently hydraulically contained by the NTCRA 1 sheet-pile wall and overburden groundwater extraction wells and the NTCRA 2 overburden and bedrock extraction wells. Upon entry of the CD, the NTCRA 1 and NTCRA 2 systems became known as the HCTS. The NAPL zones have formed a dissolved-phase chemical plume that has been severed by the HCTS. The Overburden NAPL zone contains the majority of the Site VOCs, and will be treated with in-situ thermal remediation to remove the vast majority

SRSNE Superfund Site Southington, Connecticut

of these VOCs, resulting in a greatly diminished source zone upgradient of the NTCRA 1 sheet-pile wall.

<u>Dissolved Plume Stability</u>: The dissolved-phase chemical plumes in overburden and bedrock groundwater within the source area are stable and are likely shrinking in time due to the combination of hydraulic containment and active *in situ* biodegradation processes in groundwater within the capture zone of the HCTS. *In situ* biodegradation processes within the capture zone of the HCTS were characterized as "robust" in the FS (BBL and USEPA 2005). The dissolved-phase chemical plume in overburden and bedrock groundwater in the severed portion of the plume, beyond the capture zone of the HCTS, are shrinking with time due to the combination of hydraulic containment of the higher concentration portions of the dissolved-phase chemical plume and NA processes. Evaluations of trends in total dissolved-phase VOC concentrations in groundwater within the HCTS containment boundary and the severed plume indicate statistically significantly decreasing concentration trends.

<u>NA Processes</u>: Natural attenuation processes that have contributed to plume stabilization and shrinkage within the overburden and bedrock include *in situ* abiotic and biodegradation reactions, sorption to aquifer solids, flow path mixing, and matrix diffusion. Reductive dechlorination is a prominent removal mechanism that continues to operate at the Site, as evidenced by the production of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC), 1,1-dichloroethane (1,1-DCA), ethene, ethane, and chloride, which are dechlorination (i.e., "breakdown") products of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA). There are also anaerobic oxidation reactions occurring that remove cDCE, VC, and ethene by oxidation to carbon dioxide (CO₂).

3.2 Selection of MNA Remedy

As a result of the demonstrated efficacy of NA for treating COCs in Site groundwater, MNA was included as a component of several remedial alternatives evaluated in the FS (BBL and USEPA 2005). Based on evaluations presented in the FS, the USEPA selected MNA as a component of the remedial approach for the Site.

The ROD for the Site was issued by the USEPA in September 2005 (USEPA 2005). The selected remedy consists of MNA of the groundwater plume, including:

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Groundwater outside the capture zone of the HCTS until groundwater cleanup levels are achieved;
- Groundwater within the capture zone of the HCTS until groundwater cleanup levels are achieved; and
- Groundwater in the NAPL area of the overburden and bedrock aquifers, until groundwater cleanup levels are achieved.

3.3 Identified Data Gaps

The SOW identified two data gaps associated with implementing the MNA remedy component at the Site. The identified data gaps and the strategies used for addressing them are as follows:

- Incomplete plume delineation in the severed plume. This data gap has been partially addressed by the installation and sampling of additional groundwater monitoring wells near the eastern edge of the severed plume, east of the Quinnipiac River and in the Connecticut Light & Power (CL&P) Easement as presented in the Monitoring Well Network Evaluation and Groundwater Monitoring Program (Attachment N to the RDWP). New plume delineation wells installed prior to the start of the May–June 2010 comprehensive groundwater sampling event include MW-903S, MW-903M, MW-903D, MW-903R, PZ-903DR, MW-904S, MW-904D, MW-906M, MW-906D, MW-906R, PZ-906DR, and MW-910S. Based on the presence of DNAPL at PZ-906DR, additional delineation east of this location is required and will be addressed under separate cover.
- Long-term monitoring data demonstrating the effectiveness of MNA as a remedy component. This data gap is being addressed through the preparation, submittal, approval, and implementation of the MNA Plan.

3.4 Objectives of MNA Performance Monitoring

The MNA Plan, in conjunction with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP), describes the monitoring and analysis steps required to meet the following objectives of MNA performance monitoring, as specified in Section VII.A.1 of the SOW:

• Complete the delineation of COCs in groundwater in three dimensions;

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Assess the temporal and spatial variations in groundwater chemistry and geochemistry;
- Assess the progress in meeting the long-term remedial goal of groundwater restoration throughout the Site to its natural quality; and
- Evaluate the effectiveness of institutional controls.

Based on the results of MNA performance monitoring, decisions related to the MNA program, described in detail in the MNA Plan, may include:

- Continuation of the performance monitoring program without change.
- Continuation of the performance monitoring program with action.
- Modification of the institutional controls.

3.5 Performance Standards

The remedial action will be implemented in compliance with applicable or relevant and appropriate requirements (ARARs) identified in the ROD (USEPA 2005). These requirements include compliance with performance standards for the contaminated groundwater, soil and wetland soil, and for NAPL that is present in the subsurface in the overburden and bedrock. The following subsections discuss performance standards applicable to MNA and the means for demonstrating compliance with these standards.

3.5.1 MNA-Related Performance Standards

Performance standards pertaining to MNA at the Site, as set forth in the SOW, are described in detail in the MNA Plan for Groundwater, NAPL outside of the Overburden NAPL Area, and the Severed Plume.

3.5.2 Demonstration of Compliance Report

As specified in Section VIII.F of the SOW, a Demonstration of Compliance Report will be prepared in accordance with the evaluation procedures defined in 40 C.F.R. Section 264.97 when groundwater COC concentrations have remained within the interim cleanup levels for three consecutive years. If the USEPA, after reasonable opportunity for review and comment by the Connecticut Department of Energy and Environmental Protection (CT DEEP),

SRSNE Superfund Site Southington, Connecticut

approves the Demonstration of Compliance Report and agrees that the interim cleanup levels have been achieved, a risk assessment of residual groundwater contamination will be performed.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4. Performance Monitoring

4.1 Introduction

The MNA Plan specified the performance monitoring program for Site groundwater as it relates to the MNA component of the remedy, while Section IV.B.5 of the SOW set forth requirements for an environmental monitoring program to be implemented to evaluate the performance of the HCTS and the overall effectiveness of the Site remedy, including the MNA component. These groundwater MNA monitoring requirements were summarized in the MNA Plan.

The following subsections describe the MNA program monitoring locations, monitoring frequency, monitoring parameters, and data quality objectives (DQOs) designed to meet the environmental monitoring program requirements set forth in Section IV.B.5 of the SOW. Groundwater monitoring is conducted to monitor changes in groundwater COC concentrations, changes in plume size and shape, and the effectiveness of NA processes in reducing concentrations of COCs in groundwater. Groundwater samples from May 2011 were collected in accordance with the monitoring frequency outlined in the MNA Plan.

4.2 Groundwater Performance Monitoring Locations

Groundwater performance monitoring locations were chosen to provide robust, three-dimensional coverage of COCs in overburden and bedrock groundwater at the Site, with monitoring well cluster locations providing vertical assessment of COC concentrations and groundwater geochemistry. Monitoring locations were identified in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and are shown on Figures 2 through 6 of this MNA Report.

In accordance with the SOW, selected MNA monitoring locations include upgradient (background) sampling locations, in-plume sampling locations (HCTS capture zones and severed plume), side-gradient sampling locations outside of plume areas, and downgradient locations. Monitoring locations are designated by well groups (i.e., "N") to define the purpose of each sampling location. Well group designations that are relevant to MNA monitoring are summarized in the MNA Plan and shown on Figures 2 through 6.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4.3 MNA Monitoring Parameters

The primary classes of data included in the MNA monitoring program are: Sitespecific groundwater COCs; groundwater MNA parameters; groundwater hydraulic information; and HCTS COC mass removal estimates. Each of these primary data classes are described below.

Site-specific COCs are the chemical constituents that were identified during Site investigations and risk assessment and are required to be addressed by the response actions set forth in the ROD (USEPA 2005). Site-specific COCs for groundwater include selected VOCs, 1,4-dioxane, TAL metals, SVOCs, and PCBs.

Groundwater MNA parameters were selected to confirm dominant biotransformation processes, evaluate the potential for continued transformation of COCs, and identify zones of dominant geochemical conditions. These parameters include: iron (ferric and ferrous), divalent manganese, light hydrocarbons (methane, ethane, ethane), alkalinity, chloride, nitrate–nitrogen, nitrite–nitrogen, pH, sulfate, sulfide and TOC. In addition to laboratory-analyzed MNA parameters, the following MNA parameters are collected as field measurements: pH, DO, ORP, and temperature.

The hydraulic parameter of interest is groundwater elevation. Groundwater elevations are characterized in all five groundwater depth zones, and provide a basis to assess the horizontal and vertical components of hydraulic gradients that control three-dimensional migration of COCs. Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the May 2011 groundwater monitoring event.

Estimates of groundwater COC mass removal from the HCTS, obtained as part of the compliance monitoring program for the HCTS operations, are used to evaluate potential trends in COC mass removal from the HCTS and can be used to evaluate future efficacy of groundwater remedies, including MNA.

4.4 Monitoring Frequency

Monitoring frequencies were designed to meet requirements of the environmental monitoring program set forth in Section IV.B.5 of the SOW and

SRSNE Superfund Site Southington, Connecticut

are summarized in the MNA Plan. Detailed monitoring frequency information is provided in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP). Any proposed changes to the long-term monitoring program will be submitted as part of the Annual State of Compliance Report(s).

4.5 MNA Monitoring Objectives

The MNA performance monitoring program set forth in the MNA Plan was designed to evaluate the MNA monitoring objectives listed below (USEPA 1999; USEPA 2004) and described in detail in the MNA Plan.

- Provide timely warning of potential impact to receptors
- Detect changes in plume size/concentration
- Determine temporal variability of data
- Detect changes in geochemistry that warn of potential changes in COC attenuation
- Yield data necessary to reliably evaluate progress toward COC reduction objectives

4.6 Data Quality Objectives

The DQO process is a systematic planning tool based on the scientific method that is used to establish criteria for data quality and to develop data collection designs (USEPA 1994). The DQOs for the data described in this MNA Report are provided in the *Quality Assurance Project Plan* (QAPP; Attachment C to the RD Project Operations Plan [POP]).

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5. MNA Evaluation

This section evaluates the effectiveness of the MNA program based on the data collected to date (including the May 2011 groundwater monitoring event). Data analysis, interpretation and reporting methods were completed in accordance with the following regulatory guidance documents:

- Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water (USEPA 1998)
- Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (USEPA 1999)
- Performance Monitoring of MNA Remedies for VOCs in Ground Water (USEPA 2004)

In general, data interpretation included:

- Placing the MNA performance monitoring data in the context of time, location, sampling and analytical methods.
- Applying appropriate statistical tests to detect changes and trends in COC concentrations, and attainment of remedial objectives.

These data interpretation methods and results are presented in the following sections.

5.1 Total VOC Concentration Trends

Data collected during previous sampling events (RI and Interim Monitoring Sampling [IMS] events) and presented in the MNA Plan and 2010 MNA Report indicated an overall decline in groundwater concentrations with time, supporting the selection of MNA as a remedial measure for COCs in groundwater at the Site. This section builds upon results of the previous MNA evaluations discussed in detail in the MNA Plan and in the 2010 MNA report. Included in this section are a discussion of concentration trends for total VOCs in groundwater at select monitoring locations, estimates of attenuation rates for total VOCs in groundwater at locations with decreasing concentration trends,

SRSNE Superfund Site Southington, Connecticut

and presentation of COC mass extraction rates and cumulative mass removal for the HCTS.

5.1.1 Trend Analysis

Trend analyses were previously conducted using total VOC concentration data collected at 25 IMS monitoring locations (within the NTCRA 2 portion of the HCTS, the severed plume, and the interior of the VOC plume) during the RI, IMS, and 2010 groundwater sampling events. These trend analyses have been updated with total VOC concentrations measured in samples collected during the May 2011 annual groundwater monitoring event, and the September 2011 re-sampling of MW-707DR. Because only 10 of the monitoring locations with long-term time-concentration data sets were sampled during the May 2011 sampling event, only those trend analyses were updated. The results of this trend analysis were similar to the results of the trend analysis conducted in 2010, which indicated that a majority of the IMS monitoring locations had statistically significant declining groundwater total VOC concentration trends.

Groundwater total VOC concentrations plotted versus time were updated for the 10 IMS monitoring locations that were sampled during the May 2011 annual groundwater sampling event (Figures 7 through 11). As shown on the figures, total VOC concentrations are generally declining or stable for all monitoring locations at all groundwater depth intervals, consistent with previous results.

To evaluate the statistical significance of the observed decreasing groundwater total VOC concentration trends, non-parametric Mann-Kendall and Sen's Slope trend analyses and parametric linear regression trend analyses were conducted. The Mann-Kendall test provides a yes/no decision for the existence of a slope that is significantly different from zero. The Sen's Slope test provides an estimate of the value and confidence level for the slope. The linear regression test estimates slope and confidence level and quantifies goodness of fit of the data to the estimated trend line. Trend analyses were conducted with In-normalized total VOC concentrations using all three test methods for all sampling locations.

For the Mann-Kendall and linear regression trend tests, a 90% confidence level with a corresponding p-value less than or equal to 0.10 was used to determine statistical significance. Mann-Kendall and linear trend results with p-

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

values greater than 0.10 were not considered to be statistically significant. The trend direction was defined as decreasing if total VOC concentrations decreased with time (negative slope), and increasing if total VOC concentrations increased with time (positive slope); however, the trend was not considered significant unless the relationship for the test was significant at a confidence level of 90%. For the linear regression analysis, the correlation coefficient, or R², is a measure of how well the linear regression fits the data. Values close to 1 are considered to be a good fit, while R² values close to 0 are considered to be a poor fit. Concentrations were considered to be stable with time if the trend result was not significant.

5.1.1.1 Trend Analysis Results

During the May 2011 annual sampling event, a smaller subset of monitoring wells was sampled; therefore, only these trend analyses were updated. However, results of the statistical trend tests for wells that were not sampled in May 2011 are still presented for comparison. Results of the three trend test methods were generally consistent with the results from the 2010 trend analyses with respect to trend direction and significance (Table 4).

Results for the linear regression and Mann-Kendall tests indicated that 17 of the 21 monitoring locations (8 of the 10 wells sampled in May 2011) had decreasing total VOC concentration trends; 16 of 17 decreasing trends (6 of the 8 from May 2011) were significant based on the Mann-Kendall and/or the linear regression test (Table 4). The Sen's slope test identified 14 (7 from May 2011) significant decreasing total VOC concentration trends.

One location, MW-707DR, had an increasing total VOC concentration trend that was significant based on the Mann-Kendall and linear regression tests. However, 41% of the MW-707DR sample points had VOC concentrations that were below detection levels. This result is consistent with the 2010 total VOC concentration trend results which indicated increasing trend in total VOC concentrations at this location. The maximum total VOC concentration was 18 μ g/L measured for a sample collected in April 2000, indicating generally low concentrations of VOCs in groundwater at this location. For the May 2011 sample, the total VOC concentration was 16.86 μ g/L. However, recent detections of BTEX compounds in groundwater at this location are anomalous with respect to historic data. Because of the exceedance in the benzene concentration at this monitoring well, MW-707DR was re-sampled in

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

September 2011 (with the resulting benzene concentration below the Action Level). Although the total VOC concentration was less than in May 2011 (at 4.22 μ g/L), the linear regression trend analysis, Mann-Kendall Test, and Sen's slope test performed on MW-707DR indicated a statistically increasing concentration trend.

Statistical trend tests conducted in 2010 for monitoring well MW-704D indicated a statistically significant decreasing trend; however, the linear regression and Mann-Kendall results for 2011 indicated that the decreasing trend was not significant. Monitoring well MW-703DR indicated no statistically significant trend; however, total VOC concentrations that were below detection levels for greater than 50% of the sample dates. Linear regression, Mann-Kendall, and Sen's slope tests indicate that MW-706DR does not have a significant trend; VOC concentrations in groundwater at this location are elevated and potentially indicate the presence of DNAPL in the vicinity of this deep bedrock monitoring location.

5.1.2 Total VOC Attenuation Rate

Results from the linear regression and Sen's Slope analyses were used to estimate attenuation rates for total VOCs in groundwater at the Site. Calculation of attenuation rates was performed in accordance with the USEPA guidance document on determining first-order attenuation rate constants for MNA studies (USEPA 2002). Following this guidance, the natural log of COC groundwater concentration versus time was used and a best-fit linear regression line was generated for total VOC concentrations for each monitoring location that had a statistically significant decreasing total VOC concentration trend. Slopes derived from the Sen's Slope test were also used to estimate attenuation rates. The slope of the linear regression line and the slope from the Sen's Slope test provide estimates of the total VOC attenuation rate constant (k_{point}) in groundwater at the respective monitoring locations.

*k*_{point} = [slope of best-fit regression line]

The half-life $(t_{1/2})$ for total VOC concentrations in groundwater was estimated for each sampling location from the equation:

$$t_{1/2} = 0.693 / k_{point}$$

SRSNE Superfund Site Southington, Connecticut

where: 0.693 is the negative of the natural log of 0.5 (half of the starting total VOC concentration).

Estimated half-life values for total VOCs in groundwater range from 535 to 3,060 days (1.5 to 8.4 years) based on linear regression results and from 510 to 3,453 days (1.4 to 9.5 years) based on Sen's slope results. These estimated half-life values for total VOC concentrations compare well with literature values of attenuation rates presented for individual compounds in Appendix H of the FS (BBL and USEPA 2005) and indicate that overall COC concentrations in groundwater are attenuating.

5.2 Estimate of COC Mass Flux in Groundwater

As part of the compliance monitoring program, COC mass extraction rates and cumulative mass removal are monitored for the HCTS. With the exception of the severed plume and incidental discharge to surface water, the HCTS captures the entire dissolved phase groundwater COC plume at the Site. Therefore, the HCTS COC mass extraction rates and cumulative mass extraction data represent the total mass flux for the dissolved phase COC groundwater plume and can be used to monitor changes in groundwater total dissolved-phase COC mass flux with time.

Total VOC mass extraction rates and cumulative mass extraction for the HCTS were plotted for the July 1995 to August 2011 time period (Figure 12). Mass extraction rates are expressed in units of pounds per day and the cumulative mass extraction is expressed in units of pounds. Mass extraction rates have ranged between about 0.1 to 10 pounds per day and appear to be generally stable with time since about 2001. The total mass of VOCs removed to date by the HCTS is approximately 16,463 pounds. The mass of COCs removed via the HCTS is small compared with the estimated mass removal that is occurring via in situ degradation. As described in detail in the FS (BBL and USEPA 2005) and summarized in the MNA Plan (ARCADIS November 2010), the quantity of TCE and degradation products being biodegraded in situ was calculated to be approximately 17,000 to 41,000 pounds per year within the NTCRA 1 area alone.

The mass extraction data will continue to be collected as part of the HCTS compliance monitoring program and will be periodically evaluated as part of the MNA performance monitoring program.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5.3 Distribution of VOCs in NAPL and Groundwater

An assessment of the distribution of select VOCs in NAPL and groundwater samples was conducted as part of the 2010 comprehensive MNA report to gain insight into how VOC distributions in NAPL and Site groundwater varied by location and with time. VOCs evaluated in the assessment included:

- chlorinated ethenes (PCE, TCE, cDCE, 1,1-dichloroethene (1,1-DCE), and VC);
- chlorinated ethanes (TCA, 1,1-DCA, and chloroethane (CA));
- ketones (2-butanone (MIBK), 4-methyl-2-pentanone (MIBK), and acetone);
- toluene, ethylbenzene, and xylenes (TEX); and
- methylene chloride, styrene, tetrahydrofuran (THF), and 1,4-dioxane.

Data used for assessment of distribution of VOCs in NAPL and groundwater were presented in the 2010 comprehensive MNA report. The assessment concluded that NAPL samples were composed primarily of PCE, TCE, TCA, TEX, methylene chloride, and styrene, with lesser contributions from cDCE, 1,1-DCE, and 1,1-DCA. Ketones generally were not detected in NAPL samples. 1,4-dioxane were not analyzed for these samples. Overall, the results indicated that the detected groundwater constituents are generally consistent with NAPL constituents, with the exception of ketones. The general absence of detectable ketones in the NAPL samples likely relates to the elevated detection levels associated with the NAPL samples.

Molar VOC concentration plots were also presented in the 2010 comprehensive MNA report. In general, constituent concentrations in groundwater were greatest in the NTCRA 1 area with consistently decreasing primary constituent (e.g., TCE, TCA, ketones, and TEX) concentrations observed in directions downgradient from the NTCRA 1 area. These results clearly demonstrate that degradation of the parent compounds is occurring in Site groundwater.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Groundwater molar VOC concentration plots for select groundwater monitoring locations with samples collected during multiple sampling events illustrate that some locations have clear declining concentrations trends for most or all constituents. Shifts in the relative distribution of chlorinated VOCs (CVOCs) towards greater proportions of daughter products to parent demonstrate ongoing degradation of CVOCs in Site groundwater.

In summary, molar concentration plots of select CVOCs provide a means for readily comparing the distribution of COC concentrations in Site groundwater with distance from the source area, as well as with depth and with time at discrete locations. Molar concentration plots will be updated as part of the five-year comprehensive MNA event.

5.4 Evaluation of Monitoring Objectives

MNA monitoring objectives are assessed in the following subsections.

5.4.1 Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA

MNA data will be used to evaluate potential changes in environmental conditions that may reduce the efficiency of MNA. Currently, the only anticipated environmental changes that may reduce the efficiency of MNA are within the capture zone of the Site NTCRA 1 groundwater containment system due to the addition of heat and removal of electron donors during in-situ thermal treatment of the Overburden NAPL Area. Future MNA Reports will assess potential effects on MNA efficiency due to thermal treatment in the Overburden NAPL Area.

Changes in the composition and availability of electron donors with time may affect the efficiency of MNA. As electron donors, such as ketones, aromatic compounds, and alcohols are consumed, the efficiency of MNA may decline. As noted in the 2010 comprehensive MNA report, alcohols are currently only minimally detected in Site groundwater. As concentrations of these readily available electron donors decline, other electron donor sources may be available to support continued NA of COCs in Site groundwater. Other potential electron donor sources include natural organic matter in the aquifer matrix, natural organic matter in groundwater, as well as recycling of microbial biomass. The efficiency of MNA for remediation of COCs in Site groundwater

SRSNE Superfund Site Southington, Connecticut

will continue to be monitored via the MNA remedial program using techniques set forth in the MNA Plan and in this MNA Report including, but not limited to:

- Defining changes in the VOC regulatory plume boundaries, including exceedance of MCLs and GWPC as well as exceedance of ICLs
- Evaluation of COC concentration trends with time
- Assessment of changes in the distribution of COCs, especially ketones, alcohols, and aromatic compounds
- Continued monitoring of groundwater redox conditions

If changes in the efficiency of MNA result in a loss of effectiveness of MNA as a remedy for COCs in Site groundwater, contingencies will be considered as described in the MNA Plan.

5.4.2 Evaluation of Potentially Toxic and/or Mobile Transformation Products

Potentially toxic transformation products include regulated chemical intermediates, such as cDCE, 1,1-DCE, 1,1-DCA, CA, and VC, and regulated transition metals (e.g., manganese and arsenic). Locations with concentrations of cDCE, 1,1-DCE, 1,1-DCA, CA, VC that exceed MCLs or GWPC are within the overburden and bedrock groundwater containment boundary. Metals detected in groundwater samples collected in 2011 did not exceed MCLs or GWPC screening levels (Table 2).

5.4.3 Evaluation of Plume Stability

In terms of plume stability, a dissolved-phase chemical plume in groundwater may be characterized as a:

- Shrinking plume, in which the plume volume decreases through time
- Stable plume, in which the plume volume does not change through time
- Growing plume, in which the plume volume increases through time

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

In general, shrinking plumes are indicated by decreasing chemical concentrations through time, growing plumes may be indicated by increasing or stable chemical concentrations through time, and stable plumes are indicated by plume volume estimates that do not change significantly through time. Currently available long-term monitoring data indicate that the plume of COCs in Site groundwater is shrinking or is stable.

5.4.4 Evaluation of No Unacceptable Impacts to Downgradient Receptors

Groundwater and surface water monitoring data collected during the RI and the IMS program indicate that there are no potential impacts to downgradient receptors. The water supply wells within the Town Well Field Property are dormant and are beyond the zone of COC concentrations in groundwater that are above drinking water standards. Therefore, there are no receptors within the vicinity of the groundwater plume with COC concentrations above drinking water standards. Monitoring of surface water in the Quinnipiac River demonstrated that surface water is not impacted by the Site COC-impacted groundwater plume. Monitoring of groundwater within the Town Well Field will continue as part of the MNA program.

5.4.5 Evaluation of New Releases of COCs

Evaluation of new releases of COCs is not needed because potential sources of new releases have been removed from the Site, the former source area is located within the capture zone of the HCTS, and the Overburden NAPL Area (also within the capture zone) is to be remediated via in-situ thermal remediation.

5.4.6 Evaluation of Institutional Controls

The Institutional Controls Plan (IC Plan), which is a remedial design submittal required by Section V.B.7 of the SOW, was submitted to the USEPA in February 2011. It describes the proposed scope and monitoring program associated with institutional controls to be implemented at the Site. Once the IC Plan is approved and institutional controls are established, any observed or pending changes in land or resource uses or ownership (e.g., property ownership change, housing developments, and well installations) will be evaluated in view of their current and possible future impact on the

SRSNE Superfund Site Southington, Connecticut

effectiveness of the institutional controls and the performance monitoring operations.

5.4.7 COC Mass Flux / Mass Reduction

COC mass flux and mass reduction can be conservatively evaluated by monitoring groundwater COC mass recovery from the HCTS. Because extraction of groundwater COCs by the HCTS does not account for the mass of COCs degraded in situ, this method of estimating mass reduction provides a minimum estimate of mass reduction. With the exception of the severed plume and de minimis discharges to surface water immediately adjacent to the river, the Site-related groundwater plume is essentially contained within the HCTS capture zone. As a result, the groundwater extracted from via the HCTS represents the majority of the mass flux of COCs within the plume. Groundwater extraction rate and COC concentration information collected periodically during system operation, maintenance and monitoring (OMM) activities as part of the compliance monitoring program for the HCTS will be used to evaluate changes in COC mass flux with time. As shown on Figure 12, COC mass extraction rates have been relatively stable since the early 2000s.

5.5 Contingency Measures

An evaluation of contingency measures will be performed if progress in meeting long-term groundwater restoration goals is inadequate, as determined by the USEPA. While the specific measures to be undertaken may depend on several factors (e.g., the nature, location, apparent source, or timeframe at which the inadequacy is identified), examples of possible contingency measures are provided in the MNA Plan. Any contingency measure considered will first be approved by USEPA, in consultation with CT DEEP, prior to implementation.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

6. Summary

The 2011 annual groundwater monitoring event was conducted May 23-36, 2011, and included the sampling of 33 monitoring wells for VOCs, MNA parameters and/or TAL metals. Results indicate that:

- VOCs above MCLs or GWPC are generally contained within the previously estimated containment boundary of the HCTS. The exception is in monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 2.5 µg/L, which is above the Action Level (the more stringent of the MCL or GWPC criteria) of 1.0 µg/L. This well was re-sampled in September 2011 to confirm this result; benzene was detected at a concentration of 0.67 µg/L, which is below the Action Level. Future additional sampling will provide a basis to assess groundwater quality trends at this well.
- No metals (either total or dissolved) exceeded their respective MCLs or GWPC. In fact, neither antimony nor cadmium was detected above the laboratory reporting limit in either the 2010 or 2011 sampling events.

Section 5 presents an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site, including presentation of groundwater monitoring results from the May 2011 annual groundwater monitoring event; evaluation of concentration trends for total VOCs in groundwater at select monitoring locations; estimates of bulk attenuation rates for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicate:

- Detected concentrations of VOCs, greater than MCLs or GWPC are contained within the previously estimated containment boundary of the HCTS. The exception is in monitoring well MW-707DR, as discussed above.
- Groundwater total VOC concentrations are generally declining with time throughout the Site groundwater COC plume.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the FS (BBL and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

One modification to the MNA monitoring program will be implemented based on the results of the 2010 and 2011 MNA monitoring. Namely, sulfide was originally proposed for monitoring in support of the MNA evaluations; it is not a site-related COC or used for compliance monitoring. Sulfide was not detected in MNA-related analyses to date. Based on the highly reactive nature of sulfide and the lack of detectable concentrations of sulfide in site groundwater, along with the adequate characterization of site groundwater redox conditions using other MNA parameter data, sulfide will be removed from the MNA parameter analyte list for subsequent MNA sampling events. This recommendation was originally made in the 2010 MNA Report, and was approved by the USEPA in an email to de maximis dated September 15, 2011.

The proposal made in the 2010 MNA Report to eliminate monitoring for certain metals based on lack of or low detections in groundwater has been retracted based on comments provided by the USEPA on September 15, 2011. Both total (unfiltered) and dissolved (filtered) metals analyses will be performed consistent with the Work Plan. However, only total (unfiltered) metals data will be used for comparison to groundwater standards. The dissolved (filtered) data will be used to assess redox conditions as part of the MNA evaluations.

DRAFT 2011 Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

7. References

ARCADIS. April 2009. Draft Remedial Design Work Plan. Solvents Recovery Service of New England, Inc., Southington, Connecticut.

ARCADIS. 2010. Monitored Natural Attenuation Report. Solvents Recovery Service of New England, Inc. Southington, Connecticut.

BBL. 1998. *NTCRA 2 Interim Technical Memorandum*. Appendix A, Attachment A-1 to *NTCRA 2 Technical Memorandum*. November 1998.

BBL and USEPA. May 2005. Draft Feasibility Study, Solvents Recovery Service of New England, Inc., Southington, Connecticut.

BBL. June 2005. SRSNE Site – Southington Connecticut, Interim Monitoring and Sampling Report No. 14.

USEPA. 1994. Guidance for the Data Quality Objectives Process. EPA/600/R-96/055 September 1994.

USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128.

USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA OSWER Directive 9200.4-17P. April 1999.

USEPA. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH. November 2002.

USEPA. 2004. Performance of Monitoring of MNA Remedies for VOCs in Ground Water. EPAI600R-041027, April 2004.

USEPA. 2005. EPA Superfund Record of Decision: Solvents Recovery Service Of New England, Southington, CT. EPA/ROD/R01-05/008, EPA ID: CTD009717604. September 2005.

