

200 Day Hill Road Suite 200 Windsor, CT 06095 (860) 298-0541 (860) 298-0561 FAX

Solvents Recovery Service of New England, Inc. Superfund Site

Southington, CT

Annual State of Compliance Report #4

October 31, 2011 through October 30, 2012

December 2012

Table of Contents

A. Introduction	1
B. Background	2
C. Site Operational History	
D. Regulatory Status	6
E. Selected Remedy	7
F. Performance Standards	9
G. Summary of Activities Completed This Reporting Period	9
H. Updated Schedule	9
I. Hydraulic Containment & Treatment System Operations and Maintenance	9
J. Institutional Controls / Access Agreements	. 11
K. Construction, Operation and Maintenance Activities	. 12
L. Habitat Restoration	. 12
M. Memorandum of Agreement (MOA) with Southington Water Department / Town of	of
Southington	. 12
N. Groundwater Monitoring Program	. 13
O. Recommendations of Changes to any Monitoring Program	. 13
P. Groundwater Containment and Treatment Optimization Studies	. 14
Q. Costs Incurred this Reporting Period	. 14
R. References	. 15

Tables:

Table 1 - Summary of Activities Completed - October 30, 2011 through October 31, 2012

Table N-1 - Groundwater Monitoring Network and Sampling Events

Figures:

- Figure 1 Site Location
- Figure 2 Study Area

Figure 3A - Estimated Groundwater Plume and NAPL Areas – Overburden

- Figure 3B Estimated Groundwater Plume and NAPL Areas Bedrock
- Figure 4 Planned Remedial Activities
- Figure 5- Shallow Overburden Groundwater Elevation Contours, May 10-12, 2010
- Figure 6- Middle Overburden Groundwater Elevation Contours, May 10-12, 2010
- Figure 7- Deep Overburden Groundwater Elevation Contours, May 10-12, 2010
- Figure 8 Shallow Bedrock Groundwater Elevation Contours, May 10-12, 2010

Figure 9- Deep Bedrock Groundwater Elevation Contours, May 10-12, 2010

Attachments:

Attachment 1 - Project Schedule

Attachment 2 - Hydraulic Containment and Treatment System, Annual Demonstration of Compliance Report No. 4, October 31, 2011 through October 30, 2012 Attachment 3 - 2012 Groundwater Sampling and Monitored Natural Attenuation Report Acronyms and abbreviations used in this Annual Report and associated attachments:

1,1-DCE 1,1,1-TCA 1,2-DCA	1,1-dichloroethene 1,1,1-trichloroethane 1,2-dichloroethane
2,3,7,8-TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
ALEP	Action Level Exceedance Plan
AOC	Administrative Order on Consent
AQC	Air Quality Control System
ARARs	Applicable or Relevant and Appropriate Requirements
ATSDR	Agency for Toxic Substance and Disease Registry
B&M	Boston & Maine
BACT	Best Available Control Technology
BBL	Blasland, Bouck & Lee, Inc.
bgs	below ground surface
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
BTU	British Thermal Unit
°C	degrees Celsius
CA	chloroethane
CBYD	Call Before You Dig
	cubic centimeter
cDCE	cis-1,2-dichloroethene
CD	Consent Decree
CEMS CERCLA	Continuous Emissions Monitoring System
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CERCLIS	Comprehensive Environmental Response, Compensation and Liability
CERCLIS	Information System
CH₄	methane
CL&P	Connecticut Light & Power
CO ₂	carbon dioxide
COCs	Constituents of Concern
CT	carbon tetrachloride
CTDEP	Connecticut Department of Environmental Protection
CTDPH	Connecticut Department of Public Health
CVOCs	Chlorinated Volatile Organic Compounds
CWA	Clean Water Act
DCE	dichloroethene
DCM	dichloromethane
DCP	Demonstration of Compliance Plan
ddms	de maximis Data Management Solutions
DHC	Dehalococcoides
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen

DQA DQOs DRE DRO EISB ELUR °F Fe(OH) ₃ f _{oc} FS FSP PMC	Data Quality Assessment Data Quality Objectives Destruction/Removal Efficiency Diesel Range Organics Enhanced In-Situ Bioremediation Environmental Land Use Restriction degrees Fahrenheit ferrous hydroxide fraction of solid organic carbon in soil Feasibility Study Field Sampling Plan Pollutant Mobility Criteria applicable to designated Class "GA"
GAC	groundwater areas granular activated carbon
GCTEOS	Groundwater Containment and Treatment Evaluation and Optimization Study
gpm	gallons per minute
GRO	Gasoline Range Organics
GWPC	Groundwater Protection Criteria
GWTF	Groundwater Treatment Facility
H	Henry's Law Constant
	hydrogen water
H_2O H_2S	hydrogen sulfide
HAP	hazardous air pollutant
HCI	hydrochloric acid
HCTS	Hydraulic Containment and Treatment System
HDPE	High-Density Polyethylene
HLVs	Hazard Limiting Values
HZ	Heated Zone
ID	inner diameter
IFT	interfacial tension
IMS	Interim Monitoring and Sampling
IQAT	Independent Quality Assurance Team
IRIS	Integrated Risk Information System
ISTD	In-Situ Thermal Desorption
ISTR	In-Situ Thermal Remediation
J&E	Johnson & Ettinger
K _d	soil-water partition coefficient
kg	kilogram
K _{oc}	chemical-specific organic carbon partition coefficient
LAER	Lowest Achievable Emission Rate
lbs	pounds
LNAPL	light non-aqueous phase liquid

MAROS	Monitoring and Remediation Optimization System
MASC	Maximum Allowable Stack Concentration
MCLs	Maximum Contaminant Levels
MCLG	Maximum Contaminant Level Goal
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MIBK	4-methyl-2-pentanone (methyl isobutyl ketone)
mL	milliliter
MNA	Monitored Natural Attenuation
MOA	Memorandum of Agreement
N ₂	nitrogen
NA	Natural Attenuation
NAPL	non-aqueous phase liquid
ng/L	nanograms per liter ammonia
NOAA	National Oceanic and Atmospheric Administration
	nitrite
	nitrate
NSR	New Source Review
NTCRA	Non-Time-Critical Removal Action
O ₂	oxygen
O&M	Operations and Maintenance
OD	outer diameter
OH	hydroxyl radical
OIS	On-Site Interceptor System
OMM	Operation, Maintenance and Monitoring
ONOGU	Observed NAPL in the Overburden Groundwater Unit
ORP	oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OSWER	Office of Solid Waste and Emergency Response
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PCDDs	polychlorinated dibenzo-p-dioxins
PCDFs	polychlorinated dibenzofurans
PCE	tetrachloroethylene
PCR	Polymerase Chain Reaction
PEL	Permissible Exposure Limit
PFD	process flow diagram
PID	photoionization detector
PIPP	Pre-ISTR Preparation Plan
PLC	Programmable Logic Controller
POP	Project Operations Plan
ppb	parts per billion
PPE	personal protective equipment

ppm	parts per million
PSD	Prevention of Significant Deterioration
psig	pounds per square inch, gauge
PVČ	polyvinyl chloride
QAPP	Quality Assurance Project Plan
R^2	correlation coefficient
RAOs	Response Action Objectives
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RDWP	Remedial Design Work Plan
RD/RA	Remedial Design/Remedial Action
Redox	Reduction-Oxidation
RDEC	Residential Direct Exposure Criteria
RH	Relative Humidity
RI	Remedial Investigation
ROD	Record of Decision
RSRs	Remediation Standard Regulations
SAP	Sampling and Analysis Plan
SCAP	Supplemental Containment Action Plan
SCM	Site Conceptual Model
SO ₄ ²⁻	sulfate
SOP	Standard Operating Procedure
SOW	Statement of Work
SPLP	Synthetic Precipitation Leaching Procedure
SRSNE	Solvents Recovery Service of New England, Inc.
SSO	
SVOCs	Site Safety Officer
SWD	semi-volatile organic compounds
SWPC	Southington Water Department Surface Water Protection Criteria
TAL	
	Target Analyte List
TCE TCH	trichloroethylene
-	thermal conduction heating
TCLP	Toxicity Characteristic Leaching Procedure
TEFs	Toxic Equivalency Factors
TEQ	Toxic Equivalence Quotient
TEX	Toluene, Ethylbenzene and Xylenes
TSCA	Toxic Substances Control Act
TTZ	thermal treatment zone
ug/L	micrograms per liter
USEPA	United States Environmental Protection Agency
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
UV	ultraviolet
VC	vinyl chloride

VIVapor IntrusionVOCvolatile organic compoundWHOWorld Health Organization

A. Introduction

On October 30, 2008, the United States Environmental Protection Agency (USEPA) lodged a Consent Decree (CD) with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE). The CD was entered by the Court on March 26, 2009. The CD addresses Remedial Design/Remedial Action (RD/RA) activities for the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Appendix B to the CD is a Statement of Work (SOW) that defines the required RD/RA activities and deliverables.

Section VIII.B of the SOW requires the Settling Defendants to submit an Annual State of Compliance Report one year after lodging of the CD and annually thereafter, to USEPA for approval or modification, after reasonable opportunity for review and comment by Connecticut Department of Environmental Protection (CTDEP). Section 62.e of the CD requires a demonstration of the amounts of the Rolling Oversight Cost Cap and the Available Balance. This *Annual State of Compliance Report #4* (report) has been prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to the CD, to address these CD and SOW requirements. This report documents Site activities during the period of October 31, 2011 through October 30, 2012 (the "reporting period").

As specified in SOW Section VIII.B, this report includes a comprehensive evaluation of all monitoring required by this SOW, including, but not limited to:

- compliance with the Performance Standards of the Hydraulic Containment and Treatment System and Severed Plume;
- Institutional Controls;
- construction, operation and maintenance;
- habitat restoration;
- hydraulic containment;
- the Memorandum of Agreement with Southington Water Department / Town of Southington; and
- groundwater monitoring program, including monitored natural attenuation.

Also required in the report is an assessment of the progress being made towards achieving the Performance Standards, as well as recommendations for changes to any

monitoring program to address deficiencies identified during the evaluation. Proposals for reductions in monitoring, along with justifications, are provided as appropriate.

B. Background

The SRSNE Site is located on approximately 14 acres of land along Lazy Lane in Southington, Hartford County, Connecticut, approximately 15 miles southwest of the city of Hartford (Figure 1). The physical setting of the Site – including the regional geology, overburden geology, bedrock geology, hydrogeology, groundwater use and classification, drainage, and surface water use and classification – is summarized below. This information is also described in detail in prior report submittals, including the *Remedial Investigation Report* (Blasland, Bouck & Lee, Inc. [BBL] 1998) and the *Feasibility Study Report* (BBL and USEPA 2005), and the draft Remedial Design Work Plan (RDWP) (ARCADIS, April 2009).

The SRSNE Site includes portions of several properties/areas that are referred to within the RDWP consistent with terminology established in prior Site-related documents. These properties/areas include the former SRSNE Operations Area, the former Boston & Maine railroad right-of-way, the former Cianci Property, and the Town of Southington Well Field Property (Town Well Field Property). These areas are shown on Figure 2, and further described below:

- Former SRSNE Operations Area: The former SRSNE Operations Area comprises approximately 2.5 paved acres on a 3.7-acre lot South of Lazy Lane in the Quinnipiac River basin approximately 600 feet west of the Quinnipiac River channel. This is the area where SRSNE historically performed solvent recovery and related operations. The Operations Area is bordered on the east (downhill) by an abandoned railroad right-of-way and the former Cianci Property; to the north by commercial businesses; to the west (uphill) by private property; and to the south by private property, the Connecticut Light & Power (CL&P) electrical transmission line easement, and the Town Well Field Property.
- Railroad Right-of-Way: The railroad right-of-way is an approximately 50-foot wide corridor running north-south that separates the former Operations Area (to the west) from the former Cianci Property (to the east). The railroad was historically owned and operated by Boston & Maine, but is presently abandoned and the rails have been removed. CT DEP purchased the right-of-way in this area in support of extending the Farmington Canal Heritage Trail, a rails-to-trails greenway, from New Haven to the Massachusetts border (draft *Preliminary Reuse Assessment* [USEPA 2003]).
- Former Cianci Property: The former Cianci Property is a 10-acre parcel located immediately east of the Operations Area and railroad right-of-way. The Quinnipiac

River borders the eastern edge of the former Cianci Property. Lazy Lane is to the north, and the Town Well Field Property borders the property to the south.

• Town Well Field Property: The Town Well Field Property consists of approximately 28 acres of undeveloped land south of the former Cianci Property and southeast of the Operations Area. The well field is bounded to the east by the Quinnipiac River and to the south by the Quinnipiac River and Curtiss Street. The railroad right-of-way and the Delahunty Property border the western perimeter of the well field. The CL&P easement runs northwest-southeast through the northern portion of the Town Well Field Property.

Town Production Wells No. 4 and 6 are approximately 2,000 and 1,400 feet south of the SRSNE Property, respectively. The Quinnipiac River divides the area between Wells No. 4 and 6. Production Well No. 6 is accessible using dirt roads originating from Lazy Lane or Curtiss Street, while Well No. 4 is only accessible from Curtiss Street. Production Well No. 4 was installed in August 1965 and provided drinking water to the Town of Southington from July 1966 to December 1977. Production Well No. 6 was installed in April 1976 and was pumped from May through October 1978, May through July 1979, and March 1980. Both wells have been inactive since that time.

Within these areas, "the Site" includes areas where Site-related constituents have come to be present in soil (including wetland soil) and groundwater at concentrations exceeding SOW-specified cleanup levels. This includes observed and interpreted non-aqueous phase liquid- (NAPL-) containing areas, impacted soils in the Operations Area, railroad right-of-way, and Cianci Property, and areas of impacted groundwater in both the overburden and bedrock zones. These areas, shown on Figures 3A (overburden) and 3B (bedrock), are generally described as follows:

- **Overburden NAPL Area:** This is the area where NAPL has been observed or inferred to exist in overburden soils based on the findings of prior investigations. The estimated extent of the Overburden NAPL Area includes portions of the Operations Area, the railroad right-of-way, and a portion of the Cianci Property, as shown on Figure 3A. This area has been further delineated in the northwest corner of the former Operations Area as component of the pre-design investigations referenced in the RDWP.
- **Overburden Groundwater Area:** The Overburden Groundwater Area is the portion of the Site where dissolved volatile organic compounds (VOC) concentrations in the overburden aquifer exceed cleanup goals. While the overburden groundwater is typically considered in three zones (each approximately one-third of the saturated thickness), the composite extent of this area (based on *Feasibility Study Report* [BBL and USEPA 2005] data) is depicted on Figure 3A. The overburden groundwater VOC plume extends south to the Town Well Field Property. The extent

of the overburden groundwater area, particularly to the east of the Quinnipiac River, is subject to further assessment and delineation as part of the investigations referenced in the RDWP.

- **Bedrock NAPL Area:** The Bedrock NAPL Area is the area where NAPL has been observed or is inferred to exist based on prior site investigations. This includes a majority of the former SRSNE Operations Area and Cianci Property, as shown on Figure 3B.
- Bedrock Groundwater Area: This includes the portion of the Site where dissolved VOC concentrations in the bedrock aquifer exceed groundwater cleanup goals (based on *Feasibility Study Report* [BBL and USEPA 2005] data). The bedrock groundwater VOC plume extends south into the central portion of the Town Well Field Property, represented in figures 10 and 11 in the Draft 2012 MNA report (ARCADIS, November 2012)
- Severed Plume: The portion of the affected groundwater zone that is outside the groundwater capture zone of the Non-Time-Critical Removal Action 1 (NTCRA 1) and NTCRA 2 extraction systems (described below), which contains Site-related constituents (primarily VOCs) above detectable levels is referred to as the severed plume. The approximate location and extent of the severed plume is shown on Figure 3A.

Other key Site features referenced include the Hydraulic Containment and Treatment System (HCTS). The HCTS consists of the on-site groundwater treatment system and the two groundwater extraction systems described as follows:

• NTCRA 1 Groundwater Extraction System: The NTCRA 1 groundwater extraction system ("NTCRA 1 system") is located within the NTCRA containment area on the Cianci Property east of the Operations Area (Figure 4). It consists of a steel sheet pile wall through the overburden to the top of bedrock, and 12 overburden groundwater extraction wells (RW-1 through RW-12) west (formerly upgradient) of the sheet pile wall. Groundwater is extracted from the wells to maintain hydraulic gradient reversal across the sheet pile wall. This system was installed in 1995 pursuant to Administrative Order on Consent (AOC) I-94-1045, effective October 4, 1994. Pumping from the NTCRA 1 system was initiated in July 1995.

In December of 2009, de maximis submitted a letter to the Agencies summarizing changes to the NTCRA-1 Demonstration of Compliance Plan (DCP) as a result of the abandonment of monitoring well CPZ-9 (one of the ten NTCRA I compliance monitoring points) and decommission of recovery wells RW-5 and RW-6. Monitoring well abandonment activities at the site have been undertaken in accordance with Attachment N of the RDWP.

• NTCRA 2 Groundwater Extraction System: The NTCRA 2 groundwater extraction system ("NTCRA 2 system") consists of two overburden extraction wells (RW-13 and RW-14) and one bedrock extraction well (RW-1R) just north of the CL&P easement (Figure 4). These wells were installed pursuant to AOC 1-97-1000, effective February 18, 1997, and began operating in 1999, 2007, and 2001, respectively. The NTCRA 2 system includes a groundwater extraction well in the bedrock (RW-1R) and two overburden groundwater extraction wells (RW-13 and RW-14). This extraction well cluster is located in the Town Well Field Property north of the CL&P easement.

In 2012, the average combined NTCRA 1 and NTCRA 2 groundwater extraction systems pumping rate was 30.6 gallons per minute. The capture zones created by the NTCRA 1 and 2 groundwater extraction systems are shown on Figure 3A (overburden) and Figure 3B (bedrock). The operation of the combined NTCRA 1 and NTCRA 2 systems has successfully contained the overburden and bedrock VOC plumes, creating the severed plume within the Town Well Field Property. Approximately 16,059,000 gallons of groundwater were extracted, treated and discharged during this monitoring period.

On-site Groundwater Treatment System: The combined operations of the extraction systems and the treatment facility were previously referred to as the "NTCRA 1 and NTCRA 2 Groundwater Extraction and Treatment System" or "NTCRA 1/2 Groundwater System." Following entry of the CD, continued operation of the NTCRA 1/2 Groundwater System became part of the ROD-specified remedial approach for groundwater, and the system is now referred to as the HCTS (SOW Section V.A).

Groundwater extracted from the NTCRA 1 and 2 systems is treated on site with a process that was originally constructed as part of the NTCRA 1 system (Figure 4). The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility. The treatment system consists of the following unit processes: metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995. Approximately 16,933 pounds of VOCs have been removed from the groundwater since system startup.

C. Site Operational History

The SRSNE facility began operations in Southington in 1955 (ATSDR 1992). From approximately 1955 until the facility's closure in 1991, spent solvents were received from customers and distilled to remove impurities, and the recovered solvents were returned to the customer or sold to others for reuse. Based on a partial record of materials processed at the SRSNE facility (excluding pre-1967 operations files, which were destroyed in a fire), SRSNE handled in excess of 41 million gallons of waste solvents, fuels, paints, etc. Additional details regarding the operational history are provided in the *Remedial Investigation Report* (BBL 1998).

D. Regulatory Status

The SRSNE Site was added to the National Priorities List (NPL) on September 8, 1983. Since that time USEPA and the State of Connecticut have implemented a variety of enforcement, regulatory and response actions, culminating with the issuance of the Proposed Plan and Record of Decision (ROD) in September 2005. After issuing the ROD, the USEPA and SRSNE Site Group negotiated the terms of the CD.

Key regulatory milestones in the recent history of the Site, based on lists included on USEPA's project website (USEPA 2009) and in the fact sheet USEPA developed in support of the 2005 Proposed Plan (USEPA 2005b), are as follows:

Regulatory Milestone	Year
USEPA adds the Site to the NPL; SRSNE signs a consent decree with USEPA to install a groundwater recovery system and store/manage hazardous waste on site.	1983
USEPA and the State of Connecticut take enforcement action to require cleanup of the facility operations and the property.	1983-1988
USEPA initiates the Remedial Investigation for the Site, conducting three phases of investigation that are presented in a four-volume report (HNUS 1994).	1990
SRSNE operations cease.	1991
USEPA conducts a Time-Critical Removal Action to remove contaminated soils from the railroad grade drainage ditch and to remove some chemicals stored at the property to an off-site location.	1992
USEPA and the SRSNE Group enter into an Administrative Order on Consent (AOC) for Removal Action to construct and operate a pump and treat system to contain the principally contaminated overburden groundwater (the NTCRA 1 work). Other work conducted under this AOC included the construction of a mitigation wetland in the northeast corner of the	1994

Cianci Property, implementation of a full-scale phytoremediation study within the NTCRA 1	
sheet pile wall, and extension of public water to three buildings adjacent to the Site.	
USEPA issues an Action Memorandum for a second NTCRA (NTCRA 2) to hydraulically	1995
contain VOC-impacted bedrock groundwater down gradient of the NTCRA 1 system.	1995
USEPA and the SRSNE Site Group enter into a second AOC for Removal Action and	
Remedial Investigation/Feasibility Study (RI/FS) to expand the groundwater containment	
system and complete site investigations. Work under this AOC resulted in the completion of	1996
the Site RI/FS, implementation of NTCRA 2, and the decontamination, demolition and	
removal of the remaining buildings and tanks from the Operations Area.	
SRSNE Site Group operates groundwater controls in the overburden and bedrock aquifers,	1996 - 2004
completes remedial investigations, and conducts feasibility studies.	1990 - 2004
USEPA issues the Proposed Plan in June and holds two public meetings; the public	2005
comment period runs from June through August.	2005
USEPA issues the ROD for the Site, which describes the final remedy.	2005
USEPA and SRSNE Site Group sign CD to implement the RD/RA activities.	2008
Court enters CD; Remedial Design work initiated.	2009
Annual Report #1	2009
1 st Five Year Review Report	2010
USEPA issues Remedial Design Work Plan Approval	2010
USEPA issues approval of PIPP 100% Design and RAWP	2010
Initiated Pre-ISTR Preparation Plan Construction Activities	2010
Annual Report #2	2010
ISTR Conceptual Design Approval	2011
Approval of ISTR 100% Wellfield Design	2011
Annual Report #3	2011
Institutional Control Plan revisions based on March 2012 comments and May 2012 meeting	2012
Approval of the use of Hydrosleeve for interim sampling	2012
Approval for low flow screen length	2012
Completed delineation of extent of groundwater contamination	2012
Completed Pre-ISTR Preparation Plan Construction Activities	2012
Annual Report #4	2012

E. Selected Remedy

The overall purpose of RD/RA activities is to design and implement the selected remedial approach for the Site. The selected remedy, developed by combining components of different alternatives for source control and management of migration to obtain a comprehensive approach for Site remediation, was described in the ROD. Key elements are summarized as follows:

 Treat waste oil and solvents – where present as NAPL in the subsurface in the overburden aquifer (i.e., the Overburden NAPL Area) – using in-situ thermal treatment.

Following in-situ thermal treatment, cap the former SRSNE Operations Area. The cap will be low-permeability and multi-layered and is to be designed, constructed, and maintained to meet the requirements of Resource Conservation and Recovery Act (RCRA) Subtitle C. As described in the "Re-use of Excavated Material from Railroad Right of Way for ISTR Area Fill" memorandum (de maximis, inc., April 29, 2010), soils excavated from the Rail Road Right of Way will be incorporated as fill material in the Thermal Treatment Zone (TTZ). Excavation of soil in a specific portion of the former railroad right-of-way to a depth of 4 feet – followed by backfill to match surrounding grade –will meet the direct exposure criteria (DEC) and pollutant mobility criteria (PMC) requirements of the Connecticut Remediation Standard Regulations with the understanding that an Activity and Use Limitation (ELUR) would subsequently be established for this area.

- Excavate soils exceeding cleanup levels from certain discrete portions of the former Cianci Property. The estimated limits of soil removal on the former Cianci Property (five discrete excavation areas) are shown on Figure G-1 of the *Post-Excavation Confirmatory Sampling Plan* (Attachment G to the RDWP); these limits are subject to modification based on additional sampling proposed as part of remedial design. Provided that concentrations of polychlorinated biphenyls (PCBs) do not warrant offsite disposal, soils excavated from the former Cianci Property (and from other areas excavated outside the cap limits as part of other RD/RA activities) may be relocated to the former SRSNE Operations Area for placement beneath the cap.
- Capture and treat (on site) groundwater in both the overburden and bedrock aquifers that exceeds applicable federal drinking water standards and risk-based levels. This will be achieved through continued operation, maintenance, and modification (as needed) of the HCTS.
- Monitored natural attenuation of the groundwater plume outside the capture zones (i.e., the severed plume, shown on Figure 3A of the RDWP) that exceeds cleanup levels.
- Monitor natural degradation of constituents in the groundwater plume inside the capture zones and within the Bedrock NAPL Area (shown on Figure 3B of the RDWP).
- Implement institutional controls (i.e., Environmental Land Use Restrictions) to minimize the potential for human exposure to Site-related constituents in the subsurface soils and to prohibit activities that might affect the performance or integrity of the cap.

• Monitor groundwater and maintain the cap over the long term.

F. Performance Standards

Section IV of the SOW establishes Performance Standards for the various affected media at the SRSNE Site. It also establishes Performance Standards for other aspects of the RD/RA, including subsurface NAPL in the overburden and bedrock aquifers, performance of the multi-layer cap, hydraulic containment and treatment, the severed plume, habitat restoration, environmental monitoring, and institutional controls. These non-media-specific Performance Standards are summarized and addressed (to the extent applicable at this point in the RD/RA process) in the various task-specific work plans summarized in the RDWP.

Performance Standards for soil, wetland soil, and groundwater have been reviewed and compared to the current applicable USEPA and CTDEP standards and guidance. Based on this review, it was concluded that none of the USEPA or CTDEP criteria for Site-related constituent have been revised since the ROD was issued. However, the CTDEP has published a lower detection limit for 1,2,4-trichlorobenzene in water (0.5 micrograms per liter [ug/L] rather than the prior value of 2 ug/L). Because the detection limit is the cleanup level for groundwater (discussed below), this modification is noted on the copy of Table L-1 from the ROD that is provided as Appendix 1 to the RDWP. No other modifications were warranted to Tables L-1 or L-2 of the ROD to reflect current published guidance and standards.

G. Summary of Activities Completed This Reporting Period

A summary of activities completed during this reporting period is provided within the attached Table 1.

H. Updated Schedule

An updated project schedule is included as Attachment 1 to this report.

I. Hydraulic Containment & Treatment System Operations and Maintenance

The HCTS achieved compliance during this reporting period with the Demonstration of Compliance Requirements (see Attachment B to the SOW). Details of the operation are provided as Attachment 2 to this report.

In addition to the parameters required by the Demonstration of Compliance Requirements, groundwater temperature data have been collected within the sheetpile wall to provide a baseline dataset of temperature variation over time. These data are being collected pursuant to Section 5.3.3 of Appendix N of the RDWP (Monitoring Well Network Evaluation and Groundwater Monitoring Program).

Map views and cross-sections to demonstrate hydraulic containment in accordance with EPA guidance from January 2008 entitled *A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems* (EPA/600/R-08/003) are provided in Figures 5 through 9. These figures depict groundwater elevation contours measured on May 10-12, 2010 (i.e., the most current comprehensive groundwater gauging event), and generalized overburden and bedrock capture zone boundaries for the NTCRA 2 extraction wells, which are now part of the HCTS. The estimated capture zone boundaries are based on a combination of measured water level data, historical and recent groundwater modeling results and stagnation point calculations presented in the FS Report (BBL and USEPA, May 2005; Appendix A), and updated VOC concentration data at select monitoring wells (collected in June 2012). Although the extraction rates at the NTCRA 2 wells vary as a function of seasonal and long-term precipitation rates and well redevelopment events, the typical long-term average pumping rate has been approximately 20 to 30 gpm.

To maintain recovery rate and hydraulic control for NTCRA 2, overburden extraction wells RW-13 and RW-14 were redeveloped in October 2012. The combined NTCRA 2 extraction rate during the reporting period averaged 25 gpm.

Figures 5 through 9 also show the locations of former Interim Monitoring and Sampling (IMS) wells that were used to monitor the VOC plume between the completion of the RI and the issuance of the ROD. These wells have the most complete data sets and provide the strongest assessment of statistical concentration trends. Updated VOC concentration trends at these wells are presented in figures 7 through 11 of the Draft 2012 MNA Report). Middle overburden well MW-03 (Figure 8-Draft 2012 MNA Report) and shallow bedrock well MW-127C (Figure 10-Draft 2012 MNA Report) are the only monitoring wells south of the Connecticut Light & Power (CL&P) easement that contained VOC concentrations above the Interim Cleanup Levels (ICLs) before the start-up of the NTCRA 2 system, but they declined to below the ICLs following NTCRA 2 system start up. As shown on Figures 7 through 11 of the Draft 2012 MNA Report, the VOC concentration trends at the former IMS wells are generally declining or have too many samples with no detected VOCs to support trend analysis.

One groundwater monitoring location outside of the generalized capture zone that was not below the Action Levels (the more stringent of the Maximum Contaminant Level [MCL] or Groundwater Protection Criteria [GWPC]) for VOCs in May 2012 was deep bedrock well MW-707DR (Figure 9). Benzene was detected at a concentration of 1.1 micrograms per liter (ug/L) in the June 2012 sample, which is above the Action Level of 1.0 ug/L. This well was re-sampled in August 2012 to confirm the result; benzene was detected at a concentration of 1.1 ug/L in the second sample. It is inferred from HCTS operating data and groundwater monitoring data from new, deeper bedrock wells

(discussed below in Section N), that either the existing HCTS capture zone may not extend deep enough to provide capture of the deepest bedrock contamination, or that declines in pumping rates (and therefore capture) associated with gradual well fouling, results in intermittent pulses of contamination bypassing the capture zone. An evaluation into these potential causes and an evaluation of options to improve deep bedrock groundwater containment is currently ongoing. MW-707DR will continue being sampled during future events to assess groundwater quality trends in the well.

Trichloroethene (TCE) was detected in monitoring well PZO-2M at a concentration of 9.9 μ g/L in the June 2012 sample. This concentration is above the Action Level of 5.0 μ g/L, but was the first detection of a Site-related COC above the Action Level at this well. PZO-2M was also re-sampled in August 2012 to confirm this result; TCE was detected at a concentration of 0.42 μ g/L, which is below the Action Level, in the second sample. Future additional sampling will also provide a basis to assess groundwater quality trends at this well.

Total manganese was detected at MW-209B in 2012 at a concentration of 507 μ g/, the GWPC is 500 μ g/L. MW-209B is an upgradient, background well located west of the former Operations Area of the SRSNE Site. No other samples taken during the 2012 sampling event had exceedences for total or dissolved metals

J. Institutional Controls / Access Agreements

Institutional controls in the form of deed restrictions are already in place on the Operations Area and Cianci Properties that prohibit all uses except for those associated with environmental response actions, as further described in CD paragraph 26. No additional institution controls were implemented during this reporting period. In 2010, the SRSNE Site Group took control of the Voting Trusts that control the Operations Area Property and the Cianci Property, respectively, which allows the implementation of additional institutional controls on those properties when appropriate. Additional institutional controls will be implemented pursuant to the Institutional Control Plan that has been developed as required by SOW Section V.B.7. The current Institutional Control Plan has been revised to address comments received in March 2012 and May 2012 meeting. The revised plan includes the use of groundwater modeling to evaluate properties where future pumping may cause migration of the plume. The properties included in this "buffer zone" will be controlled with an ordinance through the local Health Department, a process that has been used by the Town of Southington in recent years.

Access agreements were needed to conduct RD activities obtained from four (4) property owners during this reporting period. Access was granted to six properties in 2009; negotiations for access to the remaining four properties were obtained during 2010.