Tables

Table 1 – VOCs - Groundwater Sample Summary Results May/September 2011 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample Location				CPZ-4A MW-03		MW-121B MW-121C		MW-	121C	MW-121M		MW-124C		MW-416		MW-502		MW-704D					
			S	ample Date	5/24	/2011	5/23	/2011	5/25/	/2011	5/24	/2011	5/24/	2011	5/25/2011		5/23,	/2011	5/25,	/2011	5/24/2011		5/23/2011	
			Field	I Sample ID	CPZ-4A-0	05242011	MW-03-0	05232011	MW-1218	-05252011	DUP-GW-0	5242011-#1	MW-121C	-05242011	MW-121N	1-05252011	MW-124C	-05232011	MW-416-	05252011	MW-502-	-05242011	MW-704D-	-05232011
				Well Group		R		R	I	3		२	F	3		R		R	I	N		R	F	3
Analyte	CAS No.	Unit	Standard	ICL																				
VOCs (8260B)																								
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	1.7		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	6.5		99		2	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	2.1		1.1		0.49	J	1.9		2		0.5	U	1.7		23		2	U	0.5	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.64		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	4.6		47		2	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.5	UJ	0.5	U	0.5	U	0.5	UJ	0.5	UJ	0.5	U	0.5	U	2.5	U	2	IJ	0.5	IJ
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.5	U	0.5	U	0.14	J	0.5	U	0.5	U	0.1	J	0.5	U	2.5	U	2	U	0.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	10	U	66		2	U
2-Hexanone	591-78-6	ug/L	140	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	10	U	8	U	2	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	10	U	28		2	U
Acetone	67-64-1	ug/L	700	5	2	UJ	2	UJ	2.1	U	2	UJ	2	UJ	2.4	U	2	UJ	19	U	57	J	2	UJ
Benzene	71-43-2	ug/L	1	0.5	3.3		0.5	U	21		15		15		6.2		0.5	U	2.5	U	29		4.7	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	5	U	4	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.99		0.5	U	7.9		6		6.3		4.3		0.5	U	2.5	U	10		5.4	
Chloroethane	75-00-3	ug/L	12.1	0.5	41		1	U	54		29		28		81		1	U	28		23		35	
Chloroform	67-66-3	ug/L	6	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
Chloromethane	74-87-3	ug/L	2.7	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1.5		0.4	J	0.5	U	0.5	U	0.5	U	0.38	J	5.9		300		2	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	1.9		0.29	J	0.61		0.5	U	0.5	U	0.5	U	0.5	U	1.2	J	21		0.14	J
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.5	UJ	0.5	UΙ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UΙ	0.5	UJ	2.5	UJ	2	UJ	0.5	ιU
Methylene Chloride	75-09-2	ug/L	5	0.5	0.39	UJ	2	UJ	2	U	0.38	UJ	0.29	UJ	2	U	2	UJ	10	U	7.5	UJ	0.3	UJ
Naphthalene	91-20-3	ug/L	280	0.5	0.5	UJ	0.5	U	0.5	U	0.5	UJ	0.5	UJ	0.5	U	0.5	U	2.5	UJ	2	UJ	0.5	UJ
Styrene	100-42-5	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.18	J	0.5	U	0.5	U	0.27	J	0.5	U	13		2	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	41		2	U	160		9		8.8		82		2	U	7	J	1400		12	
Toluene	108-88-3	ug/L	1000	0.5	0.76		1.3	U	4.5		0.71		0.68		0.61		1.7	U	15		8.2		0.95	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.3	J	2	U	0.5	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.66		0.72		0.18	J	0.5	U	0.5	U	0.5	U	1.1		240		2	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1.1		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	55		2	U	0.5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	4.7		1.9		7		1	U	1	U	3.3		1	U	10		52		1	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

E = Analyte exceeded calibration range

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Standard based on table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory's Reporting Limit

Table 1 – VOCs - Groundwater Sample Summary Results May/September 2011 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample Location					MW-704DR MW-704		-704M	M MW-706DR		MW-	707DR	MW-707D		MW-907D		MW-907D MW-907D		907DR	MW-907M		MWL-309		
			Sa	ample Date	5/23	/2011	5/25	/2011	5/25	/2011	5/24	/2011	9/27	/2011	5/25	/2011	5/25	/2011	5/25	/2011	5/24/2011		5/24/2011	
			Field	l Sample ID	MW-704D	R-05232011	L MW-704N	1-0525201	1 MW-706D	R-05252012	MW-707D	R-05242011	1 MW-707DI	R-09272011	1DUP-GW-05252011-#1		#1 MW-907D-05252011 MW-907DR-05		R-05252011	252011 MW-907M-05242011		MWL-309-(05242011	
			,	Well Group		R		R		R		R		R		R		R		R	I	R	R	l
Analyte	CAS No.	Unit	Standard	ICL																				
VOCs (8260B)																								
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	50	U	3.8		0.5	U	0.5	UJ	0.47	J	760		0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	8.4		0.5	U	50	U	2.7		1.5		4.7		3.9		100	U	0.5	U	3.4	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.37	J	0.5	U	100		1		0.37	J	0.5	U	0.5	U	200		0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.5	U	0.5	U	50	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	U	100	U	0.5	U	0.5	UJ
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	UJ	0.25	J	100	U	0.52		0.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.23	J	0.5	UJ	100	U	0.89		0.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2	U	2	U	200	U	2	U	2	U	2	U	2	U	400	U	2	U	2	U
2-Hexanone	591-78-6	ug/L	140	5	2	U	2	U	200	U	2	U	2	U	2	U	2	U	400	U	2	U	2	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2	U	2	U	270		2	U	2	U	2	U	2	U	140	J	2	U	2	U
Acetone	67-64-1	ug/L	700	5	2	UJ	2	U	200	UJ	2	ΟJ	1.5	UJ	2	UJ	2.6	U	400	U	0.99	J	2	UJ
Benzene	71-43-2	ug/L	1	0.5	2.6		0.85		50	U	2.5		0.67		29		27		100	U	72		0.4	J
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	100	U	1	U	1	U	1	U	1	U	200	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	1		3.3		50	U	0.5	U	0.5	U	11		11		100	U	29		1.1	
Chloroethane	75-00-3	ug/L	12.1	0.5	17		15		100	U	1	U	1	U	72		71		200	U	140	E	8.9	
Chloroform	67-66-3	ug/L	6	0.5	0.5	U	0.5	U	50	U	0.12	J	0.5	U	0.5	U	0.5	U	38	J	0.5	U	0.5	U
Chloromethane	74-87-3	ug/L	2.7	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1		0.23	J	630		1.8		0.54		0.71	J	0.47	J	220		0.37	J	0.52	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.49	J	0.37	J	50	U	0.3	J	0.5	U	3.1		2.6		140		4.5		0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.5	UJ	0.5	UJ	50	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	100	UJ	0.5	UJ	0.5	UJ
Methylene Chloride	75-09-2	ug/L	5	0.5	2	UJ	2	U	290	UJ	0.24	UJ	2	UJ	2	UJ	2	U	400	U	2	U	0.23	UJ
Naphthalene	91-20-3	ug/L	280	0.5	0.5	U	0.3	J	50	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.29	J	100	UJ	3.9	J	0.5	UJ
Styrene	100-42-5	ug/L	100	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.12	J	260		0.5	U	0.5	U	0.5	U J	0.16	J	2200		0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	6.7		5.3		200	U	2	U	2	U	430	E	430	E	400	U	4200	E	18	
Toluene	108-88-3	ug/L	1000	0.5	3.3		2.6		300		2.2		0.49	J	1.5		1.6		1900		1.6		1.8	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	50	U	0.5	U	0.5	U	0.5	U	0.5	U	100	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.93		0.31	J	9300		0.24	J	0.5	U	0.5	UJ	0.18	J	40000	E	0.64		0.31	J
Vinyl chloride	75-01-4	ug/L	2	0.5	0.62		0.5	U	50	U	0.5	U	0.5	U	0.7		0.56		100	U	0.3	J	0.5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	2.6		3.8		100	U	2.2		0.65	J	9.6		9		630		140		1	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

E = Analyte exceeded calibration range

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Standard based on table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory's Reporting Limit

Table 1 – VOCs - Groundwater Sample Summary Results May/September 2011 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

			Sample Location		P-101B		P-101C		P-11A		P-13		PZO-2D		PZO-2M		PZR-2R		TW-08B	
			Sa	ample Date	5/24/	/2011	5/24/	/2011	5/24/	/2011	5/23/	/2011	5/23/	2011	5/24/	/2011	5/23/	2011	5/25/2	2011
			Field	Sample ID	P-101B-0	5242011	P-101C-0)5242011	P-11A-0	5242011	P-13-05	232011	PZO-2D-0	5232011	PZO-2M-0	05242011	PZR-2R-0	5232011	TW-08B-05	5252011
				Well Group	I	3	l	R	ŀ	R	F	3	F	2	R		R		N	
Analyte	CAS No.	Unit	Standard	ICL																
VOCs (8260B)																				
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	49		7.5		0.5	U	0.5	U	0.5	U	15000	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	1.2		12		17		1.6		0.5	U	0.5	U	0.5	U	4700	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	2.4	J	0.5	U	0.5	U	0.5	U	0.5	U	2500	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.5	IJ	0.5	UJ	2.5	UJ	0.5	U	0.5	U	0.5	UJ	0.5	UJ	1200	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2	U	2	U	10	U	2	U	2	U	2	U	2	U	6500	
2-Hexanone	591-78-6	ug/L	140	5	2	U	2	U	10	U	2	U	2	U	2	U	2	U	5000	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2	U	2	U	10	U	2	U	2	U	2	U	2	U	3100	J
Acetone	67-64-1	ug/L	700	5	2	UJ	2	UJ	10	UJ	2	UJ	2	UJ	2	UJ	2	UJ	6600	
Benzene	71-43-2	ug/L	1	0.5	9.2		4.6		1.3	J	0.5	U	0.5	U	0.5	U	0.15	J	580	J
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	5	U	1	U	1	U	1	U	1	U	2500	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
Chlorobenzene	108-90-7	ug/L	100	0.5	2.6		1.5		2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
Chloroethane	75-00-3	ug/L	12.1	0.5	28		2.3		5	U	1	U	1	U	1	U	1	U	2000	J
Chloroform	67-66-3	ug/L	6	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	550	J
Chloromethane	74-87-3	ug/L	2.7	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	5.7		380		0.91		0.5	U	0.5	U	0.5	U	470000	E
Ethylbenzene	100-41-4	ug/L	700	0.5	0.15	J	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2800	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.5	UJ	0.5	UJ	2.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	1200	UJ
Methylene Chloride	75-09-2	ug/L	5	0.5	0.25	UJ	0.17	UJ	8.9	UJ	2	UJ	2	UJ	0.16	UJ	0.27	UJ	2300	U
Naphthalene	91-20-3	ug/L	280	0.5	0.5	UJ	0.5	UJ	2.5	UJ	0.5	U	0.5	U	0.5	UJ	0.5	UJ	1200	UJ
Styrene	100-42-5	ug/L	100	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	11000	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	9.6		7.6		24		2	U	2	U	2	U	2	U	5000	U
Toluene	108-88-3	ug/L	1000	0.5	0.78		0.29	J	2	J	0.76	U	0.5	U	0.21	J	1.9		48000	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.5	U	0.49	J	1.8	J	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1200	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.15	J	5.6		0.17	J	0.57		0.55		0.5	U	320000	E
Vinyl chloride	75-01-4	ug/L	2	0.5	0.59		18		100		0.5	U	0.5	U	0.5	U	0.5	U	21000	
Xylenes, Total	1330-20-7	ug/L	530	0.5	1.9		1	U	5	U	1	U	1	U	1	U	1	U	8800	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

E = Analyte exceeded calibration range

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Standard based on table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory's Reporting Limit

Table 2 – Metals - Groundwater Sample Summary Results May 2011 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

		Sa	mple Location	MW-	-126B	MW	-126C	MW-2	209A	MW-	209B	MW-	701DR	MW-	901D	MW-	901D	MW	-901R	P-	12
			Sample Date	5/25,	/2011	5/26	/2011	5/26/	2011	5/26/	/2011	5/26	/2011	5/26,	2011	5/26/	/2011	5/26,	/2011	5/25/	/2011
		F	ield Sample ID	MW-126B	-05252011	MW-1260	-05262011	MW-209A-	05262011	MW-2098	-05262011	. MW-701D	R-05262011	LDUP-GW-05262011-#2		1 MW-901D-05262011		I MW-901R-05262011		P-12-05252011	
			Well Group	P	N		В	B	5	6	3	٦	M	Ν	Λ	Ν	Λ	١	M	Ν	Λ
Analyte	CAS No.	Unit	Standard																		
Metals (6010B)																					
Aluminum (Dissolved)	7429-90-5	ug/L		250	U	250	U	250	U	70.7	J	250	U	51.6	J	29.5	J	250	U	250	U
Aluminum (Total)	7429-90-5	ug/L		38.5	J	10.7	J	250	U	857		74.3	J	1070	J	2810	J	627		961	
Antimony (Dissolved)	7440-36-0	ug/L		15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Antimony (Total)	7440-36-0	ug/L	6	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Arsenic (Dissolved)	7440-38-2	ug/L		15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Arsenic (Total)	7440-38-2	ug/L	10	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Barium (Dissolved)	7440-39-3	ug/L		401	J	256		263		87.8		94.4		64.5		61.3		188		149	J
Barium (Total)	7440-39-3	ug/L	1000	411	J	255		273		119		90		78.3		99.1		194		169	J
Beryllium (Dissolved)	7440-41-7	ug/L		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Beryllium (Total)	7440-41-7	ug/L	4	5	U	5	U	5	U	5	U	5	U	5	U	0.3	J	5	U	5	U
Cadmium (Dissolved)	7440-43-9	ug/L		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Cadmium (Total)	7440-43-9	ug/L	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Chromium (Dissolved)	7440-47-3	ug/L		5	U	5	U	5	U	5	U	0.64	J	5	U	5	U	5	U	5	U
Chromium (Total)	7440-47-3	ug/L	100	5	U	5	U	5	U	1.3	J	5	U	1.1	J	3.3	J	1.2	J	0.97	J
Cobalt (Dissolved)	7440-48-4	ug/L		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Cobalt (Total)	7440-48-4	ug/L	10	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Copper (Dissolved)	7440-50-8	ug/L		10	U	10	U	10	U	10	U	10	U	1.9	J	10	U	10	U	10	U
Copper (Total)	7440-50-8	ug/L	1300	10	U	1.5	J	10	U	10	U	10	U	2.3	J	4.1	J	10	U	10	U
Iron (Dissolved)	7439-89-6	ug/L		125	U	76.6	UJ	125	U	68.2	J	125	U	39.5	J	28.2	J	125	U	125	U
Iron (Total)	7439-89-6	ug/L		42.5	J	125	UJ	125	U	779		67.3	J	886	J	2260	J	515		1220	
Lead (Dissolved)	7439-92-1	ug/L		15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Lead (Total)	7439-92-1	ug/L	15	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Manganese (Dissolved)	7439-96-5	ug/L		3.9	J	8	U	8	U	8.2		1.7	J	6.7	J	6.2	J	8.8		8	UJ
Manganese (Total)	7439-96-5	ug/L	500	19.2	UJ	8	U	8	U	40.5		8.3		50.8	J	145	J	40.3		49.6	J
Nickel (Dissolved)	7440-02-0	ug/L		5	U	5	U	5	U	5	U	5	U	2.3	J	2.6	J	5	U	5	U
Nickel (Total)	7440-02-0	ug/L	100	5	U	5	U	5	U	2.2	J	5	U	8.9	J	51.3	J	6		5	U
Silver (Dissolved)	7440-22-4	ug/L		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Silver (Total)	7440-22-4	ug/L	36	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Thallium (Dissolved)	7440-28-0	ug/L		15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Thallium (Total)	7440-28-0	ug/L	2	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U	15	U
Vanadium (Dissolved)	7440-62-2	ug/L		5	U	1.1	UJ	5	U	5	U	8	J	5	U	5	U	1	J	5	U
Vanadium (Total)	7440-62-2	ug/L	50	5	U	5	υJ	5	U	5	U	7	J	2.9	J	6.8		2.1	J	3.7	J
Zinc (Dissolved)	7440-66-6	ug/L		25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U
Zinc (Total)	7440-66-6	ug/L	5000	25	U	25	U	25	U	6.6	J	25	U	12.2	J	11.1	J	5.4	J	25	U
Metals (7470A)																					
Mercury (Dissolved)	7439-97-6	ug/L		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Mercury (Total)	7439-97-6	ug/L		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

Bold = Analyte detected above the laboratory's Reporting Limit

Table 3 – MNA Parameters - Groundwater Sample Summary Results May 2011 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample	e Location	M	N-416	MW	-416	TW	-08B
	Sai	nple Date	5/2	5/2011	5/25,	/2011	5/25,	/2011
	Field	Sample ID	DUP-GW-	05252011-#2	MW-416-	05252011	TW-08B-	05252011
	v	/ell Group		Ν	1	N	I	N
Analyte	CAS No.	Unit						
MNA (Water)								
Bicarbonate Alkalinity as CaCO3		mg/L	112		112		203	
Carbonate Alkalinity as CaCO3		mg/L	2	U	2	U	2	U
Hydroxide Alkalinity		mg/L	2	U	2	U	2	U
Phenolphthalein Alkalinity		mg/L	2	U	2	U	2	U
Chloride	16887-00-6	mg/L	9.4		9.4		231	
Nitrate as N	14797-55-8	mg/L	0.59		0.6		0.1	U
Nitrite as N	14797-65-0	mg/L	0.1	U	0.1	U	1	U
Sulfate	14808-79-8	mg/L	66.1		66.1		4.5	
Sulfide	18496-25-8	mg/L	0.01	UJ	0.01	ΟJ	0.1	UJ
Iron (Dissolved)	7439-89-6	ug/L	250	U	250	U	8760	
Manganese (Dissolved)	7439-96-5	ug/L	27.8		28.9		8340	J
Total Organic Carbon - Quad	7440-44-0	mg/L	1	U	1	U	19	
MNA (Water Gas)								
Ethane	74-84-0	ug/L	1	J	4.1	J	59	
Ethene	74-85-1	ug/L	3.9	J	20	J	3500	J
Methane	74-82-8	ug/L	90	J	120	J	2400	М

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

M = Recovery/RPD poor for MS/MSD

mg/L = milligrams per liter

ug/L = micrograms per liter

Bold = Analyte detected above the laboratory's Reporting Limit

Table 4 - Statistical Summary of Groundwater Total VOC Concentration TrendsSolvents Recovery Service of New England, Inc. (SRSNE) Superfund SiteSouthington, Connecticut

			C	Data Range					Linear	Regression	Man	n-Kendall Ar	Sen's Slope Analysis				
		Minimum Concentration	Maximum Concentration	% of Data Below Laboratory Minimum	Oferst Data	End Data	Correlation	p-value of	Estimated Attenuation Half-life	Trend	Trend	2 mm m m to	p-value of	Trend	Trend	Estimated Attenuation Half-life	Trend
Well	Constituent	(µg/∟)	(µg/L)	Detection Limit	Start Date	End Date	Coefficient, R	Correlation	(days)	Direction	Significant?	Comments	Correlation	Direction	Significant?	(days)	Direction
Shallow Over	burden Wells	<u> </u>			0/00/4005	= 100 100 1 1	0.40	0.00	4 7 40				0.004			4.040	
P-13	Total VOCs	2.4	69	0	3/28/1995	5/23/2011	0.49	0.00	1,742	Decreasing	Yes		< 0.001	Decreasing	Yes	1,610	Decreasing
MWL-312	Total VOCs	<0.5	49	76	3/27/1995	5/20/2010	0.18	0.09	1,400	Decreasing	Yes 90% CI	76% of results below detection	0.245	Decreasing	No	NA	No Irend
P-101C	Total VOCs	41.5	479	0	3/27/1995	5/24/2011	0.55	<0.001	2,198	Decreasing	Yes		< 0.001	Decreasing	Yes	2,197	Decreasing
Middle Overb	urden Wells												-				
MW-03	Total VOCs	0.7	120	0	12/5/1996	5/23/2011	0.28	0.03	1,157	Decreasing	Yes		0.021	Decreasing	Yes	916	Decreasing
MW-205B	Total VOCs	<0.5	24	12	3/23/1995	5/14/2010	0.26	0.04	1,644	Decreasing	Yes		0.008	Decreasing	Yes	1,690	Decreasing
P-101B	Total VOCs	12	187,400	0	3/27/1995	5/24/2011	0.65	<0.001	535	Decreasing	Yes		< 0.001	Decreasing	Yes	510	Decreasing
MW-127B	Total VOCs	<0.5	22	12	3/23/1995	5/19/2010	0.22	0.06	1,643	Decreasing	Yes 90% CI		0.059	Decreasing	Yes, 90% CI	1,824	No Trend
MW-501B	Total VOCs	1.8	65	0	3/24/1995	5/24/2010	0.55	<0.001	1,022	Decreasing	Yes		0.001	Decreasing	Yes	990	Decreasing
Deep Overbu	rden Wells																
MW-204B	Total VOCs	<0.5	87	18	3/28/1995	5/17/2010	0.23	0.05	1,251	Decreasing	Yes		0.002	Decreasing	Yes	642	Decreasing
MW-502	Total VOCs	630	118,160	0	3/21/1995	5/24/2011	0.63	<0.001	1,005	Decreasing	Yes		0.005	Decreasing	Yes	2,682	Decreasing
MW-704D	Total VOCs	7.0	665	0	12/18/1996	5/23/2011	0.06	0.36	NA	Decreasing	No		0.208	Decreasing	No	1,763	NS
MW-707D	Total VOCs	<0.5	21	56	12/6/1996	5/13/2010	<0.001	0.92	NA	No Trend	No	56% of results below detection	0.412	NS	No	NA	No Trend
Shallow Bedr	ock Wells																
MW-127C	Total VOCs	20	147	0	3/23/1995	5/13/2010	0.42	0.01	2,611	Decreasing	Yes		0.019	Decreasing	Yes	3,150	Decreasing
MW-128	Total VOCs	3.0	15	0	3/23/1995	5/19/2010	0.46	0.003	3,060	Decreasing	Yes		0.001	Decreasing	Yes	2,310	Decreasing
MW-204A	Total VOCs	2.0	682	0	3/28/1995	5/15/2010	0.55	<0.001	773	Decreasing	Yes		< 0.001	Decreasing	Yes	654	Decreasing
MW-501A	Total VOCs	10	118	0	3/24/1995	5/21/2010	0.82	<0.001	1,590	Decreasing	Yes		< 0.001	Decreasing	Yes	1,507	Decreasing
P-11A	Total VOCs	223	11,550	0	3/27/1995	5/24/2011	0.12	0.17	NA	Decreasing	No		0.016	Decreasing	Yes	1,719	Decreasing
Deep Bedroc	k Wells	-	-	-				-	-		-		-		-	-	
MW-703DR	Total VOCs	<0.5	8.0	81	12/9/1996	5/12/2010	<0.001	0.97	NA	No Trend	No	81% of results below detection	0.482	NS	No	NA	No Trend
MW-704DR	Total VOCs	38	455	0	12/17/1996	5/23/2011	0.37	0.01	2,726	Decreasing	Yes		0.010	Decreasing	Yes	3,453	Decreasing
MW-706DR	Total VOCs	4,409	11,240	0	12/10/1996	5/25/2011	0.01	0.72	NA	No Trend	No		0.388	NS	No	NA	NS
MW-707DR	Total VOCs	<0.5	18	39	12/30/1996	9/27/2011	0.25	0.03	NA	Increasing	Yes		< 0.001	Increasing	Yes	NA	Increasing

Notes and Assumptions:

μg/L = micrograms per liter NS = not significant

NA = not applicable due to increasing trend or non-significant trend

Figures

TR: R. ST ELL M. GEI

CITY: MANCHESTER, CT GROUP: ENVCAD DB: B.SMALL PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G:/ENVCAD/Manchester/ACT/B0054634/0000/02200/B00546340000N01.dwg LAYOUT: 7 SAVED: 8/26/2011 8:51 AM ACADVER: 18.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 8/26/2011 10:14 AM BY: SMALL, BRIAN

CITY: MANCHESTER, CT GROUP: ENVCAD DB: B.SMALL PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G:/ENVCAD/Manchester/ACT/B0054634/0000/02200/B00546340000N01.dwg LAYOUT: 8 SAVED: 8/26/2011 8:51 AM ACADVER: 18.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL_CTB PLOTTED: 8/26/2011 10:14 AM BY: SMALL, BRIAN

CITY: MANCHESTER, CT GROUP: ENVCAD DB: B.SMALL PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCAD\Manchester\ACT\B0054634\0000\02200\B0054634\0000N01.dwg LAYOUT: 10 SAVED: 8/26/2011 8:51 AM ACADVER: 18.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 8/26/2011 10:15 AM BY: SMALL, BRIAN

CITY: MANCHESTER, CT GROUP: ENVCAD DB: B.SMALL PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*:OFF=REF, (FRZ) G\ENVCAD\Manchester\ACT\B0054634\0000\02200\B00546340000N01.dwg LAYOUT: 11 SAVED: 8/29/2011 1:16 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 11/10/2011 2:43 PM BY: SMALL, BRIAN

CITY: MANCHESTER, CT GROUP: ENVCAD DB: B.SMALL PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=";OFF=REF, (FRZ) G:/ENVCAD/Manchester/ACT/B0054634/0000/02200/B00546340000N01.dwg LAYOUT: 12 SAVED: 8/26/2011 10:16 AM ACADVER: 18.0S (LMS TECH) PAGESETUP: --- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 8/29/2011 2:14 PM BY: SMALL, BRIAN

ARCADIS

Appendices

ARCADIS

Appendix A

Field Sampling Forms

Project	SRSNE	RSNE			Site Location	Southington, C	T			
Project No.	B005463	34.0000.01	900		Well ID	CPZ-4A	Sample ID	CPZ-4A-05	242011	
Sample Date	05/24/20)11			Sampled By	Sampled By Edward Cimilluca				
Sample Time	Begin	10:21	End	10:25	Recorded By	Edward Cimillu	ca			
Weather	Cloudy				Replicate No.	N/A				
Instrument Id	entificati	ion				Field Parameters				
Water Quality M	/leter # 1		YSI 600	XL/2177		Water Quality Meter	# 2 LaM	otte 2020e/11	797	
Casing Material	I		N/A			Purge Method	BP:C	QED 12368		
Casing Diamete	er (in)		2.00			Screen Interval (ft br	np) Top	8.30	Bottom	23.30
Sounded Depth	n (ft bmp)		27.15 (5	6/24/2011)		Pump Intake Depth ((ft bmp)	19.01		19.60
Depth to Water	(ft bmp)		7.30			Purge Time	Begi	n 8:58	End	10:22
PID Reading(pp	om)		2.30							

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:59	0.25	130.00	N/A	16.13	6.65	0.418 mS/cm	52.20	2.67	110.00	7.45
9:01	2.42	130.00	N/A	16.21	6.63	0.419 mS/cm	-56.80	2.74	121.00	7.45
9:04	5.98	130.00	N/A	16.54	6.59	0.414 mS/cm	61.20	1.69	109.00	7.45
9:09	10.17	130.00	N/A	16.52	6.58	427 uS/cm	69.40	1.55	88.00	7.45
9:14	15.17	130.00	N/A	16.27	6.57	0.426 mS/cm	-64.00	1.21	87.00	7.45
9:19	20.22	130.00	N/A	16.24	6.56	0.425 mS/cm	-67.90	0.37	92.00	7.45
9:24	25.18	130.00	N/A	16.45	6.56	0.426 mS/cm	-74.80	0.89	84.30	7.45
9:29	30.22	130.00	N/A	16.52	6.55	0.427 mS/cm	-71.20	0.53	85.00	7.45
9:34	35.18	130.00	N/A	16.41	6.54	0.425 mS/cm	-63.20	0.64	81.00	7.45
9:39	40.18	130.00	N/A	16.66	6.53	0.425 mS/cm	-75.70	0.53	78.00	7.45
9:44	45.37	130.00	N/A	17.18	6.53	0.429 mS/cm	-73.20	0.67	75.00	7.45
9:50	51.55	130.00	N/A	17.35	6.53	0.421 mS/cm	-82.70	0.72	70.00	7.45
9:54	55.45	130.00	N/A	17.43	6.53	0.433 mS/cm	-74.90	0.68	64.00	7.45
10:00	61.92	130.00	N/A	16.84	6.51	0.430 mS/cm	-89.70	0.40	62.00	7.45
10:04	65.23	130.00	N/A	16.43	6.51	0.423 mS/cm	-93.60	0.70	58.00	7.45
10:09	70.37	130.00	N/A	16.26	6.49	0.421 mS/cm	-96.30	0.70	54.00	7.45
10:14	75.20	130.00	N/A	16.42	6.57	0.421 mS/cm	-96.31	0.69	55.00	7.45
10:20	81.17	130.00	N/A	16.37	6.50	0.420 mS/cm	-97.22	0.71	53.00	7.45

Sampling Personnel:

Edward Cimilluca

Signature:

THICK

	Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47				
°C	Degrees Celsius	3	in	Inches		N/A	Not Applicable				
bmp	Below measurin	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minut	e	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per mini	ute	mV	Millivolts							
	Material Code										
AG - Amber G	Blass CG	G - Clear Glass	PE - Polyethylene	PP - Polypi	opylene	T - Teflon	S - Silicone O - Other				

Purging Code

Project	SRSNE	SRSNE			Site Location	Southington, CT		
Project No.	B00546	34.0000.01	900		Well ID	CPZ-4A	Sample ID	CPZ-4A-05242011
Sample Date 05/24/2011			Sampled By	mpled By Edward Cimilluca				
Sample Time	Begin	10:21	End	10:25	Recorded By	Edward Cimilluca	a	
Weather	Cloudy		Replicate No.	N/A				
Collected Sample Condition Color clear		clear	Odor I	Odor NA		nce organic matter		
	F	Parameter			Container		Number	Preservative
		VOCs			CG 40 ml		3	HCL

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

THACIN

		Well Ca	asing Volumes								
1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.8	50 4" =	0.65 6"=1	.47			
Degrees Celsiu	S	in	Inches		N/A	Not Applicab	e				
Below measuring point		mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units					
Dissolved oxyge	en	min	Minutes		ORP	Oxidation reduction potential					
Depth to water		mL	Milliliter		ppm	Parts per mill	ion				
Feet		mL/min	Milliliters per minute		s.u.	Standard Uni	ts				
Gallons		mS/cm	Millisiemens per centimeter		uS/cm	Microsiemen	s per centimeter				
Gallons per min	iute	mV	Millivolts								
		Mate	rial Code								
AG - Amber Glass CG - C		PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other				
		Purg	ing Code					Versi			
	1-1/4" = 0.06 Degrees Celsiu Below measurir Dissolved oxyg Depth to water Feet Gallons Gallons per mir	1-1/4" = 0.061-1/2" = 0.09Degrees CelsiusBelow measuring pointDissolved oxygenDepth to waterFeetGallonsGallons per minuteGlassCG - Clear Glass	Well Ca 1-1/4" = 0.06 1-1/2" = 0.09 2" = 0.16 Degrees Celsius in Below measuring point mg/L Dissolved oxygen min Depth to water mL Feet mL/min Gallons mS/cm Gallons per minute mV Blass CG - Clear Glass PE - Polyethylene Purg Purg	Well Casing Volumes 1-1/4" = 0.06 1-1/2" = 0.09 2" = 0.16 2-1/2" = 0.26 Degrees Celsius in Inches Below measuring point mg/L Milligrams per liter Dissolved oxygen min Minutes Depth to water mL Milliliter Feet mL/min Milliliters per minute Gallons mS/cm Millisiemens per cer Gallons per minute mV Millivolts Galss CG - Clear Glass PE - Polyethylene PP - Polypro Purging Code Purging Code Purging Code	Well Casing Volumes $1-1/4" = 0.06$ $1-1/2" = 0.09$ $2" = 0.16$ $2-1/2" = 0.26$ $3" = 0.37$ Degrees CelsiusinInchesBelow measuring pointmg/LMilligrams per literDissolved oxygenminMinutesDepth to watermLMilliliterFeetmL/minMilliliters per minuteGallonsmS/cmMillisiemens per centimeterGallons per minutemVMillivoltsGallons per dinutemVMilliproverseGalssCG - Clear GlassPE - PolyethylenePP - PolypropylenePurging CodePurging Code	Well Casing Volumes $1-1/4" = 0.06$ $1-1/2" = 0.09$ $2" = 0.16$ $2-1/2" = 0.26$ $3" = 0.37$ $3-1/2" := 0.4$ Degrees CelsiusinInchesN/ABelow measuring pointmg/LMilligrams per literNTUsDissolved oxygenminMinutesORPDepth to watermLMilliliterppmFeetmL/minMilliliters per minutes.u.GallonsmS/cmMillisiemens per centimeteruS/cmGallons per minutemVMillivoltsGalassCG - Clear GlassPE - PolyethylenePP - PolypropyleneT - TeflonPurging Code	Well Casing Volumes 1-1/4" = 0.06 1-1/2" = 0.09 2" = 0.16 2-1/2" = 0.26 3" = 0.37 3-1/2":= 0.50 4" = 0 Degrees Celsius in Inches N/A Not Applicable Below measuring point mg/L Milligrams per liter NTUs Nephelometr Dissolved oxygen min Minutes ORP Oxidation red Depth to water mL Milliliter ppm Parts per mill Feet mL/min Millisiemens per centimeter uS/cm Microsiemens Gallons mS/cm Milliolts Milliolts Material Code Glass CG - Clear Glass PE - Polyethylene PP - Polypropylene T - Teflon S - Silicone	Well Casing Volumes 1-1/4" = 0.06 1-1/2" = 0.09 2" = 0.16 2-1/2" = 0.26 3" = 0.37 3-1/2":= 0.50 4" = 0.65 6"=1 Degrees Celsius in Inches N/A Not Applicable Below measuring point mg/L Milligrams per liter NTUs Nephelometric Turbidity Units Dissolved oxygen min Minutes ORP Oxidation reduction potential Depth to water mL Milliliter ppm Parts per million Feet mL/min Millisiemens per centimeter uS/cm Microsiemens per centimeter Gallons mS/cm Millivolts Millivolts Standard Units Galss CG - Clear Glass PE - Polyethylene PP - Polypropylene T - Teflon S - Silicone O - Other Purging Code			

Project	SRSNE	RSNE			Site Location	Southington, CT	•			
Project No.	B005463	34.0000.01	900		Well ID	MW-121C	Sample ID	MW-121C-0	5242011	
Sample Date	05/24/20	011			Sampled By	Sampled By Diane Champagne				
Sample Time	Begin	14:16	End	14:16	Recorded By	Diane Champag	ne			
Weather	OVERC	OVERCAST 60'			Replicate No.	DUP-GW-05242	011-#1			
Instrument Id	lentificat	ion			F	Field Parameters				
Water Quality N	Meter # 1		YSI 600	XL/2159	\	Nater Quality Meter #	±2 LaMo	otte 2020e/13	878	
Casing Materia	I		N/A		F	Purge Method	BP:C	ED 10717		
Casing Diamete	er (in)		2.00			Screen Interval (ft bm	р) Тор	58.70	Bottom	68.70
Sounded Depth	n (ft bmp)		70.40 (5	/24/2011)	F	Pump Intake Depth (f	t bmp)	63.00		70.40
Depth to Water	(ft bmp)		3.95		F	Purge Time	Begir	n 11:38	End	14:25
PID Reading(pp	pm)		0.00							

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
11:49	10.72	120.00	N/A	17.88	7.12	536 uS/cm	-70.60	13.02	77.30	4.06
11:55	16.88	120.00	N/A	16.88	6.83	583 uS/cm	-59.70	18.17	165.00	4.07
12:01	23.15	120.00	N/A	16.76	6.81	588 uS/cm	-63.00	15.97	144.00	4.06
12:05	27.20	120.00	N/A	17.26	6.84	585 uS/cm	-68.40	15.97	95.70	4.08
12:11	32.48	120.00	N/A	16.31	6.86	584 uS/cm	-70.30	15.96	78.10	4.06
12:15	36.93	120.00	N/A	15.94	6.83	584 uS/cm	-71.10	14.78	68.40	4.08
12:20	41.92	120.00	N/A	15.78	6.76	578 uS/cm	-68.70	13.47	54.70	4.06
12:25	47.40	120.00	N/A	15.40	6.76	576 uS/cm	-70.30	13.00	46.00	4.08
12:30	52.18	120.00	N/A	15.19	6.77	574 uS/cm	-72.40	13.37	39.70	4.09
12:35	57.30	120.00	N/A	15.21	6.75	571 uS/cm	-72.80	12.90	34.30	4.06
12:40	62.07	120.00	2.50	15.46	6.80	570 uS/cm	-77.00	15.99	29.70	4.06
12:45	67.28	120.00	N/A	15.07	6.81	567 uS/cm	-77.30	15.12	27.30	4.08
12:50	71.85	120.00	N/A	14.88	6.77	560 uS/cm	-75.90	12.76	23.90	4.08
12:55	77.42	120.00	N/A	14.82	6.77	556 uS/cm	-77.00	13.82	20.50	4.08
13:00	81.90	120.00	N/A	15.07	6.78	553 uS/cm	-78.70	14.47	20.70	4.06
13:05	86.78	120.00	N/A	14.73	6.79	551 uS/cm	-79.60	13.40	18.90	4.06
13:10	92.32	120.00	3.50	14.63	6.76	546 uS/cm	78.30	13.26	20.10	4.06
13:16	98.30	120.00	N/A	14.61	6.76	544 uS/cm	-78.90	13.39	17.00	4.06

Sampling Personnel:

Diane Champagne

Signature:

multure

	Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47				
°C	Degrees Celsius		in	Inches		N/A	Not Applicable				
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minut	е	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per minu	te	mV	Millivolts							
	Material Code										
AG - Amber G	Blass CG	- Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone O - Other				

Purging Code

Infrastructure, environment, buildings

Project	S	RSNE			Site	Location	ocation Southington, CT				
Project N	lo. \underline{B}	80054634.000	0.01900		Well	ID	MW-12	21C	Sample ID	MW-121C-052420)11
Sample D	Date _	5/24/2011			Sam	pled By	Diane	Champagne			
Sample T	Гime В	egin 14:1	6 End	14:16	Reco	orded By	Diane	Champagne			
Weather	C	VERCAST 6	ט'		Repl	icate No.	DUP-G	W-0524201	1-#1		
13:20	101.58	3 120.00	N/A	14.57	6.75	541 uS	S/cm	-78.90	15.06	16.40	4.06
13:25	107.18	3 120.00	N/A	14.33	6.76	543 uS	S/cm	-79.90	17.28	14.50	4.06
13:30	112.17	' 120.00	N/A	14.56	6.76	542 uS	S/cm	-80.30	16.28	11.80	4.06
13:35	117.02	2 120.00	N/A	15.48	6.79	541 uS	S/cm	-81.70	14.08	12.70	4.06
13:40	121.70) 120.00	N/A	15.30	6.79	543 uS	S/cm	-83.20	11.90	12.90	4.06
13:45	127.28	3 120.00	N/A	15.09	6.78	539 uS	S/cm	-82.50	8.60	12.30	4.06
13:50	131.90) 120.00	N/A	15.01	6.79	537 uS	S/cm	-82.50	6.30	12.20	4.06
13:56	137.90) 120.00	N/A	14.69	6.79	537 uS	S/cm	-82.80	5.41	11.20	4.06
14:00	142.18	120.00	5.00	14.58	6.79	536 uS	S/cm	-83.80	5.10	11.50	4.06
14:05	147.23	120.00	N/A	14.38	6.79	534 uS	S/cm	-84.00	5.68	10.51	4.06
14:10	151.95	5 120.00	N/A	14.28	6.71	530 uS	S/cm	-79.80	5.42	10.18	4.06
14:15	156.60) 120.00	N/A	14.07	6.74	531 uS	S/cm	-81.70	5.64	10.84	4.06
Collecte	ed Sampl	le Condition	Color	clear		Odor	None		Appearar	ice NA	

Parameter	Container	Number	Preservative
VOCs	CG 40 ml	3	HCL

Comments

Sampling Personnel:

Diane Champagne

Signature:

multure

			Well Ca	asing Volumes							
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = (0.65 6"=1	.47		
°C	Degrees Celsius	3	in	Inches		N/A	Not Applicabl	e			
bmp	Below measurin	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxyge	en	min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per mill	ion			
ft	Feet		mL/min	Milliliters per minut	е	s.u.	Standard Uni	ts			
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens	s per centimeter			
gpm	Gallons per mini	ute	mV	Millivolts							
			Mate	rial Code							
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone	O - Other			
			Purg	ing Code					Versio		

Project SRSNE	Site Location	Southington, CT				
Project No. B0054634.0000.01900	Well ID	MW-124C	Sample ID	MW-124C-0	5232011	
Sample Date 05/23/2011	Sampled By	Edward Cimilluca				
Sample Time Begin 14:50 End 14:55	Recorded By	Edward Cimilluca				
Weather Rain	Replicate No.	N/A				
Instrument Identification	Fie	eld Parameters				
Water Quality Meter # 1 YSI 600 XL/01g	18 af Wa	ater Quality Meter # 2	LaMo	otte 2020e/11	797	
Casing Material N/A	Pu	irge Method	BP:C	ED 9131		
Casing Diameter (in) 2.00	Sc	reen Interval (ft bmp)	Тор	35.90	Bottom	45.90
Sounded Depth (ft bmp) 46.60 (5/23/20	Pu	imp Intake Depth (ft b	mp)	40.90		40.90
Depth to Water (ft bmp) 3.60	Pu	ırge Time	Begir	า 14:00	End	14:50
PID Reading(ppm) 0.00						

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
14:00	-0.50	150.00	N/A	15.26	7.53	0.294 mS/cm	323.10	10.86	18.20	3.10
14:05	4.87	150.00	N/A	15.27	7.54	0.294 mS/cm	322.70	10.87	16.80	3.12
14:10	10.03	150.00	N/A	14.80	7.56	0.297 mS/cm	332.40	9.65	12.10	3.20
14:15	14.75	150.00	N/A	15.10	7.56	0.299 mS/cm	338.00	9.28	10.11	3.34
14:20	19.52	150.00	N/A	15.31	7.56	0.301 mS/cm	343.00	9.13	9.60	3.38
14:25	24.22	150.00	N/A	15.43	7.57	0.301 mS/cm	345.00	9.05	8.40	3.39
14:30	29.85	150.00	N/A	15.71	7.55	0.303 mS/cm	348.40	8.95	8.90	3.41
14:35	34.22	150.00	N/A	15.84	7.55	0.304 mS/cm	350.80	8.88	7.10	3.43
14:40	39.07	150.00	N/A	15.87	7.54	0.304 mS/cm	358.80	8.82	8.30	3.45
14:45	44.87	150.00	N/A	15.81	7.53	0.303 mS/cm	360.60	8.83	8.00	3.47
14:50	49.22	150.00	N/A	15.80	7.54	0.303 mS/cm	361.20	8.85	7.70	3.49
Collect	ed Sample C	Condition	Color	clear		Odor None		Appearance	NA	

Parameter	Container	Number	Preservative
VOCs	CG 40 ml	3	HCL

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

Edul Ch

			Well Ca	sing Volumes						
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.8	50 4" = 0.65 6"=1.47			
°C	Degrees Celsius		in	Inches		N/A	Not Applicable			
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units			
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential			
DTW	Depth to water		mL	Milliliter		ppm	Parts per million			
ft	Feet		mL/min	Milliliters per minut	e	s.u.	Standard Units			
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter			
gpm	Gallons per minute	9	mV	Millivolts						
Material Code										
AG - Amber G	Glass CG -	Clear Glass	PE - Polyethylene	PP - Polypi	opylene	T - Teflon	S - Silicone O - Other			

Purging Code

Low-Flow Groundwater Sampling Log

Project	SRSNE				Site Location		Southington, CT				
Project No.	B005463	4.0000.019	900		Well ID		MW-126B	Sample ID	MW-126B-0	5252011	
Sample Date	05/25/20	11			Sampled By		Diane Champagne				
Sample Time	Begin	15:38	End	15:38	Recorded By		Diane Champagne				
Weather	HOT SU	N 85*			Replicate No		N/A				
Instrument Identification Water Quality Meter # 1 YSI 600 XL/21		XL/2159	Field Parameters Water Quality Meter # 2		LaMo	otte 2020e/13	878				
Casing Material			N/A		Purge Method		BP:Q	BP:QED 12368			
Casing Diamete	er (in)		2.00		Screen Interval (ft bmp)		Тор	7.50	Bottom	12.50	
Sounded Depth	Sounded Depth (ft bmp) 1		12.20 (5	12.20 (5/26/2011)		Pum	Pump Intake Depth (ft bmp)		9.30	_	N/A
Depth to Water	(ft bmp)		5.55			Purg	e Time	Begir	n 14:15	End	15:51
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
14:16	0.95	N/A	N/A	13.52	7.04	478 uS/cm	76.70	6.29	8.57	5.55
14:20	5.38	120.00	N/A	13.52	6.87	485 uS/cm	70.40	5.32	8.57	5.55
14:29	14.58	120.00	N/A	18.34	7.07	468 uS/cm	66.20	4.89	4.04	5.55
14:34	19.15	80.00	N/A	19.47	7.01	488 uS/cm	68.10	2.66	4.47	5.55
14:46	30.83	60.00	N/A	20.59	7.07	497 uS/cm	67.50	4.87	3.88	5.55
14:55	40.10	60.00	N/A	20.20	7.15	484 uS/cm	70.60	3.55	3.23	5.56
15:05	50.45	60.00	N/A	18.66	7.26	477 uS/cm	75.10	2.09	2.07	5.55
15:16	60.73	60.00	2.50	18.15	7.07	482 uS/cm	76.10	1.24	0.89	5.55
15:26	70.65	60.00	N/A	18.02	7.09	485 uS/cm	75.00	1.29	0.95	5.56
15:36	80.82	60.00	3.00	18.74	7.15	483 uS/cm	72.70	1.28	0.78	5.55
Collect	Collected Sample Condition Color light reddish-brown Odor None Appearance NA									

Collected Sample Condition

Color light reddish-brown None

Appearance NA

Parameter	Container	Number	Preservative
TAL Metals (Dissolved)	PP 500 ml	1	HNO3
TAL Metals (Total)	PP 500 ml	1	HNO3

Comments

Sampling Personnel:

Diane Champagne Signature:

J.m. Churpy

Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50) 4" = 0.65 6"=1.47			
°C	Degrees Celsius		in	Inches		N/A	Not Applicable			
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units			
DO	Dissolved oxygen	I	min	Minutes		ORP	Oxidation reduction potential			
DTW	Depth to water		mL	Milliliter		ppm	Parts per million			
ft	Feet		mL/min	Milliliters per minute	e	s.u.	Standard Units			
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemens per centimeter			
gpm Gallons per minute			mV	Millivolts						
			Mate	rial Code						
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	opylene	T - Teflon	S - Silicone O - Other			

Purging Code

Project	SRSNE				Site Location	۱.	Southington, CT				
Project No.	B005463	34.0000.01	900		Well ID		MW-126C	Sample ID	MW-126C-0	5262011	
Sample Date	05/26/20)11			Sampled By		Diane Champagne				
Sample Time	Sample Time Begin <u>10:42</u> End <u>10:42</u>		10:42	Recorded By Diane Champagne							
Weather	FOGGY	60'S			Replicate No.		N/A				
Instrument Id	entificati	ion				Field	l Parameters				
Water Quality M	/leter # 1		YSI 600	XL/2159	Water Quality Meter # 2		LaMo	otte 2020e/13	878		
Casing Material	I		N/A		Purge Method		BP:Q	BP:QED 17017			
Casing Diamete	er (in)		2.00			Screen Interval (ft bmp)		Тор	24.00	Bottom	34.00
Sounded Depth	ı (ft bmp)		33.60 (5	6/26/2011)		Pum	p Intake Depth (ft br	mp)	29.00		N/A
Depth to Water	(ft bmp)		0.10			Purg	e Time	Begir	n 9:01	End	10:54
PID Reading(ppm) 0.00											

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:06	5.77	240.00	N/A	13.92	7.16	410 uS/cm	5.70	11.21	36.50	0.10
9:12	10.97	240.00	N/A	13.53	6.40	333 uS/cm	19.20	3.59	32.70	0.10
9:15	14.53	240.00	N/A	13.69	6.18	331 uS/cm	21.00	3.74	23.10	0.10
9:20	18.88	240.00	1.00	13.78	6.01	325 uS/cm	24.10	4.52	21.80	0.10
9:25	24.40	240.00	N/A	13.65	5.99	324 uS/cm	24.70	4.26	18.40	0.10
9:30	29.03	240.00	2.00	13.66	5.94	320 uS/cm	31.90	6.68	18.50	0.10
9:35	34.07	240.00	N/A	13.90	5.94	314 uS/cm	35.10	7.52	12.30	0.10
9:40	38.98	240.00	N/A	14.05	5.96	310 uS/cm	38.40	8.22	9.49	0.10
9:45	44.50	240.00	3.00	14.07	5.99	305 uS/cm	43.20	8.55	7.79	0.10
9:51	50.18	240.00	N/A	14.25	6.04	300 uS/cm	49.10	6.52	6.32	0.10
9:55	54.77	240.00	N/A	14.72	6.10	293 uS/cm	54.00	4.99	4.42	0.10
10:01	60.12	240.00	4.20	14.21	6.14	295 uS/cm	62.80	4.66	4.56	0.10
10:07	66.72	240.00	N/A	14.23	6.17	292 uS/cm	70.50	3.30	3.11	0.10
10:10	69.40	240.00	N/A	14.32	6.19	291 uS/cm	73.20	3.02	3.62	0.10
10:15	74.53	240.00	N/A	14.30	6.18	291 uS/cm	80.80	2.35	2.87	0.10
10:20	79.08	240.00	N/A	14.31	6.21	290 uS/cm	84.60	2.11	2.27	0.10
10:25	84.43	240.00	N/A	14.49	6.21	288 uS/cm	88.60	2.32	2.49	0.10
10:30	89.70	240.00	6.50	14.59	6.20	287 uS/cm	91.70	2.19	2.19	0.10

Sampling Personnel:

Diane Champagne

Signature:

Dun Chuppin

	Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	60 4" = 0.65 6"=1.47				
°C	Degrees Celsius		in	Inches		N/A	Not Applicable				
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minut	е	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per minut	e	mV	Millivolts							
Material Code											
AG - Amber	Glass CG	Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone O - Other				

Purging Code

Project		SRSNE			Site	Site Location Southin			uthington, CT				
Project	No.	B0054	634.0000.0	1900		Wel	Well ID		MW-126C Sample ID		MW-126C-05262011		
Sample	e Date	05/26/2	2011			Sam	npled By	By Diane Champagne					
Sample	Sample Time Begin 10:42		End	10:42	Recorded By		Diane Champagne						
Weath	er	FOGG	Y 60'S			Rep	licate No.	N/A					
10:3	6 95. [,]	47	240.00	N/A	14.45	6.20	286 uS	S/cm	95.40	2.15	2.17	0.10	
10:4	99.	50	240.00	8.00	14.53	6.19	286 uS	S/cm	97.50	2.12	2.30	0.10	
Colle	cted San	nple Co	ndition	Color	light reddish	n-brown	Odor I	None		Appearar	nce NA		

Parameter	Container	Number	Preservative	
TAL Metals (Total)	PP 500 ml	1	HNO3	
TAL Metals (Dissolved)	PP 500 ml	1	HNO3	

Comments

Sampling Personnel:

Diane Champagne

Signature:

Dun Chappen

Well Casing Volumes												
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0.	65 6"=1.4	47			
°C	Degrees Celsius		in	Inches		N/A	Not Applicable					
bmp	Below measuring	g point	mg/L	Milligrams per liter	r	NTUs	Nephelometric Turbidity Units					
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation redu	ction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per millio	n				
ft	Feet		mL/min	Milliliters per minu	ite	s.u.	Standard Units					
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens	per centimeter				
gpm	Gallons per minu	ite	mV	Millivolts								
			Mate	rial Code								
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene PP - Polypropylene		T - Teflon	S - Silicone	O - Other					
	Purging Code Version											

Project	SRSNE				Site Location	5	Southington, CT				
Project No.	B005463	4.0000.019	000		Well ID	N	IW-416	Sample ID	MW-416-05	252011	
Sample Date	05/25/20	11			Sampled By	E	dward Cimilluca				
Sample Time	Begin	15:57	End	16:07	Recorded By	E	dward Cimilluca				
Weather	Light rain	ı			Replicate No.	. D	UP-GW-0525201	1-#2			
Instrument Ide	entificati	on			l	Field	Parameters				
Water Quality M	leter # 1		YSI 600	XL/2177	v	Water	Quality Meter # 2	LaMo	otte 2020e/11	797	
Casing Material			N/A			Purge	Method	BP:Q	ED		
Casing Diamete	er (in)		2.00			Scree	n Interval (ft bmp)	Тор	29.40	Bottom	49.40
Sounded Depth	(ft bmp)		51.60 (5	/25/2011)		Pump	Intake Depth (ft b	mp)	42.00		42.00
Depth to Water	(ft bmp)		7.15			Purge	Time	Begir	n 14:09	End	16:07
PID Reading(pp	om)		27.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
14:10	1.20	150.00	N/A	26.57	7.18	0.466 mS/cm	318.30	1.88	61.00	7.16
14:15	6.17	150.00	N/A	26.43	7.11	0.457 mS/cm	364.40	1.71	34.00	7.17
14:20	10.97	150.00	N/A	26.36	7.05	0.455 mS/cm	392.00	1.62	28.00	7.18
14:25	16.08	150.00	N/A	26.12	7.00	0.452 mS/cm	410.00	1.50	22.00	7.18
14:30	21.10	150.00	N/A	25.80	6.98	0.488 mS/cm	421.60	1.39	15.00	7.18
14:35	26.07	150.00	N/A	25.67	6.94	0.446 mS/cm	421.30	1.28	18.00	7.19
14:40	31.27	150.00	N/A	25.71	6.94	0.445 mS/cm	416.00	1.18	12.00	7.19
14:44	35.85	N/A	N/A	25.73	6.93	0.443 mS/cm	415.00	1.10	12.00	7.19
14:51	42.23	150.00	N/A	25.47	6.90	0.440 mS/cm	416.30	1.00	10.00	7.20
14:56	47.42	150.00	N/A	25.41	6.97	0.438 mS/cm	410.20	0.92	10.00	7.20
15:00	51.83	150.00	N/A	25.16	6.91	0.435 mS/cm	414.00	0.85	11.00	7.21
15:05	56.05	150.00	N/A	24.82	6.86	0.432 mS/cm	418.30	0.79	11.00	7.20
15:10	61.17	150.00	N/A	24.53	6.86	0.429 mS/cm	419.50	0.73	12.00	7.21
15:15	66.30	150.00	N/A	23.70	6.84	0.420 mS/cm	419.20	0.64	11.00	7.21
15:21	72.03	150.00	N/A	23.97	6.82	0.421 mS/cm	423.60	0.59	9.00	7.21
15:27	77.98	150.00	N/A	24.36	6.83	0.424 mS/cm	423.10	0.55	10.00	7.22
15:32	83.12	150.00	N/A	24.65	6.83	0.427 mS/cm	425.70	0.52	10.00	7.22
15:36	87.23	150.00	N/A	24.75	6.84	0.427 mS/cm	426.10	0.49	9.00	7.21

Sampling Personnel:

Edward Cimilluca

Signature:

Im an

	Well Casing Volumes											
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" =	= 0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47					
°C	Degrees Celsius		in	Inches		N/A	Not Applicable					
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units					
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential					
DTW	Depth to water		mL	Milliliter		ppm	Parts per million					
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units					
gal	Gallons		mS/cm	Millisiemens per centimet	ter	uS/cm	Microsiemens per centimeter					
gpm	Gallons per minu	ite	mV	Millivolts								
	Material Code											
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropyler	ne T	- Teflon	S - Silicone O - Other					

Purging Code

Project	S	RSNE			Site	Location	South	ington, CT			
Project N	lo. B	0054634.0000.0	01900		Well	ID	MW-41	6	Sample ID	MW-416-0525201	1
Sample [Date _	5/25/2011			Sam	pled By	Edware	d Cimilluca			
Sample 1	ample Time Begin <u>15:57</u>		End	16:07	Reco	orded By	Edward	Edward Cimilluca			
Weather	L	ight rain			Repl	icate No.	DUP-G	W-0525201	1-#2		
15:40	91.42	150.00	N/A	25.00	6.90	0.428 m	IS/cm	423.70	0.47	9.00	7.22
15:47	98.03	150.00	N/A	24.90	6.84	0.428 m	IS/cm	424.30	0.43	8.00	7.22
15:51	102.82	150.00	N/A	24.76	6.78	0.426 m	IS/cm	430.10	0.41	9.00	7.22
15:57	107.98	3 150.00	N/A	24.70	6.78	0.425 m	IS/cm	430.50	0.38	8.00	7.22
Collecte	ed Sampl	le Condition	Color	clear		Odor	Yes		Appeara	nce NA	

Parameter	Container	Number	Preservative
TOC	CG 40 ml	2	H2SO4
Sulfide	PP 125 ml	1	ZA + NaOH
Dissolved Fe & Mn	PP 125 ml	1	HNO3
Alkalinity, Chloride, Sulfate, Nitrate-N, Nitrite-N	PP 1L	1	None
VOCs	CG 40 ml	3	HCL
Dissolved Gases	CG 40 ml	2	TSP

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

Im an

Well Casing Volumes												
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0	.65 6"=1.	47			
°C	Degrees Celsius	3	in	Inches		N/A	Not Applicable					
bmp	Below measurin	g point	mg/L	Milligrams per liter		NTUs	Nephelometric	Turbidity Units				
DO	Dissolved oxyge	en	min	Minutes		ORP	Oxidation reduction potential					
DTW	Depth to water		mL	Milliliter		ppm	Parts per millio	on				
ft	Feet		mL/min	Milliliters per minute	•	s.u.	Standard Units	6				
gal	Gallons		mS/cm	Millisiemens per centimeter		uS/cm	Microsiemens	per centimeter				
gpm	Gallons per min	ute	mV	Millivolts								
			Mate	rial Code								
AG - Amber	Glass CG	G - Clear Glass	PE - Polyethylene	PP - Polypro	opylene	T - Teflon	S - Silicone	O - Other				
			Pura	ina Code					Versio			

Project SRSNE					Site Location Southington, CT					
Project No.	B00546	34.0000.01	900		Well ID	MW-901D	Sample ID	MW-901D-0	5262011	
Sample Date	05/26/20	011			Sampled By	Edward Cimilluca				
Sample Time	Begin	11:05	End	11:15	Recorded By	Edward Cimilluca				
Weather					Replicate No.	Dup-gw-0526201	1-#1			
Instrument Id	entificat	ion			I	Field Parameters				
Water Quality M	leter # 1		YSI 600	XL/01g0418 af	\	Water Quality Meter # 2	2 LaMo	otte 2020e/11	797	
Casing Material			N/A		F	Purge Method	BP:Q	ED 9131		
Casing Diamete	er (in)		2.00			Screen Interval (ft bmp) Тор	8.00	Bottom	13.00
Sounded Depth	(ft bmp)		14.80 (5	5/26/2011)	F	Pump Intake Depth (ft I	bmp)	12.47		12.47
Depth to Water	(ft bmp)		8.10		F	Purge Time	Begir	n 10:00	End	11:15
PID Reading(pp	om)		0.00							

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
10:00	0.15	100.00	N/A	20.64	6.31	0.183 mS/cm	208.40	11.41	15.00	8.10
10:06	6.30	90.00	N/A	20.78	6.30	0.172 mS/cm	217.70	11.13	11.00	8.11
10:10	10.35	100.00	N/A	20.76	6.28	0.169 mS/cm	225.00	11.06	29.00	8.12
10:15	14.58	100.00	N/A	20.63	6.28	165 uS/cm	235.70	10.76	34.00	8.17
10:23	22.75	100.00	N/A	20.24	6.27	160 uS/cm	268.00	10.54	40.00	8.25
10:27	27.13	100.00	N/A	20.19	6.25	158 uS/cm	290.00	10.50	44.00	8.31
10:33	33.27	100.00	N/A	20.41	6.25	0.157 mS/cm	313.40	10.26	42.00	8.52
10:38	37.55	100.00	N/A	20.19	6.24	0.155 mS/cm	325.40	10.49	40.00	8.61
10:43	42.72	100.00	N/A	19.06	6.19	0.149 mS/cm	342.10	10.59	39.00	8.71
10:49	49.30	100.00	N/A	17.88	6.16	0.144 mS/cm	362.00	10.62	40.00	8.81
10:54	54.33	100.00	N/A	17.70	6.12	0.142 mS/cm	365.10	10.51	40.00	8.91
Collect	ed Sample C	Condition	Color	brown		Odor None		Appearance	NA	

Color brown None

Parameter Container Number Preservative TAL Metals (Dissolved) PP 500 ml 1 HNO3 TAL Metals (Total) PP 500 ml 1 HNO3

Comments

WI dropping. water has more sediment than initial purge. screen clogging?