K. Construction, Operation and Maintenance Activities

The following construction, Operation and Maintenance activities were completed during this reporting period:

- On May 21, 2012 CT DEEP recorded the revised AT&T easement with the Town
 of Southington. This action enabled AT&T to relocate the fiber optic line from the
 former Railroad Grade (RR grade) into the new easement, which routes around
 the Operations Area of the Site. During the last two weeks of July 2012, new fiber
 optic cable was pulled through conduit that we had previously installed, and this
 new line was spliced into the existing line north and south of the Site.
- The remaining PIPP activities commenced in September 2012 and were completed in November 2012. The remaining PIPP work included:
 - mobilization of equipment and the re-establishment of erosion control measures,
 - removal of portions, and in-place abandonment of the remaining sections, of 24" concrete culvert that conveys surface water from the ditch adjacent to the former RR grade to the Quinnipiac River,
 - installation of a replacement culvert made of 30" HDPE pipe, with new head wall and rip rap at the discharge end,
 - installation of associated catch basins, man holes, and connection of existing NTCRA discharge line to new 30" HDPE pipe,
 - completing the excavation of impacted soils on the former RR grade and backfill with clean soils,
 - installation of sheet piling extensions to the west at the northern and southern ends of the existing NTCRA 1 sheetpile wall, and
 - o final site grading.

L. Habitat Restoration

No habitat restoration activities were conducted during this reporting period. A preremediation assessment of the types, extent and condition of existing habitats on site was conducted in June 2009 pursuant to RDWP Attachment H (Habitat Restoration Work Plan).

M. Memorandum of Agreement (MOA) with Southington Water Department / Town of Southington

A draft MOA was prepared during the Annual Report #1 reporting period as required by SOW Section V.B.3. This draft MOA was submitted for EPA review on September 16, 2009 and resubmitted based upon EPA comments on June 23, 2010. EPA provided

further comments on the MOA on October 28, 2011. The revised MOA was provided for further EPA review on November 15, 2011.

N. Groundwater Monitoring Program

A comprehensive groundwater monitoring program was scoped in *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010). A summary of the planned sampling frequency is provided in the attached Table N-1 from the RDWP. The following groundwater activities have been performed to date:

- The first comprehensive groundwater sampling event occurred during May/June 2010 which supported the first Five-Year Review, submitted in 2010. This sampling event provided data for the draft 1st Monitored Natural Attenuation Report which was submitted in September 2010.
- In accordance with Monitoring Well Network Evaluation and Groundwater Monitoring Program (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010), the 2012 annual groundwater sampling event was performed in June 2012 and included sampling of groundwater at 44 monitoring wells. The 2012 Groundwater Sampling and Monitored Natural Attenuation Report (Attachment 3) summarizes the 2012 groundwater sampling event performed in accordance with the and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.
- Three monitoring well clusters have been constructed since December 2011, MW-1001R/M, MW-1002R/DR and MW-1003R/DR. These wells were constructed as a supplement to wells previously installed in accordance with the Work Plan and were installed to further delineate the volatile organic compound (VOC) plume. Based on the findings associated with these well installations, no additional well installations are currently planned as delineation of the SRSNErelated plumes is now considered complete. The new wells will be incorporated into the groundwater monitoring program.

O. Recommendations of Changes to any Monitoring Program

The following changes to the groundwater monitoring program have been recommended and/or implemented since the last Annual State of Compliance Report:

The three well clusters that have been added since December 2011 (MW-1001R/M, MW-1002R/DR and MW-1003R/DR) will be included in the groundwater monitoring program. Incorporate the six newly installed wells as follows:

Monitoring Wells	Well Group	Analytical parameters [*]	Monitoring Frequency
MW-1001M and MW-1001R	С	VOCs, alcohols, 1,4- dioxane, TAL metals, PAHs, PCBs	sampled as part of the comprehensive sampling events to support 5-year reviews
MW-1002R, MW-1002DR, MW-1003R, and MW-1003 DR	R	VOCs and MNA parameters	annually for VOCs and biennially for MNA parameters

P. Groundwater Containment and Treatment Optimization Studies

No optimization studies were conducted during this reporting period.

Q. Costs Incurred this Reporting Period

Paragraph 62 of the CD sets forth "Additional Provisions Regarding Settling Defendants' Payments of U.S. Oversight Costs and State Oversight Costs." Pursuant to this paragraph, an interest bearing "Oversight Costs Payment Subaccount" of the Remedial Trust Account was established on April 27, 2009, in the amount of \$5,700,000. The balance in this subaccount at the end of September 2011 was \$ 5,662,250.94

. Other defined terms in this paragraph include:

- "Rolling Oversight Cap" defined as 15% of the total costs incurred by the Settling Defendants in performing the Work through the end of the Oversight Billing Period.
- "Available Balance" equals the Rolling Oversight Cap less the sum of all Settling Defendants prior payments for U.S Oversight Cost and State Oversight Costs.

Paragraph 62.e states that the Settling Defendants shall have the burden of calculating annually the Rolling Oversight Cap and Available Balance. The following table summarizes annually the Rolling Oversight Cap and Available Balance:

Reporting Period	Total Project Costs	Rolling Oversight Cap Amount	Oversight Costs	Available Rolling Oversight Cap Amount
Annual Report #1 *	\$1,880,301	\$282,045	None billed.	\$282,045
Annual Report #2 *	\$3,446,824	\$517,024	\$84,290	\$714,779
Annual Report #3 *	\$4,037,109	\$605,566	\$82,851	\$1,237,494
Annual Report #4	\$1,421,795	\$ 213,269.30	\$72,642	\$1,378,121
Totals:	\$10,786,030	\$1,617,904	\$239,783	\$1,378,121

* Cost Revised based on Trustee expenditure updates

The total Rolling Oversight Cap amount available is: **\$1,378,121**

The total Rolling Costs Cap amount equals the available amount remaining from the Annual Report #3 period and the total amount available from the Annual Report #4 period.

R. References

BBL. 1998. Remedial Investigation Report. June 1998.

BBL. 2005. Interim Monitoring and Sampling Report No. 13. January 6, 2005.

BBL and USEPA. 2005. *Feasibility Study Report*. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, Connecticut. May 2005.

Halliburton NUS (HNUS) Environmental Corporation. 1994. Final *Remedial Investigation Report: Remedial Investigation/Feasibility Study, SRSNE Site, Southington, Connecticut.* May 1994.

Hubert, J.F., Reed, A.A., Dowdall, W.L., and Gilchrist, M.J. 1978. Guide to the Mesozoic Redbeds of Central Connecticut. State Geological and Natural History Survey of Connecticut, Department of Environmental Protection. Guidebook No. 4.

La Sala, Jr. A. M. 1961. Surficial Geology of the Southington Quadrangle, Connecticut. United States Geological Survey Map GQ-146.

Mazzaferro, D.L. 1975. Contour Map of the Bedrock Surface, Southington Quadrangle, Connecticut. United States Geological Survey (USGS) Map MF-660A.

Rogers, J. 1985. Bedrock Geological Map of Connecticut. Connecticut Geological and Natural History Survey in Cooperation with the U.S. Geological Survey.

Southington Water Department. Town of Southington Water Works Map. January 1997.

United States District Court for the District of Connecticut. 2008. Consent Decree Regarding Solvents Recovery Service of New England, Inc. Superfund Site. August 29, 2008.

USEPA. 1986. *Superfund Remedial Design and Remedial Action Guidance*, OSWER Directive 9355.0-4A. June 1986.

USEPA. 1989. Inspection Report: Solvents Recovery Service of New England. February 1-2, 1989.

USEPA. 1995a. Remedial Design/Remedial Action Handbook. OSWER Directive 9355.0-04B. June 1995.

USEPA. 1995b. *Guidance for Scoping the Remedial Design.* OSWER Directive 9355.0-43. March 1995.

USEPA. 1998. Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites. OSWER Directive 9200.4-26. April 1998.

USEPA. 2003. Draft *Preliminary Reuse Assessment*. September 2003. USEPA. 2005a. Record of Decision Summary, Solvents Recovery Service of New England, Inc. (SRSNE) Site, Southington, Connecticut. September 2005.

USEPA. 2005b. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, CT. Proposed Plan Fact Sheet, May 2005. Available at: <u>http://www.epa.gov/region01/superfund/sites/srs/229296.pdf</u>.

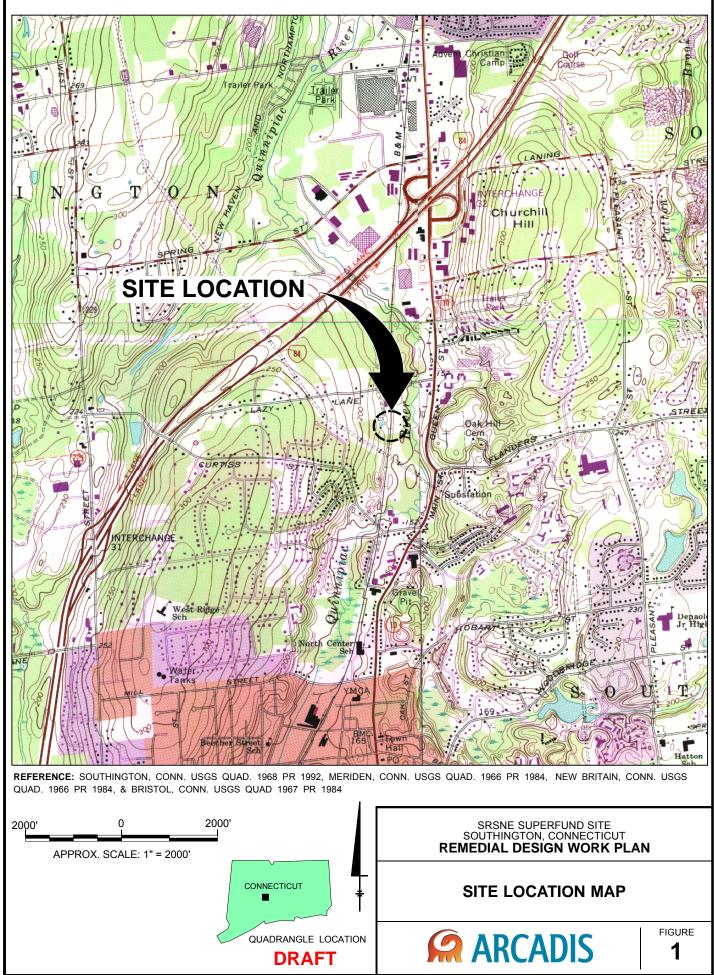
USEPA. 2009. USEPA's project website for the Solvents Recovery Service of New England, Inc. Superfund Site. Accessed February 24, 2009. <u>http://www.epa.gov/region01/superfund/sites/srs</u>.

ARCADIS, 2009. Draft Project Operations Plans for the Solvents Recovery Service of New England, Inc. Superfund Site. April 2009.

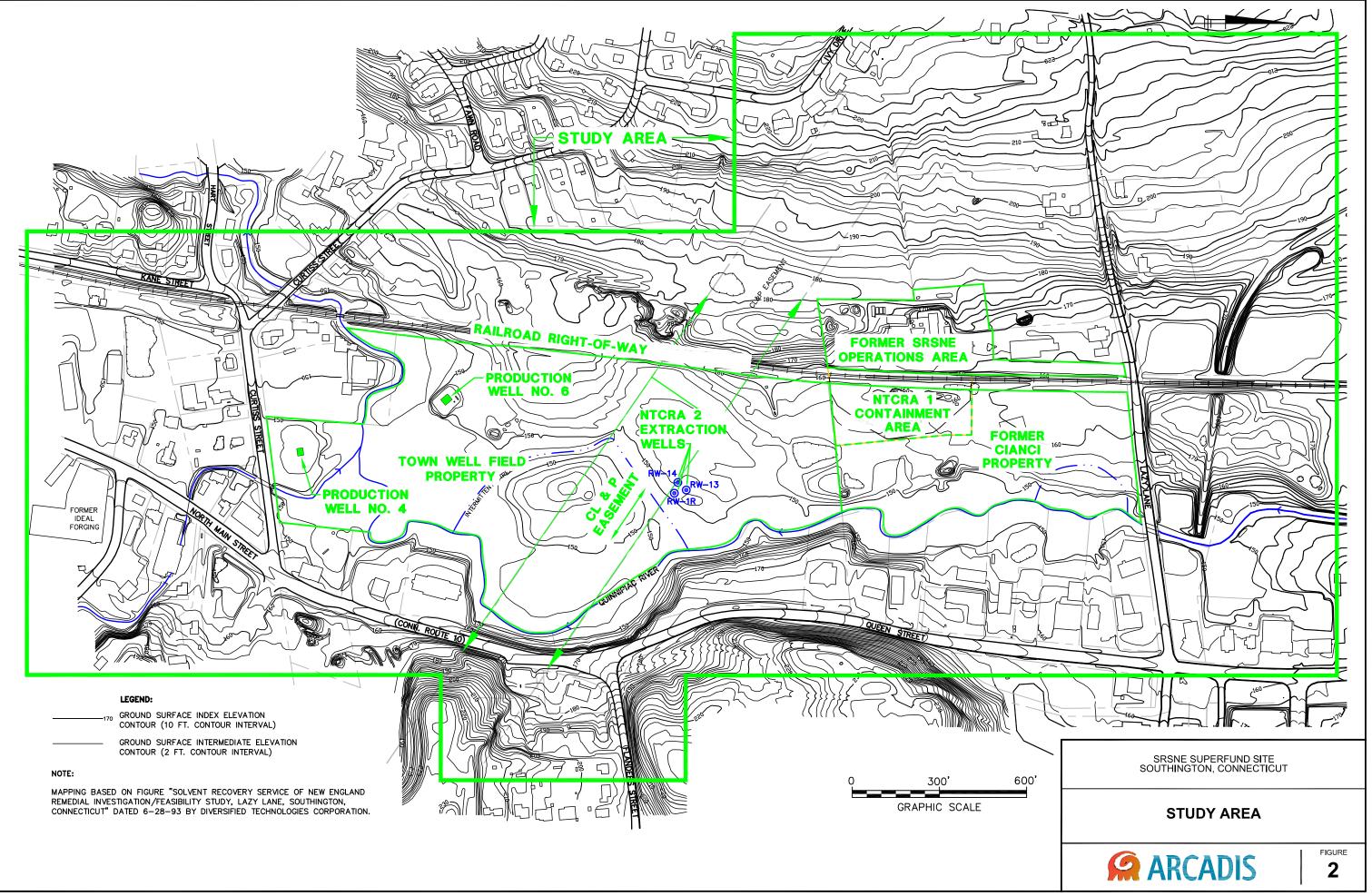
Tables

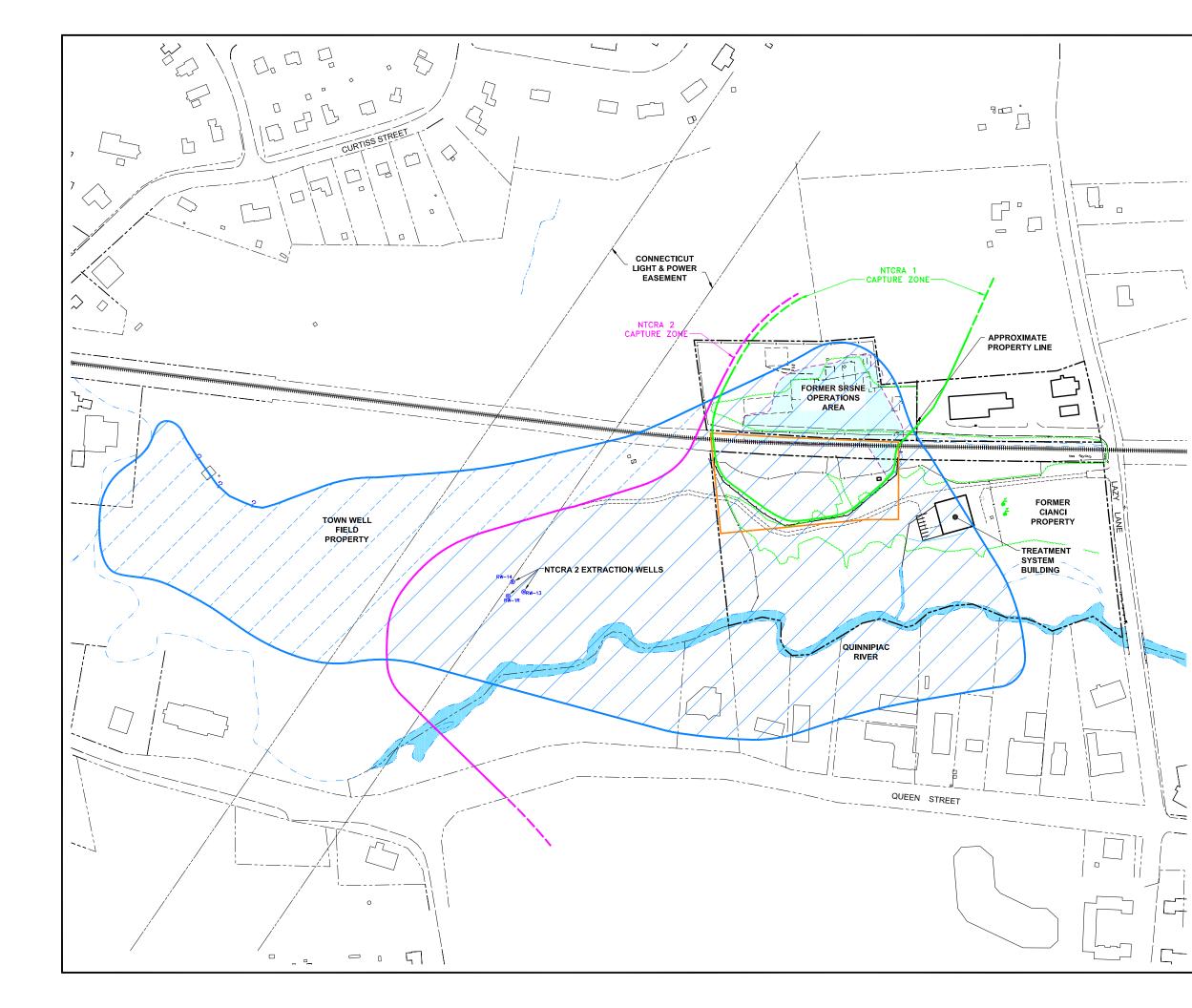
TABLE 1.0 Summary of Activities Completed October 31, 2011 through October 30, 2012

Document Name / Activity	Author(s)	Date Submitted	Date Approved	Туре
Final RDWP and POP	ARCADIS	11/19/2010	pending	Deliverable under SOW
Response to Comments on ISTR Conceptual Design	TerraTherm	12/3/2010	7/7/2011	Deliverable under SOW
Annual State of Compliance Report #2	de maximis	12/20/2010	pending	Deliverable under SOW
PIPP Winter Stabilization Plan	de maximis	12/30/2010	pending	Deliverable under SOW
Vapor Intrusion Technical Memorandum	EPA	10/27/2010	1/19/2011	Conditional Approval
Data Comparison - Groundwater Sampling Techniques	ARCADIS	1/4/2011	N/A	Technical Memorandum
Updates to Existing MODFLOW Groundwater Flow Model	ARCADIS	1/5/2011	N/A	Technical Memorandum
Data Comparison - Groundwater Sampling Techniques	ARCADIS	2/10/2011	N/A	Technical Memorandum
Draft Institutional Controls Plan	de maximis/ARCADIS	2/18/2011	pending	Deliverable under SOW
Comments on Response to Comments on ISTR Conceptual Design	EPA	3/2/2011	7/7/2011	EPA comments
PIPP Sheetpile Wall Extension Design	ARCADIS	3/21/2011	4/22/2011	Deliverable under SOW
Data Comparison - HydraSleeve vs. Low-Flow Groundwater Sampling Techniques	ARCADIS	3/22/2011	N/A	Technical Memorandum
Response to Comments on Response to Comments on ISTR Conceptual Design	TerraTherm	4/6/2011	7/7/2011	Deliverable under SOW
Bedrock Outcrop Study	ARCADIS	4/20/2011	N/A	Technical Memorandum
Supplementary Vapor Intrusion Technical Memorandum	ARCADIS	6/6/2011	pending	Deliverable under SOW
Bedrock Modeling Memorandum	ARCADIS	6/6/2011	N/A	Technical Memorandum
Comments on Vapor Intrusion Technical Memorandum	EPA	6/15/2011	pending	EPA comments
ISTR Conceptual Design Approval	EPA	7/7/2011	7/7/2011	Approval
Technical Memorandum - Proposed Use of Hydrasleeve Sampling	ARCADIS	7/8/2011	7/8/2011	Technical Memorandum
Approval of ISTR 100% Wellfield Design	EPA	9/23/2011	9/23/2011	EPA Approval
Comments on Draft Memorandum of Agreement with Town and Southington Water Department	EPA	10/28/2011	pending	EPA comments
Annual State of Compliance Report #3	de maximis	1/12/2012	pending	Deliverable under SOW
Screen Volume Purge vs lowflow groundwater metholds	de maximis	5/11/2011	5/21/2012	Approval
Submittal for the use of hydrosleeve during interim sampling events	de maximis	1/4/2011	6/12/2012	Approval


Table N-1.Groundwater Monitoring Network and Sampling EventsSRSNE Superfund Site, Southington, CT

Well Group	# Wells	Sampling Period	Sampling Frequency	Analytical Parameters
"C" wells	81			VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs
"R" wells	26			VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters
"N" wells	10	first comprehensive event *	1 event	VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters
"M" wells	5			TAL metals, MNA parameters (background)
"B" wells	3			TAL metals (background)
"C" wells	81			VOCs, 1,4-dioxane, TAL metals
"R" wells	26			VOCs, 1,4-dioxane, TAL metals, MNA parameters
"N" wells	10	subsequent comprehensive events	every 5 years	VOCs, 1,4-dioxane, TAL metals, MNA parameters
"M" wells	5			TAL metals, MNA parameters
"B" wells	3			TAL metals
"R" wells	26	after first comprehensive event	annual	VOCs
R wells	20		biennial	MNA parameters
"M" wells	F	- the first second second	biennial	TAL metals (background)
"M" wells	5	after first comprehensive event	biennial	MNA parameters (background)
		before thermal treatment	biennial	VOCs, MNA parameters
		during thermal treatment	annual	VOCs, MNA parameters
"N" wells - overburden	n 8	after thermal, before equilibrium	3x / year	VOCs, MNA parameters
			annual	VOCs
		after equilibrium	biennial	MNA parameters
		before thermal treatment	annual	VOCs, MNA parameters
"N" wells - bedrock		during thermal treatment	annual	VOCs, MNA parameters
	2	after thermal, before equilibrium	3x / year	VOCs, MNA parameters
		after equilibrium	annual	VOCs
			biennial	MNA parameters
"W" wells	36	all comprehensive events	every 5 years	Water levels only - during all comprehensive events


Notes: 1) biennial = once every two years.


* - Shallow overburden wells MW-501C, MW-903S, and MW-904S will be re-sampled approximately 6 months after the first comprehensive sampling event.

Figures

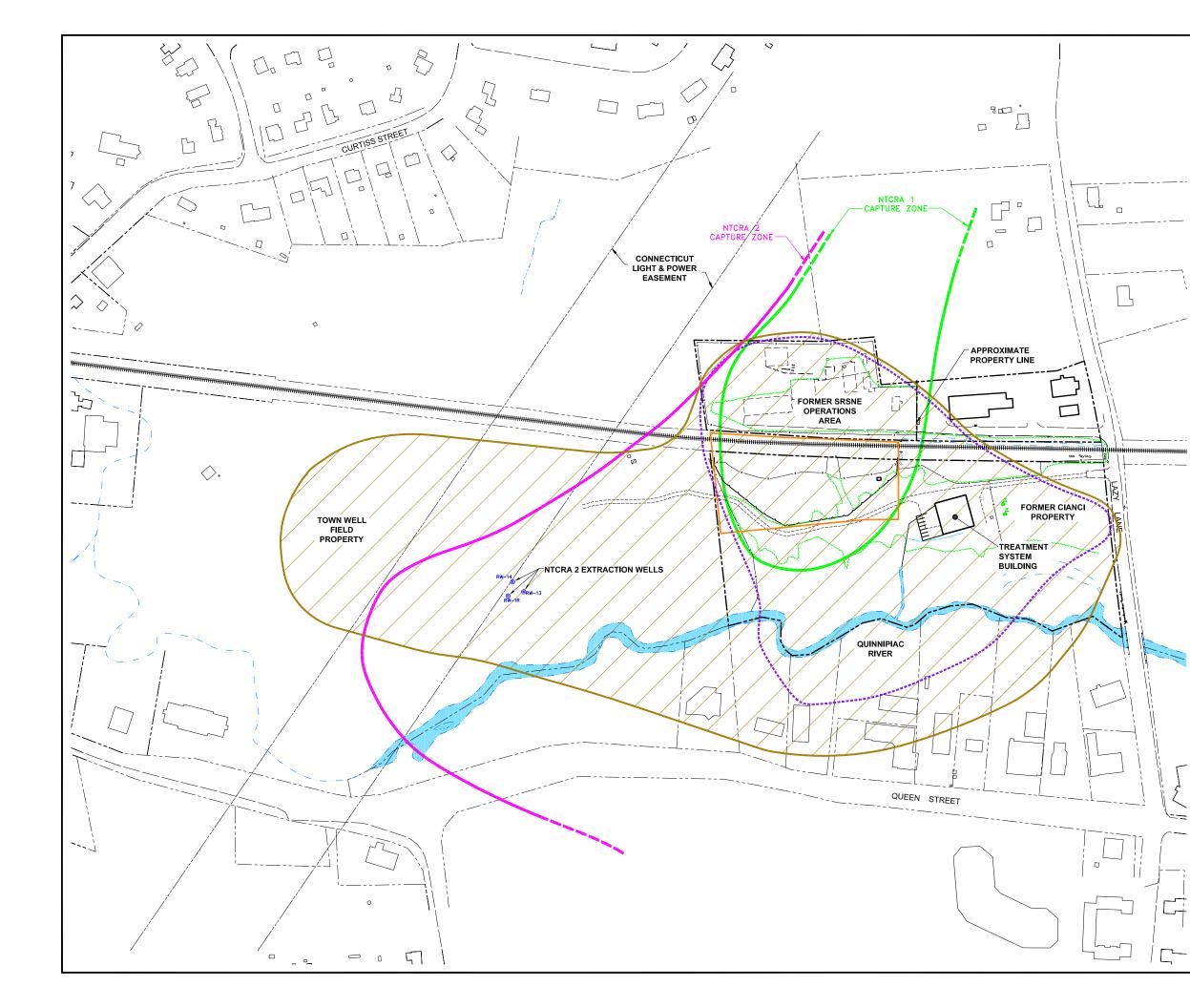
02/27/09 SYRACUSE, NY ENV/CAD DJH, LJP B00546340000/10000/CDR/RDWP/54634N01.CDR

LEGEND:

	PROPERTY LINE
	PROPERTY LINE - ADJOINER
	BUILDING
	BUILDING - ADJOINER
	FORMER BUILDING
	RAILROAD
	ROAD
	GRAVEL ROAD
	DRAINAGE SWALE
	RIVER
	EASEMENT
xx	CHAINLINK FENCE
	SHEETPILE
	NTCRA 1 CONTAINMENT AREA
	OVERBURDEN GROUNDWATER AREA
	SEVERED PLUME
C2222220	OVERBURDEN NAPL AREA

NOTES:

- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN THREE MONITORED OVERBURDEN ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).