Sampling Personnel:

Edward Cimilluca

Signature:

EMAN

	Well Casing Volumes												
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65 6"=1.47						
°C	Degrees Celsius		in	Inches		N/A	Not Applicable						
bmp	Below measuring	point	mg/L	Milligrams per liter	r	NTUs	Nephelometric Turbidity Units						
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential						
DTW	Depth to water		mL	Milliliter		ppm	Parts per million						
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units						
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per centimeter						
gpm	Gallons per minut	e	mV	Millivolts									
			Mater	rial Code									
AG - Amber	Glass CG -	- Clear Glass	PE - Polyethylene	PP - Polyp	propylene	T - Teflon	S - Silicone O - Other						

Purging Code

Project SRSNE					Site Location	۱	Southington, CT				
Project No.	B00546	34.0000.01	900		Well ID		MW-901R	Sample ID	MW-901R-0	05262011	
Sample Date	05/26/20	011			Sampled By		Edward Cimilluca				
Sample Time	Begin	13:07	End	13:06	Recorded By	/	Edward Cimilluca				
Weather	Muggy				Replicate No).	N/A				
Instrument lo	dentificat	ion				Fiel	d Parameters				
Water Quality I	Meter # 1		YSI 600	XL/2177		Wat	er Quality Meter # 2	LaM	otte 2020e/11	797	
Casing Materia	al		N/A			Purg	ge Method	BP:C	QED 17017		
Casing Diamet	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	25.00	Bottor	m 40.00
Sounded Dept	h (ft bmp)		42.30 (5	5/26/2011)		Pum	ip Intake Depth (ft bi	mp)	34.94		34.94
Depth to Wate	r (ft bmp)		8.60			Purg	ge Time	Begi	n 11:58	End	12:53
PID Reading(p	pm)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
12:00	1.33	200.00	N/A	10.81	6.26	0.224 mS/cm	268.20	10.20	15.00	8.70
12:05	6.63	200.00	N/A	11.12	6.20	0.225 mS/cm	302.20	10.80	10.00	8.70
12:10	11.40	200.00	N/A	11.00	6.16	0.224 mS/cm	319.00	10.10	10.00	8.70
12:17	18.98	200.00	N/A	10.95	6.10	0.222 mS/cm	335.20	9.94	8.00	8.70
12:20	21.35	200.00	N/A	11.06	6.07	0.211 mS/cm	343.20	9.93	5.00	8.70
12:28	29.92	200.00	N/A	11.08	5.93	0.182 mS/cm	377.60	10.00	5.00	8.70
12:35	36.77	200.00	N/A	12.70	5.92	0.181 mS/cm	400.60	9.95	5.00	8.70
12:40	41.78	200.00	N/A	13.10	6.00	0.180 mS/cm	407.50	10.10	4.00	8.70
12:45	46.42	200.00	N/A	13.30	5.98	0.178 mS/cm	405.90	9.96	4.00	8.70
12:50	51.38	200.00	N/A	13.35	5.99	0.180 mS/cm	406.90	9.92	5.00	8.70
Collect	ed Sample C	Condition	Color	clear		Odor None		Appearance	NA	

Collected Sample Condition

TAL

Color clear

Edward Cimilluca

None

Appearance NA

Parameter	Container	Number	Preservative	
AL Metals (Dissolved)	PP 500 ml	1	HNO3	
TAL Metals (Total)	 PP 500 ml	1	HNO3	

Comments

Sampling Personnel:

Signature:

Edul al

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring p	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minut	te	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minute	9	mV	Millivolts			
			Mater	ial Code			
AG - Amber G	Glass CG -	Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone O - Other

Purging Code

Project	SRSNE				Site Location	Southington, CT				
Project No.	B005463	4.0000.01	900		Well ID	MW-907D	Sample ID	MW-907D-0	5252011	
Sample Date	05/25/20	11			Sampled By	Diane Champagn	e			
Sample Time	Begin	12:32	End	12:32	Recorded By	Diane Champagn	e			
Weather	Sun 70's				Replicate No.	DUP-GW-052520	11-#1			
Instrument Ide	entificati	on			F	ield Parameters				
Water Quality N	leter # 1		YSI 600	XL/2159	V	Vater Quality Meter #	2 LaMo	otte 2020e/13	878	
Casing Material			N/A		F	Purge Method	BP:Q	ED 14967		
Casing Diamete	er (in)		2.00			Screen Interval (ft bmp	o) Top	40.00	Bottom	50.00
Sounded Depth	(ft bmp)		52.63 (5	/25/2011)	F	Pump Intake Depth (ft	bmp)	45.00		N/A
Depth to Water	(ft bmp)		5.79		F	Purge Time	Begir	n 11:24	End	12:39
PID Reading(pp	om)		0.00							

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
11:25	1.58	100.00	N/A	11.52	6.86	721 uS/cm	-75.00	17.91	33.70	5.81
11:31	7.13	100.00	N/A	14.36	6.77	707 uS/cm	-79.10	17.97	41.40	5.80
11:35	11.88	100.00	N/A	14.16	6.83	723 uS/cm	-85.30	14.51	36.80	5.79
11:40	16.07	100.00	N/A	14.24	6.83	731 uS/cm	86.30	13.92	32.30	5.79
11:45	21.32	100.00	N/A	14.71	6.83	730 uS/cm	-84.80	13.62	29.60	5.79
11:50	26.20	100.00	N/A	14.27	6.80	730 uS/cm	-82.40	13.82	28.70	5.79
11:55	31.03	100.00	N/A	14.47	6.79	733 uS/cm	80.70	13.40	13.10	5.79
12:00	36.38	100.00	2.00	14.49	6.79	733 uS/cm	-78.60	13.36	8.09	5.79
12:05	41.50	100.00	N/A	14.89	6.81	731 uS/cm	-78.20	13.60	7.32	5.79
12:10	46.03	100.00	N/A	15.70	6.86	734 uS/cm	-83.90	13.53	5.23	5.78
12:15	51.03	100.00	2.30	15.79	6.93	733 uS/cm	-88.80	13.09	4.54	5.78
12:21	57.72	100.00	N/A	16.51	6.79	734 uS/cm	-82.00	13.26	4.51	5.78
12:26	62.38	100.00	2.50	14.37	6.77	742 uS/cm	-77.80	13.11	4.95	5.78
12:30	66.65	100.00	N/A	13.88	6.70	728 uS/cm	-72.50	13.28	4.85	5.78
Collect	ed Sample C	Condition	Color	light reddish	n-brown	Odor None		Appearance	NA	

Sampling Personnel:

Diane Champagne

Signature:

Dyne Chupu

			Well Cas	ing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring p	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minute	•	mV	Millivolts			
			Materi	al Code			
AG - Amber G	ilass CG -	Clear Glass	PE - Polyethylene	PP - Polypro	pylene T	- Teflon	S - Silicone O - Other

Purging Code

Project	SRSNE	Site Location	Southington, CT	
Project No.	B0054634.0000.01900	- Well ID	MW-907D Sample ID	MW-907D-05252011
Sample Date	05/25/2011	Sampled By	Diane Champagne	
Sample Time	Begin <u>12:32</u> End <u>12:32</u>	Recorded By	Diane Champagne	
Weather	Sun 70's	Replicate No.	DUP-GW-05252011-#1	
	Parameter	Container	Number	Preservative
	VOCs	CG 40 ml	3	HCL

Comments

Sampling	Personnel:
----------	------------

Diane Champagne

Signature:

Dur Chupur

Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	7 3-1/2":= 0.5	504" = 0.656"=1.47				
°C	Degrees Celsius		in	Inches	N/A	Not Applicable				
bmp	Below measuring	point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxyger	ı	min	Minutes	ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter	ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per minu	te	mV	Millivolts						
			Mate	rial Code						
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other				
			Pura	ina Code		Ve				

Project	SRSNE				Site Location	<u>ا</u>	Southington, CT				
Project No.	B005463	34.0000.01	900		Well ID	Ν	/W-907DR	Sample ID	MW-907DR-	05252011	
Sample Date	05/25/20	11			Sampled By	[Diane Champagne				
Sample Time	Begin	10:52	End	10:52	Recorded By	<u>ر</u> ر	Diane Champagne				
Weather	Sun 60's	i			Replicate No.	. N	N/A				
Instrument Id	entificati	on				Field	Parameters				
Water Quality M	leter # 1		YSI 600	XL/2159		Water	Quality Meter # 2	LaMo	otte 2020e/138	78	
Casing Material			N/A			Purge	Method	BP:Q	ED 10717		
Casing Diamete	er (in)		2.00			Scree	n Interval (ft bmp)	Тор	159.00	Bottom	174.00
Sounded Depth	(ft bmp)		174.20 ((5/25/2011)		Pump	Intake Depth (ft b	mp)	150.00		N/A
Depth to Water	(ft bmp)		0.00			Purge	Time	Begir	า 9:20	End	11:01
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:25	5.00	120.00	N/A	12.95	8.63	2,800 uS/cm	-19.90	-0.16	3.27	0.78
9:35	14.68	120.00	0.75	13.55	8.53	2,722 uS/cm	-24.30	0.34	2.81	1.41
9:47	26.52	120.00	N/A	13.96	8.50	2,704 uS/cm	-23.80	0.26	3.30	1.43
9:55	34.80	120.00	1.50	14.28	8.51	2,697 uS/cm	-23.70	0.08	9.52	1.45
10:07	46.82	120.00	N/A	14.05	8.50	2,674 uS/cm	-21.70	0.21	1.80	1.43
10:15	54.42	120.00	2.00	14.32	8.51	2,667 uS/cm	-21.50	0.14	1.33	1.44
10:25	64.48	120.00	N/A	14.39	8.52	2,678 uS/cm	19.70	0.05	1.23	1.44
10:35	74.45	120.00	2.50	14.76	8.52	2.671 mS/cm	-18.70	0.08	1.23	1.44
10:40	79.65	120.00	N/A	14.90	8.53	2,667 uS/cm	-17.40	0.02	0.88	1.50
10:45	84.63	120.00	N/A	14.94	8.54	2,665 uS/cm	-17.40	0.03	0.90	1.55
10:50	89.65	120.00	N/A	15.12	8.54	2,661 uS/cm	-17.00	0.01	0.83	1.55
Collect	ed Sample C	Condition	Color	clear		Odor None		Appearance	NA	

	Parameter	Container	Number	Preservative
	VOCs	CG 40 ml	3	HCL
Comments	Purge 2.45 gallons prior to stability reading	s		

Screen volume pumped at 10:35 begin stability readings 10:40

Sampling Personnel:

Diane Champagne

Signature:

Dun 1 lupp-

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyger	า	min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minut	e	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	te	mV	Millivolts			
			Mate	rial Code			
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone O - Other

Purging Code

Low-Flow Groundwater Sampling Log

Project	SRSNE				Site Location	1	Southington, CT					
Project No.	B00546	34.0000.01	900		Well ID		MWL-309	Sample ID	MWL-3	809-052	42011	
Sample Date	05/24/2	011			Sampled By		Edward Cimilluca					
Sample Time	Begin	12:52	End	12:55	Recorded By	/	Edward Cimilluca					
Weather	Cloudy,	Rain			Replicate No.).	N/A					
Instrument lo	dentificat	tion				Field	d Parameters					
Water Quality	Meter # 1		YSI 600	XL/2177		Wate	er Quality Meter # 2	LaM	otte 2020	e/11797	7	
Casing Materia	al		N/A			Purg	e Method	BP:0	QED 1236	68		
Casing Diamet	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	1.0	0	Bottom	11.00
Sounded Dept	h (ft bmp)		14.30 (5	5/24/2011)		Pum	p Intake Depth (ft br	mp)	9.3	1		8.60
Depth to Wate	r (ft bmp)		2.60			Purg	e Time	Begi	n 11:	49	End	12:53
PID Reading(p	pm)		0.00									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
11:50	0.38	100.00	N/A	21.48	6.80	0.500 mS/cm	208.30	3.66	422.00	2.65
11:55	5.33	100.00	N/A	21.86	6.82	0.467 mS/cm	238.00	4.29	400.00	3.10
12:00	10.20	100.00	N/A	21.53	6.79	0.467 mS/cm	260.00	4.48	312.00	3.60
12:05	15.25	100.00	N/A	21.60	6.79	0.467 mS/cm	276.60	4.46	292.00	3.95
12:10	20.13	100.00	N/A	21.63	6.81	0.466 mS/cm	286.40	4.16	271.00	4.40
12:15	25.18	100.00	N/A	21.57	6.82	0.470 mS/cm	293.60	4.80	233.00	4.85
12:20	30.13	100.00	N/A	21.40	6.83	0.478 mS/cm	295.80	4.69	173.00	5.10
12:25	35.20	100.00	N/A	21.09	6.84	0.481 mS/cm	297.70	4.27	202.00	5.30
12:30	40.12	100.00	N/A	20.95	6.84	0.488 mS/cm	298.10	3.98	185.00	5.50
12:35	45.13	100.00	N/A	20.88	6.84	0.494 mS/cm	297.20	4.73	170.00	5.70
12:40	50.38	100.00	N/A	20.90	6.84	0.494 mS/cm	296.70	4.75	143.00	5.90
12:45	55.15	100.00	N/A	20.89	6.84	0.495 mS/cm	298.40	4.76	138.00	6.10
12:50	60.15	100.00	N/A	20.91	6.84	0.494 mS/cm	297.50	4.76	142.00	6.30
Collect	ed Sample C	Condition	Color	clear		Odor None		Appearance	Cloudy	

Parameter Container Number Preservative VOCs CG 40 ml HCL 3 Comments Sampling Personnel: Edward Cimilluca Signature: Well Casing Volumes Gal./Ft. 1-1/4" = 0.06 1-1/2" = 0.09 2" = 0.16 2-1/2" = 0.26 3" = 0.37 3-1/2":= 0.50 4" = 0.65 6"=1.47 °C **Degrees Celsius** in Inches N/A Not Applicable Below measuring point mg/L Milligrams per liter NTUs Nephelometric Turbidity Units bmp ORP DO Dissolved oxygen min Minutes Oxidation reduction potential Milliliter DTW Depth to water mL ppm Parts per million Milliliters per minute ft Feet mL/min Standard Units s.u. Gallons mS/cm Millisiemens per centimeter uS/cm Microsiemens per centimeter gal Gallons per minute Millivolts gpm mV Material Code AG - Amber Glass CG - Clear Glass PE - Polyethylene PP - Polypropylene T - Teflon S - Silicone O - Other

Purging Code

Low-Flow Groundwater Sampling Log

Project	SRSNE				Site Location	1	Southington, CT			_		
Project No.	B005463	34.0000.019	900		Well ID		P-11A	Sample II	D P	-11A-05242	2011	
Sample Date	05/24/20	11			Sampled By		Edward Cimilluca					
Sample Time	Begin	15:41	End	15:45	Recorded By	,	Edward Cimilluca					
Weather	Cloudy				Replicate No.		N/A					
Instrument Id Water Quality M	entificati 1eter # 1	on	YSI 600	XL/2177		Field Wate	1 Parameters er Quality Meter # 2	La	Motte	2020e/117	97	
Casing Material	I		N/A			Purg	e Method	BP	QED	12368		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	То	р	58.00	Bottom	68.00
Sounded Depth	(ft bmp)		67.30 (5	/24/2011)		Pum	p Intake Depth (ft b	mp)		64.59		64.59
Depth to Water	(ft bmp)		3.70			Purg	e Time	Be	gin	14:51	End	15:42
PID Reading(pp	om)		0.00									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
14:56	4.35	150.00	N/A	14.81	6.92	0.291 mS/cm	-74.20	3.13	275.00	3.70
15:00	8.52	150.00	N/A	14.97	6.81	0.290 mS/cm	-75.80	2.94	77.00	3.70
15:05	13.53	150.00	N/A	15.30	6.75	2.980 mS/cm	-79.70	2.33	26.70	3.70
15:10	18.47	150.00	N/A	15.07	6.70	0.302 mS/cm	-84.60	1.76	19.00	3.70
15:14	22.37	150.00	N/A	14.92	6.68	0.305 mS/cm	-87.60	1.47	17.00	3.70
15:20	28.32	150.00	N/A	14.76	6.65	0.307 mS/cm	-90.60	1.16	13.00	3.70
15:25	33.50	150.00	N/A	14.60	6.64	0.308 mS/cm	-91.80	1.07	13.00	3.70
15:30	38.47	150.00	N/A	14.69	6.64	0.307 mS/cm	-92.20	1.35	12.00	3.70
15:36	44.42	150.00	N/A	14.70	6.64	0.307 mS/cm	92.10	1.35	12.00	3.70
15:40	48.27	150.00	N/A	14.58	6.64	0.308 mS/cm	-93.10	1.35	13.00	3.70
Collect	ed Sample C	Condition	Color	clear		Odor None	-	Appearance	NA	

Collected Sample Condition

Color clear None

Appearance NA

Parameter	Container	Number	Preservative
VOCs	CG 40 ml	3	HCL

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

2MML

Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	6 1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" =	0.65 6"=1	47	
°C	Degrees Celsi	us	in	Inches		N/A	Not Applicat	ble		
bmp	Below measur	ring point	mg/L	Milligrams per liter	-	NTUs	Nephelomet	ric Turbidity Units		
DO	Dissolved oxy	gen	min	Minutes		ORP	Oxidation re	duction potential		
DTW	Depth to wate	r	mL	Milliliter		ppm	Parts per mi	llion		
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Ur	iits		
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemer	ns per centimeter		
gpm	Gallons per m	inute	mV	Millivolts						
			Mater	rial Code						
AG - Amber	Glass C	CG - Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone	O - Other		
			Purgi	ng Code					Version	

Purging Code

Project	SRSNE				Site Location	ı	Southington, CT				
Project No.	B005463	4.0000.0190	00		Well ID		P-13	Sample ID	P-13-05232	2011	
Sample Date	05/23/20	11			Sampled By		Edward Cimilluca				
Sample Time	Begin	11:50	End	11:55	Recorded By	/	Edward Cimilluca				
Weather	Cloudy, I	Muggy, Scatt	ered Sho	owers	Replicate No).	N/A				
Instrument Ide	entificati	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01g0418 af		Wate	er Quality Meter # 2	LaMo	otte 2020e/11	797	
Casing Material			N/A			Purg	e Method	BP:C	ED 9131		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	4.90	Bottom	14.90
Sounded Depth	(ft bmp)		17.15 (5	/23/2011)		Pum	p Intake Depth (ft b	mp)	11.78		12.73
Depth to Water	(ft bmp)		8.66			Purg	je Time	Begi	n 10:15	End	11:50
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
10:15	-0.65	125.00	N/A	14.11	7.95	0.245 mS/cm	283.70	9.17	361.00	8.66
10:20	4.90	125.00	N/A	14.10	7.97	0.234 mS/cm	284.10	9.60	310.00	8.66
10:25	9.93	125.00	N/A	14.11	7.81	0.237 mS/cm	284.10	9.10	206.70	8.66
10:30	14.52	125.00	N/A	14.06	7.79	0.240 mS/cm	284.50	9.04	151.20	8.66
10:35	19.78	125.00	N/A	14.09	7.81	0.236 mS/cm	285.10	9.08	113.00	8.66
10:40	24.82	125.00	N/A	13.95	7.86	0.234 mS/cm	293.70	9.06	100.60	8.66
10:45	29.38	125.00	N/A	13.93	7.89	0.234 mS/cm	301.30	9.05	91.80	8.66
10:50	35.08	125.00	N/A	13.93	7.73	0.224 mS/cm	321.90	9.10	83.20	8.66
10:55	40.13	125.00	N/A	13.39	7.72	0.213 mS/cm	323.90	9.12	85.10	8.66
11:00	44.35	125.00	N/A	13.96	7.53	0.209 mS/cm	337.20	9.20	79.40	8.66
11:05	50.15	125.00	N/A	14.07	7.36	0.196 mS/cm	341.30	9.15	80.70	8.66
11:10	54.37	125.00	N/A	14.09	7.27	184 uS/cm	345.90	9.15	74.30	8.66
11:15	60.15	125.00	N/A	14.10	7.19	0.187 mS/cm	356.20	9.21	69.00	8.66
11:20	64.97	125.00	N/A	14.09	7.12	0.180 mS/cm	360.00	9.25	66.20	8.66
11:25	69.57	125.00	N/A	14.08	7.10	0.178 mS/cm	364.00	9.28	58.60	8.66
11:30	75.10	125.00	N/A	14.17	6.99	0.152 mS/cm	383.00	9.60	35.10	8.66
11:35	80.17	125.00	N/A	14.17	6.81	0.147 mS/cm	386.00	9.72	25.40	8.66
11:40	84.97	125.00	N/A	14.13	6.69	0.141 mS/cm	389.00	9.85	26.10	8.66

Sampling Personnel:

Edward Cimilluca

Signature:

Ehr W

	Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.47				
°C	Degrees Celsius		in	Inches		N/A	Not Applicable				
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxyger	ו	min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minut	е	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per ce	ntimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per minu	te	mV	Millivolts							
Material Code											
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone O - Other				

Purging Code

Proj	ect	SRS	NE			Site	Location	South	ington, CT				
Proj	ect No.	B00	54634.0000.0)1900		Wel	I ID	P-13		Sample ID	P-13-05	232011	
Sam	ple Date	05/2	3/2011			Sam	npled By	Edwar	d Cimilluca				
Sam	ple Time	e Begi	in <u>11:50</u>	End	11:55	Rec	orded By	Edwar	d Cimilluca				
Wea	ther	Clou	ıdy, Muggy, S	Scattered Sh	owers	Rep	licate No.	N/A					
1	1:45	89.37	125.00	N/A	14.09	6.67	0.140	mS/cm	391.00	9.88		25.90	8.66
1	1:50	94.78	125.00	N/A	14.10	6.67	0.139	mS/cm	390.60	9.88		24.30	8.66
Сс	llected S	ample C	Condition	Color	clear		Odor	None		Appeara	nce N	IA	
			Paramot	~			Containa		N	umbor		Broso	nyatiya

Parameter	Container	Number	Preservative
VOCs	CG 40 ml	3	HCL

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

Ehr W

Well Casing Volumes											
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = ().65 6"=1	.47		
°C	Degrees Celsiu	S	in	Inches		N/A	Not Applicable	e			
bmp	Below measurir	ng point	mg/L	Milligrams per liter		NTUs	Nephelometri	c Turbidity Units			
DO	Dissolved oxyg	en	min	Minutes		ORP	Oxidation red	uction potential			
DTW	Depth to water		mL	Milliliter		ppm	Parts per milli	on			
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Unit	s			
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens	per centimeter			
gpm	Gallons per min	nute	mV	Millivolts							
			Mater	rial Code							
AG - Amber	Glass Co	G - Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other			
			Purgi	ing Code					Version		

Project	Project SRSNE			Site Location	South	Southington, CT					
Project No.	B00546	34.0000.01	900		- Well ID	PZO-2	D	Sample ID	PZO-2D-052	232011	
Sample Date	05/23/20)11			Sampled By	Diane	Champagne				
Sample Time	Begin	12:16	End	12:16	Recorded By	Diane	Champagne				
Weather	Overcas	st 51			Replicate No.	N/A					
Instrument lo	lentificat	ion				Field Para	meters				
Water Quality	Meter # 1		YSI 600	XL/2159		Water Quali	ity Meter # 2	LaMo	otte 2020e/138	378	
Casing Materia	ıl		N/A			Purge Meth	od	BP:Q	ED 14967		
Casing Diamet	er (in)		2.00			Screen Inte	rval (ft bmp)	Тор	75.00	Bottom	85.00
Sounded Depth	n (ft bmp)		86.00 (5	6/26/2011)		Pump Intake	e Depth (ft br	np)	80.00		80.00
Depth to Water	(ft bmp)		5.95			Purge Time		Begir	10:36	End	12:14
PID Reading(p	pm)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
10:37	0.28	240.00	N/A	10.90	5.71	330 uS/cm	237.00	17.80	29.70	5.96
10:42	5.58	240.00	N/A	10.41	6.24	327 uS/cm	249.30	16.39	279.00	5.96
10:48	11.42	240.00	N/A	10.34	6.60	330 uS/cm	248.10	16.08	242.00	5.96
10:52	15.73	240.00	N/A	10.35	6.75	330 uS/cm	246.00	19.59	232.00	5.96
10:57	20.52	240.00	N/A	10.39	6.75	328 uS/cm	245.40	21.67	176.00	5.96
11:02	26.18	240.00	N/A	10.36	6.89	328 uS/cm	244.40	22.40	126.00	5.95
11:07	31.22	240.00	N/A	10.00	7.10	326 uS/cm	244.40	22.06	98.90	5.95
11:16	40.18	240.00	N/A	10.37	7.22	322 uS/cm	243.30	21.33	68.80	5.95
11:23	46.35	240.00	N/A	10.38	7.18	324 uS/cm	242.50	20.17	53.10	5.94
11:28	51.37	240.00	N/A	10.36	7.15	323 uS/cm	242.30	19.80	39.00	5.95
11:33	56.60	240.00	N/A	10.41	7.20	326 uS/cm	242.70	19.73	31.50	5.99
11:38	61.67	240.00	5.00	10.36	7.27	327 uS/cm	242.40	19.35	31.00	5.99
11:43	66.82	240.00	N/A	10.39	7.33	327 uS/cm	242.40	19.32	29.50	6.00
11:48	71.70	240.00	N/A	10.39	7.37	327 uS/cm	242.10	19.25	21.30	6.01
11:53	76.35	240.00	N/A	10.40	7.40	327 uS/cm	242.60	19.11	17.20	6.02
11:58	82.13	240.00	N/A	10.43	7.43	328 uS/cm	242.90	18.77	14.40	6.00
12:03	86.65	240.00	N/A	10.42	7.40	329 uS/cm	242.20	19.35	13.70	6.01
12:08	91.63	240.00	N/A	10.45	7.42	328 uS/cm	242.90	19.32	13.70	5.96

Sampling Personnel:

Diane Champagne

Signature:

pullip

	Well Casing Volumes											
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0	0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47					
°C	Degrees Celsius	i	in	Inches		N/A	Not Applicable					
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units					
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential					
DTW	Depth to water		mL	Milliliter		ppm	Parts per million					
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units					
gal	Gallons		mS/cm	Millisiemens per centimete	er	uS/cm	Microsiemens per centimeter					
gpm	Gallons per minu	ute	mV	Millivolts								
AG - Amber Glass CG - Clear Glass			PE - Polyethylene	PP - Polypropylene	e T	- Teflon	S - Silicone O - Other					

Purging Code

Project	Project SRSNE			Site Location South		Southir	Southington, CT			
Project No.	B0054634.0000.019	900		Well	ID	PZO-2D)	Sample ID	PZO-2D-0523	2011
Sample Date	05/23/2011			_ Sam	pled By	Diane C	Champagne			
Sample Time	Imple Time Begin <u>12:16</u> E		12:16	Recorded By		Diane Champagne				
Weather	Overcast 51			Rep	licate No.	N/A				
12:13 96.	53 240.00	N/A	10.50	7.43	329 u	S/cm	242.90	19.39	13.80	5.96
Collected San	nple Condition	Color	orange		Odor	None		Appeara	nce NA	
	Parameter			c	Container		N	umber	Pr	eservative
	VOCs				CG 40 ml		3			HCL

Comments

Sampling Personnel:

Diane Champagne

Signature:

pullip

Well Casing Volumes											
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" =	0.65 6"=1	.47		
°C	Degrees Celsius		in	Inches		N/A	Not Applicabl	e			
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometr	c Turbidity Units			
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation red	uction potential			
DTW	Depth to water		mL	Milliliter		ppm	Parts per mill	ion			
ft	Feet		mL/min	Milliliters per minute	9	s.u.	Standard Uni	ts			
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemen	s per centimeter			
gpm	Gallons per minu	te	mV	Millivolts							
			Mate	rial Code							
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	opylene	T - Teflon	S - Silicone	O - Other			
			Purg	ing Code					Vers		

Project SRSNE				Site Location		Southington, CT					
Project No.	B00546	34.0000.01	900		- Well ID	P	ZO-2M	Sample ID	PZO-2M-05	242011	
Sample Date	05/24/20	011			Sampled By	D	iane Champagne				
Sample Time	Begin	10:12	End	10:15	Recorded By	/ D	iane Champagne				
Weather	CLOUD	60'S			Replicate No.). N	I/A				
Instrument lo	lentificat	ion				Field	Parameters				
Water Quality I	Meter # 1		YSI 600	XL/2159		Water	Quality Meter # 2	LaMo	otte 2020e/138	378	
Casing Materia	ıl		N/A			Purge	Method	BP:Q	ED 10219		
Casing Diamet	er (in)		2.00			Screer	n Interval (ft bmp)	Тор	46.00	Bottom	56.00
Sounded Dept	n (ft bmp)		58.40 (5	5/24/2011)		Pump	Intake Depth (ft b	mp)	51.00		N/A
Depth to Water	(ft bmp)		6.38			Purge	Time	Begir	า 8:51	End	10:09
PID Reading(p	pm)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:55	3.92	320.00	N/A	11.45	7.94	259 uS/cm	104.30	5.96	144.00	6.38
9:00	8.70	320.00	N/A	11.27	7.67	258 uS/cm	113.70	18.81	85.90	6.38
9:05	14.07	320.00	0.00	11.13	7.52	257 uS/cm	122.50	26.39	67.10	6.38
9:10	18.82	320.00	N/A	11.06	7.34	257 uS/cm	128.70	30.07	46.70	6.38
9:16	24.68	320.00	3.00	11.10	7.35	257 uS/cm	134.00	32.32	33.20	6.38
9:20	28.47	320.00	N/A	11.20	7.31	257 uS/cm	135.60	32.74	25.90	6.38
9:26	34.48	320.00	N/A	11.29	7.31	257 uS/cm	136.70	33.81	17.30	6.38
9:30	38.88	320.00	4.50	11.26	7.32	256 uS/cm	138.10	34.20	12.50	6.38
9:35	43.62	320.00	N/A	11.23	7.37	256 uS/cm	140.00	35.04	9.82	6.38
9:41	49.72	320.00	6.00	11.29	7.33	256 uS/cm	141.20	35.18	8.38	6.38
9:47	56.35	320.00	N/A	11.16	7.32	256 uS/cm	143.30	35.45	6.03	6.38
9:50	58.50	320.00	7.00	11.23	7.31	256 uS/cm	143.60	35.51	4.82	6.38
9:55	63.50	320.00	N/A	11.23	7.37	256 uS/cm	144.70	35.01	3.96	6.38
10:00	68.45	320.00	8.00	11.10	7.39	256 uS/cm	145.80	35.25	3.86	6.38
10:05	73.63	320.00	N/A	11.23	7.36	256 uS/cm	147.20	34.69	4.12	6.38
Collect	ed Sample C	Condition	Color	clear		Odor None		Appearance	NA	

Sampling Personnel:

Diane Champagne

Signature:

Am non

	Well Casing Volumes											
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	60 4" = 0.65 6"=1.47					
°C	Degrees Celsius		in	Inches		N/A	Not Applicable					
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units					
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential					
DTW	Depth to water		mL	Milliliter		ppm	Parts per million					
ft	Feet		mL/min	Milliliters per minut	te	s.u.	Standard Units					
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter					
gpm	Gallons per minut	e	mV	Millivolts								
			Mater	ial Code								
AG - Amber	Glass CG -	- Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone O - Other					

Purging Code

Project	SRSNE				Site Location	Southington				
Project No.	B00546	34.0000.01	900		Well ID	PZO-2M	Sample ID	PZO-2M-05242011		
Sample Date					Sampled By	Diane Champagne				
Sample Time	Begin <u>10:12</u> End <u>10:15</u>		Recorded By	Diane Cham	Diane Champagne					
Weather	CLOUD	60'S			Replicate No.	N/A				
	I	Parameter			Container		Number	Preservative		
		VOCs			CG 40 ml	3 HCL				