GRAPHIC SCALE

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

ESTIMATED GROUNDWATER PLUME AND NAPL AREAS - OVERBURDEN FIGURE

3**A**

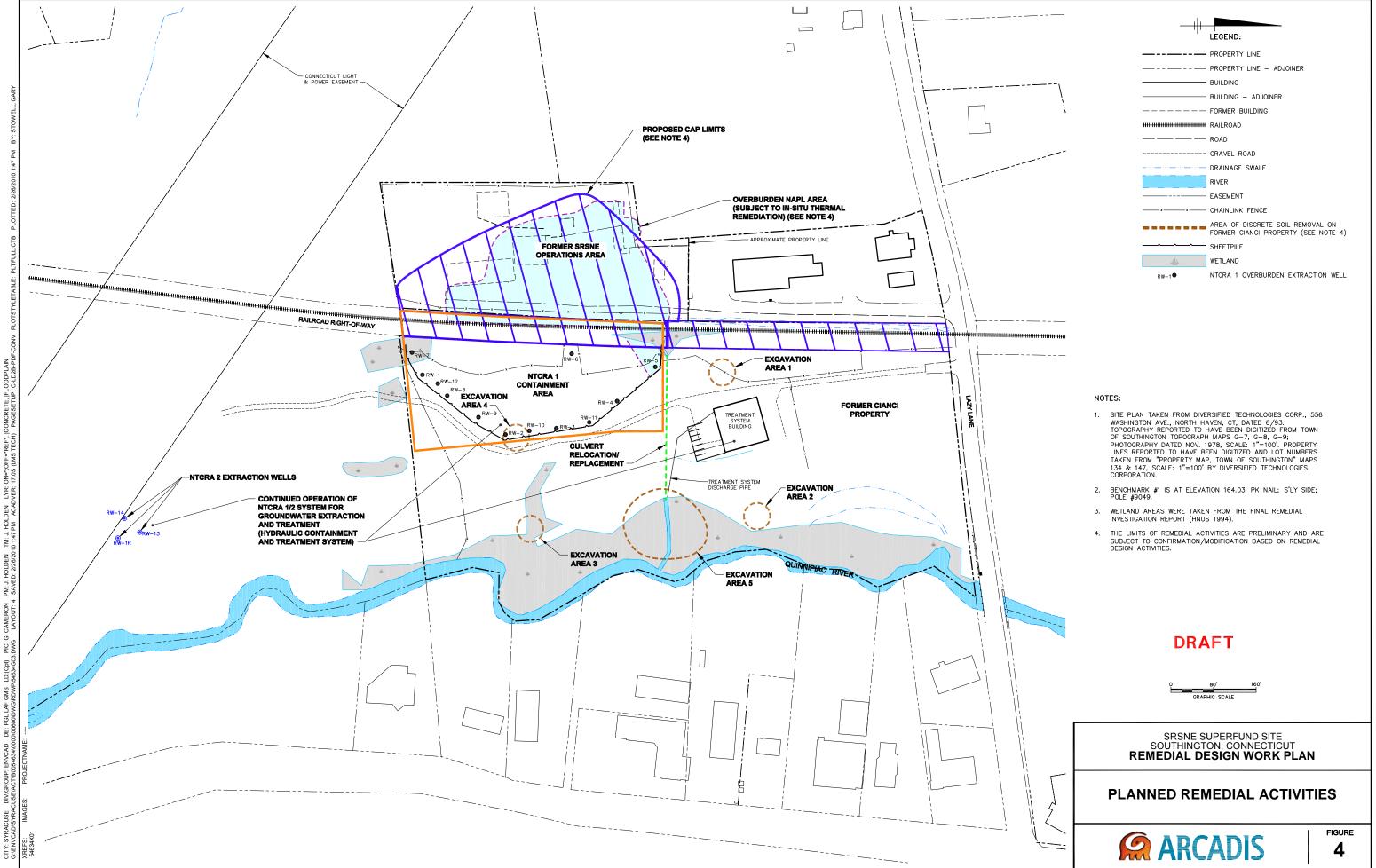
LEGEND:

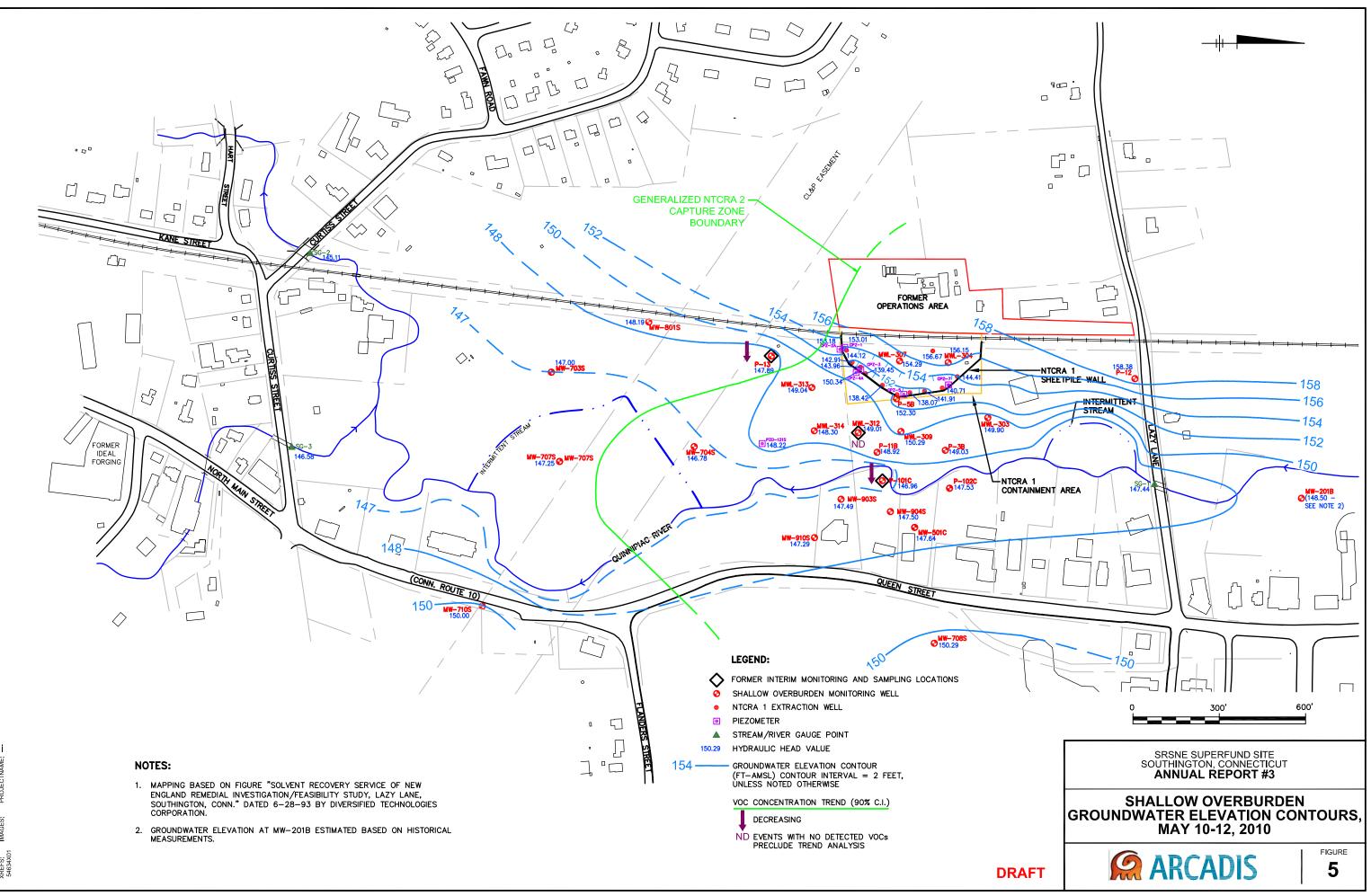
BUILDING
BUILDING - ADJOINER
FORMER BUILDING
HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ROAD
GRAVEL ROAD
RIVER
EASEMENT
NTCRA 1 CONTAINMENT AREA
BEDROCK NAPL AREA
BEDROCK GROUNDWATER AREA

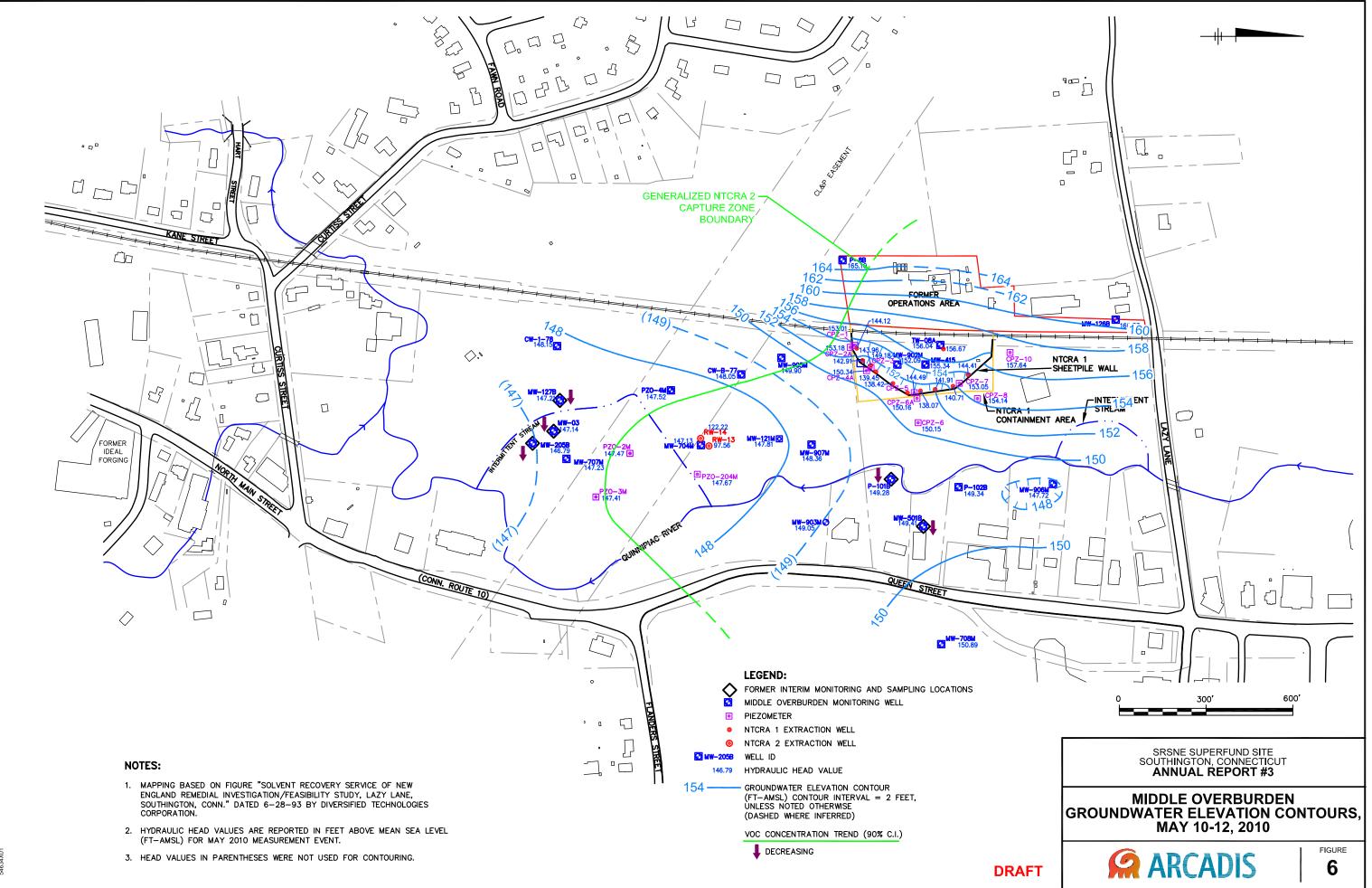
NOTES:

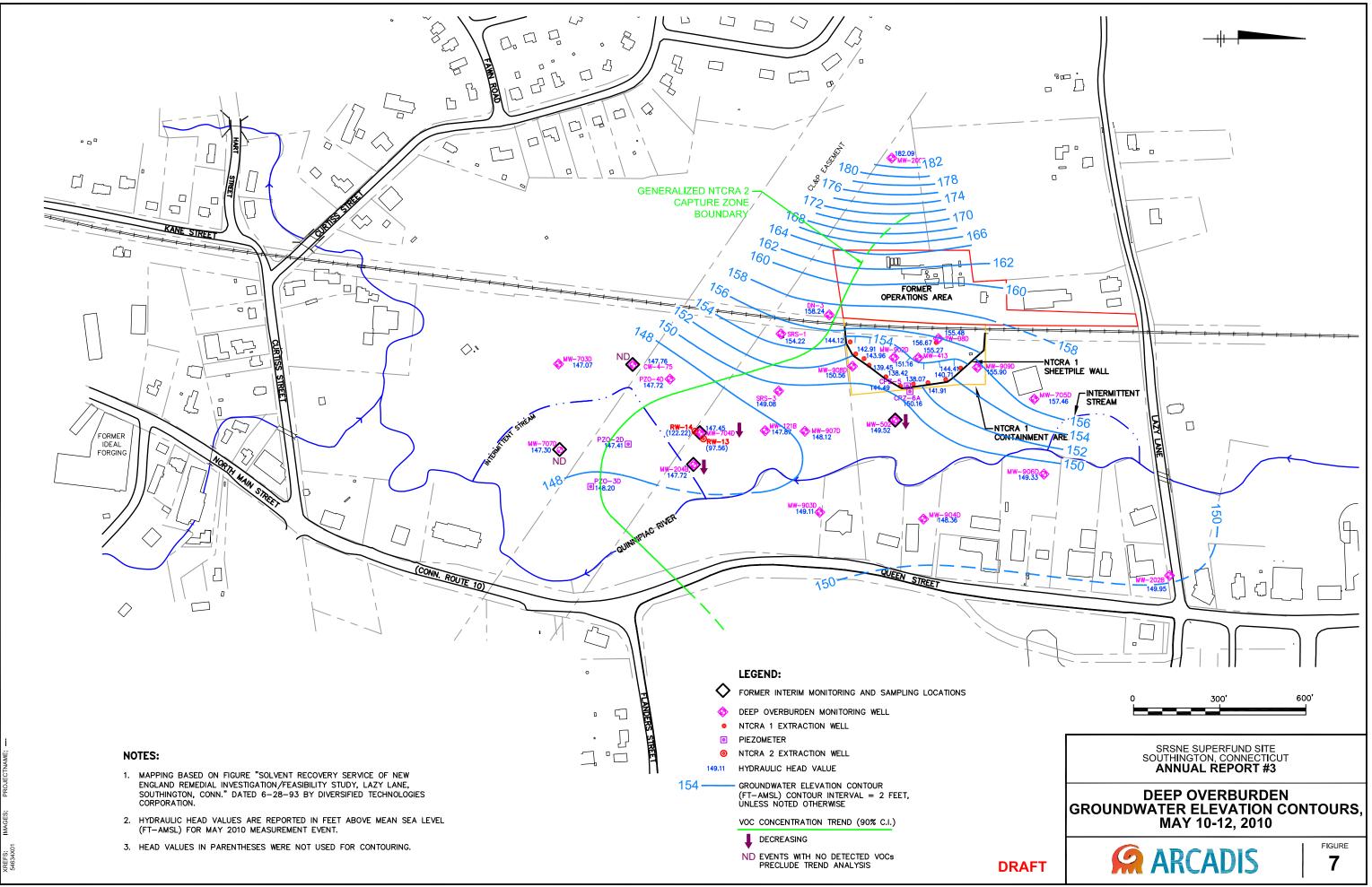
- BASEMAP INFORMATION OBTAINED FROM A FIGURE CREATED BY CONKLIN & SOROKA, INC., ENTITLED "TOPOGRAPHIC SURVEY" DATED 1/13/09 AT A SCALE OF 1"=50'.
- 2. ALL LOCATIONS ARE APPROXIMATE.
- 3. THIS FIGURE PRESENTS AN OVERLAY OF THE ESTIMATED EXTENTS OF THE GROUNDWATER PLUME IN TWO MONITORED BEDROCK ZONES, BASED ON PLUME DELINEATION LIMITS PRESENTED IN THE MONITORED NATURAL ATTENUATION REPORT (ARCADIS 2010).

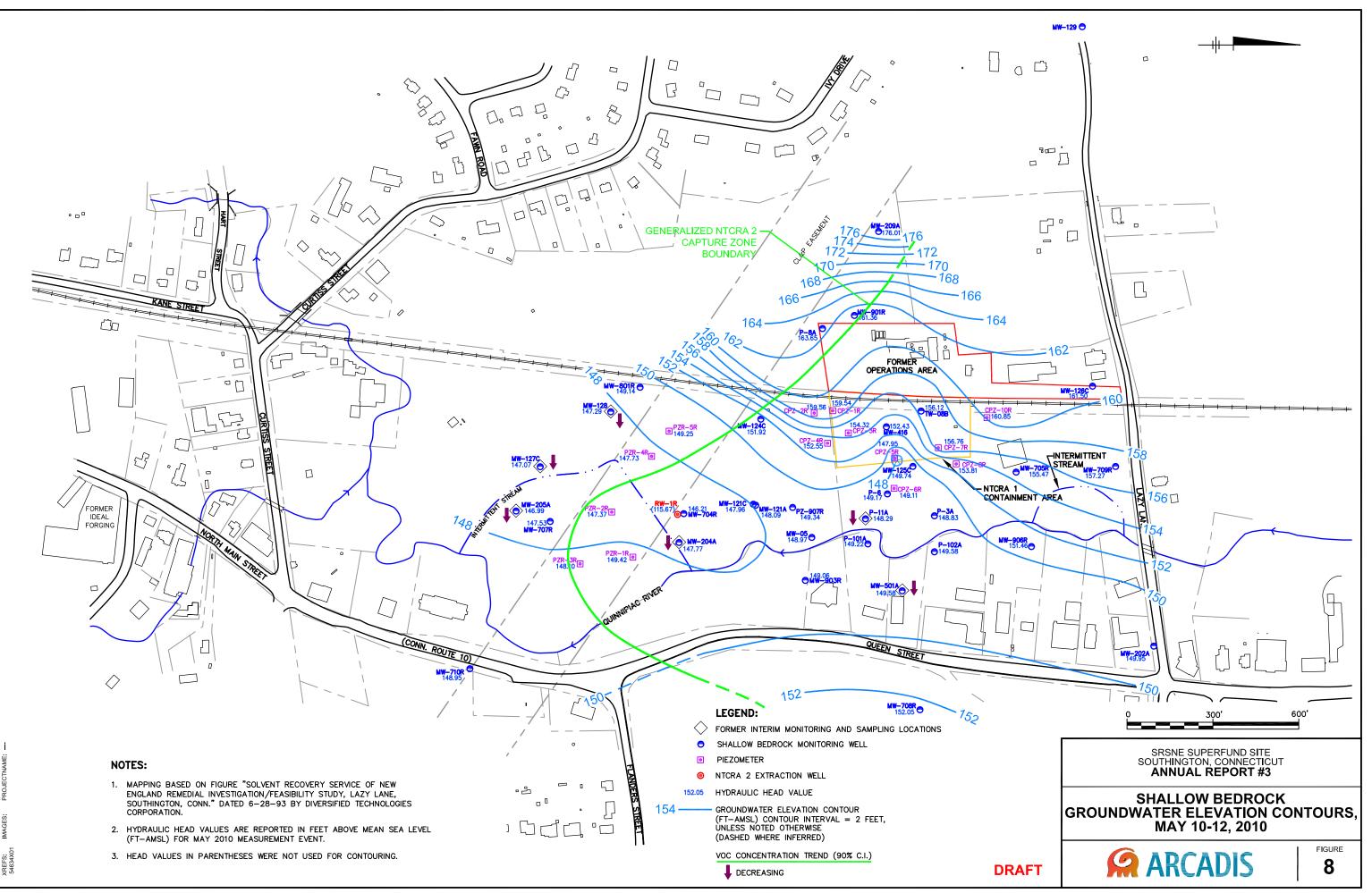
GRAPHIC SCALE

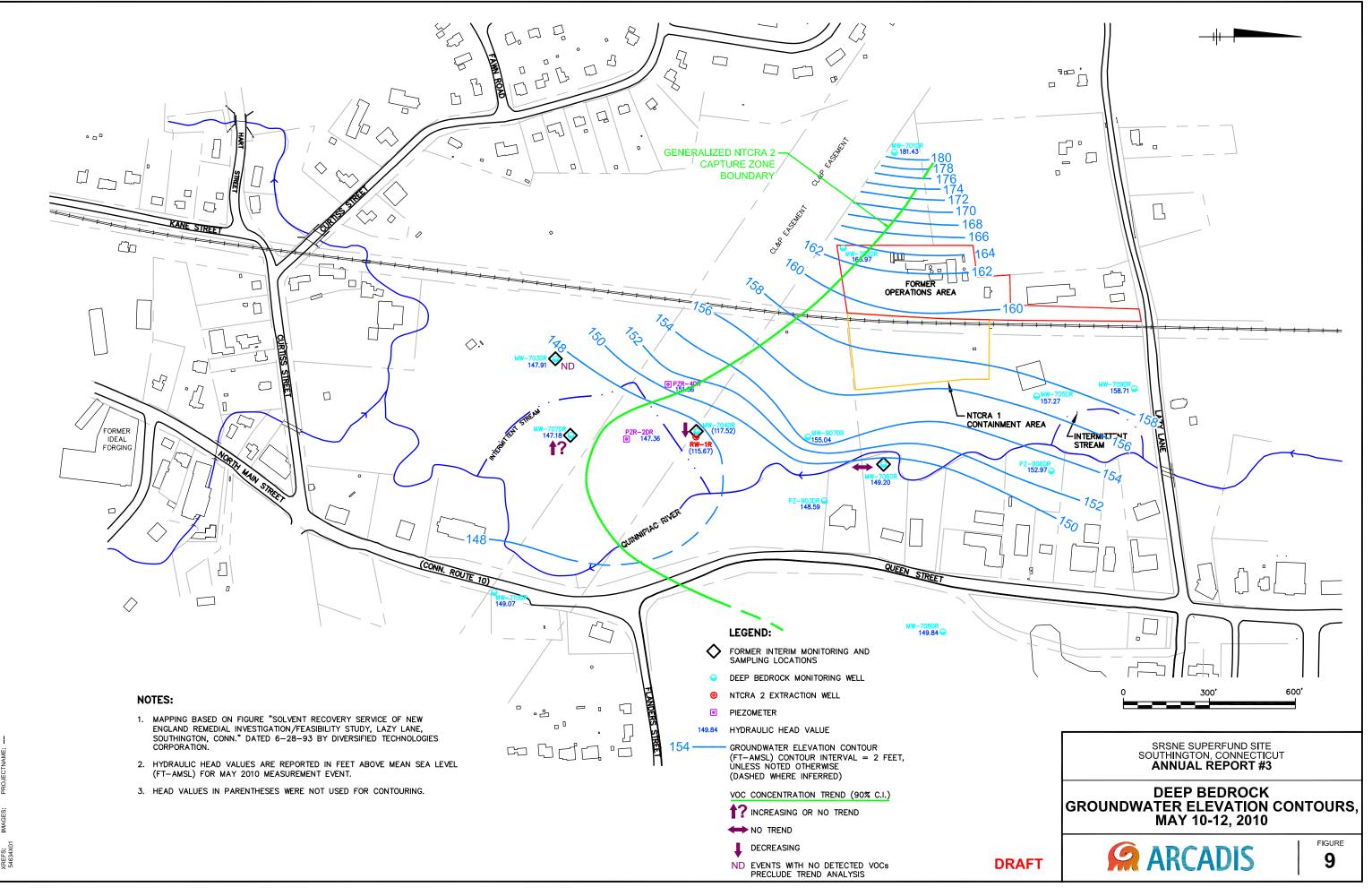

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT ANNUAL REPORT #2

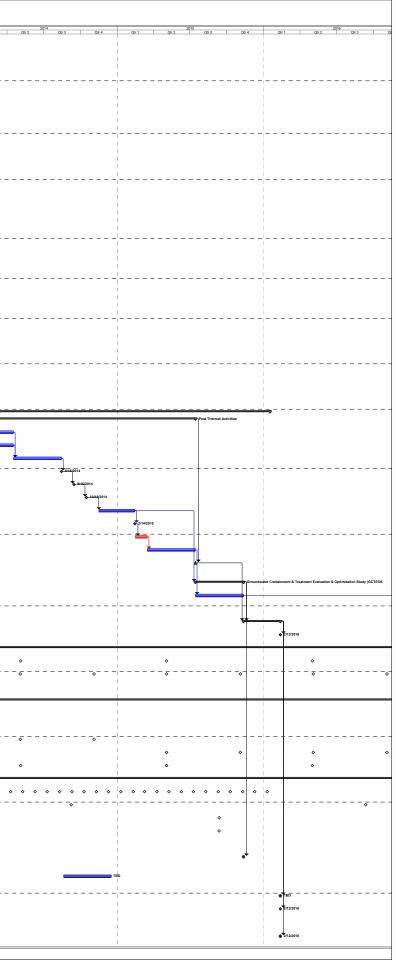

FIGURE


3B




ARCADIS





Attachments

	<u> </u>							SRSNE RD/RA Project Schedule Annual State of Compliance Report #4			
No. N	de maximis, inc.										
2 Market and a second an		Trigger	Time Frame	SOW Sections	2008 Otr 2 Otr 3 Otr 4 Otr 1	2009 Otr 2 Otr 3 Otr 4	2010 Qtr 1 Qtr 2 Qtr 3	2011 Dtr 4 Otr 1 Otr 2 Otr 3 Otr 4	2012 Otr 1 Otr 2 Otr 3 Otr 4	2013 Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1
2 Amage: ama	1 Lodging of the Consent Decree				♦ 10/31/2008	3/26/2009	1				1
Image: series of the series	3 Initial Remedial Steps Phase	EPA Approval of Contractors Lodging of the CD	Satisfied in the draft SOW.			Steps Phase					
Second	5 Notification/Selection of a Remedial Design	Lodging of the CD	Notification/Selection of a Remedial Desig	n V.B.2			, ,				-
Image: Additional and the second of the s	Contractor				-	~ -	Hemorandum of Agreement (MOA)				1
2 Mathematical Mathematerical Mathamatical Mathamaterical Mathematical Matha	11 Implementation of Supplemental Containment	EPA Approval of MOA Upon notification by EPA, and					• TBD				
2 Mathematical Mathamatical Mathematical Mathematical Mathemati	Action Plan (TBD) 12 Institutional Control Plan	Completion of Vapor Intrusion Study	within 30 days of completion of Vapor Inte	usi V.B.7	-		1		itulonal Control Plan	1	I I
Image: starter in the starterin the starter in the starter in the starter in the starter in the	19 Design Initiation Phase 43 Agency Review and Comment on Accelerated Pre			V.C		Dealign Initiation Phase	Υ — — — — — — — — — — — — — — — — — — —		1		
	44 Agency Review and Comment on Remedial Design	1				8/29/2009	1			1	1
Set of state of	45 Pre-Design Studies		we Within 90 days of notice by EPA	VEA		<i>\</i>				1	1
V Marrian Marria		Submittal of 100% Design.			+						-i
V V <th></th> <th>i i</th>											i i
2) Mathematical and a strain of	73 Agency Approval of Pre-ISTR Package (100% Design) with Comments						A-				
V Martin V V V Martin V V V Martin V V Martin V Martin V Martin V Martin		EPA approval or modification of RD Work Plan.	Within 120 days of EPA approval that necessary pre-design studies to be described in the RD Work Plan are comolete				· · · · · · · · · · · · · · · · · · ·			1	I I
Note: Note: <th< th=""><th>80 Submit 75% Design Package</th><th></th><th></th><th></th><th></th><th></th><th>·</th><th></th><th>- </th><th></th><th></th></th<>	80 Submit 75% Design Package						·		-		
Visite Visite<	Agency Approval of 75% Design Package with Comments			¥.0.3	- 1			B/8/2011			1
Image: Section 1000 section 10000 section 1000 section 1000 section 1000 secti	83 ISTR Final Design Package (100% Design) 86 Submit ISTR Final Draft Package (100% Design)			V.E.3			1		3112012		1
V Mathematical Matrix Mathematical Ma	87 Technical Information Meeting						; 			¬	-,
Image: Section of the section of t	89 Pre-construction Conference(s)	EPA approval or modification of Fina	al EWithin 30 days of notice by EPA.				1	A-116070011			I.
Volume	90 Pre-construction Public Meeting(s) 91 Accelerated ISTR Construction Activities	EPA approval or modification of Fina	al DWithin 45 days of notice by EPA.	VI.D			, ,	3 352011			
Value	92 AT&T Fiber Optic Relocation 93 Partial CP-2 (culvert relocation) Construction					 -					
V Market Andrew Market Andrew Andrew Market Andrew An	95 Thermal Infrastructure Installation (gas, sewer, power)									I I	I I
Model Matrix Matrix </th <th>96 Initiation of Remedial Action Construction Activities (ISTR and Soils)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>l I</th> <th></th> <th>ŧ</th> <th></th> <th>I I</th>	96 Initiation of Remedial Action Construction Activities (ISTR and Soils)						l I		ŧ		I I
Image: Marrier Marrie	97 Meetings During Construction 172 In-Situ Thermal Treatment Construction			-		ר	η				-ı
Note:		Contraction into						1			1
Weinstructure		Within 30 days of Final Construction Inspection.	Within 30 Days	VLH	-						i.
image: standing s	176 Thermal Treatment						;				
Image: Source interview Image: Source		After In-Situ Thermal to re-assess th	16	V.C.i	-						
value Name				V.C.j							
Image: Structure Structur	184 Final Soil & RCRA C Cap Conceptual Design	system is needed below the cap.			-		1			1	1
Normal Norma	185 Final Soil & Multi Layer Cap Submit 75% Design						<u> </u>				
2 Name Name <t< th=""><th></th><th></th><th></th><th></th><th>- 1</th><th></th><th>1</th><th></th><th></th><th></th><th>1</th></t<>					- 1		1				1
a) a) a) b)		r					1				1
Image: Specific State S	Submittal						1				1
Image: stand stan							 	 			_
A A		P		_	-						i i
		Setting Defendents conclude construction complete.	Within 60 days of notice by Settling Defendants.	VI.G	-						
	193 Converting Containment & Transforment Function	-		VC4	-					1	1
10 Main (should (s	& Optimization Study (GCTEOS		As directed by the EPA, or proposed by th		-						1
Name Name Substrained Watchew Substr	195 Additional Optimization Study(s) (TBD)	components of the remedy	every 10 years								
Image: space spac	196 Completion Report	Final construction inspection.	Within 30 days of inspection.	VLH							i
Main diamina langing and a langin	212 Commencement of Operation and Maintenance	EPA approval or modification of Construction Completion Report.	Immediately upon notice by EPA.	VLI							
Main deciminant and main deciminant				VII.B					1	1	-
Name Normalizing Same <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>, </th> <th></th> <th></th> <th></th> <th></th>							, 				
<form> Abial Abial<th></th><th></th><th></th><th></th><th></th><th></th><th><u>ه</u> ح</th><th><u>ه</u></th><th>· · · · · · · · · · · · · · · · · · ·</th><th>T</th><th></th></form>							<u>ه</u> ح	<u>ه</u>	· · · · · · · · · · · · · · · · · · ·	T	
	251 Sampling between Railroad Tracks and NTCRA	1		-	-				<u> </u>		
10 10	Sheet Pile Wall			-	-		\$	 <th><u> </u></th><th></th><th>i I</th>	<u> </u>		i I
	258 ISTR Sampling				-				•	♦	I.
	261 Post ISTR Sampling (During Time to Achieve Equilibrium)				+	لــــــــــــــــــــــــــــــــــــ	L	<u> </u>			-
	266 Post ISTR Equilibrium Sampling				-		l I				I I
And this for consists appoint And this							1			◇	I I
No. Construction Normality		Ladelan of m - AD	As the fifth devices		-						1
Image: Normality of Service Reports Next of Service Reports Next of Service Reports Next of Service Report Next of Service Report Report Next of Service Report Report Next of Service Report R			,,				,				* * *
Image: A marked Monthring (M) Work Plan Marked Work Plan (M) Stranger A marked Plan							♦	· · · · ·	Ť	Î Î	I I
Interim Remedial Action Report PA demonstration for logic of divider VBPA, when the logic of divider VBPA, when	385 Compliance Monitoring (CM) Work Plan				-		↓ ↓				
International states relation and s	Evaluation(s)	and capping component, and long-term groundwater containment and treatment system	n.								
Determination of Background Metals in Groundwater (TBD) Determination of Background Metals in Groundwater (TBD) Numerical States and	389 Interim Remedial Action Report	EPA determination that long-term groundwater containment and treatment system is overviewed and	Within 90 days of notice by EPA.	VIILC							1
Groundwart (BD) Mathematical (BD) <	390 Determination of Background Metals in			VIII.E	-						I.
Instrumentation Instrumentation Instrumentation Instrumentation Pisk Assessment Instrumentation NAA Pisk Closure (TBD) Instrumentation Name Pisk Closure (TBD) Verset Name	Groundwater (TBD)						 			1	
State Closure (TBD) An demonstration (TBD) An demonstration by Setting Delenders VILG		Compliance with cleanup levels.	As demonstrated by Setting Defendants.								
394 Summary of Cost Information (TBD) Carquines with during block A dimensional by Setting Dolumenta VILG				IV.A.1			1			 	I I
		Compliance with cleanup levels.	As demonstrated by Setting Defendents.	VIII G	-		1			1	I I
rappe armone supported				******	· · ·		1		1	1	1
	rioyaa: onoNE supertund Site Date: January 15, 2009							Page 1			

Hydraulic Containment and Treatment System Annual Demonstration of Compliance Report No. 4

31 October 2011Through30 October 2012

Solvents Recovery Service of New England, Inc. Superfund Site Southington, Connecticut

> Prepared for: SRSNE PRP Group

Prepared by:

WESTON SOLUTIONS, INC. Suite 3B 124 Hebron Avenue Glastonbury, CT 06033 (860) 368-3200

13 NOVEMBER 2012

DRAFT

SRSNE Site Group

2012 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

December 2012

Disclaimer: This document is a DRAFT document prepared by the Settling Defendants under a government Consent Decree. This document has not undergone formal review by the EPA and CT DEEP. The opinions, findings, and conclusions, expressed are those of the author and not those of the U.S. Environmental Protection Agency or the CT Department of Energy and Environmental Protection.