Comments

Sampling	Personnel:	Diane Champagne	9	Signature:	Mun	Impor			
			Well Ca	sing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50) 4" = 0.65	6"=1.4	7
°C	Degrees Celsius	8	in	Inches		N/A	Not Applicable		
bmp	Below measurin	g point	mg/L	Milligrams per lite	r	NTUs	Nephelometric Turb	oidity Units	
DO	Dissolved oxyge	en	min	Minutes		ORP	Oxidation reduction	potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minu	ute	s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per o	centimeter	uS/cm	Microsiemens per c	entimeter	
gpm	Gallons per min	ute	mV	Millivolts					
			Mate	rial Code					
AG - Amber	r Glass CG	G - Clear Glass	PE - Polyethylene	PP - Poly	propylene	T - Teflon	S - Silicone	O - Other	
B = Bailer:	BP = Bladder Pump): ESP = Electric Sub	Purg mersible Pump: PP =	ing Code Peristaltic Pump: SP	=Sample Port: C ^v	V=Collection Valve:	O=Other		Version
,	B = Baller, BP = Bladder Pump, ESP = Electric Sur			· · · · · · · · · · · · · · · · · · ·		,			

Project	roject SRSNE			Site Location		Southington, CT					
Project No.	B005463	4.0000.01	900		Well ID	F	PZR-2R	Sample ID	PZR-2R-052	32011	
Sample Date	05/23/20	11			Sampled By	[Diane Champagne				
Sample Time	Begin	17:09	End	17:09	Recorded By	, [Diane Champagne				
Weather	RAIN 55				Replicate No.	. 1	N/A				
Instrument Id	entificati	on				Field	Parameters				
Water Quality M	/leter # 1		YSI 600	XL/2159		Water	r Quality Meter # 2	LaMo	otte 2020e/138	78	
Casing Material	l		N/A			Purge	Method	BP:Q	ED 17017		
Casing Diamete	er (in)		2.00			Scree	n Interval (ft bmp)	Тор	120.50	Bottom	140.50
Sounded Depth	ı (ft bmp)		144.60 ((5/26/2011)		Pump	Intake Depth (ft b	mp)	130.50		N/A
Depth to Water	(ft bmp)		6.50			Purge	e Time	Begir	n 13:43	End	17:08
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
13:43	0.10	120.00	N/A	12.19	6.90	876 uS/cm	231.70	12.10	7.17	4.60
13:53	9.93	55.00	N/A	12.16	6.91	668 uS/cm	203.60	4.70	115.00	N/A
14:05	22.27	55.00	N/A	12.94	7.26	687 uS/cm	164.00	3.03	80.10	7.80
14:15	32.30	55.00	N/A	13.28	7.42	895 uS/cm	150.50	6.68	52.80	N/A
14:25	42.22	50.00	N/A	13.72	7.53	898 uS/cm	143.30	8.08	49.50	8.80
14:35	52.37	50.00	1.25	13.54	7.51	900 uS/cm	143.00	5.27	36.80	N/A
14:46	62.95	50.00	N/A	13.56	7.52	900 uS/cm	141.10	4.46	36.80	10.45
14:55	71.87	50.00	N/A	13.63	7.50	899 uS/cm	134.40	3.77	36.00	10.91
15:05	82.48	50.00	1.60	13.53	7.50	899 uS/cm	131.20	3.30	34.60	11.35
15:15	92.65	50.00	N/A	13.36	7.47	898 uS/cm	130.00	2.91	34.20	12.30
15:25	102.12	50.00	N/A	13.30	7.42	896 uS/cm	126.90	2.61	36.50	N/A
15:35	112.27	50.00	2.00	13.41	7.39	895 uS/cm	122.30	2.38	37.00	13.80
15:46	122.95	50.00	2.25	13.56	7.34	892 uS/cm	118.70	2.23	36.30	14.19
15:55	132.60	50.00	N/A	13.53	7.31	891 uS/cm	115.40	2.13	31.90	14.80
16:05	142.57	50.00	2.60	13.53	7.25	889 uS/cm	114.50	2.08	31.90	15.37
16:15	152.17	50.00	N/A	13.44	7.20	887 uS/cm	113.90	2.08	28.90	N/A
16:28	164.92	50.00	N/A	13.52	7.17	886 uS/cm	112.00	2.09	28.90	16.71
16:36	173.37	50.00	N/A	13.64	7.15	885 uS/cm	109.40	2.11	28.20	17.00

Sampling Personnel:

Diane Champagne

Signature:

Dun Olimpyun

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyger	1	min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	9	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	te	mV	Millivolts			
			Mate	rial Code			
AG - Amber	Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	opylene	T - Teflon	S - Silicone O - Other

Purging Code

9	AR	CA	D	S
Infrastr	ucture,	enviror	men	t, buildings

Project		SRSNE	Ē			Site	Location	South	ington, CT			
Project N	No.	B00546	634.0000.0	1900		Wel	I ID	PZR-2	R	Sample ID	PZR-2R-0523207	11
Sample	Date	05/23/2	2011			San	npled By	Diane	Champagne			
Sample	Time	Begin	17:09	End	17:09	Rec	orded By	Diane	Champagne			
Weather		RAIN 5	5			Rep	licate No.	N/A				
16:45	181.	.70	50.00	3.29	13.53	7.11	885 uS	/cm	106.50	2.15	20.70	17.50
16:56	192.	.70	50.00	N/A	13.52	7.12	884 uS	/cm	103.20	2.22	20.50	18.06
17:05	202.	.32	50.00	3.75	13.51	7.09	884 uS	/cm	100.90	2.25	21.80	18.40
Collect	ted Sam	nple Cor	dition	Color	light reddisl	n-brown	Odor 1	None		Appearar	nce NA	

	Parameter	Container	Number	Preservative
	VOCs	CG 40 ml	3	HCL
Comments	*REMOVED TRANSDUCER.STATIC	WATER LEVEL 6.50. INITIAL WAT	ER LEVEL AFTER PUMP I	NSTALLATION IS

3.25.PURGED SCREEN VOLUME PRIOR TO STABILIZATION READINGS. SCREEN VOLUME REMOVED AT

Sampling	Personnel:
Camping	1 0100111101.

Diane Champagne

Signature:

Due Olimpyne

			Well Ca	asing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = 0.	65 6"=1.	47
°C	Degrees Celsiu	6	in	Inches		N/A	Not Applicable		
bmp	Below measurin	ig point	mg/L	Milligrams per lite	r	NTUs	Nephelometric	Turbidity Units	
DO	Dissolved oxyge	en	min	Minutes		ORP	Oxidation redu	ction potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per millio	'n	
ft	Feet		mL/min	Milliliters per minu	ite	s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens	per centimeter	
gpm	Gallons per min	ute	mV	Millivolts					
			Mate	rial Code					
AG - Amber	Glass CC	G - Clear Glass	PE - Polyethylene	PP - Polyp	propylene	T - Teflon	S - Silicone	O - Other	
			Pura	ina Code					Version

Project	SRSNE				Site Location	۱.	Southington, CT				
Project No.	B005463	4.0000.01	900		Well ID		TW-08B	Sample ID	TW-08B-05	252011	
Sample Date	05/25/20	11			Sampled By		Edward Cimilluca				
Sample Time	Begin	9:52	End	10:39	Recorded By	,	Edward Cimilluca				
Weather	Light rain				Replicate No.		N/A				
Instrument Ide	entificati	on				Field	l Parameters				
Water Quality M	leter # 1		YSI 600	XL/2177		Wate	er Quality Meter # 2	LaMo	otte 2020e/11	797	
Casing Material			N/A			Purg	e Method	BP:Q	ED 12368		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	21.50	Bottom	31.50
Sounded Depth	(ft bmp)		29.30 (5	;/25/2011)		Pum	p Intake Depth (ft b	mp)	29.09		29.09
Depth to Water	(ft bmp)		4.55			Purg	e Time	Begir	n 8:50	End	12:11
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:51	0.17	150.00	N/A	18.37	6.30	1.049 mS/cm	-52.30	3.38	25.00	4.55
8:55	4.18	150.00	N/A	18.70	6.30	1.056 mS/cm	-50.40	2.93	10.00	4.55
9:00	9.23	150.00	N/A	19.07	6.31	1.064 mS/cm	-41.50	1.92	6.00	4.55
9:05	14.27	150.00	N/A	19.25	6.29	1.067 mS/cm	-42.80	1.66	5.00	4.55
9:10	19.82	150.00	N/A	19.35	6.24	1.068 mS/cm	-39.70	1.51	0.00	4.55
9:15	25.02	150.00	N/A	19.13	6.14	1.060 mS/cm	-35.00	1.60	4.00	4.55
9:20	29.37	150.00	N/A	18.72	6.01	1.049 mS/cm	-31.00	1.42	4.00	4.55
9:25	34.82	150.00	N/A	18.21	5.75	1.036 mS/cm	-20.00	1.06	3.00	4.55
9:30	39.70	150.00	N/A	18.01	5.63	1.028 mS/cm	-15.10	0.98	3.00	4.55
9:35	44.20	150.00	N/A	17.83	5.55	1.023 mS/cm	-10.00	0.93	3.00	4.55
9:40	49.22	150.00	N/A	17.76	5.36	1.021 mS/cm	-3.20	0.76	3.00	4.55
9:46	55.78	150.00	N/A	17.84	5.34	1.023 mS/cm	-1.90	0.73	2.00	4.55
9:50	59.43	150.00	N/A	17.92	5.38	1.024 mS/cm	-2.10	0.71	2.00	4.55
Collect	ed Sample C	Condition	Color	clear		Odor Yes		Appearance	NA	

Sampling Personnel:

Edward Cimilluca

Signature:

EM CM

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring p	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minut	e	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minute		mV	Millivolts			
			Mater	ial Code			
AG - Amber G	Glass CG -	Clear Glass	PE - Polyethylene	PP - Polypi	ropylene	T - Teflon	S - Silicone O - Other

Purging Code

Project	SRSNE	Site Location	Southington,	СТ	
Project No.	B0054634.0000.01900	Well ID	TW-08B	Sample ID	TW-08B-05252011
Sample Date	05/25/2011	_ Sampled By	Edward Cimill	uca	
Sample Time	Begin <u>9:52</u> End <u>10:39</u>	Recorded By	Edward Cimill		
Weather	Light rain	Replicate No.	N/A		
	Parameter	Container		Number	Preservative
Alkalinit	y, Chloride, Sulfate, Nitrate-N, Nitrite-N	PP 1L		1	None
	Sulfide	PP 125 ml		1	ZA + NaOH
	Dissolved Gases	CG 40 ml		2	TSP
	тос	CG 40 ml		2	H2SO4
	Dissolved Fe & Mn	PP 125 ml		1	HNO3
	VOCs	CG 40 ml		3	HCL

Comments

Sampling Personnel:

Edward Cimilluca

Signature:

EM CM

			Well Ca	asing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3	3" = 0.37	3-1/2":= 0.50) 4" = 0.65	6"=1.	47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable		
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tu	rbidity Units	
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction	on potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per centi	meter	uS/cm	Microsiemens per	centimeter	
gpm	Gallons per minu	te	mV	Millivolts					
			Mate	rial Code					
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropy	ylene	T - Teflon	S - Silicone	O - Other	
			Purg	ing Code					Versi

95I Ser# \$; 5(003 0886

Lamette 2020 Ser#: 10416

1

Location Well Nu Field Pe Samplin Identify	n (Site/Facil mber_ <u>MW</u> rsonnel g Organizati MP	ity Name) -03 Ramolf; on C TOC	Date Date Def Jav	5/23/11			Depth ((below Pump Purgin Total	to <u>57.5</u> MP) to Intake at (Intake at (Device: Volume P	f / 82 op bot (ft. below ; (pump ty purged	2.5 of scr ttom MP) <u>67.5</u> pe) <u>Microp</u>	reen 5 2019e ID: 10346
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C €	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1090	5.97	15/20	100-	1000	10.84	0.301	6.78	188.7	1.77	5.16	
1055	5.97	1.5/2.0	100	1500	10.75	0.298	669	190.1	1.61	3.90	
1100	5.97	1.5/2.0	100	2000	10.72	0.296	6.65	191.2	1.50	2.98	
1105	5.97	15/2.6	100	2500	10.70	0.295	7.15	188-1	1. 39	2.67	
illo	5.97	1.5/20	100	3000	10.73	0.245	7.24	1727	1.34	2.65	
1115	5.97	15/2.0.	100	3500	10.79	0.296	7-29	171.8	1.26	2.63	
120	5.97	15,20	100	4000	1065	0.295	7.36	162.9	1.16	1.23	4
1125	5.97	1.5/2.6	100	4510	10.62	0.295	7.45	163.4	6.97	1.64	
1130	5.97	1.5/45	160	5000	10.63	0.296	7.5(172.0	0.88	1.52	
1135	5.97	18/2.0	100	5500	10.65	0295	7.52	170.0	0.86	1.55	· · · · ·
Stabiliza	tion Criteria	a			3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%	
1. Pump 2. μSier 3. Oxid	o dial setting nens per cm ation reducti	(for exan (same as) ion potent	nple: hertz, μmhos/cm); ial (ORP)	cycles/min, e at 25°C.	etc).	- 5.97 76.5	3	.75 *	10.16 g 3.14	109 159	

22

1 mm of

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location (Site/Facility Name) Well Number Mul-08 Date 5/2311 Field Personnel Sampling Organization Identify MP								Depth to / of screen (below MP) top bottom Pump Intake at (ft. below MP) Purging Device; (pump type) Total Volume Purged					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1140	5.97	1.5/20	100	6000	10.58	0.295	7.55	168.1	0.87	1.52			
1145	5.97	1.5/2.0	001	6500	10.63	0.295	7.58	169.1	0.84	1.48			
1150	5.97	1.5/2.0	190	7000	10.58	0.296	7,52	161.1	0.82	1.46			
1220	5.91	15/20.	-100	7500	10:37	0.299	77	159.9	0.83	2.11	Samolal		
1225	5.97	1.5%	100	8000	11.39	0.300	7.72	160.7	6.84	2.00			
1220	5.97	1.5/20	100	8500	11.37	0.300	7.72	162.4	0.85	2.58			
1240	5.97	15/20	100	9500	11.29	0.299	7.73	160.0	6.88	2.58			
1250	5.97	15/20	100	10500	11.35	0.299	7.75	177.9	0.91	2.72			
1300	5.97	1.5/2.7	100	11500	11.51	0.300	7.75	182.3	0.91	2.86			
1310	5.97	1.5	100	12500	11.56	0.300	7.75	186.4	0.91	*			
Stabiliza 1. Pump 2. µSien 3. Oxida	tion Criteria dial setting nens per cm ation reduct	a g (for exar i(same as ion potent	nple: hertz, α μmhos/cm)a ial (ORP)	2.95 get bycles/min, e t 25°C.	3% ic).	3%	±0.1	± 10 mv	10%	10%			

ollingul pitt 3.6 gal,

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM 193043 of screen Location (Site/Facility Name) Depth to Well Number MW-03 (below MP) top bottom Date Field Personnel Pump Intake at (ft. below MP) Purging Device; (pump type) Sampling Organization Total Volume Purged Identify MP ORP³ DO Turb-Comments pH Water Pump Purge Spec. Clock Cum. Temp. Cond.² °C Dial idity Time Depth Rate Volume mg/L mv below Purged µS/cm NTU 24 HR ml/min MP ft liters 1.5/2.0 70 192.6 0.91 0.300 7.77 2.35 11.60 5.97 11900 1320 1.5/2.0 3ms TO 5.97 11.58 0.300 7.78 194.6 0.92 .95 12600 1330 1.5/2.0 0.300 7.78 197,0 0.92 \$66 3.5 Dellars 11.54 70 1340 5.97 13300 3.69 galler 14000 1/2.0 0.300 7.78200. 0.93 0.63 5.97 11 54 1350 70 + . 10% $\pm 0.1 \pm 10 \text{ mv}$ 3% 3% 10% Stabilization Criteria Purge 3.6 gal

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. μSiemens per cm(same as μmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

7255 5603 08861 Tath 16416

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

PG	0-2
re l	UF /

Location Well Nu Field Per Sampling Identify	(Site/Faci mber <u>Mw-</u> rsonnel g Organizat MP	lity Name J2I B Remothing tion Of OC)Date Date M, I~x.	NE 525201	1	Depth to <u>42</u> / <u>52</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>47</u> Purging Device; (pump type) <u>17017</u> Total Volume Purged <u>23720</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
11:10	4.15	10/5	280	1400	14.07	0.594	7.17	-112.4	53,10	38.4		
11.15	415	10/5	280	2800	19.90	0.630	7.02	102.2	49.84	34.6	Example (
1120	4,15	19/8	280	4200	16.70	0.650	7.01	103.1	48.90	31.0		
1125	4,15	M15	280	5600	14,13	0.622	6.98	-100.6	51.83	25.2		
1130	4,15	10/5	280	6800	13.80	0.64	6.93	-98.4	51.31	19.4		
1135	4.15	10/5	280	8200	14.20	0.619	6.91	-98.8	50.41	13.6		
1140	4.15	10/5	280	9600	14.16	0.618	6.91	-98.7	50.40	8.8	6	
1145	4.15	10/3	280	11000	13.12	0.620	6.88	-96.6	51.05	5.29		
1150	4,15	1%	280	12400	14.16	0.618	6.86	95.9	49.03	5.42		
1155	415	19/5	280	13800	14,41	0.641	6.92	-99.8	48.66	5.36		

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. μSiemens per cm(same as μmhos/cm)at 25°C.
3. Oxidation reduction potential (ORP)

YSI: 5603 /0884

Turb Moher: 10416

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Pa 2 OF 2

Location (Site/Facility Name) <u>SRS NE</u> Well Number <u>MW-121 B</u> Date <u>OS/25/2011</u> Field Personnel <u>Remotin</u> Sampling Organization <u>OIM, IAC.</u> Identify MP <u>TOC</u>								Depth to <u>42</u> / <u>52</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>47</u> Purging Device; (pump type) <u>17017</u> Total Volume Purged <u>23720</u>					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
12.00	4.15	19:6	280	15200	16.55	0.652	6.99	701.3	47.89	4.95			
1205	4.15	19/5	280	16600	15.94	0.649	6.94	760.5	48.17	9 .23			
1210	4.15	19/5	280	18000	16.27	0.655	6.92	-98.8	45.92	5.14			
1215	4.15	10/5	280	19400	16.43	0.675	6.93	99.7	45.42	5.B			
1220	4,15	1%	280	20800	16.21	0.680	6.94	700.4	45.01	5.01			
+					4						Sampled @ 1230		
	14						17.0	•					
-			1 - 1 - P	.4							4 4 4		
Stabiliza	tion Criteri	ia	<u> </u>	1	3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%			

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. μSiemens per cm(same as μmhos/cm)at 25°C.
 3. Oxidation reduction potential (ORP)

YSI # 5 5603/08 869 Turb # 5 10416

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM PGI OF Z SRS NE 211 31 Location (Site/Facility Name) Depth to of screen Date 05 25 201 Well Number MW-121 M (below MP) bottom top Field Personnel J. Rematti Pump Intake at (ft. below MP) 26 Sampling Organization OEM, INC. Purging Device; (pump type) 913 Total Volume Purged 3747,2 Identify MP TOC ORP³ pH Water Purge DO Turb-Comments Clock Pump Cum. Temp. Spec. Cond.² Time Dial Volume °C mg/L idity Depth Rate mv 24 HR Purged µS/cm NTU below ml/min MP ft 1 liters V 1700 0850 田 0855 10/5 4.63 340 0.356 7.01 107.1 65.82 112.2 11.33 3400 10/5 90.6 5.25 340 5100 0.382 7.07 119.5 65.89 11.34 19/5 340 0900 -101.9 66.22 45.9 5.25 6800 11.38 6.391 7.10 10/5 312 340 100.2 66.70 19.2 5.25 0.391 8500 11.32 0905 10/5 0:390 99.9 7.14 66.94 17.0 340 11.28 0910 5.25 16200 10/5 99,5 67.60 0.398 15.8 11.49 7.15 0915 5.25 340 11900 10/5 105.0 11.7 5.25 340 11.29 0.394 7.17 68,08 0920 13600 10/5 7.17 -107,2 67.40 0.396 9.6 0925 5.25 340 15300 1.29 7.17 10/5 @ 398 -109.9 67.09 12.6 340 17000 11,29 0930 525 19/5 7.18-110.5 66.49 16.2 0.500 5.25 340 18700 11.29 0935 $\pm 0.1 \pm 10 \text{ mv}$ 3% 3% 10% 10% Stabilization Criteria

1. Pump dial setting (for example: hertz, cycles/min, etc).

·2. μSiemens per cm(same as μmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)
| D. | | 49.
 | WEL | L PURGIN | G-FIELD W | ATER QU | ALITY | ' MEASU | JREMEN' | IS FORM | Pg 2 0# 2 | | | |
|---|---|---|-----------------------------------|------------------------------------|-------------|---|-------|------------------------|------------|-----------------------|---------------|--|--|--|
| Location
Well Nur
Field Per
Sampling
Identify 1 | (Site/Facil
mber Mu
rsonnel
g Organizat
MP | lity Name
) - 121
S. Remol
ion C |) SRS
M Date
Ti
DEM, Inc | NE
05/25/2 | ?øu | Depth to <u>2(/ 3/</u> of screen
(below MP) top bottom
Pump Intake at (ft. below MP) <u>26'</u>
Purging Device; (pump type) <u>913</u>
Total Volume Purged <u>3/4/20</u> | | | | | | | | |
| Clock
Time
24 HR | Water
Depth
below
MP ft | Pump
Dial ¹ | Purge
Rate
ml/min | Cum.
Volume
Purged
liters | Temp.
°C | Spec.
Cond. ²
µS/cm | pH | ORP ³
mv | DO
mg/L | Turb-
idity
NTU | Comments | | | |
| 0940 | 5.25 | 19/5 | 20400 | 340 | 11.34 | 6.405 | 7.19 | -111.1 | 65.86 | 19.6 | | | | |
| 0945 | 5.25 | 10/5 | 22100 | 340 | 11:47 | 0.409 | 7,20 | 7113 | 65.81 | 20.1 | | | | |
| 0950 | 5.25 | 19/5 | 23800 | 340 | 11.51 | 0.411 | 7.21 | THQ 3 | 65.82 | 20.6 | | | | |
| 0955 | 5.25 | 10/5 | 25500 | 340 | 11.44 | 0.411 | 7.22 | 706.0 | 65.25 | 21.6 | | | | |
| 1000 | 5.25 | 19/5 | 27200 | 340 | 11.84 | 0,414 | 7.22 | 106.8 | 64.26 | 18.3 | | | | |
| 1005 | 5.25 | 10/5 | 28900 | 340 | 11.33 | 0.397 | 7.23 | 110.8 | 64,83 | 18.9 | | | | |
| 10:000 | 5.25 | 19/5 | 30600 | 340 | 11.21 | 0.397 | 7.23 | -110.2 | 64.95 | 19.6 | ÷ | | | |
| | | | 6.000 | | 122. | | | | | | Sandar @ 1020 | | | |
| | | | 1 | 10 | | 1 | 1.3 | | | | 1.03 | | | |
| 1.7 | | | 4 | | (* | | | | | 3 - | | | | |
| Stabiliza | tion Criteri | a | <u> </u> | 1 | 3% | 3% | ±0.1 | ± 10 mv | 10% | 10% | | | | |

D

451 #'S 5603/ 68861 10416 Torb # :

1		-	WEL	L PURGINO	G-FIELD W	ATER QU	JALITY	MEASU	JREMEN'	TS FORM	PG loF
Location Well Nu Field Per Samplin Identify	(Site/Faci. mber <u>M(U</u> rsonnel g Organizat MP	lity Name - 20 9 Remath ion Toc)SRS Date_@ M.I.NC	NE 15 26 11			Depth (below Pump Purgin Total	to <u> </u> MP) to Intake at Intake at Volume P	g / 3 op bo (ft. below (pump ty 'urged	8 of scr ttom MP) 29 /pe) /7.46	reen 2 2
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min 1400	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0935	20.83	19/5	2160	800	1	P. 2.	- 1	2			
0940	20.83	1多%	280	2200	10.96	0343	5.54	2483	42.65	37.4	
0945	20.83	15%	286	3600	10.70	0337	5.61	238.6	41.76	39.9	
0950	261 83	188%	280	5600	10.72	0.336	5.80	221.5	41.26	23.2	
6955	26.83	****	280	6400	10.71	6.335	5.82	226.2	41.06	17.9	
1000	20.03	10%	280	8000	10.70	0.335	5.86	215.6	40.86	12.0	
1065	20.83	Vie	280	9400	10.85	0336	5.90	211.8	40.89	6.09	
1010	20.83	\$6	280	10800	10.70	0.335	5.93	209.5	40.91	3 97	· · · · · · · · · · · · · · · · · · ·
1015	20.83	9/6	280	12200	10.71	0.356	5.95	208.2	48.96	4.19	
1020	26.83	9%	28.6	13660	10.73	0.335	5.97	207.4	41.23	1.84	3.59 Bol Raged.
Stabiliza	tion Criteria	a			3%	3%	±0.1	± 10 mv	10%	10%	Sunched \$ 1030

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

1 1 -

Location Well Nu Field Per Sampling Identify	Gite/Fac mber rsonnel g Organiza MP	ility Name WW Ze Pendi tion OI	e) <u>MW-2</u> 97BDate MJTWC,	89 B 5/29/1			Depth to <u>12</u> / <u>15</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>13.5</u> Purging Device; (pump type) <u>12.368</u> Total Volume Purged						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
	1000	11.1	12						1.00		14.8-17-1=WC		
			11		1								
			1		1.1	1		1	1		Bard & Scripted		
		1.7.1	1		1	1		1	1		@ 1135		
1.	1		1			1000							
	11	1.	1		1								
-			1.000		1			TT-II.	1.2.2.				
1	1	1	12.	1	0.000		1.4	10.00	1.11				
			1	1		5	1	-					
	1.01		-			1	1.1.1			1			
Stabiliza	tion Criter	ia	1		3%	3%	±0.1	± 10 mv	10%	10%	1		

111

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

951 #'s 5603/08861 Turb #'s; 10416

Location Well Nu Field Per Sampling Identify	(Site/Faci mber <u>M</u> rsonne <u>5</u> R g Organizat MP <u>TO</u>	lity Name $\omega - 50$ $\epsilon_{m} H_{\ell}$ ion $O \notin I$ C) SPSAE Z Date (M, I.ve.	35/24/2611			Depth to <u>15</u> / <u>35</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>25</u> Purging Device; (pump type) <u>10219</u> Total Volume Purged <u>15660</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1235	5.80	1/4	100	1300	1499	0,566	6.78	-117.4	13.21	310	1l= 0.264172052		
1230	5.04	1/4	146	2000	1504	0.567	6.78	-120.5	13.33	261			
1235	5.04	124	140	2700	1496	0.50	6.78	126.9	13.91	235	1		
1240	5.04	124	146	3400	1466	0.557	6.78	732.3	14.06	216	1		
1245	5.04	11/4	140	410.0	1455	6.554	6.78	134.8	14.14	198			
1250	5.04	1/4	140	4800	1423	0.549	6.78	-/35.6	14.16	174			
1255	504	1/4	140	5500	1496	0.550	6.80	-137.6	13,79	165			
1300	5.04	11/4	140	6200	1508	6557	6.81	-1367	13.81	161			
1305	5.04	11/4	140	6900	14.96	0556	6.79	-138.2	14,17	160	1		
1310	5.64	11/4	140	7600	12.99	0.532	6.79	-188.1	1401	160	2 Sallons @ 7600ml,		

4-11

#5 5603/08861 YSI TURB HS 10416

ps R. Cd

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nun Field Pers Sampling Identify N	(Site/Faci nber <u>M</u> は- sonnel organizat MP	lity Name - 502 - Remoth ion(10 C)SRS Datee D&M,Iwc.	NE 55/24/2011			Depth to <u>15</u> / <u>35</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>25</u> Purging Device; (pump type) <u>10219</u> Total Volume Purged <u>15660</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1315	5.04	1/4	140	8300	13.05	0.530	6.80	138.9	13.98	158	12=0.264/72052		
1.320	5.04	11/24	14.0	9000	12.95	0.528	6.80	-138.8	14.06	133			
1325	5.04	11/4	140	9700-	12.99	0.528	6.80	-136.4	13.97	92.8			
1330	5.04	11/4.	140	10400	13.19	0.532	6.80	- 134.7	13,92	90.1			
1335	5.04	11/4	140	11100	14.02	0,540	6.81	-124.8	13.56	87.6			
1.340	5.04	1/4 .	740	11800	13.88	0.539	6.81	122.4	13.62	84.3			
1345	5.04	1/4	140	12500	14.15	0.543	6.81	119.9	13.55	87-1	н. Э		
1350	5.64	1/4	140	13200	14.05	0.537	6.81	7121.6	13.71	90.0	MS/MSD Collected		
1355	5.64	11/4	140	13900	13.86	0.533	6.80	-1250	13.64	87.8	3.67 Spl. Royed		
		[]							£	-	Sampled @ 1405		
Stabilizat	tion Criteri	9			3%	3%	±0.1	± 10 mv	10%	10%			

<i>b</i>		**1	L P WE	YSI: 1 Wand: 8 amotte: 90 Unp: 140 LL PURGIN	0767 874 117 G-FIELD V	VATER QU	JALITY	ř MEASI	JREMEN) of T	3
Location Well Nu Field Pe Samplin Identify	n (Site/Fac umber Mu- rsonnel <u>c</u> g Organiza MP <u>7</u> 0	ility Name 701 OR 372-10- tionle	Date	5/26/12			Depth (below Pump Purgir Total	to <u>93.</u> MP) t Intake at ng Device Volume I	<u>3 / /O</u> op bo (ft. below ; (pump t Purged _/	7, 8 of sc ottom / MP) /00 . ypc) 51≤d /500	steen S Ider
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1930	495	10/5	100	500	12.72	0,274	7.83	102.5	9.21	1.55	
1935	15.40	ints	100	1000	12.48	0.240	7.82	104.7	8.66	1.42	
0940	15.43	10/5	100	1500	12.42	0.220	7.64	82.5	4.73	5.45	
2945	15,43	10/5.	100	2000	12.49	0.219	7.40	51.1	3.77	15.4	
950	15.43	10/5	100	2500	12.48	0.211	7.69	4,53,5	4.47	10,11	
0955	15.43	in/s	100	3000	12.71	0.210	2.72	58.7	4.70	7,98	
000	15.43	10/5	100	3500	12.33	6.209	7.80	67.0	5.24	6.99	*
005	15.43	10/5	100	4000	12.59	0,210	7.80	71.5	5.36	5.6)	
0/0	15.43	10/5	1015	4500 -	12.25	0,210	7.81	75.5	5.64	4.84	1
210	15 42	INC	100	2000	12.21	0.214	7.81	79.9	5.52	4.84	· · · · ·

of 3 2

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Pe Samplin Identify	n (Site/Facil mber <u>mw</u> - rsonnel <u>6</u> g Organizat MP 70	lity Name 70) 0 2 ion <u>6</u>) SRS Date	₩ ¥	25 5/24	Z.	Depth (below Pump Purgir Total	to <u>13.3</u> MP) to Intake at ng Device Volume P	/ 15 op bo (fl. below ; (pump t ; urged	7.8 of sci ottom MP)_100 ype)	reen .56
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1020	15.43	10/5	100	5500	12.61	0.218	7.85	84.4	5.85	4.44	
1025	15.43	20/5	100	6000	12.37	0.220	7.87	861	5.97	4.29	
1030	15.43	10/5	100	6500	12.58	0.221	7.87	88.1	5.99	4.29	
1035	15.43	10/5.	100	7000	12.25	6.224	7.88	90.5	6,04	4.39	
1640	K.43	10/5	100	7500	12.26	0.225	7.98	94.0	6.03	5.21	
1045	15.43	10/5	100	8000	12.31	0.226	8.00	94.9	6.65	4.31	
1050	15.43	10/5	104	8500	12.25	0.225	\$6.05	96.6	6.10	4.10	
1055	K43	10/5	100	9000	12.46	0.229	8.05	97.5	6.08	4.42	
1100	15.43	10/5	100	9500	12.97	0.233	8.05	97.6	6.64	4.23	volume purged
1105	15.43	10/5	100	10000	12.95	0.234	8.04	98.7	6.10	4.50	
Stabiliz	ation Criteri	a			3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%	