2012 Groundwater Sampling and Monitored Natural Attenuation Report

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Prepared for: SRSNE Site Group

Prepared by: ARCADIS U.S., Inc. 1687 Cole Blvd. Suite 200 Lakewood Colorado 80401 Tel 303.231.9115 Fax 303.231.9571

Our Ref.: B0054634.0000.02200

Date: December 2012

DRAFT

Table of Contents

Ex	Executive Summary v					
1.	Introdu	uction		1		
	1.1	Purpos	se	1		
	1.2	Scope		1		
	1.3	Docun	nent Organization	3		
2.	New M	onitori	ng Well Installations	4		
	2.1	MW-1	001M and MW-1001R	4		
		2.1.1	Well Installation	4		
		2.1.2	Groundwater Sampling	5		
	2.2	MW-1	002R and MW-1002DR	5		
		2.2.1	Well Installation	5		
		2.2.2	Groundwater Sampling	6		
	2.3	Data S	Summary – MW-1001R/M and MW-1002R/DR	7		
	2.4	MW-1	003R and MW-1003DR	9		
		2.4.1	Well Installation	9		
		2.4.2	Groundwater Sampling	9		
	2.5	Incorp Progra	oration of New Wells into the Groundwater Monitoring	10		
3.	Annua	l Grour	ndwater Sampling Event – 2012	11		
	3.1	Scope	of Work	11		
	3.2	Summ	ary of Field Activities	11		
	3.3	Result	S	13		
		3.3.1	Groundwater Elevations	13		
		3.3.2	VOCs	13		
		3.3.3	SVOCs and PCBs	15		

DRAFT

Table of Contents

		3.3.4 TAL Metals	15
		3.3.5 MNA Parameters	16
4.	MNA E	Background	17
	4.1	Site Conceptual Model	17
	4.2	Selection of MNA Remedy	18
	4.3	Identified Data Gaps	19
	4.4	Objectives of MNA Performance Monitoring	20
	4.5	Performance Standards	20
		4.5.1 MNA-Related Performance Standards	20
		4.5.2 Demonstration of Compliance Report	21
5.	MNA F	Performance Monitoring	22
	5.1	Introduction	22
	5.2	Groundwater Performance Monitoring Locations	22
	5.3	MNA Monitoring Parameters	23
	5.4	Monitoring Frequency	24
	5.5	MNA Monitoring Objectives	24
	5.6	Data Quality Objectives	24
6.	MNA E	Evaluation	25
	6.1	Total VOC Concentration Trends	25
		6.1.1 Trend Analysis	26
		6.1.2 Total VOC Attenuation Rate	28
	6.2	Estimate of COC Mass Flux in Groundwater	29
	6.3	Distribution of VOCs in NAPL and Groundwater	30
	6.4	Evaluation of Monitoring Objectives	31

DRAFT

Table of Contents

8.	Refere	nces		38
7.	Summ	ary		35
	6.5	Contir	ngency Measures	34
		6.4.7	COC Mass Flux / Mass Reduction	34
		6.4.6	Evaluation of Institutional Controls	33
		6.4.5	Evaluation of New Releases of COCs	33
		6.4.4	Evaluation of No Unacceptable Impacts to Downgradient Receptors	33
		6.4.3	Evaluation of Plume Stability	32
		6.4.2	Evaluation of Potentially Toxic and/or Mobile Transformation Products	32
		6.4.1	Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA	31

Tables

- 1 VOCs Groundwater Sample Summary Results February October 2012
- 2 Metals Groundwater Sample Summary Results February June 2012
- 3 Drilling Water Analytical Data Summary February 2012
- 4 MNA Parameters Groundwater Sample Summary Results June October 2012
- 5 Statistical Summary of Groundwater Total VOC Concentration Trends

Figures

- 1 Site Location Map
- 2 Groundwater Monitoring Locations Shallow Overburden
- 3 Groundwater Monitoring Locations Middle Overburden

DRAFT

Table of Contents

- 4 Groundwater Monitoring Locations Deep Overburden
- 5 Groundwater Monitoring Locations Shallow Bedrock
- 6 Groundwater Monitoring Locations Deep Bedrock
- 7 VOC Exceedance Plume Shallow Overburden
- 8 VOC Exceedance Plume Middle Overburden
- 9 VOC Exceedance Plume Deep Overburden
- 10 VOC Exceedance Plume Shallow Bedrock
- 11 VOC Exceedance Plume Deep Bedrock
- 12 Groundwater Total VOC Concentrations with Time Shallow Overburden
- 13 Groundwater Total VOC Concentrations with Time Middle Overburden
- 14 Groundwater Total VOC Concentrations with Time Deep Overburden
- 15 Groundwater Total VOC Concentrations with Time Shallow Bedrock
- 16 Groundwater Total VOC Concentrations with Time Deep Bedrock
- 17 Total Mass of VOCs Removed by NTCRA 1 and NTCRA 2 Groundwater Extraction Wells

Appendices

- A Profile Sheets and Well Construction Logs
- **B** Geophysical Applications Report
- C Hydraulic Conductivity Calculations
- D Field Sampling Forms
- E Equipment Calibration Logs

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Executive Summary

This 2012 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) has been prepared to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) activities at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Specifically, this report summarizes the 2012 groundwater sampling event performed in accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010c), and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Siterelated constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits. Monitored natural attenuation is a component of the overall remedial strategy for Site groundwater as set forth in the United States Environmental Protection Agency's (USEPA's) 2005 Record of Decision (ROD) for the Site.

This MNA Report also summarizes activities associated with installation and testing of three monitoring well clusters that were constructed since December 2011 (MW-1001R/M, MW-1002R/DR and MW-1003R/DR). As a supplement to wells previously installed in accordance with the Work Plan, these wells were installed to further delineate the volatile organic compound (VOC) plume. Based on the findings associated with these well installations, no additional well installations are currently planned as delineation of the SRSNE-related plumes is now considered complete. The new wells will be incorporated into the groundwater monitoring program.

In accordance with the Work Plan, the 2012 annual groundwater sampling event was performed in June 2012 and included sampling of groundwater at 44 monitoring wells. Having been sampled for the full suite of potential siterelated constituents in 2010 as part of the "comprehensive" event, the analytical suite for these wells in 2012 included only VOCs, target analyte list (TAL) metals, and/or MNA parameters, as indicated in the Work Plan. Results indicate that:

 VOCs above USEPA Maximum Contaminant Levels (MCLs) or Connecticut Class GA Groundwater Protection Criteria (GWPC) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS). The exception is at monitoring well MW-707DR, a deep bedrock

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

monitoring well located just beyond the southern extent of the estimated capture zone boundary. Benzene was detected at a concentration of 1.1 micrograms per liter (μ g/L) in the June 2012 sample, which is slightly above the Action Level (the more stringent of the MCL or GWPC criterion) of 1.0 μ g/L. This well was re-sampled in August 2012 to confirm this result; benzene was again detected at a concentration of 1.1 μ g/L in the second sample. An evaluation of cause and corrective measures is currently underway, and future additional sampling will provide a basis to assess groundwater quality trends at this well.

- Trichloroethene (TCE) was detected in monitoring well PZO-2M at a concentration of 9.9 μ g/L in the June 2012 sample, which is above the Action Level of 5.0 μ g/L. This was the first detection of a Site-related COC above the Action Level at this well. As such, this well was also resampled in August 2012 to confirm this result; TCE was detected at a concentration of 0.42 μ g/L in the second sample. Future additional sampling will also provide a basis to assess groundwater quality trends at this well.
- No metals (either total or dissolved) exceeded their respective MCLs or GWPC, with the exception of total manganese measured at MW-209B in 2012 (507 μg/L total manganese, compared to the GWPC of 500 μg/L). MW-209B is an upgradient, background well located west of the former Operations Area of the SRSNE Site.

This MNA Report fulfills the requirement set forth in Section VII.A.2 of the SOW and the reporting approach outlined in the MNA Plan that was presented as Attachment L to the RDWP (ARCADIS 2009). This MNA Report presents results of an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluations (presented in the 2010 and 2011 MNA Reports), this evaluation considers groundwater monitoring results from the June 2012 annual groundwater monitoring event for VOCs, TAL metals and MNA parameters at a subset of monitoring wells; evaluation of current concentration trends for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicated:

 Detected concentrations of VOCs above Action Levels are contained within the previously estimated containment boundary of the HCTS. The exception is in monitoring well MW-707DR, as discussed above.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Groundwater total VOC concentrations are generally declining or remaining stable with time throughout the Site groundwater COC plume. One notable exception is an increase in VOC concentrations at shallow bedrock monitoring well P-11A, which is located downgradient of the former Operations Area and within the HCTS capture zone.
- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the *Feasibility Study* (FS) (Blasland, Bouck & Lee, Inc. [BBL] and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

One modification to the MNA monitoring program was implemented during the 2012 sampling event based on the results of the 2010 and 2011 MNA monitoring. Namely, sulfide was originally proposed for monitoring in support of the MNA evaluations; it is not a site-related COC or used for compliance monitoring. Sulfide was not detected in MNA-related analyses to date. Based on the highly reactive nature of sulfide and the lack of detectable concentrations of sulfide in site groundwater, along with the adequate characterization of site groundwater redox conditions using other MNA parameter data, sulfide was removed from the MNA parameter analyte list following the 2011 sampling event. The recommendation to remove sulfide was originally made in the 2010 MNA Report, and was approved by the USEPA in an email to *de maximis* dated September 15, 2011.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

1. Introduction

1.1 Purpose

This 2012 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to a Consent Decree (CD), to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site) (Figure 1). The CD was lodged on October 30, 2008 with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE) and was entered by the Court on March 26, 2009.

This MNA Report presents the results and evaluation of data collected during the June 2012 annual groundwater monitoring event conducted in accordance with the Remedial Design Work Plan (RDWP) and the MNA Plan (Attachment L to the RDWP [ARCADIS 2009]), and in fulfillment of the requirements of the SOW (Sections IV.B.5.e and IV.B.5.f). It also presents the results for August 2012 re-sampling at two wells (MW-707DR and PZO-2M) based on the June 2012 sampling results at these wells. Finally, this MNA Report summarizes the activities associated with installation and testing of three monitoring well clusters that were constructed since December 2011 (MW-1001R/M, MW-1002R/DR and MW-1003R/DR). These wells were installed to supplement the wells previously installed in accordance with the Work Plan and further delineate the volatile organic compound (VOC) plume.

Section VII.A.2 of the SOW requires the submittal of annual MNA Reports as part of the Annual State of Compliance Reports. Monitored natural attenuation is a component of the overall remedial strategy set forth for the Site in the Record of Decision (ROD) (United States Environmental Protection Agency [USEPA] 2005) for groundwater containing Site-related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.

1.2 Scope

In accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the RDWP [ARCADIS 2010c]), the 2012 annual groundwater sampling event was performed in June 2012 and included sampling of groundwater from 27 "R", 4 "M", 3 "B" and 10

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

"N"-designated monitoring wells. As further described in Section 3.1, the letter designations generally pertain to the locations, monitoring scope, and sampling frequency of monitoring wells. Having been sampled for all parameters in 2010, the analytical suite for these wells in 2012 included only VOCs, target analyte list (TAL) metals, and/or MNA parameters, as indicated in the Work Plan for each well designation.

Monitored natural attenuation refers to the reliance on natural attenuation (NA) processes, within the context of a carefully controlled and monitored site cleanup approach, to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by more active methods. Natural attenuation is the reduction in mass or concentration of COCs in groundwater over time or distance from the source of the impact due to naturally occurring processes. Attenuation processes include nondestructive physical processes (e.g., advection, dilution, dispersion, volatilization, dissolution, and sorption) and destructive chemical and biological processes.

The MNA remedy at the Site applies to the groundwater and non-aqueous phase liquid (NAPL) and addresses the following areas of the Site, in accordance with the SOW:

- Groundwater and saturated glacial deposits (gravel, sand, silt and clay) in the "Overburden Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria; and
- Groundwater and fractured rock in the "Bedrock Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria.

As part of the MNA remedy, COCs in overburden and bedrock groundwater are monitored. The Site COCs include VOCs such as chlorinated ethenes and ethanes, ketones, aromatic compounds and 1,4-dioxane; TAL metals; semivolatile organic compounds (SVOCs); and polychlorinated biphenyls (PCBs).

In addition to monitoring COC concentrations, the MNA Plan specifies longterm monitoring of a suite of geochemical parameters ("MNA parameters") to confirm geochemical evidence of NA and to verify that biochemical processes continue to support COC degradation in Site groundwater. The MNA parameters monitored at the Site include anions (sulfate, sulfide, chloride, nitrate, nitrite), total organic carbon (TOC), iron (ferric, ferrous), divalent

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

manganese, light hydrocarbons (methane, ethane, ethene), dissolved oxygen (DO), oxidation/reduction potential (ORP), pH, alkalinity, and temperature.

1.3 Document Organization

The remainder of this MNA Report is organized into the following sections:

- Section 2 2012 Well Installation Summary: summarizes the installation and testing activities associated with construction of monitoring well clusters MW-1001M/R, MW-1002R/DR and MW-1003R/DR.
- Section 3 Annual Groundwater Sampling Event 2012: summarizes the groundwater sampling activities performed in June/August 2012 and evaluates the data.
- Section 4 MNA Background: describes the MNA performance monitoring program at the Site, including the Site conceptual model, MNA remedy, and performance standards.
- Section 5 Performance Monitoring: describes the MNA performance monitoring program at the Site, including monitoring locations, parameters, frequency and objectives.
- Section 6 MNA Evaluation: evaluates Site data based on results from the June 2012 annual sampling event, and discusses the analysis of performance monitoring data, including the data quality assessment process, data interpretation approach, and statistical procedures.
- Section 7 Summary: presents a summary of conclusions from the MNA evaluation and provides recommendations for action.
- Section 8 References: lists the references cited within this MNA Report.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2. New Monitoring Well Installations

The Work Plan proposed, among other things, installation of several new monitoring wells for the purpose of providing a suitable monitoring well network and program for the RD/RA activities. The initial well installation program was subsequently implemented between November 2009 and June 2010, and the results were summarized in a *Summary of Monitoring Well Network Modifications* (ARCADIS 2010b) report submitted to the USEPA in October 2010. Based on the initial installation and sampling of those wells, additional monitoring wells were proposed to help satisfy the following objectives:

- Characterization of plume extent in all five hydrostratigraphic zones, and
- Facilitate evaluation of hydraulic capture of all groundwater that exceeds federal drinking water standards and other risk-based levels.

The need for and locations of additional wells were discussed with the USEPA, and summarized in documents including memoranda dated May 27 and November 10, 2011. This progressively resulted in the installation and testing of three monitoring well clusters beginning in December 2011 and extending through October 2012, including monitoring wells MW-1001M/R, MW-1002R/DR and MW1003R/DR. This section summarizes the installation and testing (including groundwater sampling) performed for each of the well clusters installed in 2012, and identifies the proposed approach for incorporating the new wells into the ongoing groundwater monitoring program. For each of the five hydrostratigraphic units defined for the site, the updated monitoring well network is illustrated on Figures 2 through 6.

2.1 MW-1001M and MW-1001R

2.1.1 Well Installation

Between December 7 and 23, 2011, monitoring wells MW-1001M (middle overburden) and MW-1001R (shallow bedrock) were installed adjacent to the access road for Oak Hill Cemetery, east of Queen Street (see Figure 3). As outlined in the draft memorandum dated May 27, 2011 entitled *SRSNE Bedrock DNAPL Zone and Plume Evaluation and Recommended Monitoring Well Locations* (ARCADIS 2011a), the additional wells were installed to further delineate the VOC plume in the middle overburden and the shallow bedrock east of the Quinnipiac River.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Monitoring well MW-1001M was completed on December 16, 2011, and is screened from 85.6 feet to 95.6 feet below ground surface (bgs) based on the qualitatively coarsest soil sample in the middle overburden. Monitoring well MW-1001R was completed on December 23, 2011, and is screened from 175.3 feet to 190.3 feet bgs based on discussion with the USEPA in consideration of core sample observations and packer testing/vertical profiling results, which are summarized in Appendix A. The boreholes were drilled using rotasonic methods within the overburden and, for well MW-1001R, conventional HQ coring in bedrock. The open borehole at MW-1001R was subject to down-hole geophysical logging to measure fracture orientations in the bedrock. The geophysical logging was performed by Geophysical Applications, Inc. of Holliston, Massachusetts, and a copy of the associated report is included in Appendix B. Monitoring well construction logs are included in Appendix A.

Each of the two new wells was developed and subject to specific capacity testing on December 28, 2011. Specific capacity calculations and complete calculations are included in Appendix C. After reviewing the development data, it was determined that the removal of additional water was required at MW-1001M. Therefore, further development was performed at MW-1001M on January 17 and 20, 2012.

2.1.2 Groundwater Sampling

Groundwater samples were collected from wells MW-1001M and MW-1001R on February 6 and 7, 2012, approximately two weeks after completing well development. The monitoring wells were sampled using the low-flow methods described in the Field Sampling Plan (FSP; [Rev. 3] ARCADIS 2012a). Samples were submitted to Connecticut Testing Laboratories (CTL) in Meriden, Connecticut, for analysis of VOCs, 1,4-dioxane and Target Analyte List (TAL) metals (total and dissolved). Groundwater analytical data are summarized on Tables 1 and 2, and further discussed in Section 2.3 below.

2.2 MW-1002R and MW-1002DR

2.2.1 Well Installation

Monitoring wells MW-1002R (shallow bedrock) and MW-1002DR (deep bedrock) were installed between February 20 and March 15, 2012 (see Figures 5 and 6, respectively). These wells are adjacent to and just north of the Connecticut Light & Power (CL&P) easement. As outlined in the May 27, 2011

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

memorandum and revised in the November 10, 2011 memorandum (ARCADIS 2011b), these new wells were intended to further delineate the downgradient extent of trichloroethene (TCE) in the bedrock zone. The drilling location is near the edge of the simulated TCE plume in bedrock based on the recalibrated modeling results presented in the November 10, 2011 memorandum, and further south along the particle track that goes through the PZ-903DR location. The new wells are also intended to confirm the TCE plume attenuation downgradient of PZ-903DR.

Prior to drilling the MW-1002 wells, samples from the first batch of drill water were collected and submitted to CTL for VOC analysis. The purpose of these samples was to demonstrate that clean drilling water and storage vessels were being used. Data from these samples are summarized on Table 3. As indicated on that table, low concentrations of chloroform and/or chloromethane were detected in these samples. This is consistent with prior sampling of water supply sources and not uncommon for chlorinated water supplies.

Monitoring well MW-1002R was completed on March 14, 2012, and is screened from 105 feet to 120 feet bgs. Monitoring well MW-1002DR was completed on March 15, 2012, and is screened from 171 feet to 186 feet bgs; screen intervals for both wells were determined based on discussion with the USEPA in consideration of core sample observations and packer testing/ vertical profiling results, which are summarized in Appendix A. Both of the boreholes were drilled using rotasonic methods within the overburden and conventional HQ coring in bedrock. The open borehole at MW-1002DR was subject to down-hole geophysical logging to measure fracture orientations in the bedrock. The geophysical logging was performed by Geophysical Applications, Inc. and a copy of the associated report is included in Appendix B. Monitoring well construction logs are included in Appendix A.

MW-1002R and MW-1002DR were developed and specific capacity tested on March 20, 2012. Specific capacity calculations are included in Appendix C.

2.2.2 Groundwater Sampling

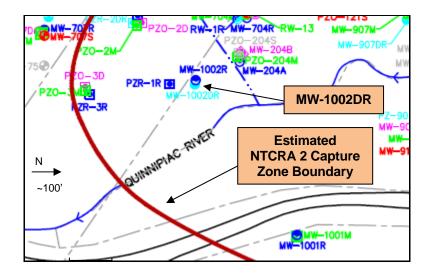
Groundwater samples were collected from monitoring wells MW-1002R/DR on April 4 and 5, 2012, approximately two weeks after development. The monitoring wells were sampled using the low-flow methods described in the FSP. Samples were submitted to CTL for analysis of VOCs and TAL metals (total and dissolved). In addition to sampling these two wells, monitoring well MW-1001R was re-sampled to confirm results from the February 2012 sample.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Groundwater analytical data are summarized on Tables 1 and 2, and are discussed below.

2.3 Data Summary – MW-1001R/M and MW-1002R/DR


As indicated above, groundwater samples were collected from wells MW-1001M, MW-1001R, MW-1002R, and MW-1002DR following their construction and development. The samples were analyzed according to their anticipated well group designation (further discussed in Section 2.5), and as summarized in the following table:

Monitoring Well	Well Group	Sample Date	Analytical Parameters		
MW-1001M	С	2/7/12	VOCs, 1,4-dioxane, TAL metals		
MW-1001R	С	2/6/12	VOCs, 1,4-dioxane, TAL metals		
		4/5/12	VOCs, TAL metals		
MW-1002R	R	4/4/12	VOCs		
MW-1002DR	R	4/5/12	VOCs		

Table 1 (VOCs) and Table 2 (TAL metals) summarize the resulting analytical data. Note that the data from these specific sampling events were not validated because (1) CTL did not provide data packages suitable for validation, and (2) CTL performed these analyses on an interim basis pending the selection of a new laboratory. VOCs were detected in each monitoring well at concentrations below Action Levels with the exception of trichloroethene (TCE), which was detected at a concentration of 212 micrograms per liter (μ g/L) at monitoring well MW-1002DR; the Action Level for TCE is 5 μ g/L. As presented in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS 2011a), the estimated Non-Time-Critical Removal Action (NTCRA) 2 capture zone encompasses the MW-1002DR location. The figure below depicts the MW-1002DR location in relation to the estimated NTCRA 2 capture zone boundary. Groundwater north of (to the right of) the capture zone boundary is hydraulically controlled by the NTCRA 2 extraction wells, which are approximately 200 feet northwest of well MW-1002DR.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Several TAL metals were also detected in each well analyzed, as shown on Table 2. All TAL metals detected were at concentrations below Action Levels, with the exception of total chromium in monitoring well MW-1001R. Chromium was initially detected at a concentration of 240 μ g/L in the sample collected from this well on February 6, 2012. The well was resampled on April 5, 2012, and total chromium was again detected above Action Levels, albeit at a lower concentration (190 μ g/L; the Action Level for chromium is 100 μ g/L). The source of the chromium at shallow bedrock monitoring well MW-1001R is unknown. Possible sources could include:

- Natural groundwater quality in the bedrock in that area
- Metals associated with caskets interned at the cemetery property where this well was installed
- Artifact of the permanent black steel casing used in the construction of the well (the sand pack of the completed monitoring well extends upward into the bottom of the steel casing because a noteworthy bedrock fracture was observed immediately below the black steel casing)

The chromium in MW-1001R is not likely Site-related because several shallow bedrock wells (e.g., MW-05, MW-501A and P-101A) between well MW-1001R and the Site did not contain detectable levels of chromium during the initial comprehensive groundwater sampling event conducted in 2010. Groundwater quality at this well will continue to be monitored as part of the comprehensive groundwater sampling events.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2.4 MW-1003R and MW-1003DR

2.4.1 Well Installation

Because MW-1002DR did not fully delineate the extent of VOCs exceeding action levels, an additional downgradient well location was targeted in consultation with the USEPA. Monitoring wells MW-1003R (shallow bedrock) and MW-1003DR (deep bedrock) were subsequently installed in the CL&P easement, south of MW-1002R/DR and between PZR-2R and PZR-3R. These wells were installed between August 6 and September 6, 2012.

The boreholes were drilled using rotasonic methods within the overburden and conventional HQ coring methods in bedrock. The open borehole at MW-1003DR was subject to down-hole geophysical logging to measure fracture orientations in the bedrock. The geophysical logging was performed by Geophysical Applications, Inc. of Holliston, Massachusetts, and a copy of the associated report is included in Appendix B. Based on the data from the vertical profiling process (Appendix A) and consultation with USEPA, monitoring well MW-1003DR was screened from 103 feet to 118 feet bgs and monitoring well MW-1003DR was screened from 177 feet to 192 feet bgs. Both well screen intervals were selected based on packer test samples collected from each borehole. Well construction logs are included in Appendix A.

Each of the two new wells was developed and specific capacity tested on September 24 and 26, 2012. Complete specific capacity calculations, including a summary, are included in Appendix C.

2.4.2 Groundwater Sampling

Groundwater samples were collected from wells MW-1003R and MW-1003DR on October 15, 2012, approximately two weeks after completing well development. The monitoring wells were sampled using the low-flow methods described in the Field Sampling Plan (FSP; [Rev. 3] ARCADIS 2012a). Samples were submitted to Alpha for analysis of VOCs, and to Microseeps for analysis of MNA parameters. The resulting analytical data are presented in Table 4; low concentrations of VOCs were detected, below their respective Action Levels.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

2.5 Incorporation of New Wells into the Groundwater Monitoring Program

The Work Plan identified the planned scope of the groundwater monitoring program for the site based on the existing and planned wells at that time. The six new monitoring wells completed in 2012 were not contemplated at the time the work plan was prepared, but were installed for the purpose of further investigation and delineation based on the results from prior well construction and sampling. Having installed the new wells, they are anticipated to be incorporated into the groundwater monitoring program as follows:

Monitoring Wells	Well Group	Analytical parameters [*]	Monitoring Frequency		
MW-1001M and MW-1001R	С	VOCs, alcohols, 1,4- dioxane, TAL metals, PAHs, PCBs	sampled as part of the comprehensive sampling events to support 5-year reviews		
MW-1002R, MW-1002DR, MW-1003R, and MW-1003 DR	R	VOCs and MNA parameters	annually for VOCs and biennially for MNA parameters		

^{*}Analytical parameters are subject to change (pending USEPA concurrence) as part of future monitoring events

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

3. Annual Groundwater Sampling Event – 2012

3.1 Scope of Work

The 2012 annual groundwater sampling event was conducted to satisfy the requirements of SOW Sections IV.B.5.d, IV.B.5.e and IV.B.5.f. A brief summary of the requirements of each of these sections is presented below:

- IV.B.5.d biennial monitoring of VOCs and MNA parameters at a select subset of monitoring wells in the overburden aquifer in the area between the railroad tracks and the non-time-critical removal action (NTCRA) 1 sheet pile wall (i.e., overburden "N" wells).
- IV.B.5.e annual monitoring of VOCs and MNA parameters at a select subset of monitoring wells in the bedrock aquifer in the area between the railroad tracks and the NTCRA 1 sheet pile wall (i.e., bedrock "N" wells).
- IV.B.5.f annual monitoring of VOCs and biennial monitoring of MNA parameters at a select subset of monitoring wells in the overburden and bedrock aquifers in the area outside the NTCRA 1 sheet pile wall (i.e., "R" wells).

In addition to the SOW-required sampling, the background monitoring wells – specifically the "M" and "B" wells – were sampled for TAL metals; the "M" wells were also sampled for MNA parameters in accordance with the Work Plan. As outlined in SOW Section VIII.F, Interim Cleanup Levels (ICLs) for metals need to be established prior to submittal of the Demonstration of Compliance Report. To that end, metals will be analyzed on an annual basis to establish a dataset sufficient for determining the appropriate background metals concentrations at the Site.

In total, 44 monitoring wells were sampled as part of the 2012 monitoring event. Of these, 10 were sampled using low-flow methods and the remainder (34) were sampled using HydraSleeve[™] samplers.

3.2 Summary of Field Activities

The 2012 annual groundwater sampling event was conducted June 11-15, 2012. Procedures used for gauging and sampling the 10 monitoring wells using low-flow methods were consistent with those outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

January 2011a). HydraSleevesTM were used to collect samples from 34 of the 44 wells consistent with the approach proposed in a memorandum dated July 7, 2011, and approved by the USEPA in a letter dated May 21, 2012. In summary, the approved HydraSleeveTM sampling approach included the following conditions:

- Used for "routine" samples collected for tracking changes and trends in the groundwater over time. It does not apply to samples collected for specific decision points such as evaluating remedy protectiveness for five-year reviews, capture zone analysis, confirming results of modeling, risk assessments, etc.
- To be used only for sampling of VOCs and MNA parameters.
- Used for any well that has been given an "R" or "N" designation and that contains one or more constituents at a concentration greater than or equal to ten times the ICL, or, is located within the hydraulic capture zone.

Samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts, for analysis of VOCs and TAL Metals, and to Microseeps, Inc. of Pittsburgh, Pennsylvania for analysis of MNA parameters. A tabular summary of the sampling event is provided below:

SOW Section	Well Group	# of Wells Intended		# of Wells Sampled		Analytical Parameters
Section		LF	HS	LF	HS	Farameters
IV.B.5.d	Overburden "N"	0	8	0	8	VOCs, MNA
IV.B.5.e	Bedrock "N"	0	2	0	2	Parameters
IV.B.5.f	"R"	3	25	3	24	
VIII.F	"M"	5		4		TAL Metals, MNA Parameters
	"B"	3		3		TAL Metals

LF - Wells sampled using low-flow method

HS – Wells sampled using HydraSleeve[™] samplers

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Deviations from the intended scope were based on the following:

- Monitoring well CPZ-8R was not sampled due to the continued presence of dense non-aqueous phase liquid (DNAPL) in the well.
- Monitoring well MW-901D was not sampled due to insufficient water in the well (i.e., dry) at the time of sampling.

In addition to the above scope, two monitoring wells, MW-707DR and PZO-2M, were re-sampled in August 2012 to confirm the results of the initial June 2012 sample. Monitoring well locations in each of the five hydrostratigraphic zones are shown on Figures 2 through 6. Field sampling forms and equipment calibration logs from the sampling event are included in Appendices D and E, respectively.

3.3 Results

Groundwater analytical results from the June 2012 annual groundwater monitoring event are provided in Tables 1, 2, and 4 for VOCs (including August 2012 re-sampling results), metals and MNA parameters, respectively. Groundwater data were validated consistent with the procedures outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011a). Qualifiers and modifications made via the validation process are reflected in Tables 1, 2, and 4.

3.3.1 Groundwater Elevations

Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the June 2012 groundwater monitoring event. Groundwater gauging data from the initial comprehensive event (May-June 2010) were included in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (ARCADIS January 2011a).

3.3.2 VOCs

Groundwater VOC concentrations from the June 2012 groundwater monitoring event (and subsequent sampling in August and October 2012 for selected wells discussed above) are provided in Table 1. Groundwater VOC concentrations were compared against USEPA Maximum Contaminant Levels (MCLs) and Connecticut Class GA Groundwater Protection Criteria (GWPC),

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

with the lower of the two criteria used as the criterion for the comparison. Groundwater VOC concentrations that exceeded their respective groundwater criterion are highlighted in Table 1. Groundwater VOC concentrations were also compared to the ICLs specified in Table L-1 of the ROD (USEPA 2005), and concentrations that exceeded their respective ICLs are highlighted in Table 1.

Concentrations of VOCs greater than MCLs or GWPC are generally contained within the previously estimated containment boundary of the Hydraulic Containment and Treatment System (HCTS). The exception is in monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 1.1 micrograms per liter (μ g/L) in the June 2012 sample, which is above the Action Level (the more stringent of the MCL or GWPC criterion) of 1.0 μ g/L. This well was re-sampled in August 2012 to confirm this result; benzene was also detected at a concentration of 1.1 μ g/L (Table 1) in the second sample. An evaluation of NTCRA 2 system operating data is being conducted to assess potential correlations between groundwater extraction rates, well development periods, and recent detections of benzene in this well, which is located just south of the Connecticut Light & Power (CL&P) easement.

TCE was detected in a sample from PZO-2M at a concentration of 9.9 μ g/L in the June 2012 sample, which is above the Action Level of 5.0 μ g/L. This was the first detection of a Site-related COC above the Action Level at this well. As such, this well was also re-sampled in August 2012 to confirm this result; TCE was detected at a concentration of 0.42 μ g/L in the second sample. Future additional sampling will also provide a basis to assess groundwater quality trends at these wells.

VOC concentrations at shallow bedrock monitoring well P-11A increased notably relative to prior events. This well is located at the downgradient edge of the bedrock NAPL zone delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998a), and within the HCTS capture zone. The total VOC concentration in June 2012 (approximately 26 milligrams per liter [mg/L]) was greater than the 2011 result (583 μ g/L) and above the highest historical total VOC concentration at this well (13 mg/L in December 1994). VOC concentrations at this well will continue to be monitored as part of future sampling events.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

VOC Plume Delineation

Data from the 2010-2012 groundwater monitoring events were used to update the VOC plume maps, originally presented in the Summary of Initial (2010) Comprehensive Groundwater Sampling Event (ARCADIS January 2011a), for each of the five hydrostratigraphic units. Using the approach that was initially presented in the Remedial Investigation (RI; BBL June 1998a), groundwater VOC results (the most recent data available at each well) were used to derive VOC regulatory exceedance ratios by dividing detected concentrations of VOCs by the lower of their respective groundwater regulatory criteria, which generally represent drinking water standards. Exceedance ratio values greater than 1.0 indicate that the detected VOC concentration exceeded the lower of the federal standard (MCL) or the state standard (GWPC). Exceedance ratio values less than 1.0 indicate that the detected VOC concentration was less than the MCL or GWPC. The highest VOC exceedance ratio for each well, and the specific compound associated with that ratio, are summarized for each hydrostratigraphic unit on Figures 7 through 11. These regulatory exceedance ratios were used to delineate groundwater with VOCs above MCLs or GWPCs, as shown by the light green contour lines on Figures 7 through 11.

3.3.3 SVOCs and PCBs

SVOC and PCB data are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not included in the June 2012 groundwater monitoring event. Previously collected SVOC and PCB data (May-June 2010) were evaluated in the *Monitored Natural Attenuation Report* (ARCADIS September 2010a).

3.3.4 TAL Metals

Groundwater concentrations of TAL metals during the June 2012 groundwater monitoring event are summarized in Table 2. Groundwater TAL metals concentrations were compared against MCLs and GWPC; ICLs have not yet been developed for metals in groundwater because they are a function of background concentrations, which are to be established in the future based on background sampling performed through that time.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

No metals (either total or dissolved) exceeded their respective MCLs or GWPCs, with the exception of total manganese measured at MW-209B in 2012 (507 μ g/L total manganese, compared to the GWPC of 500 μ g/L). MW-209B is an upgradient, background well located west of the former Operations Area of the SRSNE Site.

3.3.5 MNA Parameters

Concentrations and distributions of electron acceptors, electron donors, and byproducts of microbially mediated reactions are evaluated to verify the types of geochemical and biodegradation processes active in Site groundwater. Concentrations of MNA parameters during the June 2012 annual groundwater monitoring event (and subsequent sampling in August and October 2012) are provided in Table 4.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4. MNA Background

An MNA remedy requires a strong scientific basis supported by appropriate monitoring. When properly employed, MNA is an effective remedy – based on thorough analysis of site-specific data – to understand, monitor, predict, and document COC transport and NA processes.

4.1 Site Conceptual Model

For any MNA remedy to succeed, it is important to understand the Site Conceptual Model (SCM). The SCM combines available site information into a comprehensive picture of the nature and extent of the COCs and the processes controlling their transport and fate in the environment. The level of site characterization necessary to support a comprehensive evaluation of MNA can be more detailed than that needed to support active remediation.

The SCM, including information regarding the Site operational history, regulatory status, geology, hydrogeology, and surface water hydrology, and the distribution and mass of COCs in Site groundwater, including delineation of NAPL zones and dissolved-phase groundwater plume, and VOC mass estimates, is provided in Section 2 of the RDWP (ARCADIS 2009) and fulfills the requirements set forth in the SOW, Section V.C.1.I.

The MNA conceptual model for the Site may be described in terms of source condition, dissolved plume stability, and MNA processes, and is summarized as follows:

<u>Source Condition</u>: The source of groundwater-quality impacts was extensively characterized during the Remedial Investigation (RI; BBL 1998a) and FS, and consists of zones containing NAPL in overburden soils and bedrock. The NAPL is a complex mixture of chlorinated and other solvents. The NAPL zones in overburden soils and bedrock contain mixtures of dissolved NAPL-related chlorinated ethenes, ethanes and methanes, as well as aromatic hydrocarbons, ketones, phthalates, ethers, furan and alcohols. These NAPL zones are currently hydraulically contained by the NTCRA 1 sheet-pile wall and overburden groundwater extraction wells and the NTCRA 2 overburden and bedrock extraction wells. Upon entry of the CD, the NTCRA 1 and NTCRA 2 systems became known as the HCTS. The NAPL zones have formed a dissolved-phase chemical plume that has been severed by the HCTS. The Overburden NAPL zone contains the majority of the Site VOCs, and will be treated with in-situ thermal remediation to remove the vast majority of these

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

VOCs, resulting in a greatly diminished source zone upgradient of the NTCRA 1 sheet-pile wall.

<u>Dissolved Plume Stability</u>: The dissolved-phase chemical plumes in overburden and bedrock groundwater within the source area are stable and are likely shrinking in time due to the combination of hydraulic containment and active *in situ* biodegradation processes in groundwater within the capture zone of the HCTS. *In situ* biodegradation processes within the capture zone of the HCTS were characterized as "robust" in the FS (BBL and USEPA 2005). The dissolved-phase chemical plume in overburden and bedrock groundwater in the severed portion of the plume, beyond the capture zone of the HCTS, are shrinking with time due to the combination of hydraulic containment of the higher concentration portions of the dissolved-phase chemical plume and NA processes. Evaluations of trends in total dissolved-phase VOC concentrations in groundwater within the HCTS containment boundary and the severed plume indicate statistically significantly decreasing concentration trends.

<u>NA Processes</u>: Natural attenuation processes that have contributed to plume stabilization and shrinkage within the overburden and bedrock include *in situ* abiotic and biodegradation reactions, sorption to aquifer solids, flow path mixing, and matrix diffusion. Reductive dechlorination is a prominent removal mechanism that continues to operate at the Site, as evidenced by the production of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC), 1,1-dichloroethane (1,1-DCA), ethene, ethane, and chloride, which are dechlorination (i.e., "breakdown") products of tetrachloroethene (PCE), TCE, and 1,1,1-trichloroethane (TCA). There are also anaerobic oxidation reactions occurring that remove cDCE, VC, and ethene by oxidation to carbon dioxide (CO_2).

4.2 Selection of MNA Remedy

As a result of the demonstrated efficacy of NA for treating COCs in Site groundwater, MNA was included as a component of several remedial alternatives evaluated in the FS (BBL and USEPA 2005). Based on evaluations presented in the FS, the USEPA selected MNA as a component of the remedial approach for the Site.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

The ROD for the Site was issued by the USEPA in September 2005 (USEPA 2005). The selected remedy consists of MNA of the groundwater plume, including:

- Groundwater outside the capture zone of the HCTS until groundwater cleanup levels are achieved;
- Groundwater within the capture zone of the HCTS until groundwater cleanup levels are achieved; and
- Groundwater in the NAPL area of the overburden and bedrock aquifers, until groundwater cleanup levels are achieved.

4.3 Identified Data Gaps

The SOW identified two data gaps associated with implementing the MNA remedy component at the Site. The identified data gaps and the strategies used for addressing them are as follows:

- Incomplete plume delineation in the severed plume. This data gap has been addressed by the installation and sampling of additional groundwater monitoring wells near the eastern edge of the severed plume, east of the Quinnipiac River and in the CL&P easement as presented in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and subsequent discussions with EPA. In addition to the new plume delineation wells installed prior to the start of the May–June 2010 comprehensive groundwater sampling (including MW-903S, MW-903M, MW-903D, MW-903R, PZ-903DR, MW-904S, MW-904D, MW-906M, MW-906D, MW-906R, PZ-906DR, and MW-910S), three other well clusters (MW-1001M/MW-1001R, MW-1002DR/MW-1002R and MW-1003DR/MW-1003R) have been installed to address this data gap.
- Long-term monitoring data demonstrating the effectiveness of MNA as a remedy component. This data gap is being addressed through the preparation, submittal, approval, and implementation of the MNA Plan.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4.4 Objectives of MNA Performance Monitoring

The MNA Plan, in conjunction with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP), describes the monitoring and analysis steps required to meet the following objectives of MNA performance monitoring, as specified in Section VII.A.1 of the SOW:

- Complete the delineation of COCs in groundwater in three dimensions;
- Assess the temporal and spatial variations in groundwater chemistry and geochemistry;
- Assess the progress in meeting the long-term remedial goal of groundwater restoration throughout the Site to its natural quality; and
- Evaluate the effectiveness of institutional controls.

Based on the results of MNA performance monitoring, decisions related to the MNA program, described in detail in the MNA Plan, may include:

- Continuation of the performance monitoring program without change.
- Continuation of the performance monitoring program with action.
- Modification of the institutional controls.

4.5 Performance Standards

The remedial action will be implemented in compliance with applicable or relevant and appropriate requirements (ARARs) identified in the ROD (USEPA 2005). These requirements include compliance with performance standards for the affected groundwater, soil and wetland soil, and for NAPL that is present in the subsurface in the overburden and bedrock. The following subsections discuss performance standards applicable to MNA and the means for demonstrating compliance with these standards.

4.5.1 MNA-Related Performance Standards

Performance standards pertaining to MNA at the Site, as set forth in the SOW, are described in detail in the MNA Plan for Groundwater, NAPL outside of the Overburden NAPL Area, and the Severed Plume.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

4.5.2 Demonstration of Compliance Report

As specified in Section VIII.F of the SOW, a Demonstration of Compliance Report will be prepared in accordance with the evaluation procedures defined in 40 C.F.R. Section 264.97 when groundwater COC concentrations have remained within the interim cleanup levels for three consecutive years. If the USEPA, after reasonable opportunity for review and comment by the Connecticut Department of Energy and Environmental Protection (CT DEEP), approves the Demonstration of Compliance Report and agrees that the interim cleanup levels have been achieved, a risk assessment of residual groundwater conditions will be performed.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5. MNA Performance Monitoring

5.1 Introduction

The MNA Plan specified the performance monitoring program for Site groundwater as it relates to the MNA component of the remedy, while Section IV.B.5 of the SOW set forth requirements for an environmental monitoring program to be implemented to evaluate the performance of the HCTS and the overall effectiveness of the Site remedy, including the MNA component. These groundwater MNA monitoring requirements were summarized in the MNA Plan.

The following subsections describe the MNA program monitoring locations, monitoring frequency, monitoring parameters, and data quality objectives (DQOs) designed to meet the environmental monitoring program requirements set forth in Section IV.B.5 of the SOW. Groundwater monitoring is conducted to monitor changes in groundwater COC concentrations, changes in plume size and shape, and the effectiveness of NA processes in reducing concentrations of COCs in groundwater. Groundwater samples from June 2012 were collected in accordance with the monitoring frequency outlined in the MNA Plan.

5.2 Groundwater Performance Monitoring Locations

Groundwater performance monitoring locations were chosen to provide robust, three-dimensional coverage of COCs in overburden and bedrock groundwater at the Site, with monitoring well cluster locations providing vertical assessment of COC concentrations and groundwater geochemistry. Monitoring locations were identified in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and are shown on Figures 2 through 6 of this MNA Report.

In accordance with the SOW, selected MNA monitoring locations include upgradient (background) sampling locations, in-plume sampling locations (HCTS capture zones and severed plume), side-gradient sampling locations outside of plume areas, and downgradient locations. Monitoring locations are designated by well groups (i.e., "N") to define the purpose of each sampling location. Well group designations that are relevant to MNA monitoring are summarized in the MNA Plan and shown on Figures 2 through 6.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5.3 MNA Monitoring Parameters

The primary classes of data included in the MNA monitoring program are: Sitespecific groundwater COCs; groundwater MNA parameters; groundwater hydraulic information; and HCTS COC mass removal estimates. Each of these primary data classes are described below.

Site-specific COCs are the chemical constituents that were identified during Site investigations and risk assessment and are required to be addressed by the response actions set forth in the ROD (USEPA 2005). Site-specific COCs for groundwater include selected VOCs, 1,4-dioxane, TAL metals, SVOCs, and PCBs.

Groundwater MNA parameters were selected to confirm dominant biotransformation processes, evaluate the potential for continued transformation of COCs, and identify zones of dominant geochemical conditions. These parameters include: iron (ferric and ferrous), divalent manganese, light hydrocarbons (methane, ethane, ethane), alkalinity, chloride, nitrate–nitrogen, nitrite–nitrogen, pH, sulfate, sulfide and TOC. In addition to laboratory-analyzed MNA parameters, the following MNA parameters are collected as field measurements: pH, DO, ORP, and temperature.

The hydraulic parameter of interest is groundwater elevation. Groundwater elevations are characterized in all five groundwater depth zones, and provide a basis to assess the horizontal and vertical components of hydraulic gradients that control three-dimensional migration of COCs. Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the June 2012 groundwater monitoring event.

Estimates of groundwater COC mass removal from the HCTS, obtained as part of the compliance monitoring program for the HCTS operations, are used to evaluate potential trends in COC mass removal from the HCTS and can be used to evaluate future efficacy of groundwater remedies, including MNA.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

5.4 Monitoring Frequency

Monitoring frequencies were designed to meet requirements of the environmental monitoring program set forth in Section IV.B.5 of the SOW and are summarized in the MNA Plan. Detailed monitoring frequency information is provided in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP). Any proposed changes to the long-term monitoring program will be submitted as part of the Annual State of Compliance Report(s).

5.5 MNA Monitoring Objectives

The MNA performance monitoring program set forth in the MNA Plan was designed to evaluate the MNA monitoring objectives listed below (USEPA 1999; USEPA 2004) and described in detail in the MNA Plan.

- Provide timely warning of potential impact to receptors
- Detect changes in plume size/concentration
- Determine temporal variability of data
- Detect changes in geochemistry that warn of potential changes in COC attenuation
- Yield data necessary to reliably evaluate progress toward COC reduction objectives

5.6 Data Quality Objectives

The DQO process is a systematic planning tool based on the scientific method that is used to establish criteria for data quality and to develop data collection designs (USEPA 1994). The DQOs for the data described in this MNA Report are provided in the *Quality Assurance Project Plan* (QAPP; [Rev. 2] ARCADIS 2012b Attachment C to the RD Project Operations Plan [POP]).

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

6. MNA Evaluation

This section evaluates the effectiveness of the MNA program based on the data collected to date (including the June 2012 groundwater monitoring event, and August 2012 re-sampling of MW-707DR and PZO-2M). Data analysis, interpretation and reporting methods were completed in accordance with the following regulatory guidance documents:

- Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water (USEPA 1998)
- Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (USEPA 1999)
- Performance Monitoring of MNA Remedies for VOCs in Ground Water (USEPA 2004)

In general, data interpretation included:

- Placing the MNA performance monitoring data in the context of time, location, sampling and analytical methods.
- Applying appropriate statistical tests to detect changes and trends in COC concentrations, and attainment of remedial objectives.

These data interpretation methods and results are presented in the following sections.

6.1 Total VOC Concentration Trends

Data collected during previous sampling events (RI and Interim Monitoring Sampling [IMS] events) and presented in the MNA Plan, the 2010 MNA report, and the 2011 MNA Report indicated an overall decline in groundwater concentrations with time, supporting the selection of MNA as a remedial measure for COCs in groundwater at the Site. This section builds upon results of the previous MNA evaluations discussed in detail in the MNA Plan, the 2010 MNA report, and the 2011 MNA report. Included in this section are a discussion of concentration trends for total VOCs in groundwater at select monitoring locations, estimates of bulk attenuation rates for total VOCs in

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

groundwater at locations with decreasing concentration trends, and presentation of COC mass extraction rates and cumulative mass removal for the HCTS.

6.1.1 Trend Analysis

Trend analyses were previously conducted using total VOC concentration data collected at 25 IMS monitoring locations (within the NTCRA 2 portion of the HCTS, the severed plume, and the interior of the VOC plume) during the RI, IMS, 2010, and 2011 groundwater sampling events. These trend analyses have been updated with total VOC concentrations measured in samples collected during the June 2012 annual groundwater monitoring event, and the August 2012 re-sampling of MW-707DR. The trend evaluation results are summarized in Table 5. Because only 11 of the monitoring locations with long-term time-concentration data sets were sampled during the June 2012 sampling event, only those trend analyses were updated. However, the previous results of trend tests for wells that were not sampled in June 2012 are also included in Table 5. Results of the 2012 trend analyses are similar to the results of the IMS monitoring locations had statistically significant declining groundwater total VOC concentration trends.

Groundwater total VOC concentrations plotted versus time were updated for the 11 IMS monitoring locations that were sampled during the July 2012 biennial groundwater sampling event (Figures 12 through 16). As shown on the figures, total VOC concentrations are generally declining or stable at all groundwater depth intervals, consistent with previous results.

Non-parametric Mann-Kendall and Sen's slope trend analyses and parametric linear regression trend analyses were conducted to evaluate trend direction and statistical significance of the groundwater total VOC concentration trends at the Site. The Mann-Kendall test provides a yes/no determination for the existence of a slope that is significantly different from zero, while the Sen's slope test provides an estimate of the value for the slope. The linear regression test estimates slope and confidence level and quantifies how well the data correlate to the estimated trend line. Trend analyses were conducted with natural log (In) normalized total VOC concentrations using all three test methods for all sampling locations.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

A 90% confidence level with a corresponding p-value less than or equal to 0.10 was used to determine statistical significance for the trend analyses. Mann-Kendall and linear regression trend results with p-values greater than 0.10 were not considered to be statistically significant. The trend direction was defined as decreasing if total VOC concentrations decreased with time (negative slope), and increasing if total VOC concentrations increased with time (positive slope); however, the trend was not considered significant unless the relationship for the test was significant at a confidence level of 90%. For the linear regression analysis, the correlation coefficient, or R^2 , is a measure of how well the linear regression fits the data. Values close to 1 are considered to be a good fit, while R^2 values close to 0 are considered to be a poor fit.

Results of the trend analyses indicate significant decreasing total VOC concentration trends at 17 of the 21 monitoring locations (9 of the 11 wells sampled in June 2012) based on the Mann-Kendall and/or the linear regression test. The Sen's slope test indicates 13 (7 from June 2012) significant decreasing total VOC concentration trends of the 21 monitoring locations analyzed.

Monitoring wells sampled in June 2012 that indicate statistically significant decreasing total VOC concentration trends with linear regression and/or Mann-Kendall analysis include P-13, P-101C, MW-03, P-101B, MW-502, MW-704D, MW-127C, P-11A, and MW-704DR (Table 5). While monitoring well P-11A indicates a significant decreasing overall trend with Mann-Kendall analysis, the linear regression and Sen's slope results indicate no significant trend, and the total VOC concentration in June 2012 (26,400 μ g/L) was higher than recent analytical results (see discussion above).

Total VOCs in groundwater at MW-706DR remained elevated (8,418 μ g/L in June 2012 relative to 10,860 μ g/L in May 2011). Linear regression, Mann-Kendall, and Sen's slope tests all indicate no significant trend at MW-706DR, potentially indicating the presence of DNAPL in the vicinity of this deep bedrock monitoring location.

Only one location, MW-707DR, indicates a significant increasing total VOC concentration trend based on the Mann-Kendall and linear regression tests using data through August 2012. This is consistent with the total VOC concentration trend results in 2010 and 2011 at this location. The maximum total VOC concentration measured at MW-707DR was 18 μ g/L (April 2000),

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

and 37% of the historical samples have been below detection for all VOC constituents, indicating generally low concentrations of VOCs in groundwater at this location. The total VOC concentration measured at MW-707DR in June 2012 was 4.41 μ g/L, and the total VOC concentration measured in August 2012 was 5.06 μ g/L. These total VOC concentrations are similar to the September 2011 result (4.22 μ g/L) and less than the May 2011 result (16.86 μ g/L). Although the linear regression and Mann-Kendall trend tests for data collected at MW-707DR indicate statistically significant increasing concentration trends overall, the total VOC concentrations measured at this location during the last three monitoring events (September 2011, June 2012, and August 2012) are the lowest since 2003.

6.1.2 Total VOC Attenuation Rate

Results from the linear regression and Sen's slope analyses were used to estimate attenuation rates for total VOCs in groundwater at the Site. Attenuation rates were calculated in accordance with the USEPA guidance document on determining first-order attenuation rate constants for MNA studies (USEPA 2002). Following this guidance, the natural log of COC groundwater concentration versus time was used and a best-fit linear regression line was generated for total VOC concentrations for each monitoring location that had a statistically significant decreasing total VOC concentration trend. Slopes derived from the Sen's slope test were also used to estimate attenuation rates. The slope of the linear regression line and the slope from the Sen's slope test provide estimates of the total VOC attenuation rate constant (k_{point}) in groundwater at the respective monitoring locations.

 $k_{point} = [slope of best-fit regression line]$

The half-life $(t_{1/2})$ for total VOC concentrations in groundwater was estimated for each sampling location from the equation:

$$t_{1/2} = 0.693 / k_{point}$$

where: 0.693 is the negative of the natural log of 0.5 (half of the starting total VOC concentration).

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Estimated half-life values for total VOCs in groundwater range from 562 to 3,274 days (1.5 to 8.9 years) based on linear regression results and from 542 to 3,518 days (1.4 to 9.6 years) based on Sen's slope results. These estimated half-life values for total VOC concentrations compare well with literature values of attenuation rates presented for individual compounds in Appendix H of the FS (BBL and USEPA 2005) and indicate that overall COC concentrations in groundwater are attenuating.

6.2 Estimate of COC Mass Flux in Groundwater

As part of the compliance monitoring program, COC mass extraction rates and cumulative mass removal are monitored for the HCTS. With the exception of the severed plume and incidental discharge to surface water, the HCTS captures the entire dissolved phase groundwater COC plume at the Site. Therefore, the HCTS COC mass extraction rates and cumulative mass extraction data represent the total mass flux for the dissolved phase COC groundwater plume and can be used to monitor changes in groundwater total dissolved-phase COC mass flux with time.

Total VOC mass extraction rates and cumulative mass extraction for the HCTS were plotted for the July 1995 to July 2012 time period (Figure 17). Mass extraction rates are expressed in units of pounds per day and the cumulative mass extraction is expressed in units of pounds. Mass extraction rates have ranged between about 0.1 to 10 pounds per day and appear to be generally stable with time since about 2001. The total mass of VOCs removed by the HCTS since system startup in 1995 is approximately 16,933 pounds. The mass of COCs removed via the HCTS is small compared with the estimated mass removal that is occurring via in situ degradation. As described in detail in the FS (BBL and USEPA 2005) and summarized in the MNA Plan (ARCADIS November 2010), the quantity of TCE and degradation products being biodegraded in situ was calculated to be approximately 17,000 to 41,000 pounds per year within the NTCRA 1 area alone.

The mass extraction data will continue to be collected as part of the HCTS compliance monitoring program and will be periodically evaluated as part of the MNA performance monitoring program.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

6.3 Distribution of VOCs in NAPL and Groundwater

An assessment of the distribution of select VOCs in NAPL and groundwater samples was conducted as part of the 2010 comprehensive MNA report to gain insight into how VOC distributions in NAPL and Site groundwater varied by location and with time. VOCs evaluated in the assessment included:

- chlorinated ethenes (PCE, TCE, cDCE, 1,1-dichloroethene (1,1-DCE), and VC);
- chlorinated ethanes (TCA, 1,1-DCA, and chloroethane (CA));
- ketones (2-butanone (MIBK), 4-methyl-2-pentanone (MIBK), and acetone);
- toluene, ethylbenzene, and xylenes (TEX); and
- methylene chloride, styrene, tetrahydrofuran (THF), and 1,4-dioxane.

Data used for assessment of distribution of VOCs in NAPL and groundwater were presented in the 2010 comprehensive MNA report. The assessment concluded that NAPL samples were composed primarily of PCE, TCE, TCA, TEX, methylene chloride, and styrene, with lesser contributions from cDCE, 1,1-DCE, and 1,1-DCA. Ketones generally were not detected in NAPL samples. 1,4-dioxane were not analyzed for these samples. Overall, the results indicated that the detected groundwater constituents are generally consistent with NAPL constituents, with the exception of ketones. The general absence of detectable ketones in the NAPL samples likely relates to the elevated detection levels associated with the NAPL samples.

Molar VOC concentration plots were also presented in the 2010 comprehensive MNA report. In general, constituent concentrations in groundwater were greatest in the NTCRA 1 area with consistently decreasing primary constituent (e.g., TCE, TCA, ketones, and TEX) concentrations observed in directions downgradient from the NTCRA 1 area. These results clearly demonstrate that degradation of the parent compounds is occurring in Site groundwater.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

Groundwater molar VOC concentration plots for select groundwater monitoring locations with samples collected during multiple sampling events illustrate that some locations have clear declining concentrations trends for most or all constituents. Shifts in the relative distribution of chlorinated VOCs (CVOCs) towards greater proportions of daughter products to parent demonstrate ongoing degradation of CVOCs in Site groundwater.

In summary, molar concentration plots of select CVOCs provide a means for readily comparing the distribution of COC concentrations in Site groundwater with distance from the source area, as well as with depth and with time at discrete locations. Molar concentration plots will be updated as part of the five-year comprehensive MNA event.

6.4 Evaluation of Monitoring Objectives

6.4.1 Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA

MNA data will be used to evaluate potential changes in environmental conditions that may reduce the efficiency of MNA. Currently, the only anticipated environmental changes that may reduce the efficiency of MNA are within the capture zone of the Site NTCRA 1 groundwater containment system due to the addition of heat and removal of electron donors during in-situ thermal treatment of the Overburden NAPL Area. Future MNA Reports will assess potential effects on MNA efficiency due to thermal treatment in the Overburden NAPL Area.

Changes in the composition and availability of electron donors with time may affect the efficiency of NA. As electron donors, such as ketones, aromatic compounds, and alcohols are consumed, the efficiency of NA may decline. As noted in the 2010 comprehensive MNA report, alcohols are currently only minimally detected in Site groundwater. As concentrations of these readily available electron donors decline, other electron donor sources may be available to support continued NA of COCs in Site groundwater. Other potential electron donor sources include natural organic matter in the aquifer matrix, natural organic matter in groundwater, as well as recycling of microbial biomass. The efficiency of NA for remediation of COCs in Site groundwater will continue to be monitored via the MNA remedial program using techniques set forth in the MNA Plan and in this MNA Report including, but not limited to:

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Defining changes in the VOC regulatory plume boundaries, including exceedance of MCLs and GWPC as well as exceedance of ICLs
- Evaluation of COC concentration trends with time
- Assessment of changes in the distribution of COCs, especially ketones, alcohols, and aromatic compounds
- Continued monitoring of groundwater redox conditions

If changes in the efficiency of NA result in a loss of effectiveness of MNA as a remedy for COCs in Site groundwater, contingencies will be considered as described in the MNA Plan.

6.4.2 Evaluation of Potentially Toxic and/or Mobile Transformation Products

Potentially toxic transformation products include regulated chemical intermediates, such as cDCE, 1,1-DCE, 1,1-DCA, CA, and VC, and regulated transition metals (e.g., manganese and arsenic). Locations with concentrations of cDCE, 1,1-DCE, 1,1-DCA, CA, VC that exceed MCLs or GWPC are within the overburden and bedrock groundwater containment boundary. With exception to the total manganese concentration at monitoring well upgradient/ background well MW-209B at (507 μ g/L) exceeding the screening criteria of 500 μ g/L, metals detected in groundwater samples collected in 2012 did not exceed MCLs or GWPC screening levels (Table 2).

6.4.3 Evaluation of Plume Stability

In terms of plume stability, a dissolved-phase chemical plume in groundwater may be characterized as a:

- Shrinking plume, in which the plume volume decreases through time
- Stable plume, in which the plume volume does not change through time
- Growing plume, in which the plume volume increases through time

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

In general, shrinking plumes are indicated by decreasing chemical concentrations through time, growing plumes may be indicated by increasing or stable chemical concentrations through time, and stable plumes are indicated by plume volume estimates that do not change significantly through time. Currently available long-term monitoring data indicate that the plume of COCs in Site groundwater is shrinking or is stable.

6.4.4 Evaluation of No Unacceptable Impacts to Downgradient Receptors

Groundwater and surface water monitoring data collected during the RI and the IMS program indicate that there are no potential impacts to downgradient receptors. The water supply wells within the Town Well Field Property are dormant and are beyond the zone of COC concentrations in groundwater that are above drinking water standards. Therefore, there are no receptors within the vicinity of the groundwater plume with COC concentrations above drinking water standards. Monitoring of surface water in the Quinnipiac River demonstrated that surface water is not impacted by the Site COC-impacted groundwater plume. Monitoring of groundwater within the Town Well Field will continue as part of the MNA program.

6.4.5 Evaluation of New Releases of COCs

Evaluation of new releases of COCs is not needed because potential sources of new releases have been removed from the Site, the former source area is located within the capture zone of the HCTS, and the Overburden NAPL Area (also within the capture zone) is to be remediated via in-situ thermal remediation.

6.4.6 Evaluation of Institutional Controls

The draft *Institutional Control Plan* (IC Plan), which is a remedial design submittal required by Section V.B.7 of the SOW, was initially submitted to the USEPA in February 2011. Based on comments received and further coordination with the regulatory agencies, a revised draft IC Plan is being prepared for submittal. It describes the proposed scope and monitoring program associated with institutional controls to be implemented at the Site. Once the IC Plan is approved and institutional controls are established, any observed or pending changes in land or resource uses or ownership (e.g., property ownership change, housing developments, and well installations) will

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

be evaluated in view of their current and possible future impact on the effectiveness of the institutional controls and the performance monitoring operations.

6.4.7 COC Mass Flux / Mass Reduction

COC mass flux and mass reduction can be conservatively evaluated by monitoring groundwater COC mass recovery from the HCTS. Because extraction of groundwater COCs by the HCTS does not account for the mass of COCs degraded in situ, this method of estimating mass reduction provides a minimum estimate of mass reduction. With the exception of the severed plume and de minimis discharges to surface water immediately adjacent to the river, the Site-related groundwater plume is essentially contained within the HCTS capture zone. As a result, the groundwater extracted from via the HCTS represents the majority of the mass flux of COCs within the plume. Groundwater extraction rate and COC concentration information collected periodically during system operation, maintenance and monitoring (OMM) activities as part of the compliance monitoring program for the HCTS will be used to evaluate changes in COC mass flux with time. As shown on Figure 17, COC mass extraction rates have been relatively stable since the early 2000s.

6.5 Contingency Measures

An evaluation of contingency measures will be performed if progress in meeting long-term groundwater restoration goals is inadequate, as determined by the USEPA. While the specific measures to be undertaken may depend on several factors (e.g., the nature, location, apparent source, or timeframe at which the inadequacy is identified), examples of possible contingency measures are provided in the MNA Plan. Any contingency measure considered will first be approved by USEPA, in consultation with CT DEEP, prior to implementation.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

7. Summary

Three monitoring well clusters (MW-1001R/M, MW-1002R/DR, and MW-1003R/DR) were completed in 2012 for the purpose of further investigation and delineation of the groundwater plume. These wells provide data to support delineation of the affected groundwater area to the east and south. In combination with the pre-existing monitoring well network and supporting groundwater modeling, they collectively achieve the relevant investigation objectives such that additional monitoring well installations are not presently anticipated. Pertinent to these new wells, total chromium was detected in monitoring well MW-1001R (shown on Figure 5) at concentrations above Action Levels during two sampling events (February and April 2012). The source of the chromium at shallow bedrock monitoring well MW-1001R is unknown, but concluded to be non-site-related given substantially lower concentrations at multiple monitoring wells between the former Operations Area and this well location. The new wells will be incorporated into the groundwater monitoring program for the site.

The 2012 annual groundwater monitoring event was conducted June 11-15, 2012, and included the sampling of 44 monitoring wells for VOCs, MNA parameters and/or TAL metals. Results from the annual event indicate that:

 VOCs above USEPA Maximum Contaminant Levels (MCLs) or Connecticut Class GA Groundwater Protection Criteria (GWPC) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS). The exception is in monitoring well MW-707DR, a deep bedrock well located just beyond the southern extent of the capture zone boundary. Benzene was detected at a concentration of 1.1 µg/L in the June 2012 sample and a subsequent August 2012 confirmation sample. This result is slightly above the Action Level (the more stringent of the MCL or GWPC criterion) of 1.0 µg/L. An evaluation of NTCRA 2 system operating data is being conducted to assess potential correlations between groundwater extraction rates, well development periods, and recent detections of benzene in this well, which is located just south of the CL&P easement. Future additional sampling will also provide a basis to assess groundwater quality trends at this well.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- TCE was detected in a sample from PZO-2M at a concentration of 9.9 μg/L in the June 2012 sample, which is above the Action Level of 5.0 μg/L. This was the first detection of a Site-related COC above the Action Level at this well. As such, this well was also re-sampled in August 2012 to confirm this result; TCE was detected at a concentration of 0.42 μg/L in the second sample. Future additional sampling will also provide a basis to assess groundwater quality trends at these wells.
- No metals (either total or dissolved) exceeded their respective MCLs or GWPC, with the exception of total manganese measured at MW-209B in 2012 (507 μg/L total manganese, compared to the GWPC of 500 μg/L). MW-209B is an upgradient, background well located west of the former Operations Area of the SRSNE Site.

Section 6 presents an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site, including presentation of groundwater monitoring results from the June 2012 annual groundwater monitoring event; evaluation of concentration trends for total VOCs in groundwater at select monitoring locations; estimates of bulk attenuation rates for total VOCs in groundwater; and presentation of HCTS COC mass extraction rates with time. Results of these evaluations indicate:

- Detected concentrations of VOCs above Action Levels are contained within the previously estimated containment boundary of the HCTS. The only exception is monitoring well MW-707DR, as discussed above.
- Groundwater total VOC concentrations are generally declining or remaining stable with time throughout the Site groundwater COC plume. One exception was that VOC concentrations at shallow bedrock monitoring well P-11A increased relative to prior events. This well is located at the downgradient edge of the bedrock NAPL zone delineated during the RI (BBL, June 1998a), and within the HCTS capture zone. The total VOC concentration in June 2012 (approximately 26 mg/L) was greater than the 2011 result (583 µg/L) and above the highest historical total VOC concentration at this well (13 mg/L in December 1994). VOC concentrations at this well will continue to be monitored as part of future sampling events.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the FS (BBL and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates since the early 2000s.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

One modification to the MNA monitoring program was implemented for the 2012 sampling event based on the results of the 2010 and 2011 MNA monitoring. Namely, sulfide was originally proposed for monitoring in support of the MNA evaluations; it is not a site-related COC or used for compliance monitoring. Sulfide was not detected in MNA-related analyses through 2011. Based on the highly reactive nature of sulfide and the lack of detectable concentrations of sulfide in site groundwater, along with the adequate characterization of site groundwater redox conditions using other MNA parameter data, sulfide was removed from the MNA parameter analyte list following the 2011 sampling event. This recommendation to remove sulfide was originally made in the 2010 MNA Report, and was approved by the USEPA in an email to *de maximis* dated September 15, 2011.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

8. References

ARCADIS. April 2009. *Draft Remedial Design Work Plan*. Solvents Recovery Service of New England, Inc., Southington, Connecticut.