3 of 3

+50

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Per Samplin Identify	n (Site/Faci mber <u>My-</u> rsonnel <u>A</u> g Organiza MP <u>J</u>	ility Name 701 O.R. Can class tion_class	e) <u>SRS</u> Date P	s/26/is			Depth to 93.3 /107.8 of screen (below MP) top bottom Pump Intake at (ft. below MP) 100.8 Purging Device; (pump type) bladdur Total Volume Purged					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1110	1543	is/s	100	10500	12.92	0,235	8.66	99.J	6.63	4.08		
115	15.43	10/5	100	11000	12.91	0.236	8.05	100.0	6.10	4,50	stable	
1120							11				Sample	
	1		-		1.1							
· ·		50.00				147						
			1.			1	17-3		11			
			1.00		1000	1	1		1		+	
						11 11 1	100		1-1-1	1		
			1.0							1		
		1			1			10 - 7	1.00			
Stabiliza	ation Criter	ia			3%	3%	±0.1	± 10 mv	10%	10%		

YSI #'\$ 5603/ 08861 Lamothe 2020e : Pump # : DY

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Num Field Pers Sampling Identify N	(Site/Facil nber <u>MW</u> sonnel <u>S.</u> Organizati AP <u>To</u>	ity Name) - 704 [Remeti on0[] -	SRSN D Date S M, Iwc.	E 23 11]	Depth to <u>53</u> / <u>63</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>58</u> Purging Device; (pump type) <u>blader Pump</u> . Total Volume Purged <u>28120</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm ✓	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1555	\$.37	10/5	400	400%	10.54	0.405	7.27	-5.7	6.18	5.26			
1600	5.37	10/5	400	6000	18.61	0.409	7.29	23.9	4.67	6.66			
1685	5.37	10/5	400	8000	10.58	\$.410	7.30	-30.6	3.93	2.86			
1610	5.37	195	400	10000	10.52	0.410	7.30	-40.5	3.54	2.54			
1615	5.37	10/5	400	12000	10.50	8,410	7.31	-62.5	2.57	4.37			
1620	5.37	10/5	400	14000	10.54	05,410	7.31	-66.3	2.45	3.56			
1625	5.37	105	400	16000	10.53	0.410	7.31	-66.7	2.38	3.42	w		
1630	5.37	10/5	400	18000	10.52	0,410	7.3	- 72.4	2.27	3.73			
1635	5.37	105	400.	2000							Sampled @ 1635		
1055 5.37 1015 400 22000													

Stabilization Criteria

YSI : 8874 wand sande: 10267 Lamotte: 13873

of 4 Pump 10 : 12368

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Pe Samplin Identify	n (Site/Faci umber <u>Mus</u> ersonnel <u>Ac</u> ng Organizat MP <u>Top</u>	lity Name -704 D Color do of rise) <u>SRSNE</u> R <u>Date</u> P.	5/22/11			Depth to $102 / 137$ of screen (below MP) top bottom Pump Intake at (ft. below MP) 117 Purging Device; (pump type) Brader Total Volume Purged 19.5 L = 5.15 gallons							
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments			
1100)	33.21	8/7	100	500	10.89	0.565	7.39	165.5	2.81	172		(Lie)		
1105	33.42	1	(1)2	1000	10.99	0.525	7.43	143.0	2.36	222				
1110	33.63	1	100	1500	10.76	0.522	7.47	115.2	1.68	167				
1115	54.13	1	160	2000	10.74	0.519	7.49	86.3	1.20	184	dialed back pressure to	reduce draw		
1120	34.75	5/10	50	2250	11.26	0:525	7.49	78.3	1.06	237		0000		
1128	35.02	1	SD	SCUDE	11.14	0.531	7.50	72.1	1.05	223				
1130	35.24	1	50	2750	11.02	0.527	7.50	63.7	0.94	217				
1135	25.3/	1	50	3000	10.97	0.525	7.52	59.7	0.9	227	22			
1140	35.45	12.01	50	3250	10.94	0.532	7.52	57.2	0.85	219				
145	35.48		\$ 50	3500	10.97	0.538	7.32	57.1	0.78	260				
Stabiliz	ation Criter	ia			3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%				

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

2

of

30

4.8

0.16 gallons/ff

gallons to

Location Well Nu Field Per Sampling Identify	(Site/Faci mber <u>nw</u> - rsonnel <u>K</u> g Organizat MP_ <u>T</u> C	lity Nam 104 DA Candon tion_de	e) <u>SRSNE</u> Date P Max	5/23/4			Depth to 142 /132 of screen (below MP) top bottom Pump Intake at (ft. below MP) 117 Purging Device; (pump type) <u>biadder</u> Total Volume Purged <u>19.5</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1150	35.48	5/10	3750	3750	10.48	0.544	7.53	60.9	0.75	226			
1155	5.49	sID	50	4000	10.95	0.545	7.53	62.1	0.76	220			
1200	35.48	5/10	50	4250	10.96	0.538	7.53	56.3	0.06	188			
1205	35.49	5/10.	50	4500	11.00	0.536	7.52	58.1	0.66	179			
1215	35.33	3/10	50	5000	11.22	0,509	7.51	64.2	0.65	154	change to 10 minutes 6,		
1225	35.27	5/10	50	5500	11.32	0.498	7.51	68.4	0.64	146	each reading.		
1226	35. 03	Sis	50	600	11.31.	0.486	7.47	72.1	0.67	107.9			
12#5	35.07	5/10	100	7000	11.94	0,492	Ting	80:6	0,78	129	increased pressive to		
1255	34.95	5/10	100	8000	11.21	0.477	7.48	62.2	0.55	95.6			
1302	34.94	5/10	100	-9000	11.25	0.478	7.48	56.4	0.60	82.8			
Stabiliza	ation Criter	ia			3%	3%	±0.1	± 10 mv	10%	10%			

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

3 D pump: 12368

4

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Pe Samplin Identify	n (Site/Facil mber <u>mu</u> - rsonnel <u>B</u> g Organizati MP 70	ity Name 784 04 condon ion_de) SKSNE Date Relation	<u>\$ 23/11</u>			Depth to <u>102</u> <u>132</u> of screen (below MP) top bottom Pump Intake at (fl. below MP) <u>17</u> Purging Device; (pump type) <u>bladder</u> Total Volume Purged <u>19.5</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1315	34.85	5/10	100	10000	11.29	0.473	7.47	53.8	0.53	65.1			
1325	34.15	5/10	100	11000	11.33	0.473	7.47	52.2	0.52	58.3			
1335	34.63	5/10	100	12000	11,65	0.477	7.47	47.6	0.57	57.1			
1345	34.58	5/10	100	13000	11.60	0.476	2.47	49.2	0.55	54.8			
1355	34.52	5/10	100	14000	11.59	6.474	7.47	51.5	0.53	44.2			
ILINS	24.55	5/10	100	15000	11.60	6.472	7.47	50.9	0.54	40.0			
1410	24.43	5/10	100	16000	11.52	0.467	7.46	48.3	0.69	40.4			
1005	34.32	51,0	UUU	17000	11.32	6.465	7.47	45.9	0.55	37.7	change to Smith interests		
14211	24.27	5/10	100	17500	11.54	0.466	7.47	44.0	0.59	40.7	1		
1435	34,30	5/101	100	15000	11.43	0.465	7.45	401	0.55	34,5	1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Stabiliz	ation Criteri	a			3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%			

12368

of 4

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Field Per Sampling Identify l	sonnel g Organizat MP	ion de	nor				Pump Purgin Total	Intake at g Device Volume P	(ft. below ; (pump ty Purged _/	MP) // , pe) bladd 9.5	/		
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged líters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1440	34.24	5/10	100	18500	11.45	0.463	7.45	31.4	0.49	34.0	0		
1445	34.14	Fio	100	19000	11.46	0.463	7.44	29.2	0.47	32.4	1		
1450	34.11	5/10	100	19500	11.47	0.463	7.44	28.6	0.47	33.4			
1455		-								_	Sample	Parameters	the
			11	1.000	1	1.2		1.0					
			1				· ·	-					-
-					-	-		-					
				-	-						+		-
	1	-		-		-			1	-			1 -

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

PUMP: MUD YS1 : 8874 10267 Lamotte: 9917

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Pe Samplin Identify	n (Site/Faci mber <u>Mu</u> - rsonnel <u>B</u> g Organizat MP <u>T</u> DK	lity Name 704 M randan tion_de	e) <u>Sasnie</u> Date P Meximic	5/25/21			Depth (below Pump Purgir Total	to <u>37</u> MP) to Intake at ng Device Volume P	/ Y op bo (ft. below ; (pump t purged	ttom MP) 42 ype) mitter (90)	neen D b L
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0930	4.52	1/2	90	450	13.22	0,470	7.51	-36.0	2.26	17.8	
0935	4.52	1/2	90	900	12.87	0,464	7.49	-39.7	1.82	6.09	
0940	4.52	1/2	90	1350	12.77	0,462	7.49	-39.8	1.38	3.68	
0945	4.52	1/2	90	1800	12.70	0.461	7.49	-43.8	1.23	2.90	
0950	4.52	1/2	95	2250	12.77	0:461	7.47	-49.5	1.03	5.22	
0955	4.52	1/2	90	2700	12.85	6,460	7,47	- 55.4	0.97	4.90	
1000	4.52	1/2	90	3150	12.83	0.460	7.47	- 55.5	0.93	5-11	÷
1205	4.52	1/2	90	3500	12.86	6.460	7.4	-56.0	6.92	4.12	
1010	4.52	1/2	90	3950	12.86	0,460	7.47	- 55.9	0.92	3.97	<u></u>
1015	4.52	1/2	90	4400	12.86	0,460	7.47	-56.2	0,93	3.66	

Stabilization Criteria 1020

1020 sande MSDS

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

ľ٧	itial 0	Tw was	. Oʻ Wei	L PURGING	Sond Pur CrowH	- 8 102 - 8874 - P. 103 - 2: 991 VATER QU	د م کا ۹ JALITY	" MEASU	IREMEN	TS FORM	1 of 2
Location Well Nu Field Pe Samplin Identify	n (Site/Fac mber <u>Mal</u> rsonnel g Organiza MP_70	ility Name -706 s Breads- thion_de	e) F 56 Date : max		5/25/11		Depth (below Pump Purgin Total	to () MP) to Intake at ng Device Volume H	5 / 12 p bo (ft. below ; (pump ty purged	<u>5</u> of sc ttom MP) <u>121,</u> ype) <u>6144</u>	reen
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1250	0.3	10/5	200	1000	13.96	1.647	8.95	6.1	2.18	37.7	
1255	0.3	N/s	200	2000	1343	1.648	8.98	-1.0	2.0)	37.7	
1300	EO	10/5	200	3000	13.25	1,654	9.00	=9.7	1.62	34.6	
1305	0.8	10/5.	200	4000	13.25	1.607	9.00	-15.3	Britt	28.3	
1310	0.8	10/5	205	5000	13.03	1,478	9.00	-3.1	2.27	13.7	
1315	1.76	10/5	200	6000	12.55	1.396	8.99	13.4	2.66	193	
1320	1.84	10/5	200	7000	12.75	1.406	8.99	16.3	1.38	15.5	1
1325	2.11	145	200 150	8007750	12,77	1.396	9.97	17.5	0.53	8.97	dialed pressure down due
1330	2.31	10/5	150	8500	13.03	1.399	8.99	20.1	0.57	8.55	draw down.
1335	2.35	10/5	150	9250	13.05	1.378	8.99 ±0.1	22.8 ± 10 my	0.57	7.05	

4			Sor Wei WEI	p 102 p 102 the 9 L PURGIN	コムフ 874 119 71つ G-FIELD W	ATER QU	JALITY	' MEASU	JREMEN	2 TS FORM	of Z
Location Well Nu Field Pe Samplin Identify	n (Site/Fac imber <u>Mw</u> - rsonnel_B g Organiza MP_TOP	ility Name 706 OK Madan tion_de	e) SRSN Date P	E 5[25/11			Depth ((below Pump Purgin Total	to <u>116.</u> MP) to Intake at Intake at Device Volume H	<u>5 / 12 /</u> op bo (ft. below ; (pump t Purged	5 of so ottom MP) / 2 1 ype) 6/-44	ster s ml
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1340	2.35	10/5-	150	10000	13:08	1.382	8.97	24.8	0.63	7.56	
345	2.35	10/5	150	10750	13.03	1.373	8.79	25.5	0.61	8.06	
1350	2.37	10/5	150	11500	13.11	1.377	8.98	25.1	0.59	7.82	
1375 -											Stable. Jample
		1					-				
					1						
Stabiliza	ation Criter	ia			3%	3%	±0.1	± 10 mv	10%	10%	

YSI Seriel #5 5003/09801 TURB #: 10416

Location Well Nu Field Per Sampling	(Site/Faci mber 70 sonnel J g Organizat	lity Name 7 - DR - REMOTI) <u>SRSNE</u> Date <u>05</u> I M, Inc	24]11			Depth ((below Pump Purgin	MP) to Intake at g Device	2' / /· op bo (ft. below ; (pump t	72 of st ttom MP) / 7 ype)/70/	PG 1 OF 2_ reen 7_
Identify					-		Total	volume P	urgea	20870	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0905	5.94	8/7	250	3750	11.82	0.691	6.85	759.2	11.88	86.5	
0910	5.94	8/7	250	5000	11.28	0.695	6.95	-200.9	10.22	53.3	
6915	5.94	8/7	250	62.50	11.0	0.674	7.36	244.0	9.99	53.0	
0920	5.94	8/7.	250	7500	18.98	0.677	7.41	248.1	9.96	57.7	
6925	5.94	8/7	250	8750	10.96	0.722	7.48	252.8	10.13	58.7	1
0930	5.94	8/7	250	10.000	10.91	0.795	7.53	272.7	10.16	56.0	
0935	5.94	8/7	250	11.250	10.34	0.864	7.59	276.0	10.43	52.8	1
0940	5.94	8/7	250	12,500	10.85	0,917	7.64	275.8	10.64	52.8	
0945	5.94	8/7	250	13,750	10.96	0.915	7.67	270.2	10.96	47.0	
0950	5.94	8/7	250	15,000	10.99	0855	7.74	259.5	11.49	49.9	

WELT DEDODIO PIPI D WATED OUAT PEU

Stabilization Criteria

MEACIDEM (ENTRE DODA

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. μSiemens per cm(same as μmhos/cm)at 25°C.
 3. Oxidation reduction potential (ORP)

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

					_		_			-	PG 2 OF 2
Location Well Nur Field Per Sampling Identify I	(Site/Faci mber 70) sonnel g Organiza MP TO	ility Namo 7 - DR J. REMO tion O	E) SRSA Date Date MI EM, INC.)E 05/24/2011			Depth (below Pump Purgir Total	to <u>/(</u> MP) to Intake at ig Device Volume P	pp bo (ft. below (pump ty urged 2	72 of sci ttom MP) 17 (pe) 170 (8870)	reen 7 V7
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
0755	5.94	8/7	250	16250	10.82	0.820	7.78	247.6	11.97	46.1	12=0.264/72052.2
1000	5.94	8/7	250	17500	10.79	0,736	7.79	243.8	12.42	50.9	
1005	5.94	8/2	250	18750	10.89	6.683	7.81	236.1	12.75	51.6	
1010	5.94	8/2	250	20000	10.83	6.659	7.82	-230.4	12,83	49.6	- 5,28 Allers as of no
1015	5.94	8/2	250	21250	18.99	0.605	7.81	213.3	12.79	47.9	
1020	5.94	8/7	250	22500	11.04	0.596	782	-210.3	14.5.3	63.3	
1025	5.94	8/7	250	23750	11.02	0.586	7.81	-202.4	14.69	45.2	
1030	0 5.94 8/7 250 25060 10.9		10.99	0.580	7.80	200.3	14.77	44.0			
1035	594	8/7	250	26250	11.02	0.578	7.80	-197.3	14.77	44.0	Samplel@ 1045
		1		5 ·	the second second						

Stabilization Criteria

3% $\pm 0.1 \pm 10 \text{ mv}$

3%

10% 10%

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

YSI #\$ 5603/08861 Ture # : 10416

Location Well Nur Field Per Sampling Identify	(Site/Faci mber <u>Mu</u> rsonnel g Organizat MP_T.0.	lity Name 907-W J. REM ion 0 C.) SRS) Date (OTTI M, INC.	NE 35 24 20	11		Depth t (below Pump Purgin Total	MP) to Intake at (g Device; Volume P	/ 38 p bot (ft. below (pump ty urged	MP) 33 mp) 7490 18/60	101 of & 1
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1510	5.18	19/5	360	1800	12.20	0.935	6.81	96.5	12.82	3946	12=0.264172052
1515	5.18	19/5	360	3600	11.75	0.932	6.83	7/03.5	12.70	1278	
1520	5.18	10/5	360	5400	11.34	0.909	6.85	707.6	12.31	865	
1525	5.18	10/5	360	7200	10.98	0.896	6.86	111.2	12.41	756	
1530	5.18	10/5	360	9000	10.74	0.888	6.87	113.7	13,45	610	
1535	5.18	10/5	360	10800	10.66	0.886	6.87	-114.6	12.26	356	
1540	5,18	10/5	360	12600	10.64	0.892	6.88	-115.5	12.78	369	1
1545	5.18	10/5	360	14400	10.67	0.884	6.88	-1/5.8	12.47	354	1
1550	5.18	19/5	360	16200	10.70	0.891	6.88	7115.7	12.02	342	
1555	5.18	10/5	360	18000	10.87	0.891	6.87	-115.6	11.87	329	Sample @ 1685

YSII 5603/05861 Turb: 10416

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

												TG LOS L	
Location Well Nur Field Per Sampling Identify I	(Site/Faci mber_ P- sonnel R g Organizat MP	lity Name 12 mol(i ion TOC) <u>SRS-1</u> Date <u>O</u> FM, INC	ve 5/25/11			Depth 1 (below Pump Purgin Total	to 9 MP) to Intake at (ag Device; Volume P	pp bot (ft. below (pump ty urged	4 of scr ttom MP) //.9 pe) 9/3 27600	reen 5'		
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1350	6.18	10/5	160	1600	13.21	0.338	6.38	76.3	42.90	130			
1355	6.28	10/5	160	2400	13.17	0.333	6.28	99.9	41.62	107.1			
1400	6.18	9/0	380	3200	13.86	0.335	625	124.3	40.76	99.5			
1405	6.18	9/6	320	-4500	11.83	0.318	6.21	137.7	40.93	104.4			
1410	6.18	9/6	320	6,400	12.80	0,323	6.20	135.8	39.67	86.4	-		
1915	6.18	9/4	320	5000	12.41	0.321	6.20	133,5	39.44	76.9			
1420	6.18	9/6	320	9600	12.26	6.321	6.19	131,5	38.84	92.5		w)	
1425	6.18	9/6	320	11200	12.76	0.323	6.23	127.9	37.75	118.0		. · · · ·	
1430	6.18	9/6	328	12800	13.29	0324	6.29	1173	37.84	102.4	1912		
1435	6.18	9/6	320	1940	13.37	6.324	6.23	121.2	37.72	84.8		e e	
Stabiliza	tion Criteri	a			3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%			

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

¢.		44	WEL	L PURGING	FIELD W	(ATER QU	ALIIY	MĘASU	REMEN	IS FORM	P6 2 OF 2
Location Well Nur Field Per Sampling Identify l	(Site/Faci mber sonnel g Organizat MP	lity Name P-/2 Remoth ion C) Date D&M	- NE 05/25/20	11		Depth t (below Pump Purgin Total	o 4 MP) to Intake at (g Device; Volume P	p bot ft. below (pump ty urged	4 of scr tom MP)_// pe)9/.3/ 2.7.(600	reen 5' 2
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters/600	Temp. °C	Spec. Cond. ² μS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1440	6.18	96	320	16000	13.66	0.328	6.24	123.9	37.91	86.6	
1495	6.18	26	320	17600	13.49	0.325	6.23	126.2	37.84	107.4	Re - Celibrated Torb
1450	6.18	9/6	320	19200	13.54	0.325	6.72	128:1	37.82	89.7	
1455	6.18	9/6	320	20800	12.94	0.322	6.22	128.2	38.28	92.1	
15000	1.18	9/10	370	22460	12.63	0.321	6.20	129.3	37.48	90.8	
1505	6.18	ev.	376	24,000	12.56	0.319	6.22	125.4	37.40	87.7	
1985	0.10	16	060	SIL	-		127		1.1	12 12 1	
			1	1						1.51	Somales @ 1510
	-16		1	÷		1.					
-	-		an sex	4				sê.			
Stabiliza	tion Criteri	a		<u> </u>	3%	3%	±0.1	$\pm 10 \text{ mv}$	10%	10%	

initiat depth = 0.6

Sonde: 10267 wand: 8874 pump ! 14967

Lanoth: 9917

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Location Well Nu Field Pe Samplin Identify	n (Site/Fac umber <u>P-1</u> rsonnel_B g Organiza MP_T0	ility Name D) B Contain tion de	Date Date	5/24/12			Depth ((below) Pump Purgin Total	MP) to MP) to Intake at ng Device Volume P	/ 40 op bo (ft. below ; (pump ty Purged	4 of sc ttom MP) 3 9 /pe) blect	dec
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1050	0.8	10/5	400	400	12.14	0.362	7.02	58.1	0.74	37.1	
IUSS	018	10/5	400	2000	12.03	0360	7.8	30.2	0.61	33.5	
1100	0.8	11/5	400	4000	12.01	0.351	6.89	8.1	0.66	25.5	
1105	0.8	10/5	400	6000	12.10	0.356	6.88	-9.7	0.61	24.8	
ilio	0.8	10/5	404	6008	12.20	6:355	6.91	-31.9	0.71	27.4	
UNE	0.8	10/5	400	1XDD4	11.86	0.350	6.97	-50.9	0.73	23.1	
1120	0.8	10/5	200	12000	1192	0.349	7.00	-53.6	0.72	22.9	÷
1125	0.8	10/5	400	14000	11.93	0.349	7.00	-55.6	6.69	21.9	
1120	0.8	10/5	400	16000	11.94	0-348	7.01	-54.6	0.70	22.1	
1.50		1.12			-			1			sample
Stabiliz	ation Criter	ria			3%	3%	±0.1	± 10 mv	10%	10%	

initial depth : 2.4"

Sonch: 10267 Wand: 9874 Pump: 9131 Lamotte: 9917

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

of

Well Nu Field Pe Samplin Identify	mber <u>P-1</u> rsonnel <u>A</u> g Organiza MP0	sic <u>Soula</u> ation_de	DateP	5/24/11		-	(below Pump Purgin Total	MP) to Intake at g Device Volume P	op bo (ft. below ; (pump t purged	ttom MP) 8 ype) bledd	da/
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1240	3.48	8/4	200	205	11.26	0.261	7.45	169.0	1.97	100,1	
1245	3.81	8/4	COS	1200	11.05	0.257	7,41	163 6	1.75	80.3	
1250	3.93	64	200	2200	10,71	0.349	7.39	159.56	2.00	67.2	
1255	4.00	8/4.	200	3200	10.68	0348	7.30	153.5	1.59	69.5	
1300	4.00	8/4	205	4200	10,60	0.348	7,30	150,1	2.01	55.6	
1305	4.00	84	200	5200	10.50	D.349	7.31	144.0	1.69	48,1	
1310	4.00	\$4	250	6700	10.32	0,256	2.30	137.7	2.13	55.4	· ·
1315	4.00	8/4	200	7200	10.31	0.257	7.29	136.6	2.16	42.9	
1320	4.00	8/4	200	8200	10.53	0.251	7.29	135.6	2.19	42.0	0
1325	4,00	8/4	200	9200	10.60	0.261	7.29	133.9	2.16	32.5	

1330 SAMPLET 1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Low-Flow Groundwater Sampling Log

Project	SRSNE			Site Location	۱.	Southington, CT					
Project No.	B005463	4.0000.019	00		Well ID		MW-707DR	Sample ID	MW-707DR-	09272011	
Sample Date	09/27/20	11			Sampled By		Michael Skowronel	ĸ			
Sample Time	Begin	13:40	End	13:43	Recorded By	,	Michael Skowronel	ĸ			
Weather	Cool, Hu	mid, Muggy		Replicate No		N/A					
Instrument Id	strument Identification					Field	d Parameters				
Water Quality M	Nater Quality Meter # 1		YSI 600	XL/02j0792aj p;41	35	Wate	er Quality Meter # 2	LaMo	otte 2020e/136	6-3811p;1	8832
Casing Material	l	_	N/A			Purg	e Method	BP:Q	ED 14091		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	162.00	Bottom	192.00
Sounded Depth (ft bmp) 194.76 (9/27/2		(9/27/2011)		Pum	p Intake Depth (ft b	mp)	177.00		177.00		
Depth to Water (ft bmp) 9.26				Purg	e Time	Begin	9:48	End	13:44		
PID Reading(pp	ID Reading(ppm) 0.00										

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:57	9.67	100.00	0.13	12.75	7.11	0.581 mS/cm	-196.50	2.10	79.30	9.30
10:02	14.50	100.00	0.26	12.61	7.34	1.911 mS/cm	-241.60	0.74	70.20	9.31
10:07	19.57	100.00	0.39	14.54	7.46	2.133 mS/cm	-253.60	0.79	69.00	9.33
10:12	24.55	100.00	0.52	15.56	7.50	2.269 mS/cm	-262.80	0.52	79.00	9.35
10:18	30.03	100.00	0.65	16.61	7.51	2.322 mS/cm	-269.00	0.47	81.20	9.38
10:23	35.92	100.00	0.78	17.91	7.53	2.335 mS/cm	-269.70	0.57	80.30	9.40
10:29	41.82	100.00	0.91	16.36	7.56	2.344 mS/cm	-270.30	0.58	90.20	9.42
10:33	45.08	100.00	1.04	16.31	7.57	2.333 mS/cm	-270.30	0.58	85.30	9.43
10:38	50.05	100.00	1.17	16.27	7.61	2.269 mS/cm	-266.80	0.59	75.70	9.44
10:43	55.33	100.00	1.30	16.76	7.67	2.200 mS/cm	-264.40	0.58	91.80	9.50
10:48	60.23	100.00	1.43	17.32	7.71	2.135 mS/cm	-260.00	0.59	85.20	9.55
10:55	67.37	100.00	1.56	18.02	7.76	2.041 mS/cm	-253.80	0.60	90.70	9.55
10:58	70.20	80.00	1.67	18.31	7.83	1.933 mS/cm	-248.50	0.62	90.70	9.56
11:03	75.55	80.00	1.78	18.01	7.90	1.753 mS/cm	-234.20	0.66	85.20	9.57
11:09	81.10	80.00	1.89	15.77	7.98	1.450 mS/cm	-223.10	0.71	79.30	9.57
11:13	85.27	80.00	2.00	15.88	8.00	1.363 mS/cm	-218.00	0.70	75.70	9.57
11:18	90.65	80.00	2.11	16.53	8.00	1.322 mS/cm	-208.10	0.69	72.30	9.58
11:24	96.28	80.00	2.22	17.18	7.99	1.333 mS/cm	-206.10	0.69	70.40	9.58

Sampling Personnel:

Michael Skowronek

Signature:

Th.M

			Well Cas	ing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyger	n	min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	ite	mV	Millivolts			
			Materia	al Code			
AG - Amber GI	ass CG	- Clear Glass P	E - Polyethylene	PP - Polypro	pylene T	- Teflon	S - Silicone O - Other

Purging Code

B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; SP=Sample Port; CV=Collection Valve; O=Other