ARCADIS. 2010a. *Monitored Natural Attenuation Report.* Solvents Recovery Service of New England, Inc. Southington, Connecticut. September 2010.

ARCADIS 2010b. *Summary of Monitoring Well Network Modifications*. Solvents Recovery Service of New England, Inc. Southington, Connecticut. October 2010.

ARCADIS. 2010c. *Monitoring Well Network Evaluation and Groundwater Monitoring Program.* Solvents Recovery Service of New England, Inc. Southington, Connecticut. November 2010.

ARCADIS. 2011a. Summary of Initial (2010) Comprehensive Groundwater Sampling Event. January 2011.

ARCADIS. 2011b. Draft Memorandum: *SRSNE Bedrock DNAPL Zone and Plume Evaluation and Recommended Monitoring Well Locations*. May 27, 2011.

ARCADIS. 2011c. Draft Memorandum: *Supplemental SRSNE Bedrock Plume Evaluation and Calibration to Wells MW-204A and PZ-903DR*. November 10, 2011.

ARCADIS. 2012a. *Field Sampling Plan* (Rev. 3). Solvents Recovery Service of New England, Inc. Southington, Connecticut. August 2012.

ARCADIS. 2012b. *Quality Assurance Project Plan* (Rev. 2). Solvents Recovery Service of New England, Inc. Southington, Connecticut. August 2012.

BBL. 1998a. *Remedial Investigation Report*. Solvents Recovery Service of New England, Inc., Southington, Connecticut. June 1998.

BBL. 1998b. *NTCRA 2 Interim Technical Memorandum*. Appendix A, Attachment A-1 to *NTCRA 2 Technical Memorandum*. November 1998.

DRAFT 2012 Groundwater Sampling and Monitored Natural Attenuation Report

SRSNE Superfund Site Southington, Connecticut

BBL and USEPA. May 2005. Draft Feasibility Study, Solvents Recovery Service of New England, Inc., Southington, Connecticut.

BBL. June 2005. SRSNE Site – Southington Connecticut, Interim Monitoring and Sampling Report No. 14.

USEPA. 1994. Guidance for the Data Quality Objectives Process. EPA/600/R-96/055 September 1994.

USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128.

USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA OSWER Directive 9200.4-17P. April 1999.

USEPA. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH. November 2002.

USEPA. 2004. Performance of Monitoring of MNA Remedies for VOCs in Ground Water. EPAI600R-041027, April 2004.

USEPA. 2005. EPA Superfund Record of Decision: Solvents Recovery Service Of New England, Southington, CT. EPA/ROD/R01-05/008, EPA ID: CTD009717604. September 2005.

Tables

			Sample I	Location	MW-1	L001M	MW-	1001M	MW-	1001R	MW-	1001R	MW-1	L002DR	MW-	1002R	CPZ	<u>2</u> -4A	MW	V-03	MW-1	L002DR
			Sam	ple Date	2/7/	2012	2/7	/2012	2/6/	/2012	4/5/	2012	4/5/	/2012	4/4/	2012	6/14	/2012	6/15	/2012	6/13/	/2012
			Field Sa	ample ID	MW-1001N	/-02072012	DUP-020)72012-#1	MW-1001	R-02062012	MW-100	1R-040512	MW-1002	DR-040512	MW-1002	2R-040412		-06142012	MW-03-0	06152012	MW-1002DR-	-HS-06132012
				ell Group		С		С		С		С		R		R		R		R	I	R
	1	1		-																		
Analyte	CAS No.	Unit	Standard	ICL																		
VOCs (8260B)																						
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.7		0.5	U	0.5	U	0.5	U	2.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.75	U	0.75	UJ	3.8	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.6		0.5	U	0.32	J	0.63	J	3.8	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	0.5	U	3		0.5	U	0.5	U	0.5	U	3.2	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	UJ	2.5	UJ	12	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2.5	U	12	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.17	J	0.5	U	2.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2.5	U	12	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2	U	2	U	2	U	2	U	2	U	2	U	5	U	5	U	25	U
2-Hexanone	591-78-6	ug/L	140	5	2	U	2	U	2	U	2	U	2	U	2	U	5	U	5	UJ	25	UJ
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2	U	2	U	2	U	2	U	2	U	2	U	5	U	5	U	25	U
Acetone	67-64-1	ug/L	700	5	2	U	2	U	30		2	U	5		2	U	5	UJ	5	UJ	25	UJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5		0.5	U	0.56		0.5	U	2.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ	1	UJ	5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	5	U	5	U	25	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.3	J	0.5	U	2.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1	U	1	U	5	U
Chloroform	67-66-3	ug/L	6	0.5	0.5	U	0.5	U	1.7		0.8		0.5	U	0.6		0.75	U	0.75	U	3.8	U
Chloromethane	74-87-3	ug/L	2.7	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U	2.5	U	12	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	0.5	U	0.5	U	22.9		0.5	U	0.5	U	0.5	U	24	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.42	J	0.72		2.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.45	U	0.45	U	0.45	U	0.45	U	0.45	U	0.45	U	0.6	U	0.6	U	3	U
Methylene chloride	75-09-2	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	4.7		0.5	U	5	U	5	U	5.9	U
Naphthalene	91-20-3	ug/L	280	0.5	0.5	U	0.5	U	1.1		0.5	U	0.5	U	0.5	U	2.5	UJ	2.5	UJ	12	UJ
Styrene	100-42-5	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1	U	1	U	5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	2.1		1.1		4.8		0.5	U	0.5	U	0.5	U	13	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	1	U	1	U	1	U	1	U	1	U	1	U	20		5	UJ	25	U
Toluene	108-88-3	ug/L	1000	0.5	0.5	U	0.5	U	1.2		1.2		2.2		0.7		0.75	U	2.4		3.8	U
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.75	U	0.75	U	3.8	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	LU	0.75	UJ	2.5	UJ
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	0.8		212		0.5	U	0.5	U	0.66		380	
Vinyl chloride	75-01-4	ug/L	2	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1	U	1	U	5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	0.5	1	0.5	1	3		0.5	1	0.5	1	1	U	1.95	LU	4.2		10	U
Ayrenes, rotar	1330 20-7	ч <u></u> б/ с	550	0.5	0.0	,	0.0	,			0.0	,	0.5	,	-	Ŭ	1.55		716		10	
1,4-Dioxane	123-91-1	ug/L	20		1	U	1	U	1	U	NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

			Sample	Location	MW-	1002R	MW-1	L003DR	MW-	1003R	MW-	1003R	MW	-121B	MW-	121C	MW-	121M	MW-	-124C	MW	-127C
			Sam	ple Date	6/13	/2012	10/15	5/2012	10/1	5/2012	10/15	5/2012	6/14	/2012	6/14/	/2012	6/13	/2012	6/12/	/2012	6/12	/2012
			Field Sa	ample ID	MW-1002R-	HS-06132012	MW-1003D	R-10152012	DUP-GW-1	0152012-#1	MW-1003	R-10152012	MW-121B-H	IS-06142012	MW-121C-F	IS-06142012	2 MW-121M-I	HS-06132012	MW-124C-F	IS-06122012	DUP-GW-0	6122012-#1
			We	ell Group		R		R		R		R		R		3		R		R		R
Analyte	CAS No.	Unit	Standard	ICL																		
VOCs (8260B)																						
1.1.1.2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.16		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	6.5		3.2	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	Ŭ	0.75	UJ	0.75	UJ	0.75	UJ	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.25	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	1.6		5.4	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	Ŭ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	3.5		1.3	
1.2.4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	UJ	2.5	U	2.5	UJ	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	UJ	5	U	5	Ŭ	5	U	5	U	5	U	5	UJ	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	UJ	5	U U	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	Ŭ	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	UJ	8.1	1	1.6	<u> </u>	1.7	Ŭ I	5	UJ	5	UJ	5	UJ	5	U	5	U
Benzene	71-43-2	ug/L	1	0.5	6		0.88		0.46	, ,	0.47	, ,	17		16		3		0.5	U	0.54	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	UJ	1	UJ	1	UJ	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	0.5	U	8.6		6.9		2		0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	1	U	1	U	38		36		38		1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.79		1.1	U U	0.75	U	0.68	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	Ŭ	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	0.7		0.67		0.5	U	0.5	U	0.5	U	5.4		1.8	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	1		0.61		0.61		0.5	U	0.5	U	0.5	U	0.5	U	1	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	UJ	0.6	UJ	0.6	UJ	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	0.26		2.5	U	2.5	U	2.5	UJ	2.5	UJ	2.5	U	2.5	UJ	2.5	UJ
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	5	U	5	U	98		74		16		5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.3	1	6.8		4.1		4.1		0.26	U	0.33	U	0.75	U	0.23	1	5.8	
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	0.75	U	0.75	U	0.75	U	0.75	U	0.20	U	0.35	U	0.75	U	0.75	J U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.75	UJ	0.75	U	0.75	U	0.75	U	0.5	UJ	0.75	UJ	0.75	UJ	0.75	U	0.75	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	UJ	0.5	U	1	1	1.1	1	0.5	U	0.5	U	0.5	UJ	1.4		0.51	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U U	1	U	1	U	1	U	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	2	U	5.4		3.1	1	3	1	1.4	1	1.4	UJ	1.73	1	2	U	5.1	
	1330-20-7	∞6/∟	550	0.5	2		3.4		3.1	J		J	1.7	,	1.7		1.75	,	2		3.1	
1,4-Dioxane	123-91-1	ug/L	20		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

			Sample L	ocation	MW	-127C	MW	/-413	MW	/-415	MV	/-416	MW	-502	MW-7	'04D	MW-7	704DR	MW-	704M	MW-	704M
			Sam	ole Date	6/12	/2012	6/15	/2012	6/15	/2012	6/15	/2012	6/13/	/2012	6/14/2	2012	6/14/	/2012	6/14/	/2012	6/14	/2012
			Field Sa	mple ID		-06122012		S-06152012		IS-06152012		S-06152012	MW-502-H				MW-704DR-H					HS-06142012
				ll Group		R		N		N		N	F	{	R		R	{		<u>}</u>		R
Analyte	CAS No.	Unit	Standard	ICL																		
VOCs (8260B)																						
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	20	U	2	U	2.5	U	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	3.3		18	J	1.1	J	56		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	30	UJ	3	LU	3.8	UJ	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	5.5		58		13		14		0.75	U	1		2		0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	1.4		20	U	2	U	44	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	UJ	100	U	4.4	J	12	UJ	2.5	U	2.5	UJ	2.5	UJ	2.5	UJ	2.5	UJ
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	100	U	1.5	J	12	U	0.26	J	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	20	U	2.4		2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	100	U	10	U	12	U	0.29	J	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	200	U	20	U	25	U	5	IJ	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	200	UJ	20	IJ	25	UJ	5	IJ	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	200	U	20	U	25	U	5		5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	5	U	200	UJ	20	IJ	25	UJ	5	IJ	5	UJ	5	UJ	5	UJ	5	UJ
Benzene	71-43-2	ug/L	1	0.5	0.49	J	20	U	2.2		2.5	U	47		0.27	J	1.9		0.2	J	0.5	UJ
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	40	U	4	U	5	UJ	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	200	U	20	U	25	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	20	U	2	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	11	J	2	U	2.5	U	19		2.9		1.6		3.9		3.8	
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	40	U	4	U	5	U	49		1	U	1	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	30	U	3	U	3.8	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	100	U	10	U	12	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1.6		36		10		270		0.5	U	0.5	U	0.55		0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.94		240		210		2.5	U	67		0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	24	U	2.4	U	3	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	23	J	20	U	25	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	UJ	100	UJ	10	UJ	12	UJ	1.8	J	2.5	UJ	2.5	UJ	2.5	UJ	2.5	UJ
Styrene	100-42-5	ug/L	100	0.5	1	U	40	U	4	U	5	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	20	U	2	U	15		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	200	UJ	14	J	25	UJ	2400		4.9	J	5.1		12	J	8.8	J
Toluene	108-88-3	ug/L	1000	0.5	5.4		2600		77		3.8	U	10		0.75	U	0.75	U	0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	30	U	3	U	2.2	J	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	20	UJ	2	UJ	2.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ
Trichloroethene	79-01-6	ug/L	5	0.5	0.52	U	20	U	2	U	240		0.5	UJ	0.17	J	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	24	J	2.6	J	24		1	U	1	U	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	4.8		690		233		10	U	110	J	2	U	2	U	2	U	2	U
		<u> </u>								1	İ											İ
1,4-Dioxane	123-91-1	ug/L	20		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

			Sample L	ocation	MW-7	705DR	MW-	706DR	MW-	707DR	MW-	707DR	MW-	902D	MW-9	02M	MW-	907D	MW-9	07DR	MW-	907M
			Samp	ole Date	6/13/	/2012	6/14	/2012	6/12	/2012	8/27/	/2012	6/15/	/2012	6/15/	2012	6/14/	/2012	6/15/	2012	6/14/	/2012
			Field Sa	mple ID	MW-705DR-I	HS-06132012	MW-706DR-	HS-06142012		R-06122012			MW-902D-H	IS-06152012	MW-902M-H	S-06152012	MW-907D-H	IS-06142012	MW-907DR-F	IS-0615201	2 MW-907M-H	HS-06142012
			We	Il Group	F	3		R		R		3	1	N	N		F	8	R	ł	F	R
Analyte	CAS No.	Unit	Standard	ICL																		
VOCs (8260B)																						
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	2500	U	50	U	0.5	UJ	0.5	U	25	U	50	U	0.5	U	500	U	50	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	20000		28	J	1.1		0.76	J	25	U	110		0.5	U	800		50	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	3800	U	75	U	0.75	U	0.75	U	38	UJ	75	UJ	0.75	U	750	UJ	75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	3800	U	75	U	1.5		1.5		22	J	450		1		750	U	75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	4200		85		0.5	U	0.23	J	25	U	50	U	0.5	U	250	J	50	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	12000	U	250	UJ	2.5	U	2.5	U	120	UJ	250	UJ	2.5	UJ	2500	UJ	250	UJ
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	12000	U	250	U	2.5	U	2.5	U	120	U	250	U	0.4	J	2500	U	250	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	2500	U	50	U	0.5	U	0.5	U	25	U	50	U	0.5	U	500	U	50	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	12000	U	250	U	2.5	U	2.5	U	120	U	250	U	0.39	J	2500	U	250	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	26000		500	U	5	UJ	5	U	250	U	500	U	5	U	5000	U	500	U
2-Hexanone	591-78-6	ug/L	140	5	25000	UJ	500	IJ	5	UJ	5	U	250	IJ	500	UJ	5	U	5000	UJ	500	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	28000		190	J	5	U	5	U	250	U	43		5	U	5000	U	500	U
Acetone	67-64-1	ug/L	700	5	25000	UJ	500	LU	5	UJ	5	U	250	UJ	500	UJ	5	UJ	5000	UJ	500	UJ
Benzene	71-43-2	ug/L	1	0.5	2500	U	50	U	1.1		1.1		11	J	50	U	31		500	U	48	J
Bromomethane	74-83-9	ug/L	9.8	0.5	5000	U	100	UJ	1	U	1	UJ	50	IJ	100	UJ	1	U	1000	UJ	100	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	25000	U	500	U	5	U	5	U	250	U	500	U	5	U	5000	U	500	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	2500	U	50	U	0.5	U	0.5	U	25	U	50	U	0.5	U	500	U	50	U
Chlorobenzene	108-90-7	ug/L	100	0.5	2500	U	50	U	0.5	U	0.5	U	33		50	U	15		500	U	25	J
Chloroethane	75-00-3	ug/L	12.1	0.5	5000	U	100	U	1	U	1	U	50	U	7000		68		1000	U	100	U
Chloroform	67-66-3	ug/L	6	0.5	3800	U	75	U	0.75	U	0.75	U	38	U	75	U	0.75	U	750	U	75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	12000	U	250	U	2.5	U	2.5	U	120	U	250	U	2.5	U	2500	U	250	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	29000		750		0.71		0.64		12	J	750		0.5	U	440	J	50	U
Ethylbenzene	100-41-4	ug/L	700	0.5	3100		50	U	0.5	U	0.5	U	1500		4400		0.5	U	370	J	50	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	3000	U	60	U	0.6	U	0.6	U	30	U	60	U	0.6	U	600	U	60	U
Methylene chloride	75-09-2	ug/L	5	0.5	20000	J	85	J	5	U	5	U	250	U	500	U	0.54	U	5000	U	500	U
Naphthalene	91-20-3	ug/L	280	0.5	12000	UJ	250	IJ	2.5	U	2.5	U	120	UJ	250	UJ	2.3	J	1400	J	250	UJ
Styrene	100-42-5	ug/L	100	0.5	5000	U	100	U	1	U	1	U	50	U	100	U	1	U	1000	U	100	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	27000		240		0.5	U	0.5	U	25	U	50	U	0.5	U	3400		50	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	25000	U	500	U	5	U	5	U	250	UJ	500	UJ	660		5000	UJ	3300	
Toluene	108-88-3	ug/L	1000	0.5	34000		140		0.75	U	0.47	J	2900		6800		0.36	U	2500		75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	3800	U	75	U	0.75	U	0.75	U	38	U	75	U	0.75	U	750	U	75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	2500	UJ	50	UJ	0.5	UJ	0.5	U	25	UJ	50	UJ	0.5	UJ	500	UJ	50	UJ
Trichloroethene	79-01-6	ug/L	5	0.5	570000		6900		0.5	UJ	0.5	U	25	U	50	U	0.5	U	52000		50	U
Vinyl chloride	75-01-4	ug/L	2	0.5	5000	U	100	U	1	U	1	U	120		100	U	1	U	1000	U	100	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	7800	J	200	U	2	U	0.36	J	3430		1810		9	J	1580	UJ	165	UJ
		<u>,</u>																				
1,4-Dioxane	123-91-1	ug/L	20		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

			Sample	Location	MW	L-304	MW	L-307	MW	/L-309	P-1	.01B	P-1	.01C	P-1	1A	P-	13	PZO	-2D	PZC	D-2M
			•	ple Date	6/14	/2012	6/15	/2012	6/13	/2012	6/14	/2012	6/14	/2012	6/14/	2012	6/15/	/2012	6/13/	2012		3/2012
					- 1	+S-06142012	-1 -	+S-06152012	-1 -	HS-06132012	- 1	5-06142012	-1	5-06142012	P-11A-HS-	-	-1 -1	06152012	PZO-2D-HS	-	-1 -1	IS-06132012
				ell Group		N		N		R	. 1015	R		R	F	{			F			R
A set de	CAC N-	11	Chandrad																			<u> </u>
Analyte	CAS No.	Unit	Standard	ICL																		+
VOCs (8260B)									-			1										<u> </u>
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	1.2	U	20	U	0.5	UJ	0.5	U	0.5	U	120	U	0.5	U	0.5	UJ	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.55	J	46		0.5	U	0.5	U	0.5	U	120		5.5		0.5	U	0.37	J
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	1.9	U	30	UJ	0.75	U	0.75	U	0.75	U	190	U	0.75	UJ	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	9		160		3.4		0.79		8		190	U	1.6		0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	1.2	U	20	U	0.5	U	0.5	U	0.5	U	230		0.95	J	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	6.2	UJ	100	UJ	2.5	U	2.5	UJ	2.5	UJ	620	UJ	2.5	UJ	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	6.2	U	100	U	2.5	U	2.5	U	2.5	U	620	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	1.2	U	20	U	1.3		0.5	U	0.51		120	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	6.2	U	100	U	2.5	U	2.5	U	2.5	U	620	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	12	U	200	U	5	U	5	U	5	U	1200	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	12	U	200	UJ	5	UJ	5	U	5	U	1200	U	5	UJ	5	UJ	5	UJ
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	12	U	200	U	5	U	5	U	5	U	1200	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	12	IJ	200	UJ	5	U	5	UJ	5	UJ	1200	UJ	5	IJ	5	UJ	5	IJ
Benzene	71-43-2	ug/L	1	0.5	1.1	J	20	U	0.4	J	4.5		3		120	U	0.5	U	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	2.5	IJ	40	UJ	1	U	1	U	1	U	250	UJ	1	UJ	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	12	U	200	U	5	U	5	U	5	U	1200	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	1.2	U	20	U	0.5	U	0.5	U	0.5	U	120	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	1.2	U	30		1.9		1.9		1.4		120	U	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	2.5	U	40	U	1	U	16		1	U	250	U	1	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	1.9	U	30	U	0.75	U	0.75	U	0.75	U	190	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	6.2	U	100	U	2.5	U	2.5	U	2.5	U	620	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	75		570		0.45		0.25	J	2.7		13000		3.1		0.44	j	0.31	J
Ethylbenzene	100-41-4	ug/L	700	0.5	16		490		0.5	U	0.5	U	0.5	U	730		0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	1.5	U	24	U	0.6	U	0.6	U	0.6	U	150	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	12	U	200	U	5	U	5	U	5	U	1200	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	6.2	UJ	100	UJ	2.5	U	2.5	UJ	2.5	UJ	620	UJ	2.5	UJ	2.5	U	2.5	UJ
Styrene	100-42-5	ug/L	100	0.5	2.5	U	40	U	1	U	1	U	1	U	250	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	1.2	U	20	U U	0.5	U	0.5	U	0.5	U	1200		0.5	U	0.28		0.4	1
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	1.2	U	200	UJ	13		6		8.9		1200	U	5	UJ	5	U	5	U
Toluene	108-88-3	ug/L ug/L	1000	0.5	0.97	U	1200		0.75	U	0.75	U	0.3	U	2000		0.75	U	0.75	U	0.77	U
trans-1,2-Dichloroethene	156-60-5	ug/L ug/L	1000	0.5	1.9	U	1200		0.75	U	0.75	U	0.3	J	190	 U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	1.9	U	20	L UI	0.75	UJ	0.75	U U	0.44	LU I	190	UJ	0.75	U	0.75	U	0.75	UJ
	79-01-6	U .					20	U	0.5		0.5	U			5200		0.5 0.67			1	9.9	1
Trichloroethene		ug/L	5	0.5	1.2	U				UJ		-	0.5	U					1.2	J	9.9	,
Vinyl chloride	75-01-4	ug/L	2	0.5	170		440		1	U	1	U	9.3		2300		1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	3.2	J	1370		2	U	1.46	UJ	2	U	1620	J	2	U	2	U	2	U
1,4-Dioxane	123-91-1	ug/L	20		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

			Sample L	ocation	PZC	D-2M	PZO	-2M	PZF	R-2R	TW	-08A	TW	-08B	TW	-08D
			-	le Date	8/27	/2012	8/27	/2012	6/13	/2012	6/14	/2012	6/15	/2012	6/15	/2012
			•		DUP-GW-0	-		08272012		5-06132012		S-06142012	-1 -1	5-06152012		S-06152012
				Group		R	_	2	-	R		N		N		N
						1		-						-		
Analyte	CAS No.	Unit	Standard	ICL												
VOCs (8260B)																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	UJ	25	U	5000	U	120	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.5	U	21	J	11000		120	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	0.75	U	38	U	7500	UJ	190	UJ
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U	0.75	U	66		7500	U	110	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U	25	U	2800	J	120	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	2.5	U	120	UJ	25000	UJ	620	UJ
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	2.5	U	120	U	25000	U	620	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	25	U	5000	U	59	J
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	2.5	U	120	U	25000	U	620	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	5	U	5	U	250	U	50000	U	1200	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	5	UJ	250	U	50000	UJ	1200	UJ
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	U	5	U	250	U	50000	U	1200	U
Acetone	67-64-1	ug/L	700	5	5	U	5	U	5	UJ	250	UJ	50000	UJ	1200	UJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U	25	U	5000	U	50	J
Bromomethane	74-83-9	ug/L	9.8	0.5	1	UJ	1	UJ	1	U	50	UJ	10000	UJ	250	UJ
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	5	U	5	U	250	U	50000	U	1200	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	25	U	5000	U	120	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U	25	U	5000	U	120	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	1	U	50	U	10000	U	250	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	0.75	U	38	U	7500	U	190	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	2.5	U	120	U	25000	U	620	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	0.5	U	920		420000		6400	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U	220		2900	J	1100	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	0.6	U	30	U	6000	U	150	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	5	U	250	U	50000	U	1200	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	2.5	U	120	UJ	25000	UJ	620	UJ
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	1	U	50	U	10000	U	250	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U	25	U	9700		120	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	5	U	250	U	50000	UJ	350	J
Toluene	108-88-3	ug/L	1000	0.5	0.49	J	0.51	J	0.75	U	110		32000		3200	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	0.75	U	38	U	7500	U	190	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	UJ	25	UJ	5000	UJ	120	UJ
Trichloroethene	79-01-6	ug/L	5	0.5	0.42	J	0.46	J	0.5	UJ	25	U	230000		120	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	1	U	1900		8900	J	8700	
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	2	U	187		15400	UJ	1770	
1,4-Dioxane	123-91-1	ug/L	20		NA		NA		NA		NA		NA		NA	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

NA = not analyzed

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

		Sample Location	MW-	1001M	MW-1	1001M	MW-	1001R	MW-	1001R	MW	-126B	MW-	126C	MW	-209A	MW	-209B	MW-701DR	MW	-901R	MW-	901R	P-	-12
		Sample Date		/2012	2/7/			2012		/2012		012 9:50	6/13/20			012 17:00		012 7:50	6/15/2012 8:45		012 0:00	6/14/20		6/12/201	
		Field Sample ID				72012-#1		R-02062012		1R-040512		-06132012	MW-126C			-06142012		3-06152012	MW-701DR-06152012		6142012-#3		-06142012	P-12-06	
		Well Group		C		C		с		C	-	V		3		B		В	M		M	N		N	
						-								-		_		-						i The second sec	
Analyte	CAS No.	Unit Standard																						t	
Metals (6020A)																								I	
Aluminum (Dissolved)	7429-90-5	ug/L	100	U	100	U	100	U	100	U	10	U	11.2	U	10	U	35		10 U	56.5		72.3		10	U
Aluminum (Total)	7429-90-5	ug/L	400		400		100	U	200		31.2	U	465		15.4		1300		96.7	969		1100		866	
Antimony (Dissolved)	7440-36-0	ug/L	6	U	6	U	6	U	6	U	0.862	U	0.592	U	0.688	U	0.5	U	0.5 U	0.5	U	0.907	U	1.032	U
Antimony (Total)	7440-36-0	ug/L 6	6	U	6	U	6	U	6	U	0.5	U	0.5	U	0.887	U	0.802	U	0.694 U	0.5	U	0.59	U	0.83	
Arsenic (Dissolved)	7440-38-2	ug/L	10	U	10	U	10	U	10	U	0.845	U	0.883	U	0.728	U	0.851	U	1.45 U	0.749	U	0.798	U	0.5	U
Arsenic (Total)	7440-38-2	ug/L 10	10	U	10	U	10	U	10	U	0.58	U	0.835	U	2.37	U	5.081	U	2.889 U	2.64	U	4.973	U	0.728	U
Barium (Dissolved)	7440-39-3	ug/L	110		110		200		140		471		403	-	224.4		177.2		102.5	279.2		273.4		152.1	
Barium (Total)	7440-39-3	ug/L 1000	110		120		200		150		428.4		408.3		228.8		228.4		111.2	316.4		326.4		164.1	
Beryllium (Dissolved)	7440-41-7	ug/L	4	U	4	U	4	U	4	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Beryllium (Total)	7440-41-7	ug/L 4	4	U	4	U	4	U	4	U	0.5	U	0.5	U	0.5	U	0.165	J	0.5 U	0.161	J	0.164	J	0.5	U
Cadmium (Dissolved)	7440-43-9	ug/L	5	U	5	U	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Cadmium (Total)	7440-43-9	ug/L 5	5	U	5	U	5	U	5	U	0.051	J	0.5	U	0.5	U	0.163	J	0.5 U	0.057	J	0.053	J	0.5	U
Chromium (Dissolved)	7440-47-3	ug/L	10	U	10	U	240		180		0.5	U	0.5	U	0.638	U	0.345	J	0.918 U	0.518	U	0.505	U	0.5	U
Chromium (Total)	7440-47-3	ug/L 100	10	U	10	U	240		190		0.808		0.971	U	0.73	U	1.918		1.067 U	1.734		1.904		1.446	
Cobalt (Dissolved)	7440-48-4	ug/L	10	U	10	U	10	U	10	U	0.121	J	0.5	U	0.5	U	0.852		0.5 U	0.5	U	0.5	U	0.5	U
Cobalt (Total)	7440-48-4	ug/L 10	10	U	10	U	10	U	10	U	0.154	J	0.415	J	0.5	U	1.753		0.5 U	0.576		0.613		0.661	
Copper (Dissolved)	7440-50-8	ug/L	10	U	10	U	10		10		1.063	U	1.103	U	0.609		1.279		1.084	1.588		1.065		1.519	
Copper (Total)	7440-50-8	ug/L 1300	10	U	10	U	10		20		1.042	U	1.379	U	1.021		5.276		1.482	2.476		2.777		1.57	
Iron (Dissolved)	7439-89-6	ug/L	50	U	50	U	80		370		50	U	18.2	J	50	UJ	24.1	J	50 U	28.2	J	47.2	J	50	U
Iron (Total)	7439-89-6	ug/L	730		690		110		370		49.1	J	474	J	37.2	J	1100		98.7	750		854		981	
Lead (Dissolved)	7439-92-1	ug/L	5	U	5	U	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.268	J	0.259	J	0.5	U
Lead (Total)	7439-92-1	ug/L 15	7		5	U	5	U	5	U	0.5	U	0.476	J	0.5	U	2.506		0.3 J	1.297		1.39		0.459	J
Manganese (Dissolved)	7439-96-5	ug/L	40		50		10	U	10	U	39.14	U	1.013	U	0.345	J	450.1		0.827	13.96		13.94		1.7	
Manganese (Total)	7439-96-5	ug/L 500	70		60		10	U	10	U	57.74		18.01	U	1.926		507		6.518	53.14		57.18		31.11	
Nickel (Dissolved)	7440-02-0	ug/L	10	U	10	U	10	U	10	U	0.904	U	0.529	U	0.254	J	2.156		1.645 J	1.977	J	0.344	J	1.148	
Nickel (Total)	7440-02-0	ug/L 100	10	U	10	U	10	U	10	U	0.904	U	0.832	U	0.238	J	5.091		0.355 J	1.629		1.819		1.437	
Silver (Dissolved)	7440-22-4	ug/L	10	U	10	U	10	U	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Silver (Total)	7440-22-4	ug/L 36	10	U	10	U	10	U	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Thallium (Dissolved)	7440-28-0	ug/L	2	U	2	U	2	U	2	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Thallium (Total)	7440-28-0	ug/L 2	2	U	2	U	2	U	2	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U
Vanadium (Dissolved)	7440-62-2	ug/L	10	U	10	U	10	U	10	U	0.5	U	1.005		0.961	J	0.278	J	8.343	1.286		1.225		0.864	
Vanadium (Total)	7440-62-2	ug/L 50	10	U	10	U	10	U	10	U	0.62	U	2.183		0.823	J	2.353		8.567	3.98		4.01		3.389	
Zinc (Dissolved)	7440-66-6	ug/L	50	U	50	U	50	U	50	U	13.49	U	12.61	U	16.05	U	32.39	U	11.6 U	22.28	U	16.06	U	17.36	U
Zinc (Total)	7440-66-6	ug/L 5000	50	U	50	U	50	U	50	U	18.85	U	17.58	U	20.32	U	39.98	U	17.91 U	17.79	U	27.38	U	20.07	U

Notes:

 ${\bf U}$ = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

February and April 2012 sampling events were analyzed by CTL but

Table 3 - Drilling Water Analytical Data Summary - February 2012 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

				Sample ID	New 1	Fank 1	New	Tank 2	Chase	Tank X
			Sa	mple Date	2/13,	/2012	2/13	/2012	2/21	/2012
Analyte	CAS No.	Unit	Standard	ICL						
VOCs (8260B)										
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.5	U	0.5	U	0.5	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.5	U	0.5	U	0.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	0.5	U	0.5	U	0.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	0.5	U	0.5	U	0.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2	U	2	U	2	U
2-Hexanone	591-78-6	ug/L	140	5	2	U	2	U	2	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2	U	2	U	2	U
Acetone	67-64-1	ug/L	700	5	2	U	2	U	2	U
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	0.5	U	0.5	U	0.5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.5	U	0.5	U	0.5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	0.5	U	0.5	U	0.5	U
Chloroform	67-66-3	ug/L	6	0.5	3.2		3.1		2.1	
Chloromethane	74-87-3	ug/L	2.7	0.5	0.8		0.5	U	0.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.45	U	0.45	U	0.45	U
Methylene chloride	75-09-2	ug/L	5	0.5	0.5	U	0.5	U	0.5	U
Naphthalene	91-20-3	ug/L	280	0.5	0.5	U	0.5	U	0.5	U
Styrene	100-42-5	ug/L	100	0.5	0.5	U	0.5	U	0.5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	1	U	1	U	1	U
Toluene	108-88-3	ug/L	1000	0.5	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.5	U	0.5	U	0.5	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	0.5	U	0.5	U	0.5	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	1	U

Notes:

U = analyte not detected above the laboratory reporting limit

ug/L = micrograms per liter

VOCs = volatile organic compounds

Standard = GW-SRSNE Action Level (ARARs-Based Limits)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Standard/Action Level

Third party validation was not completed on these analytical results

	Samp	le Location	CPZ	-4A	MW	-03	MW-10	02DR	MW-	1002R	MW-1	.003DR	MW-	1003R	MW-	1003R	MW-	121B	MW	-121C	MW-	121M
	Sa	ample Date	6/14/	2012	6/15/2	2012	6/13/2	2012	6/13	/2012	10/15	5/2012	10/15	5/2012	10/15	5/2012	6/14/	2012	6/14	/2012	6/13	/2012
	Field	Sample ID	CPZ-4A-HS-	06142012	MW-03-0	6152012	MW-1002DR-H	HS-06132012	MW-1002R-	HS-06132012	MW-1003D	R-10152012	DUP-GW-1	0152012-#1	MW-1003	R-10152012	MW-121B-H	S-06142012	MW-121C-H	IS-06142012	MW-121M-	HS-06132012
		Well Group	R		R		R			R		R		R		R	F	8		R		R
Analyte	CAS No.	Unit																				
MNA (Water)																						
Alkalinity	ALK	mg/L	160		100		39	J	17	J	810		56		56	-	230		230		110	J
Chloride	16887-00-6	mg/L	2.6		16		670		1000		180		160		160	-	46		49		33	
Sulfate	14808-79-8	mg/L	2.9		11		230		710		96		360		360	-	0.2	J	0.96	J	0.43	J
Nitrite as N	14797-65-0	mg/L	0.02	U	0.02	J	0.05	U	0.05	U	0.1	U	0.12		0.12	-	0.03	U	0.02	U	0.05	U
Nitrate as N	14797-55-8	mg/L	0.07	U	0.1	U	0.13		0.1	U	0.98		0.64		0.67	-	0.08	U	0.05	U	0.1	U
Iron (Dissolved)	7439-89-6	ug/L	12000		50	U	50	U	50	U	50	U	50	U	50	U	1300		2300		3600	
Manganese (Dissolved)	7439-96-5	ug/L	2520		476		10	U	21.3	U	10	U	10	U	10	U	2470		2010		4420	
Total Organic Carbon	TOC	mg/L	3.5	J	1	UJ	0.8	UJ	2.5	J	4.9	J	1.8	J	1.9	J	4.5	J	3.8	J	2.6	J
MNA (Water Gas)																						
Ethane	74-84-0	ug/L	200		0.06	U	3.5		0.057		0.13		0.076		0.074		510		420		88	
Ethene	74-85-1	ug/L	83		0.024	U	0.15	U	0.46	U	0.23		0.14		0.14		0.3		0.49		0.35	
Methane	74-82-8	ug/L	13000		1	U	45	J	0.92	J	1.1	J	0.88	J	0.57	J	15000		12000		2100	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

mg/L = milligrams per liter

ug/L = micrograms per liter

	Samp	le Location	MW	-124C	MW	-126B	MW	-126B	MW	-127C	MW	127C	MW-	413	MW	-415	MW	/-416	MW	/-502	MW-	701DR
	•	ample Date	6/12	/2012	6/13	/2012	6/13	/2012	6/12	/2012	6/12	/2012	6/15/2	2012	6/15/	/2012	6/15	/2012	6/13	/2012	6/15	/2012
	Field	I Sample ID	MW-124C-H		DUP-GW-0			-06132012	DUP-GW-0			-06122012	MW-413-HS		MW-415-H			S-06152012		S-06132012		R-06152012
	,	Well Group	R M		1	N		R		3	N		1	N		N		R	ſ	N		
Analyte	CAS No.	Unit																				
MNA (Water)	CAS NO.	onic																				
Alkalinity	ALK	mg/L	66		110	J	110	J	120		120		100		130		100		320	J	84	
Chloride	16887-00-6	mg/L	12		59		68		18		20		42		8.6		9.9		140		6.5	
Sulfate	14808-79-8	mg/L	30		14		13		14		14		1.2		1	U	76		3		80	
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.02	J	0.03	J	0.06		0.05	U	0.05	U
Nitrate as N	14797-55-8	mg/L	1.1		0.13	U	0.14	U	1.3		1.3		0.21		0.11	U	0.55		0.1	U	0.68	
Iron (Dissolved)	7439-89-6	ug/L	80		50	U	50	U	50	U	50	U	11000		16000		50	U	14000		50	U
Manganese (Dissolved)	7439-96-5	ug/L	5.9	J	35.6	U	39.14	U	4.6	J	5.2	J	3570		3780		21.7		2380		0.827	
Total Organic Carbon	ТОС	mg/L	1.9	UJ	2.4	J	2.8	J	1.1	UJ	1	UJ	27	J	6	J	0.86	UJ	12	J	0.36	J
MNA (Water Gas)																						
Ethane	74-84-0	ug/L	<0.05	U	0.05	UJ	0.016	J	0.015	U	0.015	U	14		610	J	1.1		350		<0.05	U
Ethene	74-85-1	ug/L	0.035	U	0.085	U	0.03	U	0.035	U	0.033	U	580	J	7.3		1.8		27		0.042	U
Methane	74-82-8	ug/L	0.58	U	290	J	260	J	13	J	13	1	1300		2200		77	J	26000		0.24	U

Notes:

 ${\bf U}$ = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

mg/L = milligrams per liter

ug/L = micrograms per liter

	Same	le Location	MW-	7040	N4)4/	704DR	N/114/	704M	N/114/	705DR	N/1\A/	706DR	N414/ -	707DR	MW-	001P	N/114/	-902D	N/1/4/	902M	N/1\A/	-907D
	•				-			-	-										-			
		ample Date				/2012		/2012		/2012		/2012	6/12/		6/14/			/2012		/2012		4/2012
	Field	Sample ID	MW-704D-F	IS-06142012	MW-704DR-	HS-06142012	2 MW-704M-	HS-06142012	2 MW-705DR	-HS-06132012	2 MW-706DR-	HS-06142012	MW-707DF	R-06122012	MW-901R	-06142012	MW-902D-H	HS-06152012	MW-902M-	HS-06152012	MW-907D-H	HS-06142012
		Well Group		2	1	R		R		R		R	I	R	Ν	Λ	1	N		N		R
Analyte	CAS No.	Unit																				
MNA (Water)																						
Alkalinity	ALK	mg/L	150		130		180		83	J	15		82		90		150		210		260	
Chloride	16887-00-6	mg/L	15		120		30		42		21		95		11		26		31		130	
Sulfate	14808-79-8	mg/L	3.9		54		0.18	1	150		1100		88		10		0.48	J	1	U	2.6	
Nitrite as N	14797-65-0	mg/L	0.02	U	0.02	U	0.03	U	0.1	U	0.02	U	0.05	U	0.02	J	0.03	J	0.04	J	0.02	U
Nitrate as N	14797-55-8	mg/L	0.07	U	0.08	U	0.06	U	0.1	U	0.07	U	0.46		0.87		0.1	U	0.1	U	0.07	U
Iron (Dissolved)	7439-89-6	ug/L	160		76		300		50	U	50	U	50	U	47.2	J	27000		23000		6000	
Manganese (Dissolved)	7439-96-5	ug/L	2120		735	J	2760		10	U	78.6	J	31.5		13.94		4610		4910		2920	
Total Organic Carbon	TOC	mg/L	1.9	UJ	2.1	J	2.2	J	99	J	0.64	UJ	3.1	J	2.8	J	16	J	13	J	7.1	J
MNA (Water Gas)																						
Ethane	74-84-0	ug/L	130		22		87		6.6		0.056	U	0.14		<0.025	U	180		760	J	430	
Ethene	74-85-1	ug/L	0.073	U	0.54		0.071	U	25		0.38		0.27	U	0.022	J	2200	J	920	J	3	
Methane	74-82-8	ug/L	3500		920		4300		230	J	2.2	J	6.1	J	0.18	J	3900		5300		16000	

Notes:

 ${\bf U}$ = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

mg/L = milligrams per liter

ug/L = micrograms per liter

Table 4 – MNA Parameters – Groundwater Sample Summary Results – June - October 2012 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Comm		MW-9	0700	N 414/	907M	N 4) A /	L-304	N 4) A /	L-307	N 414/	L-309	MWL	200	P-1	010	D 1	.01C	D 1	.01C		L1A
	•	le Location					-															
		ample Date	6/15/		, ,	/2012		/2012		/2012		/2012	6/13/		6/14/			/2012		/2012		/2012
	Field	Sample ID	MW-907DR-I	HS-06152012	MW-907M-I	HS-06142012	MWL-304-H	IS-06142012	MWL-307-H	IS-06152012	DUP-GW-0	6132012#2	MWL-309-H	S-06132012	P-101B-HS	-06142012	DUP-GW-0	6142012-#2	P-101C-HS	5-06142012	P-11A-HS-	-06142012
		Well Group	F	3	1	R		N		N		R	R	8	I	3		R		R		R
Analyte	CAS No.	Unit																				
MNA (Water)		0																				
Alkalinity	ALK	mg/L	17		360		340		120		310	J	240	J	170				130		65	
Chloride	16887-00-6	mg/L	76		180		4.6		13				92		27		20		20		17	
Sulfate	14808-79-8	mg/L	1100		0.18	J	4.6		0.32	J			4.6		7.6		9.7		13		170	
Nitrite as N	14797-65-0	mg/L	0.02	J	0.02	U	0.03	U	0.04	J			0.05	U	0.02	U	0.046	U	0.03	U	0.02	U
Nitrate as N	14797-55-8	mg/L	0.1	U	0.06	U	0.07	U	0.1	U			0.18		0.08	U	0.096	U	0.09	U	0.07	U
Iron (Dissolved)	7439-89-6	ug/L	50	U	11000		47000		17000				360		1500		41	J	84		190	
Manganese (Dissolved)	7439-96-5	ug/L	38.3		3350		8740		3100	J			2380	J	1260		1480		1470		442	
Total Organic Carbon	ТОС	mg/L	1.4	UJ	14	J	10	J	15	J	1.8	UJ	1.8	J	1.4	UJ			0.95	UJ	1.1	IJ
MNA (Water Gas)																						
Ethane	74-84-0	ug/L	0.075	U	470		3.6		85		4.1		3.4		220				190		28	
Ethene	74-85-1	ug/L	0.23	U	0.53		110		790	J	0.077	U	0.067	U	2.6				7.1		110	
Methane	74-82-8	ug/L	1.9	U	26000		5400		2600		130	J	82	J	3300				1500		410	

Notes:

 ${\bf U}$ = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

mg/L = milligrams per liter

ug/L = micrograms per liter

Table 4 – MNA Parameters – Groundwater Sample Summary Results – June - October 2012 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample Location			n P-12		P-13		PZO-2D		PZO-2M		PZR-2R		TW-08A		TW-08B		TW-08D	
Sample Date Field Sample ID Well Group					6/15/2012 P-13-HS-06152012		6/13/2012 PZO-2D-HS-06132012		6/13/2012 PZO-2M-HS-06132012		6/13/2012 P2R-2R-HS-06132012		6/14/2012 TW-08A-HS-06142012		6/15/2012 TW-08B-HS-06152012		6/15/2012 TW-08D-HS-06152012		
			Analyte	CAS No.	Unit														
MNA (Water)																			
Alkalinity	ALK	mg/L	72		110		86		91	J	38	J	100		200		170		
Chloride	16887-00-6	mg/L	28		9.2		17		12		63		15		230		69		
Sulfate	14808-79-8	mg/L	6.4		8		12		12		210		2		2.8		1	U	
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.05	U	0.05	J	0.05	U	0.03	U	0.02	J	0.04	J	
Nitrate as N	14797-55-8	mg/L	0.15	U	1		1.1		0.97		0.14	U	0.07	U	0.1	U	0.29		
Iron (Dissolved)	7439-89-6	ug/L	50	U	310		50	U	50	U	71	U	13000		6300		1500		
Manganese (Dissolved)	7439-96-5	ug/L	1.7		49.4		10	U	10	U	15.5	U	3190		5540		8200		
Total Organic Carbon	ТОС	mg/L	1.4	U	0.7	J	0.4	J	1.9	J	1	UJ	2.3	J	32	J	28	J	
MNA (Water Gas)																			
Ethane	74-84-0	ug/L	<0.05	U	<0.05	U	<0.05	U	<0.05	U	0.034	J	11		51		43		
Ethene	74-85-1	ug/L	0.023	J	0.12	U	0.025	U	0.041	U	0.035	U	940	J	800	J	7000	J	
Methane	74-82-8	ug/L	0.33	UJ	0.13	U	0.33	J	0.16	UJ	1.5	J	400		2300		1400		

Notes:

U = Analyte not detected above the laboratory reporting limit

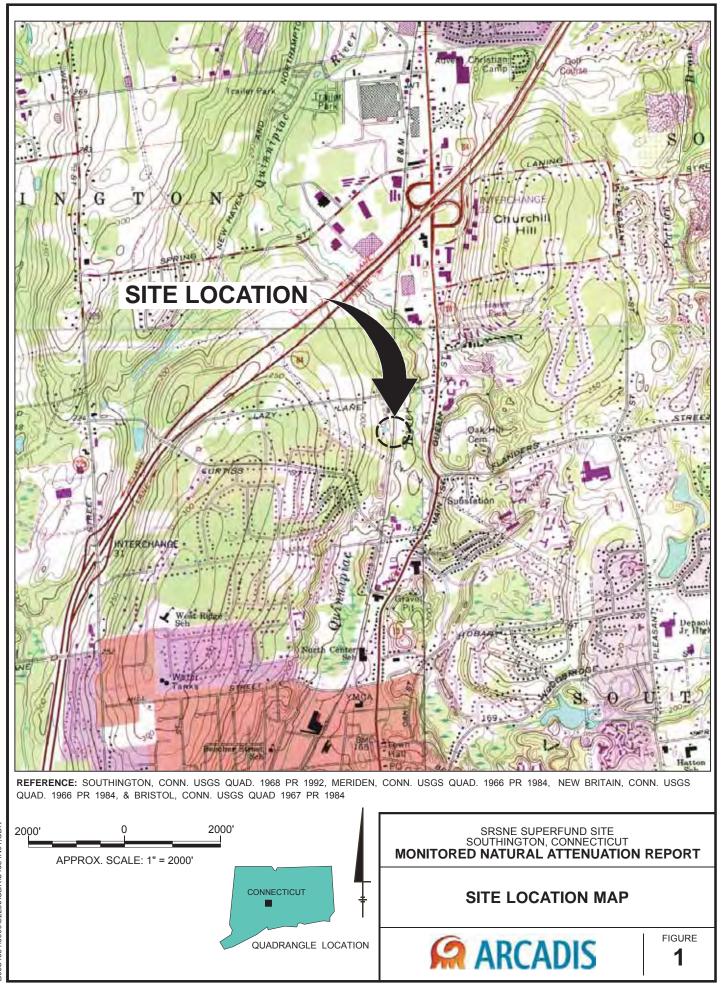
J = Analyte result is estimated

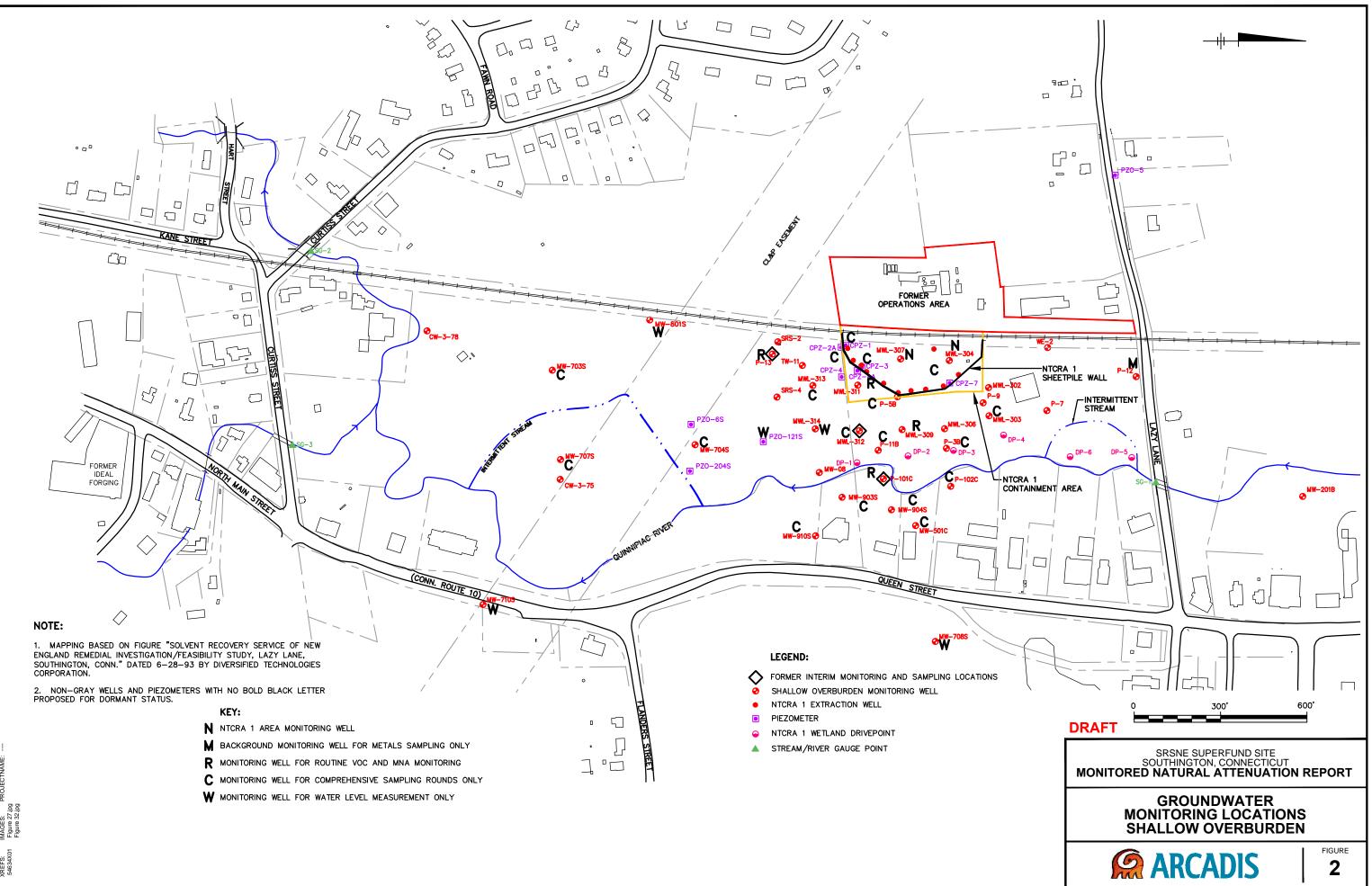
mg/L = milligrams per liter

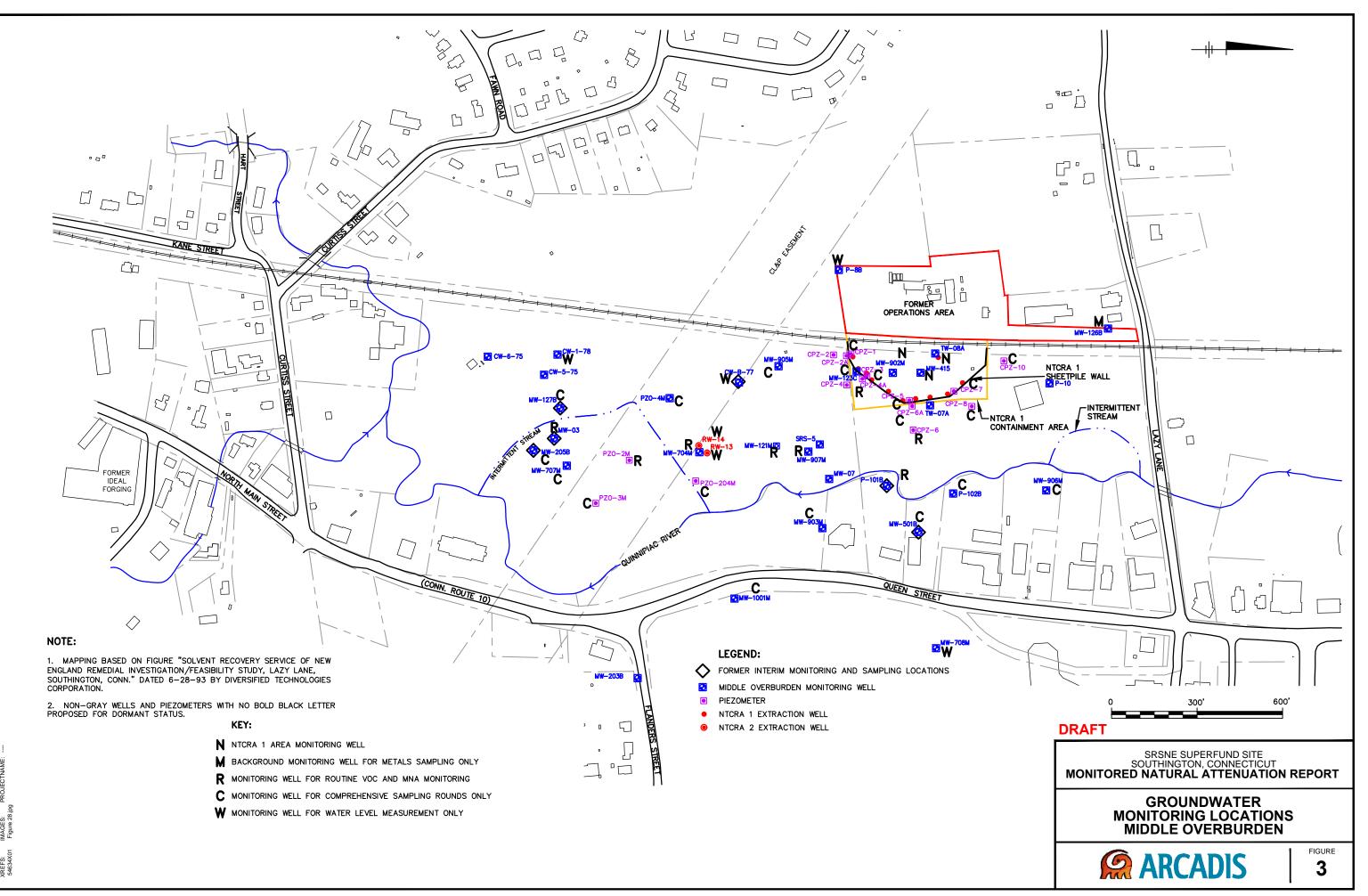
ug/L = micrograms per liter

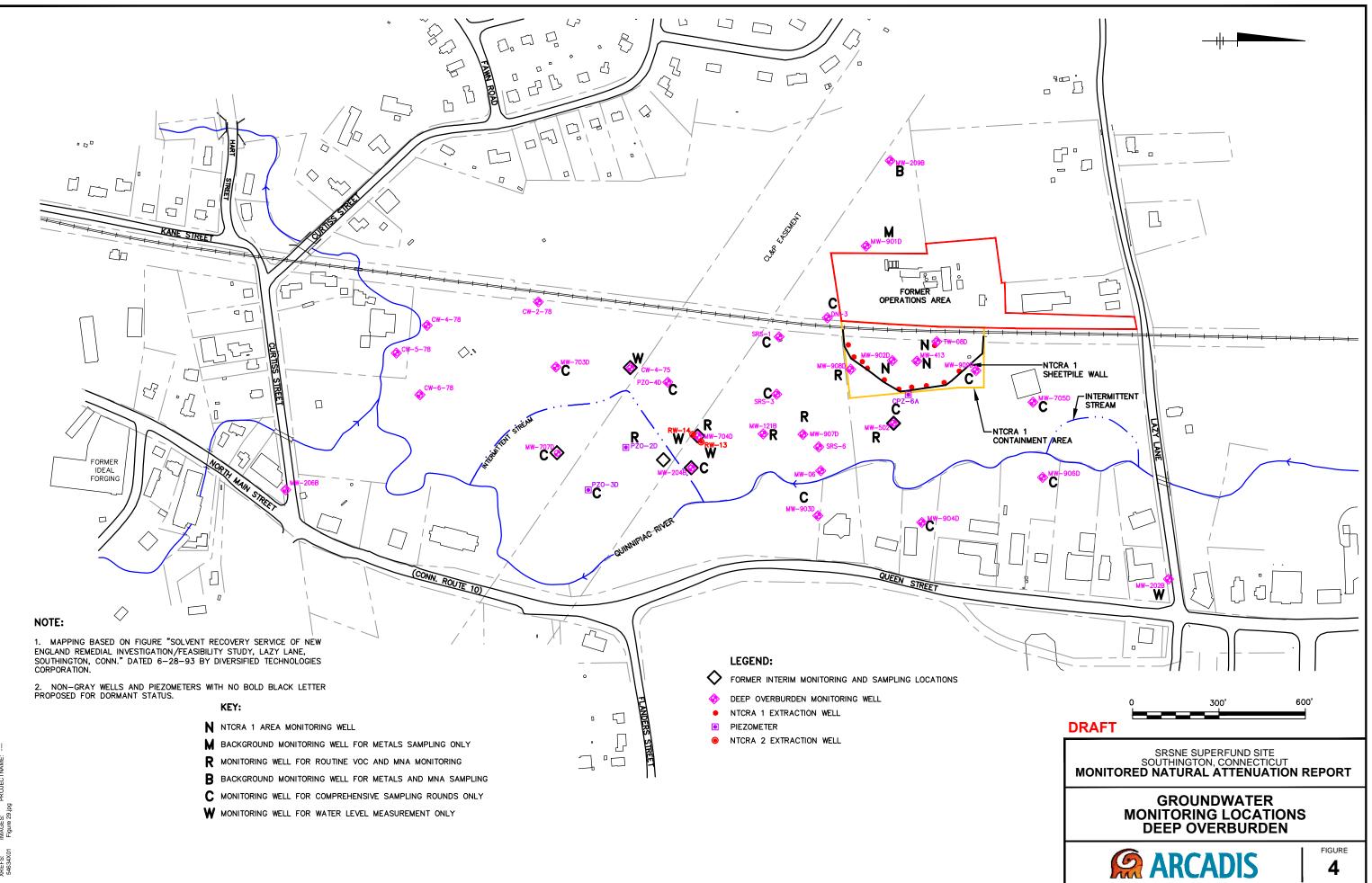
Table 5 - Statistical Summary of Groundwater Total VOC Concentration TrendsSolvents Recovery Service of New England, Inc. (SRSNE) Superfund SiteSouthington, Connecticut