Low-Flow Groundwater Sampling Log

Project	SF	RSNE			Site I	_ocation	South	ington, CT		_	
Project N	No. BO	054634.0000.	01900		Well	ID	MW-70	07DR S	ample ID M	W-707DR-09272	2011
Sample	Date	/27/2011			Sam	oled By	Michae	el Skowronek			
Sample	Time Be	ain 13:40	End	13:43	Reco	orded Bv	Michae	el Skowronek			
Moothor		ol Humid Mu				inata No					
11.28	100.23		999 2 3 3	17.70		1 345 m	N/A	-198 50	0.68	71 70	9.58
11.20	105.23	80.00	2.00	16.67	7.50	1.040 m	S/cm	204.60	0.00	65.30	0.50
11.00	111.02	80.00	2.77	16.14	7.05	1 109 m	S/om	100 60	0.05	60.30	0.50
11.39	115.40	80.00	2.55	10.14	7.95	1.1901	S/om	-100.00	0.03	63.80	9.59
11.43	115.40	00.00	2.00	10.01	7.94	1.104 1		-100.00	0.03	53.60	9.59
11.40	120.00	00.00	2.77	17.20	7.93	1.1791		-177.20	0.01	59.00	9.60
11:53	125.47	80.00	2.88	17.56	7.91	1.177 m	is/cm	-179.80	0.59	55.30	9.60
11:58	130.22	80.00	2.99	17.68	7.90	1.1/6 m	iS/cm	-160.50	0.59	57.30	9.60
12:04	136.05	80.00	3.10	17.77	7.88	1.175 m	iS/cm	-151.00	0.57	55.00	9.60
12:08	140.28	80.00	3.21	17.86	7.87	1.171 m	iS/cm	-153.20	0.57	52.10	9.60
12:13	145.25	80.00	3.32	17.86	7.86	1.162 m	iS/cm	-159.20	0.56	55.80	9.60
12:18	150.05	80.00	3.43	17.87	7.35	1.151 m	nS/cm	-149.70	0.56	49.70	9.60
12:23	155.40	80.00	3.54	17.57	7.84	1.138 m	nS/cm	-158.90	0.56	48.10	9.60
12:27	159.90	80.00	3.65	17.57	7.83	1.141 m	nS/cm	-154.20	0.56	45.20	9.60
12:33	165.48	80.00	3.76	17.76	7.82	1.144 m	nS/cm	-142.10	0.55	43.30	9.60
12:39	171.77	80.00	3.87	17.96	7.80	1.157 m	nS/cm	-149.00	0.53	51.00	9.60
12:43	175.08	80.00	3.98	18.08	7.81	1.159 m	nS/cm	-141.30	0.53	49.50	9.60
12:48	180.05	80.00	4.09	18.12	7.80	1.161 m	nS/cm	-150.60	0.52	43.10	9.60
12:53	185.37	80.00	4.20	18.08	7.79	1.154 m	nS/cm	-152.50	0.50	40.20	9.60
12:59	191.10	80.00	4.31	17.94	7.78	1.147 m	nS/cm	-149.50	0.50	40.90	9.60
13:03	195.73	80.00	4.42	17.89	7.76	1.138 m	nS/cm	-152.30	0.49	42.50	9.60
13:08	200.57	80.00	4.53	17.81	7.74	1.124 m	nS/cm	-158.30	0.48	35.30	9.61
13:13	205.05	80.00	4.64	17.82	7.72	1.111 m	nS/cm	-164.90	0.47	36.90	9.61
13:18	210.68	80.00	4.75	17.76	7.69	1.101 m	nS/cm	-184.10	0.45	35.40	9.61
13:23	215.85	80.00	4.86	17.72	7.67	1.095 m	nS/cm	-194.00	0.45	33.30	9.61
13:28	220.15	80.00	4.97	17.56	7.64	1.090 m	nS/cm	-211.30	0.43	30.20	9.61
13:33	225.02	80.00	4.85	17.44	7.62	1.091 m	nS/cm	-206.50	0.42	28.90	9.61
13:38	230.38	80.00	4.97	17.48	7.61	1.090 m	nS/cm	-207.80	0.41	27.30	9.61

Sampling Personnel:

Michael Skowronek

Signature:

Mu

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0.65 6"=1.47
°C	Degrees Celsius	5	in	Inches		N/A	Not Applicable
bmp	Below measurin	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per min	ute	mV	Millivolts			
			Mate	rial Code			
AG - Amber	r Glass CG	G - Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone O - Other

Purging Code

B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; SP=Sample Port; CV=Collection Valve; O=Other

Low-Flow Groundwater Sampling Log

Project	SRSNE				Site Location	Southington, CT		
Project No.	B005463	4.0000.019	00		Well ID	MW-707DR	Sample ID	MW-707DR-09272011
Sample Date	09/27/20	11			Sampled By	Michael Skowrone	k	
Sample Time	Begin	13:40	End	13:43	Recorded By	Michael Skowrone	k	
Weather	Cool, Hu	mid, Muggy	/		Replicate No.	N/A		
Collected Sar	mple Cond	ition	Color	brown	Odor	None	Appeara	nce NA
	Р	arameter			Container	Ν	lumber	Preservative
		VOCs			CG 40 ml		3	HCL

Comments

Decreased pump rate to 80 ml/min to reduce turb and drawdown

Sampling Personnel:

Michael Skowronek

Signature:

Mu

			Well Ca	sing Volumes					
Gal./Ft.	1-1/4" = 0.0	06 1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0.	65 6"=1.	47
°C	Degrees Ce	Isius	in	Inches		N/A	Not Applicable		
bmp	Below meas	uring point	mg/L	Milligrams per liter		NTUs	Nephelometric	Turbidity Units	
DO	Dissolved ox	xygen	min	Minutes		ORP	Oxidation reduc	ction potential	
DTW	Depth to wa	ter	mL	Milliliter		ppm	Parts per millio	n	
ft	Feet		mL/min	Milliliters per minute	•	s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per cer	ntimeter	uS/cm	Microsiemens p	per centimeter	
gpm	Gallons per	minute	mV	Millivolts					
			Mate	rial Code					
AG - Amber	Glass	CG - Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other	
			Purg	ing Code					Version

B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; SP=Sample Port; CV=Collection Valve; O=Other

ARCADIS

Appendix B

Equipment Calibration Logs

DATE: 523 11

INSTRUMENT IDENTIFICATION

Brand: YSA	Model: 600XL	Serial Number: 2159 07F10059
Brand: Lamolie	Model: 2020e	Serial Number, 9917

CALIBRATION RECORD

Morning Calibratio	n Afternoon Check	Evening Check
Calibra Standard Succes	sful Standard Reading	Standard Reading
PH (S.I. units) 4.00 7,23 / 4.00 7.00 1.12 7.00 10.00 9.62 10.0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 4.00 \\ \hline 4.00 \\ \hline 6.81 \\ \hline 0.00 \\ \hline 9.96 \\ \end{array}$	4.00 7.00 10.00
Turbidity (NTUs) 0 0 1 10.33 [10. 10 [20:38 [1.	Recel 0 1.0 1 1.76/ 1.00 26 554 10 10.59/ 10.00 9.44 H	0 1
Conductivity 10 μS/cm 10,000 10 mS/cm 9.60/10	10 μS/cm <u>9.769</u> 10 mS/cm <u>8.725</u>	10 μS/cm 10 mS/cm
Dissolved Oxygen (mg/L) Zero DO Solution2.0%/0,	9/2 Zero DO Solution 0.22 mg/c	Zero DO Solution
REDOX (mV) (Zobell Solution) 240.4 /2 (Light's Solution) 443	Chart 1 <u>44.1</u> <u>242.7</u>	Chart 1
Temperature (°C) 16.00	<u>e</u>	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

Ms - Did not use

ARCADIS

intrastructure, environment, facilities

DATE: 5/23/11

6

Brand:

Brand:

INSTRUMENT IDENTIFICATION

		11451/1611
YSI	Model: GSOMDS/GOOXL	Serial Number: 07 Floo 5321
	Model:	Serial Number:

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successfu	n I Standard Reading	Standard Reading
pH (S.I. units) 4.00 5.97 <u>4.00</u> 7.00 7.04 <u>7.00</u> 10.00 9.98 <u>10.00</u>	4.00 7.00 10.00	4.00 7.00 10.00
Turbidity (NTUs) 0 1 10	0 1 10	0 1 10
Conductivity 10 µS/cm .091/.10 10 mS/cm 9.039/	00 10 μS/cm Je.ee 10 mS/cm	10 µS/cm 10 mS/cm
Dissolved Oxygen (mg/L) Zero DO Solution <u>」</u> 。入	Zero DO Solution	Zero DO Solution
REDOX (mV) (Zobell Solution) $343.4/2$ (Light's Solution) $446/8$ Temperature (°C) 12.07	44.8	Chart 1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

0.

DATE: 5/23/1

INSTRUMENT IDENTIFICATION

2177/2687

" La Motte 2020 e	Serial Number:
	1: La Motte 2020 e

CALIBRATION RECORD

Morning	Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	<u>4.10/4.00</u> 6.74/7.60 10.40/10.07	4.00 7.00 10.00	4.00 <u>4.56</u> 7.00 <u>7.78</u> 10.00 <u>7.98</u>
Turbidity (NT 0 0.0 1 6.9 10 g.9	Us) 08 17 19L0	0 1 10	$\begin{array}{ccc} 0 & 0 \\ 1 & \frac{1.17}{9.90} \\ 10 & \frac{9.90}{9.90} \end{array}$
Conductivity 10 µS/cm 10 mS/cm	3.697 Mg/2 9.402/10.00	10 μS/cm 10 mS/cm	10 p8/cm 0 216 10 mS/cm 8.698
Dissolved Oxy Zero DO Soluti	/gen (mg/L) ion 0.01 Z	ero DO Solution	Zero DO Solution 0.5
REDOX (mV) (Zobell Solution (Light's Solution Temperature (n) <u>236.3/247.7</u> n) <u>466 N</u> °C) 17.63	Chart '	Chart " <u>239.7</u> <u>469.5</u> <u>17.3</u>

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

James Remett

DATE: 5/23/11

INSTRUMENT IDENTIFICATION

Brand: yst	Model: GOUXL /GSUMOS	Serial Number: 5603	08861
Brand: Comeffe	Model: 20202	Serial Number: 1091	6

CALIBRATION RECORD

Morning Calibra	tion	Afternoo	on Check	Evening Check
Calit Standard Succ	oration essful	Standard	Reading	Standard Reading
PH (S.I. units) 4.00 7.00 10.00	6/4.00 6/200 J10-00	4.00 7,00 10.00	4/14 7.12 10.10	4.00 7.00 10.00
Turbidity (NTUs) 0 0 0 1 1 126 126 101	Ø 126	0 1 10	0.00	0 1 10
Conductivity 10 μS/cm 8996 10 mS/cm 105	(<u>2000)</u> 1 <u>2000</u> 1	0 µS/cm 0 mS/cm	8744 8-744	10 μS/cm 10 mS/cm
Dissolved Oxygen (mg Zero DO Solution <u>- の</u> 、	/L) 22 Zero DO S	Solution	3.89	Zero DO Solution
REDOX (mV) (Zobell Solution) 242/ (Light's Solution) 910/	<u>244</u> <u>895</u>	Chart 1 2년년	2243 450	Chart 1
Temperature (°C) 15	17		17.80	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

495

Brandon finisferrato

DATE: 5/23/11

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 600 XL	Serial Number. 8874 / 10267
Brand: Lamster	Model: 2020 &	Serial Number: 13873

CALIBRATION RECORD

Morning Calibrat	tion Afternoon Check	Evening Check
Calib Standard Succ	essful Standard Reading	430 pm Standard Reading
pH (S.I. units)	,	
4.00 4.02/	4,60 4.00	4.00 4.02
7.00 7.04/	7.00	7.00 7.07
10.00 9.97/	10.00	10.00 9.97
Turbidity (NTUs)		
0	00 0	0 -0.29
1 1.	1 00	1 0.14
12:0 10 12:0	10 10	10 9.88
Conductivity		
10 µS/cm 9530/1	10 µS/cm	10 µS/cm /0,000
10 mS/cm	10 mS/cm	10 mS/cm
Dissolved Oxygen (mg	/L)	
Zero DO Solution	Zero DO Solution	Zero DO Solution 0.16
BF= 762.4 D.1	7 mg/4	<u></u>
(Toball Calution) 200	Chart 1	Chart 1
(Lobell Solution) 145.7	1240.0	237.5
Lugines Solution) 466		<u>440</u>
Temperature (°C) / 7.0		15 - 4
		10.60

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

Renot

DATE: 05/24 2011

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 600xL / 650 MDS	Serial Number: 5603 08861
Brand: LAMOTTE	Model: 2020e	Serial Number: 10416

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I, units)	5550.000		
4.00	3.94 4.00	4.00 4.01	4.00
7.00	7.14 7.00	7.00 7.04	7.00
10.00	9,97/10,00	10.00 10.08	10.00
Turbidity (NTI	Us)		
0	0.32/0.00	0 B80	0
1	0198/1.00	1 1.07	·
10	14.08/10.00	10 10.20	10
Conductivity			
10 µS/cm	10045 9999	10 µS/cm 9972	10 uS/cm
10 mS/cm	10.0015/9.99	10 mS/cm 98.72	10 mS/cm
Dissolved Oxy	/gen (mg/L)		
Zero DO Soluti	on 0.58	Zero DO Solution 0.72	Zero DO Solution
REDOX (mV)	1	Chart 1	Chart 1
Zobell Solution	244.8	233.3	- India
Light's Solution	1) 445.0	448.2	
Cemperature (C) 18 27	71.05	
		-21,42	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

BP

YSI & Turbidity Meter Calibration Log

INSTRUMENT IDENTIFICATION

Brand: YSI	Model 650 MDS/600XL	Serial Number: 88 74/ 10267
Brand: LaMothe	Model: 2020e	Serial Number: 9917

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.1. units) 4.00 4.27 7.00 6.71 7.00 10.05 10.00 10.05	4.00 7.00 10.00	4.00 <u>3.87</u> 7.00 <u>7.01</u> 10.00 <u>10.00</u> 9.117
Turbidity (NTUS) 0 0.12 0.00 1 0.5 0.90 10 12.7 9.14	0 1 10	$\begin{array}{c} 0 & 0.13 \\ 1 & 1.21 \\ 10 & 13.1 \end{array}$
Conductivity 10 \$5/cm 0.075 0.00 10 mS/cm 9,715 10.00	10 μS/cm 10 mS/cm	10 μS/cm <u>0, /0</u> 10 mS/cm <u>/0.02</u>
Dissolved Oxygen (mg/L) Zero DO Solution 0.51 753.7 ~~Hs	Zero DO Solution	Zero DO Solution - 9.5 lens
REDOX (mV) (Zobell Solution) 239.1/240.1 (Light's Solution) 459.1 Temperature (°C) 11.10	Chart *	Chart 1 240.0 24750 479.6 22.59

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1.6

1

YSI & Turbidity Meter Calibration Log DATE: 5/24/11

FL

INSTRUMENT IDENTIFICATION

Brand: VSIC	Model: GS D MDS	Serial Number: 0160418/AF
Brand: Lukute 20202	Model:	Serial Number:

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	<u> </u>	4,00 7.00 10.00	4.00 4.06 7.00 6.41 10.00 9.76
Turbidity (NT 0 1 10	Us) 	0 1 10	0 <u>0.76</u> 1 <u>1.12</u> 10 <u>9.98</u>
Conductivity 10 µS/cm 10 mS/cm	9. 875/10.0	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm <u>9, 4σ3</u>
Dissolved Oxy Zero DO Solut	ygen (mg/L) ionZe	ro DO Solution	Zero DO Solution
REDOX (mV) (Zobell Solution (Light's Solution Temperature (n) <u>240</u> n) <u>466,3</u> (°C) i 8,19	Chart 1	Chart' 237.3

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE 5/23/11 MS

DC

INSTRUMENT IDENTIFICATION

Brand: YS1	Model 600xL	Serial Number: 07F100597/2159
Brand: La Mobile	Model: 2020 e	Serial Number: 13873

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successfu	n JI Standard Reading	Standard Reading
pH (S.I. units) 4.00 4.81/ 3.99 7.00 7.11/ 7.00 10.00 7.92/ 10.0	4.00 <u>4.01</u> 7.00 <u>7.11</u> 10.00 <u>10.02</u>	4.00 7.00 10.00
O O 1 0.42 / 0.52 10 9.25 9.95	0 <u>0/0</u> 1 <u>0.16/</u> 10 <u>14.1/99</u> /	- ERRORZ whun Calibrating
10 µS/cm 10.12/ 10.00 10 mS/cm 8.878/ 9.981	10 μS/cm <u>9.66</u> 10 mS/cm <u>9.44</u>	10 µS/cm 10 mS/cm
Dissolved Oxygen (mg/L) Zero DO Solution 7509 200 = 0.1	Baroneler 98.7%. Zero DO Solution -3.12	Zero DO Solution
REDOX (mV) (Zobell Solution) (Light's Solution) 441.1 Temperature (°C)	Chart 1 229.8	Chart 1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature REDOX must be calibrated by the manufacturer

ERRORZ Calibrating Turbidity 1.0 - Outside of range'

1.1

DC

DATE 5/25/11

INSTRUMENT IDENTIFICATION			
Brand: Y51	Model: 2159/07F100597	Serial Number: 600KC	
Brand: Lamote	Model: 2020e	Serial Number: 13873	

CALIBRATION RECORD

Morning Calibration	n Afternoon Check	Evening Check
Calibrat Standard Success	tion sful Standard Reading	Standard Reading
pH (S.I. units) 4.00 <u>457 (4</u> 7.00 <u>6.87 / 7.</u> 10.00 <u>9.08 / 10</u>	4.00 00 7.00 6.85 10.00 10.13	4.00 <u>4.26</u> 7.00 <u>6.85</u> 10.00 <u>0.15</u>
Turbidity (NTUs) 0 <u>0</u> 1 <u>0.60/0</u> 10 <u>18.4/9</u>	92. 1 95 10	$\begin{array}{c} 0 & -0.32 \\ 1 & 0.16 \\ 10 & 9.79 \end{array}$
Conductivity 10 μS/cm 9560/9.1 10 mS/cm 8.379/9.1	997 10 μS/cm 2878 10 mS/cm	10 µS/cm 10.08 10 mS/cm 9.173
Dissolved Oxygen (mg/L) Zero DO Solution 754.4 0.26	Mm Agero DO Solution	Zero DO Solution 0.23
REDOX (mV) Zobell Solution) 237.5 Light's Solution) 443.8 Femperature (°C) 18.4	Chart ' 2367 237.5 1	Chart ' 228, 2

DATE 05/25/2011

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: GODXL/ 650 MDS	Serial Number: 5603 /08861
Brand: Lomotte	Model: 2020e	Serial Number: 10416

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units 4.00	3,98/4.00	4.00	400 4.00
7.00	7.07/7.00	7.00	7.00 6.9%
10.00	10.00	10.00	10.00 9.91
Turbidity (NT	TUs)		
0	0/0	0	0 0.16
1	1.02/1.00	1	1 0.71
10	10.87/	10	10 10.19
Conductivity			10.050
10 µS/cm	9946	10 µS/cm	10 µS/cm 4/95
10 mS/cm	4,946	10 mS/cm	10 mS/cm 4,21
Dissolved Ox	kygen (mg/L)		
Zero DO Solu	ition 0-05	Zero DO Solution	Zero DO Solution
REDOX (mV)	1	Chart '	Chart 1
(Zobell Solutio	on) 244/244		2417
(Light's Solution	on) _445_		444.)
Temperature	(°C) 18:22		
	1.50 1.5 5		20.18

DATE: 5/25/11

INSTRUMENT IDENTIFICATION

Brand: YST	Model: 650 MOS	Serial Number 2177
LAMONTE	Model:	Q G81 Serial Number:

CALIBRATION RECORD

Morning Cali	bration	Afternoon Check	Evening Check
C Standard S	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	4	4.00 7.00 10.00	4.00 <u>3.53</u> 7.00 <u>6.07</u> 10.00 <u>8.56</u>
Turbidity (NTUs) 0 1 10	0	0 1 10	0 <u>0.16</u> 1 <u>1.10</u> 10 <u>9.12</u>
Conductivity 10 μS/cm 10 mS/cm	9.768/10	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm <u>9.13</u> 7
Dissolved Oxygen (Zero DO Solution	mg/L) 0.06 Zero	DO Solution	Zero DO Solution
REDOX (mV) (Zobell Solution) (Light's Solution) Temperature (°C)	240	Chart 1	Chart 1 2.32.8 453.8 49.15

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

2

DATE: 5/25/11

INSTRUMENT IDENTIFICATION

iP

Brand: YS)	Model 650 mos	Serial Number: 8874
Brand: Lamotte	Model: 20202	Serial Number: 9917

CALIBRATION RECORD

Afternoon Check	Evening Check
Standard Reading	Standard Reading
4.00 7.00 10.00	4.00 <u>4.06</u> 7.00 <u>7.25</u> 10.00 <u>7.25</u>
0 1 10	0 0.74 1 1.50 10 13.8
10 μS/cm 10 mS/cm	10 µS/cm 0.03 10 mS/cm 13.98
Zero DO Solution	Zero DO Solution 0.32
Chart 1	Chart ' 238.5 238.5
	Afternoon Check Standard Reading 4.00

EC

DATE: 5/20/11

INSTRUMENT IDENTIFICATION

Brand: YSF 650 MDS	Model: Gro 445	Serial Number 25 616-04 18 40
Brand: La Motte 2020	Model.	Serial Number:

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	<u>-4</u> -7 -10	4.00 7,00 10.00	4.00 <u>4.01</u> 7.00 <u>7.4</u> 10.00 <u>10.40</u>
Turbidity (NT 0 1 10	Us) []	0 1 10	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 10 \\ \hline 4.75 \end{array}$
Conductivity 10 µS/cm 10 mS/cm	9.673/10	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm_ <u>9.864</u>
Dissolved Ox Zero DO Solut	ygen (mg/L) ion 4674.37 z 0.04	Zero DO Solution	Zero DO Solution 0.10
REDOX (mV) (Zobell Solutio (Light's Solutio Temperature (n) <u>240.1</u> n) <u>467.3</u> ec) <u>16.39</u>	Chart *	Chan 1 <u>222.0</u> <u>466.</u> 2 <u>19.6</u>

DATE: 5/26/11

INSTRUMENT IDENTIFICATION

ones

Brand. YEL	Model: GOO KL/ GSO MOS	Serial Number. 5603/0	18861
Brand: Lowelle	Model: 20200	Serial Number: 10416	

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units 4.00 7.00 10.00	402/400 707/700 1002/1000	4.00 3.95 7.00 6.88 10.00 9.38	4.00 7.00 10.00
Turbidity (NT 0 1 10	TUS) <u> <u> </u> </u>	0 <u>0.2</u> 1 <u>96</u> 10 <u>10.2</u>	0 1 10
Conductivity 10 µS/cm 10 mS/cm	0.000,000 9:97/10.00	10 μS/cm 10 10 mS/cm 4.69	10 μS/cm 10 mS/cm
Dissolved Ox Zero DO Solut	tion 0.0	Zero DO Solution	Zero DO Solution
REDOX (mV) (Zobell Solutio Light's Solutio	(237.5) (237.5) (233/240) (233/240) (240)	Chart 1 246-8	Chart 1
Temperature	(°C) <u>/9.(8</u>	2264	

DATE 5 26 11

INSTRUMENT IDENTIFICATION

DMC

Brand: VSI	Model: 600XL	Serial Number: 2159/07F100597
Brand: Lamote	Model: 2020c	Serial Number: 13873

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)		
4.00	456/ 3.99	4.00 404	4.00
7.00	7.39/7.00	7.00 6.94	7.00
10.00	9.31/9.98	10.00 9.88	10.00
Turbidity (NT	Us)		
0	010	0 0.00	0
1	064/082	1 0.69	
10	16.4/ 9.97	10 10.14	10
Conductivity			
10 µS/cm	10.34/10.00	10 µS/cm 10.54	10 uS/m
10 mS/cm	9:087/ 9.909	10 mS/cm 9.990	10 mS/cm
Dissolved Ox	ygen (mg/L)	100 1 1	
Zero DO Solut	ion 0.08	Zero DO Solution 0.11	Zero DO Solution
REDOX (mV)	10.01	Chart 1	Chart 1
Zobell Solution	n) 237.5	237.6	Ghart
Light's Solutio	n) 451.4	Light 450.1	
l'emperature (°C) 18.32	Afternoon 240.3	

BP

YSI & Turbidity Meter Calibration Log

DATE 5/21/11

INSTRUMENT IDENTIFICATION

Brand: YS I	Model: Se 656 -05	Serial Number: 887 4
Brand:	Model:	Serial Number
Lamothe	2030 e	9917

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	3.5 4100 6.91/200 10.49/10.00	4.00 7.00 10.00	4.00 <u>4.18</u> 7.00 <u>7.15</u> 10.00 <u>10.07</u>
Turbidity (NT	Us)		
0 1 10	0/0 1.33/1.00 9.82/ 9.96	0 1 10	0 1.07 1 1.30 10 0.07
Conductivity 10 µS/cm 10 mS/cm	12.8/041	10 μS/cm 10 mS/cm	10 μS/cm <u>0.095</u> 10 mS/cm <u>//.87</u>
Dissolved Oxy Zero DO Solut	ygen (mg/L) ion_ <u>Ø, </u> Z	Zero DO Solution	Zero DO Solution Q1(9
REDOX (mV) (Zobell Solution (Light's Solution	n) 2 <u>912 [237</u> n) <u>243</u>	Chart 1	Chart ' <u>249, 9</u> <u>499, 8</u>
Temperature (°C) 1907	· · ·	21.8

YSI 600 XL Packing List

Pine No: 1611

Standard Items	Prepared	QC Cheek	Received by Customer	Return to Pine
650 MDS Display	1	/		
Manual	~	/		
Quick reference card	~	/		
Field cable	-	1		
Stand (base, claw, and rod)	1	1,		
Probe guard w/ weight	-	1		
Storage/ calibration cup w/ sponge	*	1		
Fiow through cell	~	1		
2 of each barb size (1/4, 3/8, and 1/2)	~	/		
DO probe reconditioning kit	-	1		
C alkaline batteries (4)	~	1		
6-series communications cable	-	V		
YSI Ecowatch software	1	VI		_
Calibration kit (pH, conductivity, and ORP)		V,		
NIST traceable calibration sheet	- 4	1	_	

Prepared By: _____ QC By: _____

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument Descript Calibra	ID 1611 ion YSI 600 X ted 5/19/2011	C					
Manufactu	rer YSI			State Certifie	ed		
Model Num	ber 600 XL			State	us Pass		
Serial Number/ 1	Lot 01B0120A	A		Temp °	C 21.4		
Num	ber ion Massachus	atte		Humidity	06 47		
Departm	ent			runnarty	70 47		
		Calil	pration Specific	ations			
Gr Group	oup#1 Name PH			Range Acc % Reading Acc %	0.0000 3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
Gr	oup# 2			Range Acc %	0.0000		
Group	Name Conduct	ivity		Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gr	oup#3			Range Acc %	0.0000		
Group I	Name Redox (C	ORP)		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gre	oup # 4			Range Acc %	0.0000		
Group I	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.10	100.10	0.10%	Pass

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 1611 Description YSI 600 XL Calibrated 5/19/2011

Test Instruments	Used During the Calibi	ration			(As Of Cal Entry Date)
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/Expiration Date
MA 1.413 CONDUCTIVIT Y	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	8428	10/20/2011
MA ORP	MA ORP SOLUTION 240 mV	Hanna		2741	10/1/2015
MA PH10	MA PH10 SOLUTION	Aurical	PH10	8421	10/18/2011
MA PH4 STD	MA PH4 SOLUTION	VWR		2011507	10/31/2012
MA PH7 STD	MA PH7 SOLUTION	VWR		2101037	12/31/2012
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE			44328	

Notes about this calibration

Zero D.O. Check 0.11mg/L

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

YSI 600 XL Packing List

Pine No: 8870

Standard Items	Prepared	QC Check	Received by Customer	Return to Pine
650 MDS Display	-	1		<u> </u>
Manual	-	/		
Quick reference card	-	/		
Field cable	-	1		
Stand (base, claw, and rod)	-	1,		_
Probe guard w/ weight	-	/		
Storage/ calibration cup w/ sponge	<	/		
Flow through cell	-	1.		
2 of each barb size (1/4, 3/8, and 1/2)	~	1		
DO probe reconditioning kit	-	1,		
C alkaline batteries (4)	-	1		
6-series communications cable	-	/		
YSI Ecowatch software	-	1,		_
Calibration kit (pH, conductivity, and ORP)	-	1		
NIST traceable calibration sheet	-	1		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

			appendix and a state of the sta				
Instrument	ID 8874						
Description	on YSI 600 XI	10					
Calibrat	ed 5/19/2011						
Manufactur	er YSI			State Certific	ed		
Model Numb	er 600 XL			Stati	us Pass		
Serial Number/ L	ot 06F2353A0	2		Temp °	C 21		
Numb	er						
Locatio	on Massachuse	etts		Humidity 9	% 46		
Departme	nt						
		Calibr	ration Specific	ations			
Gro	up# 1			Range Acc %	0.0000		
Group N	lame PH			Reading Acc %	3.0000		
Stated .	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	9.99	9.99	-0.10%	Pass
Gro	up# 2			Range Acc %	0.0000		
Group N	ame Conducti	ivity		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	un # 3			Range Acc %	0.0000		
Group N	ame Redox (C	ORP)		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	up# 4			Range Acc %	0.0000		
Group N	ame Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.60	100.60	0.60%	Pass
Gro	up# 5						
Group N	ame Disolved	Oxygen Zero					
Test Performed: Yes	As Foun	d Result: Pass		As Left Resul	t: Pass		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 8874 Description YSI 600 XL Calibrated 5/19/2011

Test Instruments	Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date / Expiration Date
MA 1.413 CONDUCTIVII Y	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	8428	10/20/2011
MA ORP	MA ORP SOLUTION 240 mV	Hanna		2741	10/1/2015
MA PH10	MA PH10 SOLUTION	Aurical	PH10	8421	10/18/2011
MA PH4 STD	MA PH4 SOLUTION	VWR		2011507	10/31/2012
MA PH7 STD	MA PH7 SOLUTION	VWR		2101037	12/31/2012
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE			44328	

Notes about this calibration

Zero D.O. Check 0.18mg/L

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications. but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

YSI 600 XL Packing List

Pine No:

2159

Standard Items	Prepared	QC Check	Received by Customer	Return to Pine
650 MDS Display	1	1		
Manual	-		(C	
Quick reference card	-			
Field cable	-	1,		
Stand (base, claw, and rod)		/		
Probe guard w/ weight	~	/		
Storage/ calibration cup w/ sponge	-	/		
Flow through cell	~	/		_
2 of each barb size (1/4, 3/8, and 1/2)		/		
DO probe reconditioning kit	-	1		
C alkaline batteries (4)	1	-//		
6-series communications cable	÷.	/		
YSI Ecowatch software	-	-7	_	_
Calibration kit (pH, conductivity, and ORP)	- (1		
NIST traceable calibration sheet	~	1	_	

Prepared By: QC By: M

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 2159						
Descripti	on YSI 600 X	L					
Calibrat	ted 5/19/2011						
Manufactur	rer YSI			State Certific	ed		
Model Numb	oer 600 XL			Stat	us Pass		
Serial Number/ I	Lot 01F0657			Temp °	C 20.9		
Numb	ber						
Locati	on Massachuse	etts		Humidity 9	% 46		
Departme	ent						
		Calib	ration Specific	ations			
Gr	oup # 1			Range Acc %	0.0000		
Group I	Name PH			Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
Gr	oup # 2			Range Acc %	0.0000		
Group N	Name Conduct	ivity		Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	oup# 3			Range Acc %	0.0000		
Group N	Name Redox (C	ORP)		Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	oup# 4			Range Acc %	0.0000		1.00
Group N	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.30	100.30	0.30%	Pass
Gro	oup# 5						
Group N	Name Disolved	Oxygen Zero					
Test Performed: Yes	As Foun	d Result: Pass		As Left Resul	t: Pass		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2159 Description YSI 600 XL Calibrated 5/19/2011

Test Instruments	Used During the Calibi	ration			(As Of Cal Entry Date)		
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date		
MA 1.413 CONDUCTIVIT Y	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	8428	10/20/2011		
MA ORP	MA ORP SOLUTION 240 mV	Hanna		2741	10/1/2015		
MA PHI0	MA PH10 SOLUTION	Aurical	PH10	8421	10/18/2011		
MA PH4 STD	MA PH4 SOLUTION	VWR		2011507	10/31/2012		
MA PH7 STD	MA PH7 SOLUTION	VWR		2101037	12/31/2012		
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE			44328			

Notes about this calibration

Zero D.O. Check 0.19mg/L

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

YSI 600 XL Packing List

Pine No: 2198

Standard Items	Prepared	QC Check	Received by Customer	Return to Pine
650 MDS Display	-	/		
Manual	~	/		
Quick reference card	-	1		
Field cable	-	1		
Stand (base, claw, and rod)	-	/		
Probe guard w/ weight	~	/		
Storage/ calibration cup w/ sponge	-	/		
Flow through cell	-	1		_
2 of each barb size (1/4, 3/8, and 1/2)	~	/		
DO probe reconditioning kit	~	1		
C alkaline batteries (4)	-	/		
6-series communications cable	-	1		
YSI Ecowatch software	-	1	-	_
Calibration kit (pH, conductivity, and ORP)	~	11		
NIST traceable calibration sheet	-	1		

Prepared By: QC By:

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

A REAL PROPERTY OF			Contraction of the second s				
Instrument	ID 2687						
Descripti	on YSI 600 X	L					
Calibrat	ed 5/19/2011						
Manufactur	er YSI			State Certifi	ed		
Model Numb	er 600 XL			Stat	us Pass		
Serial Number/ L	ot 01K0643A	В		Temp	PC 21		
Numb	er	100		Thread alter	0/ 16		
Departme	on Massachus	etts		Fundaty	70 40		
Departine	int						_
		Calib	ration Specific	ations			
Gro	oup # 1			Range Acc %	0.0000		
Group N	ame PH			Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
Gro	up# 2			Range Acc %	0.0000		
Group N	ame Conduct	ivity		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	eading		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	up# 3			Range Acc %	0.0000		
Group N	ame Redox ((ORP)		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	up# 4			Range Acc %	0.0000		
Group N	lame Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	eading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.30	100.30	0.30%	Pass
Gro	up# 5						
Group N	ame Disolved	Oxygen Zero					
Test Performed: Yes	As Foun	d Result: Pass		As Left Resu	It: Pass		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2687 Description YSI 600 XL Calibrated 5/19/2011

Test Instruments	s Used During the Calibi	ration			(As Of Cal Entry Date)		
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	Last Cal Date/	Next Cal Date / Expiration Dat	
MA 1.413 CONDUCTIVII Y	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	8428	<u>opened Date</u>	10/20/2011	
MA ORP	MA ORP SOLUTION 240 mV	Hanna		2741		10/1/2015	
MA PH10	MA PH10 SOLUTION	Aurical	PH10	8421		10/18/2011	
MA PH4 STD	MA PH4 SOLUTION	VWR		2011507		10/31/2012	
MA PH7 STD	MA PH7 SOLUTION	VWR		2101037		12/31/2012	
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE			44328			

Notes about this calibration

Zero D.O. Check 0.15mg/L

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

YSI 600 XL Packing List

Pine No: 5603

Standard Items	Prepared	QC Check	Received by Customer	Return to Pine
650 MDS Display	+	1		
Manual	-	1		
Quick reference card	-	V,		
Field cable	-	/		
Stand (base, claw, and rod)	-	V		
Probe guard w/ weight	~	V,		
Storage/ calibration cup w/ sponge	-	1		
Frow through cell	-	1		
2 of each barb size (1/4, 3/8, and 1/2)	-	1		
DC probe reconditioning kit	-	1		
C alkaline batteries (4)	-	1		
6-series communications cable	-	V		
YSI Ecowatch software	-	/		
Calibration kit (pH, conductivity, and ORP) <	V,		
NISI traceable calibration sheet		/		

Prepared By:

QC By:

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 5603							
Description	on YSI 600 XI	2						
Calibrat	ed 5/19/2011					_		
Manufactur	er YSI		State Certified					
Model Numb	er 600 XL			Statt	C 215			
Serial Number/ L	ot 04E8624A	4		Temp	C 21.5			
Locati	on Massachuse	effs		Humidity 9	% 48			
Departme	nt							
2 april 1						_		
		Calib	ration Specific	ations				
Gro	oup # 1			Range Acc %	0.0000			
Group N	ame PH			Reading Acc %	3.0000			
Stated	Accy Pct of Re	eading		Plus/Minus	0.00			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail	
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass	
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass	
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass	
Gro	oup # 2		Range Acc %	0.0000				
Group N	Name Conduct	ivity		Reading Acc %	3.0000			
Stated	Accy Pct of Re	eading		Plus/Minus	0.000			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail	
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass	
Gro	oup# 3			Range Acc %	0.0000			
Group N	Name Redox ((ORP)		Reading Acc %	3.0000			
Stated	Accy Pct of Re	eading		Plus/Minus	0.00			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail	
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass	
Gro	oup# 4			Range Acc %	0.0000	Sector Contraction		
Group N	ame Disolved	l Oxygen Span		Reading Acc %	3.0000			
Stated Accy Pct of Reading				Plus/Minus	0.00			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail	
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass	
Gro	oup # 5							
Group N	ame Disolved	Oxygen Zero						
Test Performed: Yes	As Foun	d Result: Pass		As Left Resul	t: Pass			

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 5603 Description YSI 600 XL Calibrated 5/19/2011

Test Instruments	Used During the Calibi	ration			(As Of Cal Entry Date)		
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date</u> Last Cal Date/ Expiration Date		
MA 1.413 CONDUCTIVIT Y	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	8428	10/20/2011		
MA ORP	MA ORP SOLUTION 240 mV	Hanna		2741	10/1/2015		
MA PH10	MA PH10 SOLUTION	Aurical	PH10	8421	10/18/2011		
MA PH4 STD	MA PH4 SOLUTION	VWR		2011507	10/31/2012		
MA PH7 STD	MA PH7 SOLUTION	VWR		2101037	12/31/2012		
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE	25		44328			

Notes about this calibration

Zero D.O. Check 0. 0.05mg/L

> Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru Des Ca	ment ID cription librated	11797 LaMotte 2020E 5/17/2011	3		_				
Manu	facturer	LaMotte			State Certifie	ed			
Model	Number	2020E			State	us Pas	S		
Serial Num	ber/ Lot Number	ME 13071		Temp °C 20					
L Dep	location artment	Massachusetts	s Humidity % 40						
			Calibra	tion Specification	15				
Gr Si	Group oup Nam tated Acc	# 1 ne Turbidity ey Pct of Readi	ng	1	Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	0 0		
Nom In Val / In V	Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail	
1.00 / 1.00		NTU	1.00	NTU	0.99	0.99	-1.00%	Pass	
10.00 / 10.00		NTU	10.00	NTU	10.00	10.00	0.00%	Pass	
Test Instruments	s Used Du	iring the Calib	ration		1.1.1	(As Of Cal Entr	y Date)	
Test Standard ID	Descript	ion	Manufacturer	Model Number	Serial Number	$\frac{\text{ber}/}{1}$	<u>Ne</u> Last Cal Date/ Ex	<u>xt Cal Date /</u> piration Date	
MA TURBIDITY 10 NTU	MA TU STAND	RBIDITY ARD 10 NTU	Ricca		1012020	7	11/	/30/2011	
MA TURBIDITY INTU	MA TU STAND	RBIDITY ARD 1 NTU	Ricca		1102591		2/2	8/2012	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Lamotte 2020e Packing List

Received

Pine No: 11797

Standard Oems	Prepare	I QC Check	Customer	Return to Pine
Lint free lens paper (4 Kim Wipes)	-	-1-		
Manual	-		_	
0 NTU vial w/ tube positioning ring			_	
10 NTU vial w/ tube positioning ring	-			
2 sample vials w/ tube positioning ring	sr		_	
9 V alkaline battery (1)	~			
Water Sample Bottle w/ spout	~	1		
NIST traceable calibration sheet	~	/		
Optional Accessory	Prepared	QC Check	Received by Customer	Return to Pine
Extra sample vials 0	0			_
Prepared By: MB QC By: MS				

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrur Dese Cal	nent ID cription librated	7476 LaMotte 2020E 5/17/2011	8					
Manuf	acturer	LaMotte			State Certifie	ed		
Model N	Number	2020E			Statu	is Pas	S	
Serial Numb	ber/ Lot Number	ME 10581			Temp °	C 20,	L.	
L Depa	ocation artment	Massachusetts			Humidity 9	% 40	-	
2			Calibra	tion Specificatio	ons			
Gr St	Group oup Nan tated Ac	# 1 ne Turbidity cy Pct of Readi	ng		Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	0 0	
Nom In Val / In V	al	In Type	Out Val	Out Type	Fnd As	Lft As	<u>Dev%</u>	Pass/Fail
1.00 / 1.00		NTU	1.00	NTU	1.01	1.01	1.00%	Pass
10.00 / 10.00		NTU	10.00	NTU	10.00	10.00	0.00%	Pass
Test Instruments	Used D	uring the Calib	ration			(As Of Cal Entr	y Date)
Test Standard ID	Descrip	tion	Manufacturer	Model Number	Serial Numl	<u>ber /</u>	<u>Ne</u> Last Cal Date/ Ex Doened Date	<u>xt Cal Date /</u> piration Date
MA TURBIDITY 10 NTU	MA TU STANI	IRBIDITY DARD 10 NTU	Ricca		1012020		11	/30/2011
MA TURBIDITY INTU	MA TU STANI	URBIDITY DARD 1 NTU	Ricca		1102591		2/2	28/2012

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Lamotte 2020e Packing List

Pine No: 7476

Standard Items	Prepared	QC Check	Received by Customer	Return to Pinc
Lint free lens paper (4 Kim Wipes) Manual 0 NTU vial w/ tube positioning ring 1 NTU vial w/ tube positioning ring 20 NTU vial w/ tube positioning ring 2 sample vials w/ tube positioning rings 9 V alkaline battery (1) Water Sample Bottle w/ spout NIST traceable calibration sheet Optional Accessory	-	44444	Received	Return to Pine
	<i>c</i> 1	(Customer	and the second second
Prepared By:MR QC By:MR	0			

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrum Des Ca	ment ID cription librated	10416 LaMotte 2020E 5/19/2011	1						
Manut	facturer	LaMotte			State Certifie	ed			
Model 1	Number	2020E			State	is Pas	SS		
Serial Numl	ber/ Lot Number	ME-11673		Temp °C 21.7					
L	ocation	Massachusetts	Humidity % 49						
Depa	artment								
			Calibra	tion Specification	ns				
Gr Si	Group oup Nan tated Ace	# 1 ne Turbidity cy Pct of Readi	ng	1	Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	00 00		
Nom In Val / In V	<u>val</u>	In Type	Out Val	Out Type	Fnd As	Lft A	s Dev%	Pass/Fail	
1.00 / 1.00		NTU	1.00	NTU	0.99	0.99	-1.00%	Pass	
10.00 / 10.00		NTU	10.00	NTU	9.99	9.99	-0.10%	Pass	
Test Instruments	Used D	uring the Calib	ration				(As Of Cal Entr	y Date)	
Test Standard ID	Descript	tion	Manufacturer	Model Number	Serial Number	<u>per /</u>	<u>Ne</u> Last Cal Date/ Ex Opened Date	<u>xt Cal Date /</u> piration Date	
MA TURBIDITY 10 NTU	MA TU STANE	RBIDITY DARD 10 NTU	Ricca		1012020		11/	/30/2011	
MA TURBIDITY INTU	MA TU STANE	RBIDITY DARD I NTU	Ricca		1102591		2/2	8/2012	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Lamotte 2020e Packing List

Pine No: 0416 Received Return in Pine Prepared OC Check 6v Standard Hems Custumer Lint free lens paper (4 Kim Wipes) Manual 0 NTU vial w/ tube positioning ring 1 NTU vial w/ tube positioning ring 10 NTU vial w/ tube positioning ring 2 sample vials w/ tube positioning rings 9 V alkaline battery (1) Water Sample Bottle w/ spout NIST traceable calibration sheet Received. Prepared QC Check Return to Pine Do/ Optional Accessory Customer 0 Extra sample vials MAR **Prepared By:** QC By:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru Des Ca	ment ID cription librated	9917 LaMotte 2020E 5/19/2011	1					
Manu	facturer	LaMotte			State Certifie	ed		
Model	Number	2020E			State	us Pas	S	
Serial Num	ber/ Lot Number	ME11939			Temp °	C 21.3	3	
I	ocation	Massachusetts			Humidity ⁶	% 47		
Dep	artment							
			Calibra	tion Specification	ns			
Gr Si	Group oup Nam tated Acc	# 1e Turbidityy Pct of Readit	1g	1	Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	0 0	
Nom In Val / In V	Val 1	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.00 / 1.00	1	UTV	1.00	NTU	1.00	1.00	0.00%	Pass
10.00 / 10.00	1	UTU	10.00	NTU	9.99	9.99	-0.10%	Pass
Test Instruments	s Used Du	ring the Calib	ration			(As Of Cal Entr	y Date)
Test Standard ID	Descripti	on	Manufacturer	Model Number	Serial Numl Lot Number	$\frac{\text{ber}/}{1}$	<u>Nez</u> ast Cal Date/ Exp	<u>xt Cal Date /</u> piration Date
MA	MA TURBIDITY		Ricca		1012020	-	11/	30/2011
TURBIDITY 10 NTU	STAND.	ARD 10 NTU						
MA TURBIDITY 1NTU	MA TUH STAND	RBIDITY ARD 1 NTU	Ricca		1102591		2/2	8/2012

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Lamotte 2020e Packing List

Standard Items	Received Prepared QC Check by Return to Pine Customer						
Lint free lens paper (4 Kim Wipes) Manual 0 NTU vial w/ tube positioning ring 1 NTU vial w/ tube positioning ring 10 NTU vial w/ tube positioning ring 2 sample vials w/ tube positioning ring 9 V alkaline battery (1) Water Sample Bottle w/ spout NIST traceable calibration sheet							
Optional Accessory	Prepared QC Check by Return to Pine Custamer						
Extra sample vials Prepared By: QC By:	0						

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru Des Ca	ment ID cription librated	13873 LaMotte 2020E 5/19/2011	3							
Manut	facturer	LaMotte			State Certifi	ed				
Model 1	Number	2020E			Stat	us Pass	5			
Serial Num	ber/Lot Number	ME 14123			Temp ^c	°C 21.3	3			
L Dep:	ocation artment	Massachusetts		Humidity % 47						
			Calibra	tion Specification	<u>15</u>					
Gr Si	Group oup Nan tated Acc	# 1 ne Turbidity ey Pct of Readi	ng	1	Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	0			
Nom In Val / In V	Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail		
1.00 / 1.00		NTU	1.00	NTU	1.01	1.01	1.00%	Pass		
10.00 / 10.00		NTU	10.00	NTU	10.01	10.01	0.10%	Pass		
Test Instruments	Used Du	uring the Calib	ration			6	As Of Cal Entr	y Date)		
Test Standard ID	Descript	ion	Manufacturer	Model Number	<u>Serial Num</u> Lot Numbe	<u>ber /</u> <u>r I</u>	<u>Ne</u> ast Cal Date/ Ex	<u>xt Cal Date /</u> piration Date		
MA	AA MA TURBIDITY		Ricca		1012020	2	11	/30/2011		
TURBIDITY 10 NTU	STAND	OARD 10 NTU								
MA TURBIDITY INTU	MA TU STAND	RBIDITY ARD I NTU	Ricca		1102591		2/2	28/2012		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Marianne Bolduc

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Lamotte 2020e Packing List

Standard liems	Received Prepared QC Check by Return to Pine Customer					
Lint free lens paper (4 Kim Wipes) Manual 0 NTU vial w/ tube positioning ring 1 NTU vial w/ tube positioning ring 10 NTU vial w/ tube positioning ring 2 sample vials w/ tube positioning ring 9 V alkaline battery (1) Water Sample Bottle w/ spout NIST traceable calibration sheet						
Optional Accessory	Prepared QC Check by Return to Pine Customer					
Extra sample vials () Prepared By: QC By:	0					

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID Description Calibrated	15391 MiniRae 3000 5/19/2011						
Manufacturer	Rae Systems			State Certifie	ed Dev		
Model Number Serial Number/ Lot Number	PGM-7320 592-902334			Temp °	C 21.	4	
Location Department	Massachusetts			Humidity 9	% 41		
		Calibra	tion Specification	ns			
Group Group Nar Stated Ac	 # 1 ne Isobutylene cy Pct of Read 	ing		Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	00	
<u>Nom In Val / In Val</u> 100.00 / 100.00	In Type PPM	<u>Out Val</u> 100.00	Out Type PPM	<u>Fnd As</u> 100.00	<u>Lft A</u> 100.0	<u>s</u> <u>Dev%</u> 00 0.00%	<u>Pass/Fail</u> Pass
Test Instruments Used D Test Standard ID Descrip MA 100 PPM MA IS0 ISO 0321FA11	uring the Calib tion O 100	<u>Manufacturer</u> Porta Gas	<u>Model Number</u> GP11010	Serial Numl Lot Number 0321FA11	ber / 1 1	(<u>As Of Cal Entr</u> <u>Ne</u> Last Cal Date/ Ex Opened Date 6/	y Date) ext Cal Date / piration Date 1/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Amy Adams

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications. but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

MiniRae 3000 Packing List

Pine No: 15391

Standard Items	Received Prepared QC Check by Return to Pine Customer
Protective rubber boot Manual Quick reference card Charger Probe tip Hydrophobic filters (2) Alkaline battery holder AA alkaline batteries (4) NIST traceable calibration sheet	<pre></pre>
Optional Accessory	Received Prepared QC Check by Return to Pine Customer
100 ppm Isobutylene calibration gas Gas regulator Tedlar bag Datalogging software Communications cable Prepared By:	

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc. For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID Description Calibrated	12602 MiniRae 3000 5/19/2011						
Manufacturer	Rae Systems			State Certifie	d		
Model Number	PGM-7320			Statu	IS Pass		
Serial Number/ Lot Number	592-001144			l emp °	C 21.4		
Location	Massachusetts			Humidity 9	% 41		
Department					2		_
		Calibra	tion Specificatio	ns			
Grou	o # 1			Range Acc %	0.0000		
Group Na	me Isobutylene			Reading Acc %	3.0000		
Stated Ac	cy Pct of Read	ing		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.00	100.00	0.00%	Pass
Test Instruments Used D	ouring the Calil	oration			(A	s Of Cal Entr	v Date)
				Serial Numl	ber /	Ne	ext Cal Date /
Test Standard ID Descrip	otion	Manufacturer	Model Number	Lot Number	La	ist Cal Date/ Ex	piration Date
MA 100 PPM MA IS ISO 0321FA11	O 100	Porta Gas	GP11010	0321FA11	<u>0</u>	bened Date 6/	1/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Amy Adams

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance
Pine Environmental Services, Inc 24 Tower Office Park, Woburn, MA 01801 800-519-PINE(Toll-Free) 781-932-9698(Phone) 781-932-9729(Fax) pine-ma@pine-environmental.com

MiniRae 3000 Packing List

Pine No: 12602

Standard Items	Received Prepared QC Check by Return to Pine Customer
Protective rubber boot Manual Quick reference card Charger Probe tip Hydrophobic filters (2) Attatine battery holder Actualiane batteries (4) N134 traceable calibration sheet	
Optional Accessory	Received Prepared QC Check by Return to Pine Customer
100 ppm Isobutylene calibration gas Gas regulator Tedlar bag Damogging software Communications cable Prepared By: QC By:	

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon selecting a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of reacting the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for chronog Pine Environmental Services, Inc.

For Frehnical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID Description Calibrated	15392 MiniRae 3000 5/19/2011						
Manufacturer Model Number	Rae Systems PGM-7320			State Certifie Statu	d is Pas	SS	
Serial Number/ Lot Number Location Department	Massachusetts		-	Humidity %	℃ 21.% 41	4	
		Calibra	tion Specificatio	ns			
Grou Group Na Stated Ac	n# 1 me Isobutylene ccy Pct of Read	ing	1	Range Acc % Reading Acc % Plus/Minus	0.000 3.000 0.00	00 00	
<u>Nom In Val / In Val</u> 100.00 / 100.00	<u>In Type</u> PPM	<u>Out Val</u> 100.00	<u>Out Type</u> PPM	<u>Fnd As</u> 100.00	Lft A 100.0	<u>s Dev%</u> 00 0.00%	<u>Pass/Fail</u> Pass
Test Instruments Used I	ouring the Calib	oration		1	1	(As Of Cal Entr	ry Date)
Test Standard ID Descrip	otion	Manufacturer	Model Number	Serial Number	<u>ber /</u>	<u>Ne</u> Last Cal Date/ Ex Opened Date	ext Cal Date / opiration Date
MA 100 PPM MA IS ISO 0321FA11	O 100	Porta Gas	GP11010	0321FA11		6/	1/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Amy Adams

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com Pine Environmental Services, Inc 24 Tower Office Park, Woburn, MA 01801 800-519-PINE(Toll-Free) 781-932-9698(Phone) 781-932-9729(Fax) pine-ma@pine-environmental.com

MiniRae 3000 Packing List

Pine No: 15392

Standard Items	Received Prepared QC Check by Return to Pine Customer
Protective rubber boot Manual Quick reference card Charger	
Probe tip Hydrophobic filters (2) Alkaline battery holder AA alkaline batteries (4) NIST traceable calibration sheet	
Optional Accessory	Received Prepared QC Check by Return to Pine Customer
100 ppm Isobutylene calibration gas Gas regulator	
Tedla-bag	
Communications cable	
Prenared By:	

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing. damaged, or malfunctioning. Thank you for change fine Environmental Services, Inc.

For Fechnical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID Description Calibrated	15881 MiniRae 3000 5/19/2011						
Manufacturer Model Number	Rae Systems			State Certifie State	ed 1s Pass		
Serial Number/ Lot	592-903591			Temp ^o	C 21.4		
Location Department	Massachusetts			Humidity ⁽	% 41		
		Calibra	tion Specification	15			
Group Group Nat Stated Ac	me Isobutylene cy Pct of Read	ing	I	Range Acc % Reading Acc % Plus/Minus	0.0000 3.0000 0.00		
<u>Nom In Val / In Val</u> 100.00 / 100.00	<u>In Type</u> PPM	<u>Out Val</u> 100.00	<u>Out Type</u> PPM	<u>Fnd As</u> 100.00	<u>Lft As</u> 100.00	<u>Dev%</u> 0.00%	<u>Pass/Fail</u> Pass
Test Instruments Used D Test Standard ID Descrip MA 100 PPM MA IS	During the Calib Dation O 100	oration <u>Manufacturer</u> Porta Gas	<u>Model Number</u> GP11010	<u>Serial Num</u> Lot Numbe 0321FA11	(As ber / r Last Ope	Of Cal Entr Na Cal Date/ Ex ned Date 6/	ry Date) ext Cal Date / xpiration Date 1/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Amy Adams

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc 24 Tower Office Park, Woburn, MA 01801 800-519-PINE(Toll-Free) 781-932-9698(Phone) 781-932-9729(Fax) pine-ma@pine-environmental.com

MiniRae 3000 Packing List

Pine No: 15881

Standard Items	Received Prenared OC Check by Return to Pine Customer
Protective rubber boot Manual Quick reference card Charger Proce tip Hydrophobic filters (2) Alkanne battery holder Association batteries (4)	
Optional Accessory	Received Prepared QC Check by Return to Pine Customer
100 ppm Isobutylene calibration gas Gas regulator Todar bag Domogging software Communications cable Prenared By:	

Date:

This maching list is to ensure that every item needed to operate the unit was sent and received. Upon releiting a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of reaction, the equipment if any pieces are missing, lamaged, or malfunctioning. Thank you for (Analy 12 Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

17017		
QED SamplePro 1.75		
5/18/2011		
QED	State Certified	
SamplePro 1.75	Status	Pass
S/N 11396	Temp °C	19
Massachusetts	Humidity %	55
Calibra	tion Specifications	
)# 1 ne		
As Found Result: Pass	As Left Result: 1	Pass
uring the Calibration		(As Of Cal Entry Date)
tion <u>Manufacturer</u>	<u>Model Number</u> <u>Lot Number</u>	/ <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
	17017 QED SamplePro 1.75 5/18/2011 QED SamplePro 1.75 S/N 11396 Massachusetts Calibra # 1 ne As Found Result: Pass uring the Calibration tion Manufacturer	17017 QED SamplePro 1.75 5/18/2011 State Certified QED Status SamplePro 1.75 Status S/N 11396 Temp °C Massachusetts Humidity % Calibration Specifications # 1

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ronald Dalli

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	14967		
Description	QED SamplePro 1.75		
Calibrated	5/18/2011		
Manufacturer	QED	State Certified	
Model Number	SamplePro 1.75	Status	Pass
Serial Number/ Lot Number	S/N 11868	Temp °C	19
Location	Massachusetts	Humidity %	55
Department			
Group	Calibra	tion Specifications	
Group Nan	ne		2
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used D Test Standard ID Descrip	uring the Calibration tion <u>Manufacturer</u>	<u>Serial Numbe</u> <u>Model Number</u> <u>Lot Number</u>	(As Of Cal Entry Date) r/ Next Cal Date / Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ronald Dalli

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	10219		
Description	QED SamplePro 1.75		
Calibrated	5/18/2011		
Manufacturer	QED	State Certified	
Model Number	SamplePro 1.75	Status	Pass
Serial Number/ Lot Number	S/N 11220	Temp °C	19
Location	Massachusetts	Humidity %	55
Department			
Group	Calibra	tion Specifications	
Group Nar	me		
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used D	ouring the Calibration		(As Of Cal Entry Date)
Test Standard ID Descrip	otion <u>Manufacturer</u>	Model Number <u>Serial Number</u>	<u> <u>Next Cal Date /</u> <u>Last Cal Date / Expiration Date</u> <u>Opened Date</u> </u>
Test Instruments Used D Test Standard ID Descrip	ouring the Calibration Otion <u>Manufacturer</u>	<u>Serial Number</u> Model Number <u>Lot Number</u>	(As Of Cal Entry Dat / <u>Next Cal</u> Last Cal Date/ Expiration Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ronald Dalli

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID Description	12368 OED SamplePro 1,75		
Calibrated	5/18/2011		
Manufacturer	QED	State Certifi	ed
Model Number	SamplePro 1.75	Stat	us Pass
Serial Number/ Lot	S/N11521	Temp	PC 19
Number			
Location	Massachusetts	Humidity	% 55
Department			
Group	Calif # 1	ration Specifications	
Group Nan	ne		
Test Performed: Yes	As Found Result: Pass	As Left Resu	It: Pass
Test Instruments Used D	uring the Calibration		(As Of Cal Entry Date)
Test Standard ID Descrip	tion <u>Manufactur</u>	er <u>Model Number</u> <u>Lot Numbe</u>	<u>Iber /</u> <u>Inter Last Cal Date / Expiration Date</u> <u>Opened Date</u>

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ronald Dalli

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

9131		
QED SamplePro 1.75		
5/18/2011		
QED	State Certified	
SamplePro 1.75	Status	Pass
S/N 10403	Temp °C	19
Massachusetts	Humidity %	55
Calibra	tion Specifications	
# 1 ne		
As Found Result: Pass	As Left Result: I	ass
uring the Calibration		(As Of Cal Entry Date)
tion <u>Manufacturer</u>	Model Number Lot Number	/ <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
	9131 QED SamplePro 1.75 5/18/2011 QED SamplePro 1.75 S/N 10403 Massachusetts <i>Calibra</i> # 1 ne As Found Result: Pass <u>uring the Calibration</u> <u>tion</u> <u>Manufacturer</u>	9131 QED SamplePro 1.75 5/18/2011 QED State Certified SamplePro 1.75 Status S/N 10403 Temp °C Massachusetts Humidity % Calibration Specifications # 1 ne As Found Result: Pass As Left Result: F uring the Calibration tion Manufacturer Model Number Lot Number

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ronald Dalli

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services, Inc.

92 North Main St, Building 20 Windsor, NJ 08561 Toll-free: (800) 301-9663

Pine Environmental Services, Inc.

Instru	ment ID 1	8832						
Des	cription L	aMotte 2020	WE					
Ca	librated 9	/22/2011						
Manu	facturer L	aMotte			State Certifie	d		
Model	Number 2	020WE			Statu	is Pass	S	
Serial Num	ber/ Lot 1. Number	366-3811			Temp °	C 24.6	5	
I	Location N	lew Jersey			Humidity 9	6 70		
Dep	artment							
			Calibra	tion Specification	15			
	Group #	i			Range Acc %	0.000	0	
Gi	oup Name	Turbidity			Reading Acc %	3.000	0	
S	tated Accy	Pct of Readi	ng		Plus/Minus	0.00		
Nom In Val / In V	Val In	Туре	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.00 / 1.00	N	TU	1.00	NTU	0.98	1.00	0.00%	Pass
10.00 / 10.00	N	TU	10.00	NTU	9.93	10.00	0.00%	Pass
Test Instruments	s Used Dur	ing the Calib	ration			(As Of Cal En	try Date)
					Serial Numb	or /		Next Cal Date /
Test Standard ID	Descriptio	n	Manufacturer	Model Number	Lot Number	L	ast Cal Date/	Expiration Date
Loo and I		a sea a sea a				<u>c</u>	pened Date	
NJ I NTU	Turbidity NTU	Standard 1	Ricca	1 NTU	1102591	3	/15/2011	2/29/2012
NJ 10 NTU STANDARD	TURBID STANDA	ITY RD 10 NTU	Ricca	10 NTU	1012020	5	/1/2011	11/30/2011

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated William Bass

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

YSI & Turbidity Meter Calibration Log

DATE: 9 27/11

INSTRUMENT	IDENTIFICATION
INGTROMENT	IDENTITION TON

		T HEF H
Brand: YSI G50 MDS	Model: 650 MAS	Serial Number: 0270792 AJ 4135
Brand	Model:	Serial Number: 0186120 1611
Diana. La Motte	Jodowe	1366-3811 18832

PINET

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
$\begin{array}{c c} pH (S.I. units) \\ 4.00 & 5.9\% \\ 7.00 & 7.04 \\ \hline 7.00 & 7.04 \\ \hline 7.00 \\ 10.00 & 9.94 \\ \hline 9.99 $	$\begin{array}{c} 4.00 \\ 7.00 \\ 10.00 \\ \underline{7.03} \\ 10.01 \end{array}$	4.00 7.00 10.00
Turbidity (NTUs) 0 0.02 0.00 40-1 0.87 0.94 40010 (0.3°) 10.01	0 0.05 10 1.08 10 10.03	0 10
Conductivity (µmhos/cm) 1.413). <u>366</u> 1. <u>413</u>	1.413 1.419	1.413
Dissolved Oxygen (mg/L) Barametric Pressure 0,03 in.H ₂ O*25.4= <u>757.5</u> mmHg	Not Applicable	Not Applicable
REDOX (mV) (Zobel Solution) 240.5/237.1 Temperature (°C) 19.52	Chart 1 233.8 20.16	Chart ¹

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1