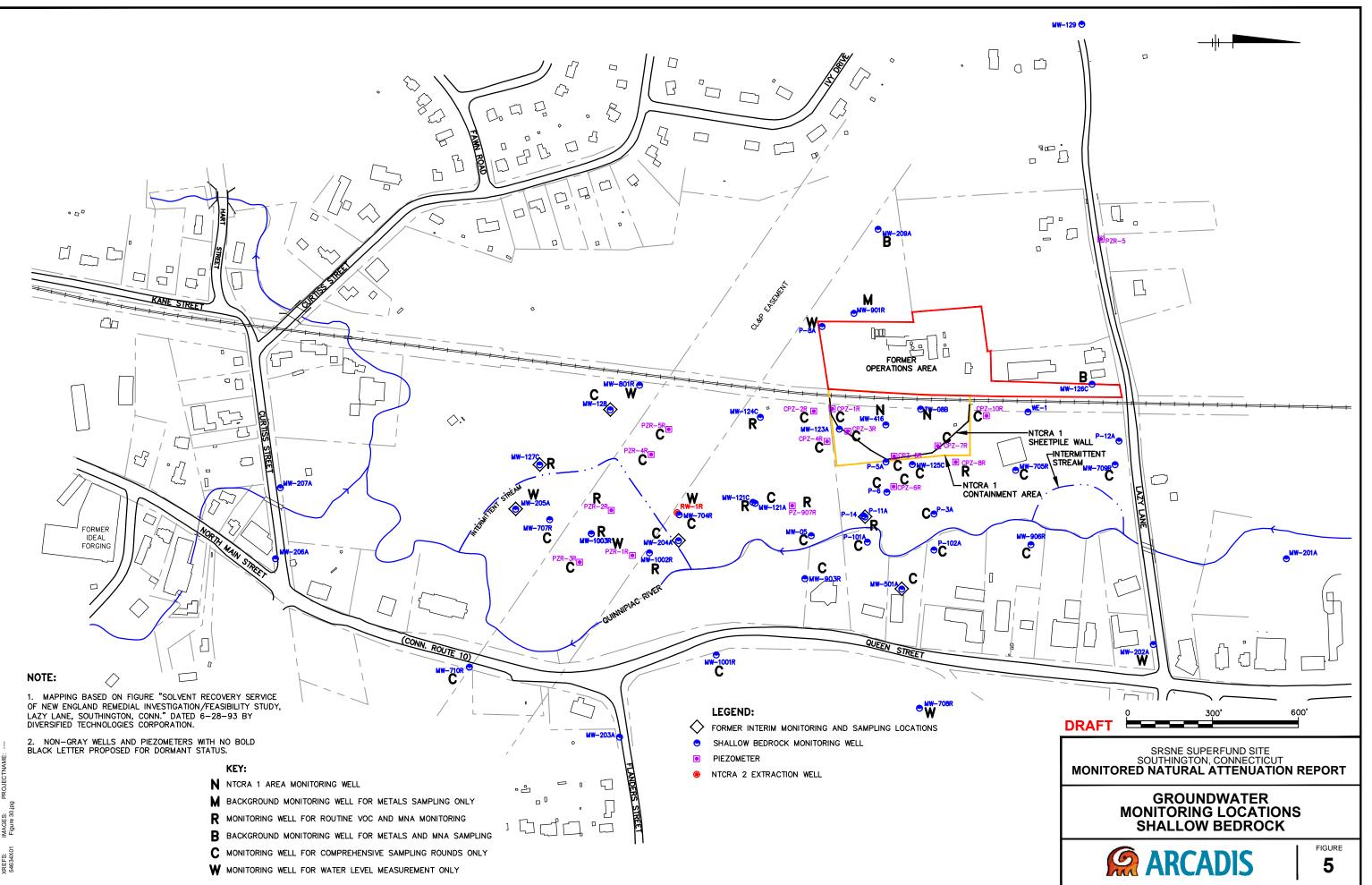
			Linear Regression Analysis							Mann-Kendall Analysis			Sen's Slope Analysis				
		Minimum	Maximum	ata Range % of Data Below Laboratory					Estimated Attenuation	Trend Direction			incent			Estimated Attenuation	
		Concentration	Concentration	Minimum			Correlation	p-value of	Half-life	(slope of	Trend		p-value of	Trend	Trend	Half-life	Trend
Well	Constituent	(µg/L)	(µg/L)	Detection Limit	Start Date	End Date	Coefficient, R ²	Correlation	(days)	trend line)	Significant?	Comments	Correlation	Direction	Significant?	(days)	Direction
Shallow Over	ourden Wells																
P-13	Total VOCs	2.4	69	0	3/28/1995		0.45	0.002	2,079	Decreasing	Yes		< 0.001	Decreasing	Yes	1,893	Decreasing
MWL-312	Total VOCs	<0.5	49	76	3/27/1995	5/20/2010	0.18	0.09	1,400	Decreasing	Yes	76% of results below detection	0.245	Decreasing	No	NA	No Trend
P-101C	Total VOCs	34.3	479	0	3/27/1995	6/14/2012	0.62	<0.001	2,200	Decreasing	Yes		< 0.001	Decreasing	Yes	2,180	Decreasing
Middle Overburden Wells																	
MW-03	Total VOCs	0.7	120	0	12/5/1996	6/15/2012	0.20	0.06	1,601	Decreasing	Yes		0.048	Decreasing	Yes	1,120	Decreasing
MW-205B	Total VOCs	<0.5	24	12	3/23/1995	5/14/2010	0.26	0.04	1,644	Decreasing	Yes		0.008	Decreasing	Yes	1,690	Decreasing
P-101B	Total VOCs	12	187,400	0	3/27/1995	6/14/2012	0.69	<0.001	562	Decreasing	Yes		< 0.001	Decreasing	Yes	542	Decreasing
MW-127B	Total VOCs	<0.5	22	12	3/23/1995	5/19/2010	0.22	0.06	1,643	Decreasing	Yes		0.059	Decreasing	Yes	1,824	No Trend
MW-501B	Total VOCs	1.8	65	0	3/24/1995	5/24/2010	0.55	<0.001	1,022	Decreasing	Yes		0.001	Decreasing	Yes	990	Decreasing
Deep Overburden Wells																	
MW-204B	Total VOCs	<0.5	87	18	3/28/1995	5/17/2010	0.23	0.05	1,251	Decreasing	Yes		0.002	Decreasing	Yes	642	Decreasing
MW-502	Total VOCs	630	118,160	0	3/21/1995	6/13/2012	0.69	<0.001	1,010	Decreasing	Yes		0.002	Decreasing	Yes	2,471	Decreasing
MW-704D	Total VOCs	7.0	665	0	12/18/1996	6/14/2012	0.11	0.18	NA	Decreasing	No		0.094	Decreasing	Yes	NA	NS
MW-707D	Total VOCs	<0.5	21	56	12/6/1996	5/13/2010	<0.001	0.92	NA	No Trend	No	56% of results below detection	0.482	NS	No	NA	No Trend
Shallow Bedr	ock Wells																
MW-127C	Total VOCs	20	147	0	3/23/1995	6/12/2012	0.39	0.01	3,274	Decreasing	Yes		0.012	Decreasing	Yes	3,518	Decreasing
MW-128	Total VOCs	3.0	15	0	3/23/1995	5/19/2010	0.46	0.003	3,060	Decreasing	Yes		0.001	Decreasing	Yes	2,310	Decreasing
MW-204A	Total VOCs	2.0	682	0	3/28/1995	5/15/2010	0.55	<0.001	773	Decreasing	Yes		< 0.001	Decreasing	Yes	654	Decreasing
MW-501A	Total VOCs	10	118	0	3/24/1995	5/21/2010	0.82	<0.001	1,590	Decreasing	Yes		< 0.001	Decreasing	Yes	1,507	Decreasing
P-11A	Total VOCs	223	26,400	0	3/27/1995	6/14/2012	0.01	0.76	NA	No Trend	No	Changed from decreasing in 2011	0.093	Decreasing	Yes	NA	NS
Deep Bedrock	Wells																
MW-703DR	Total VOCs	<0.5	8.0	81	12/9/1996	5/12/2010	<0.001	0.97	NA	No Trend	No	81% of results below detection	0.482	NS	No	NA	No Trend
MW-704DR	Total VOCs	11	455	0	12/17/1996	6/14/2012	0.54	<0.001	2,053	Decreasing	Yes		0.003	Decreasing	Yes	2,562	Decreasing
MW-706DR	Total VOCs	4,409	11,240	0	12/10/1996	6/14/2012	0.001	0.88	NA	No Trend	No		0.47	NS	No	NA	NS
MW-707DR	Total VOCs	<0.5	18	35	12/30/1996	8/27/2012	0.25	0.03	NA	Increasing	Yes		0.019	Increasing	Yes	NA	No Trend

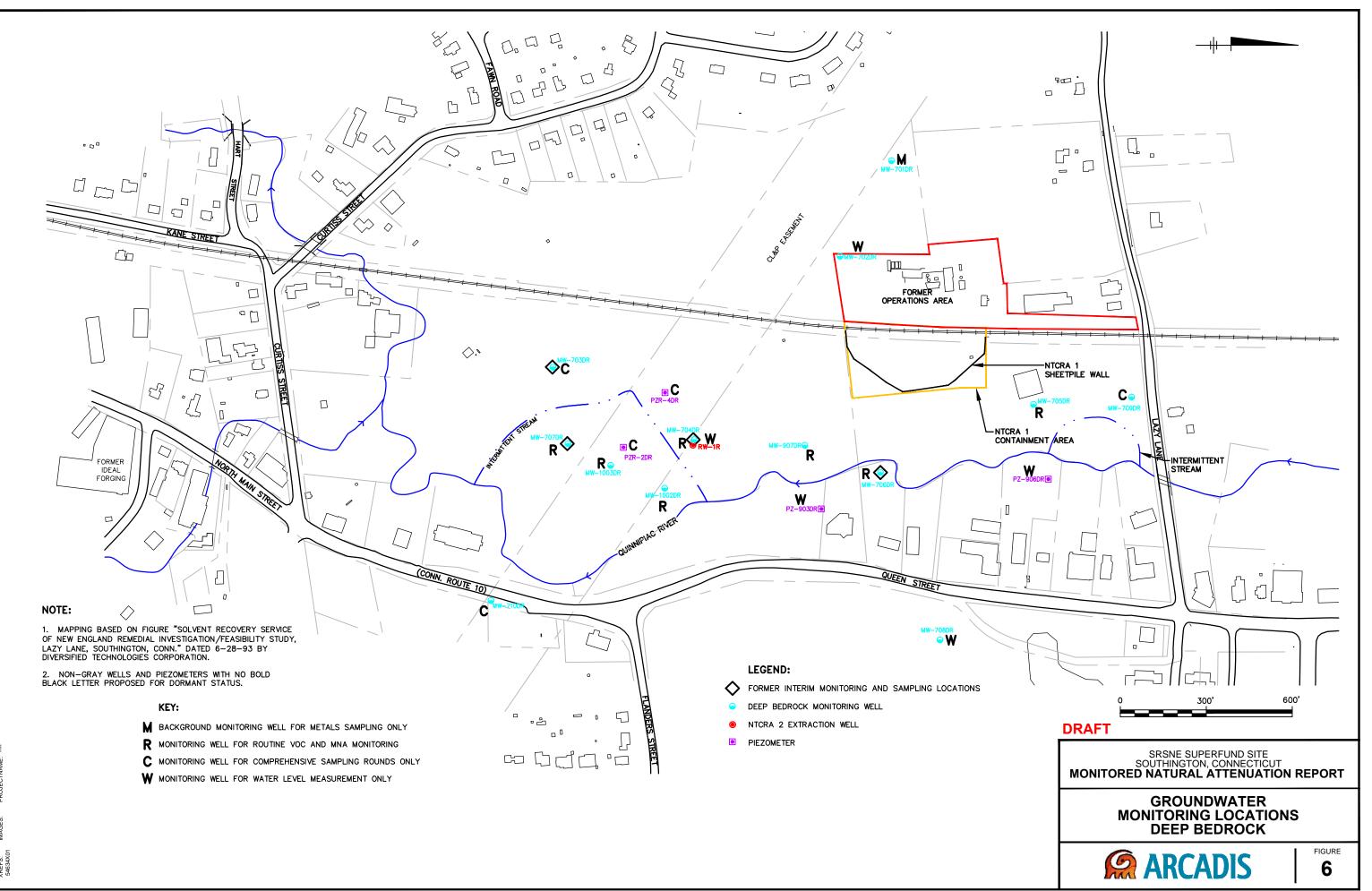

Notes and Assumptions:

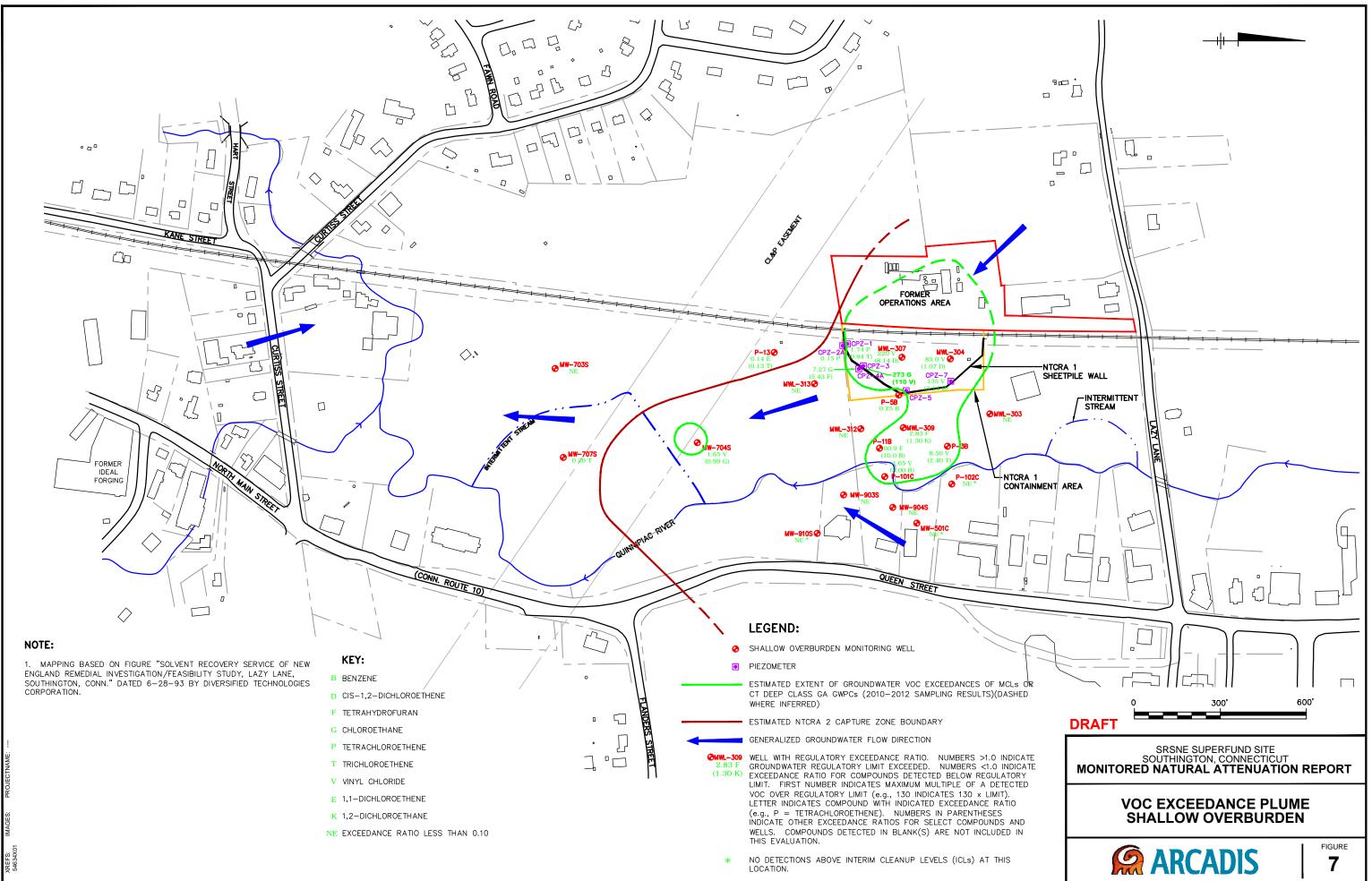

 μ g/L = micrograms per liter

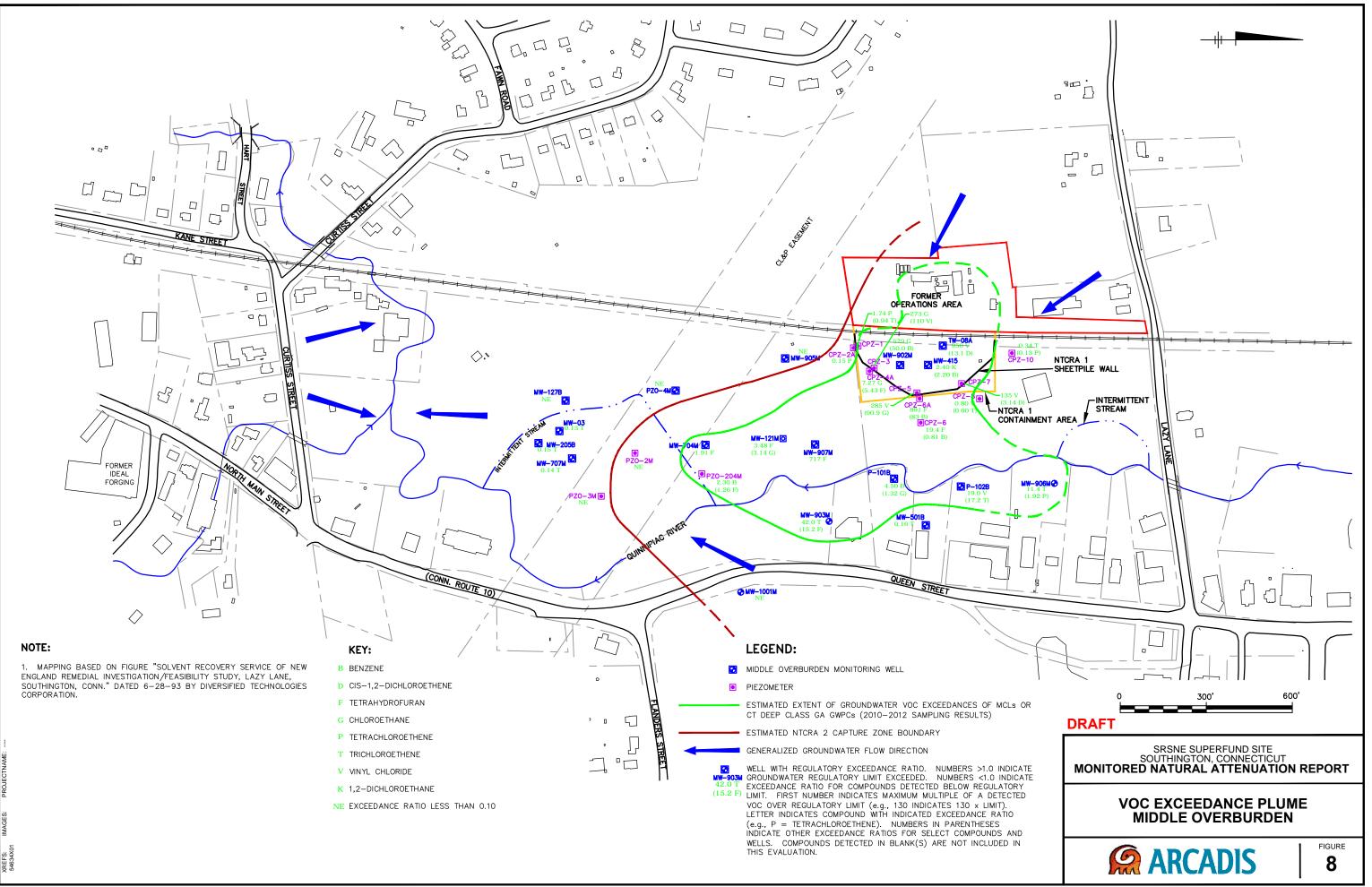

NS = no significant trend

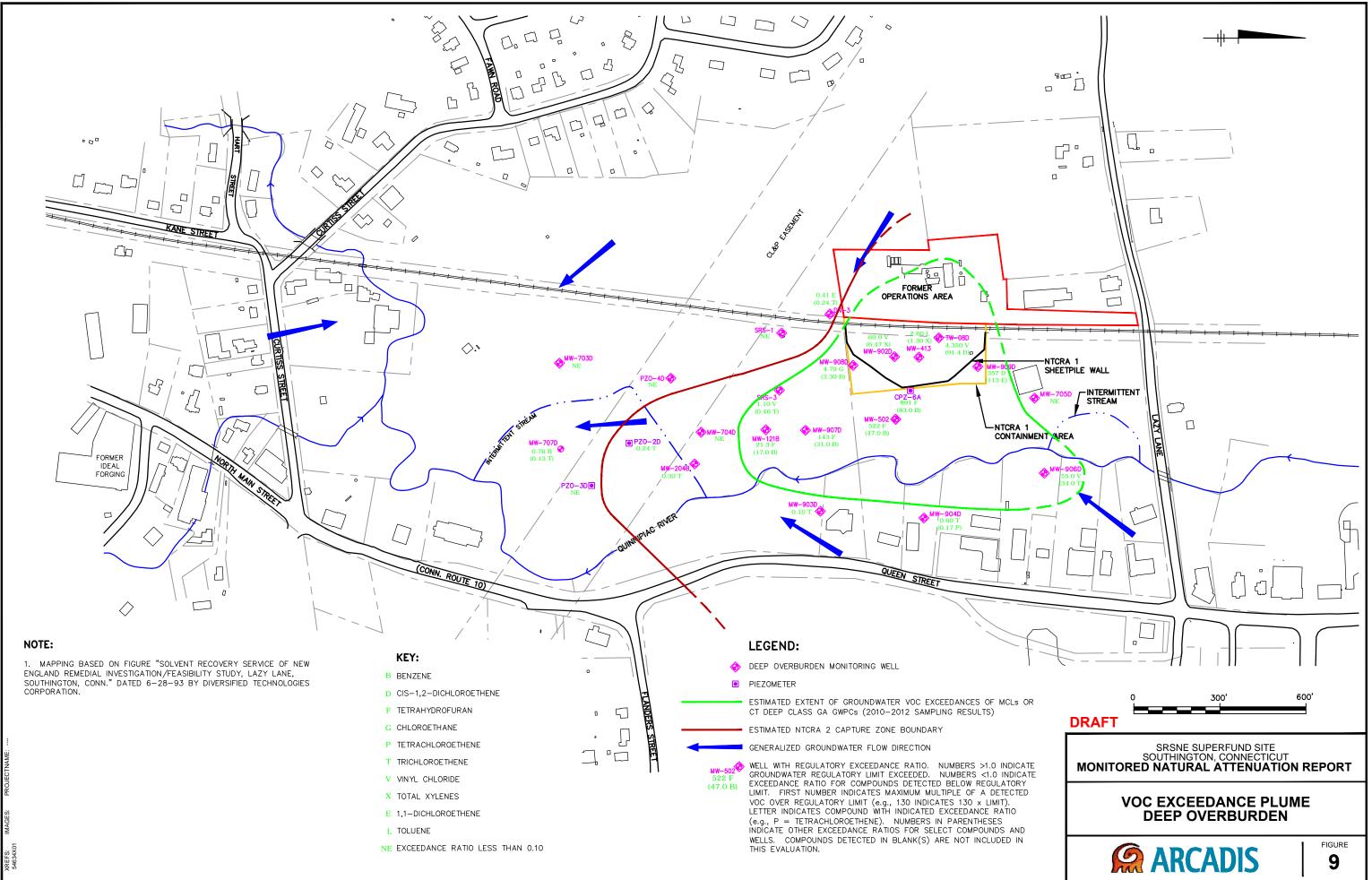

NA = not applicable due to increasing trend or non-significant trend

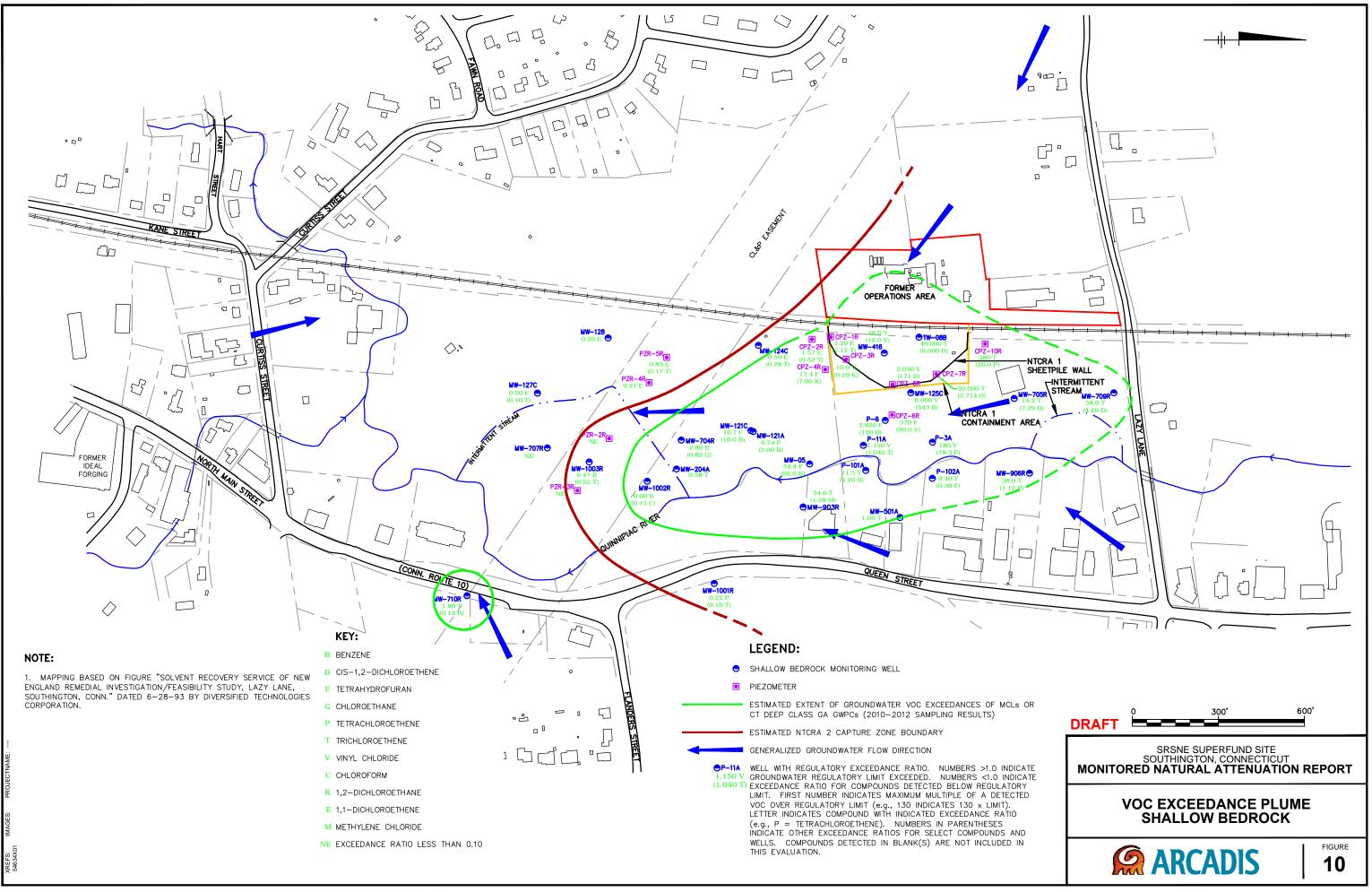

Figures

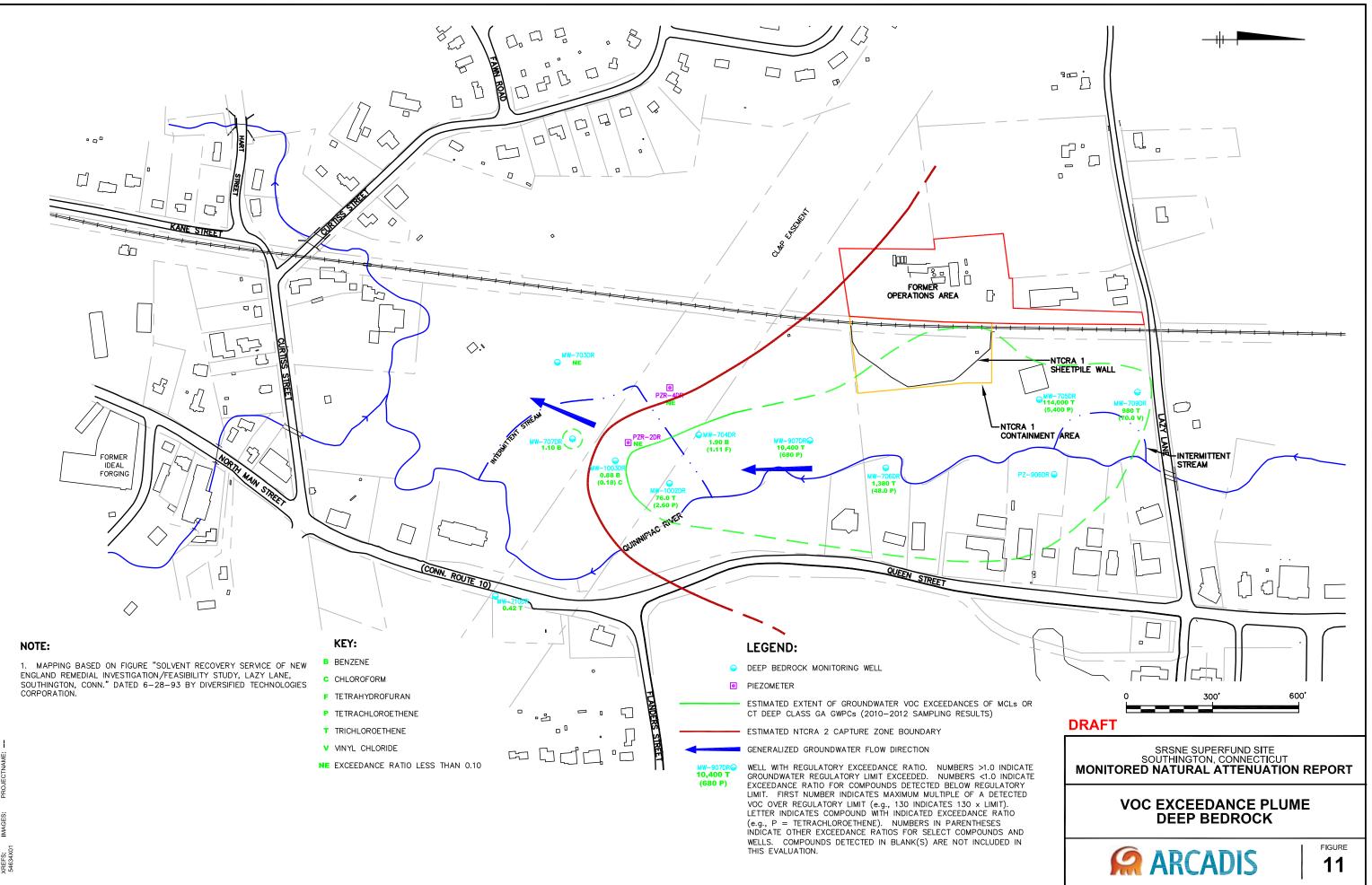


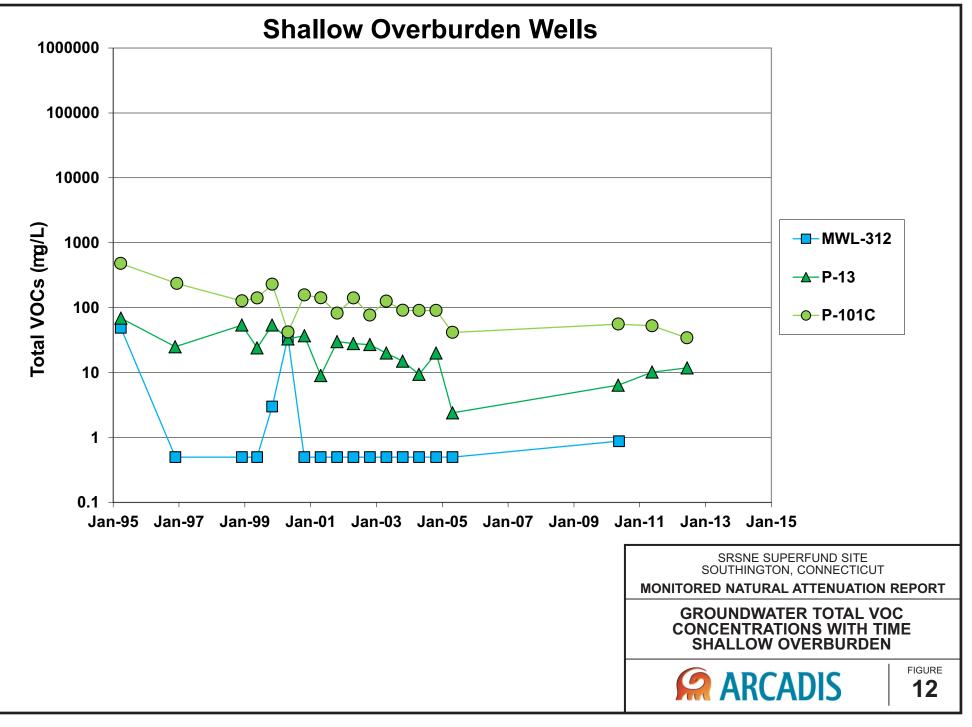


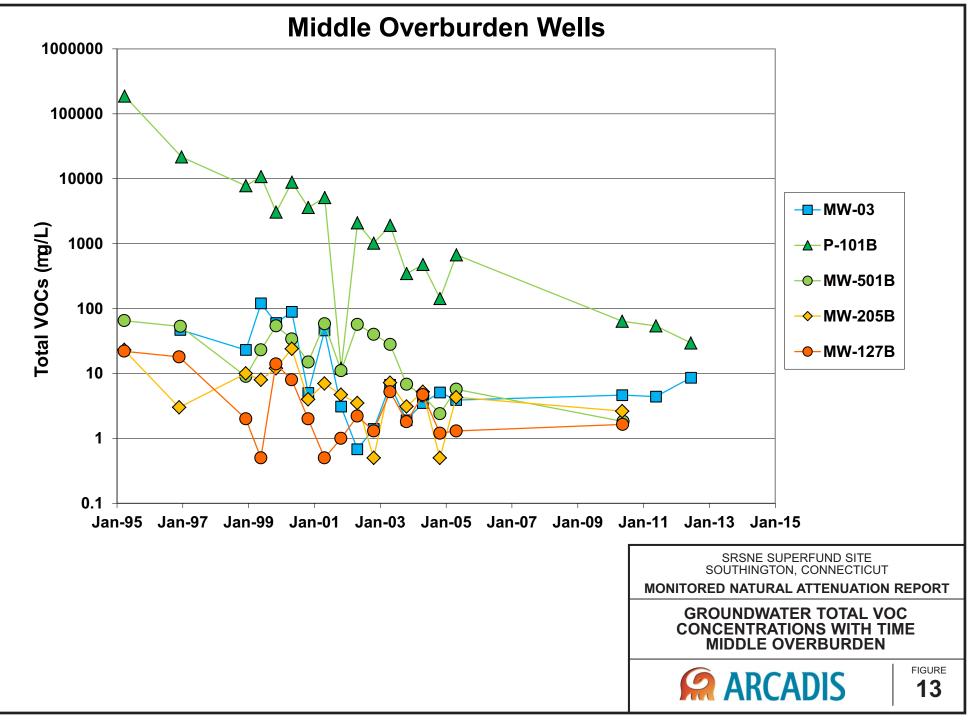


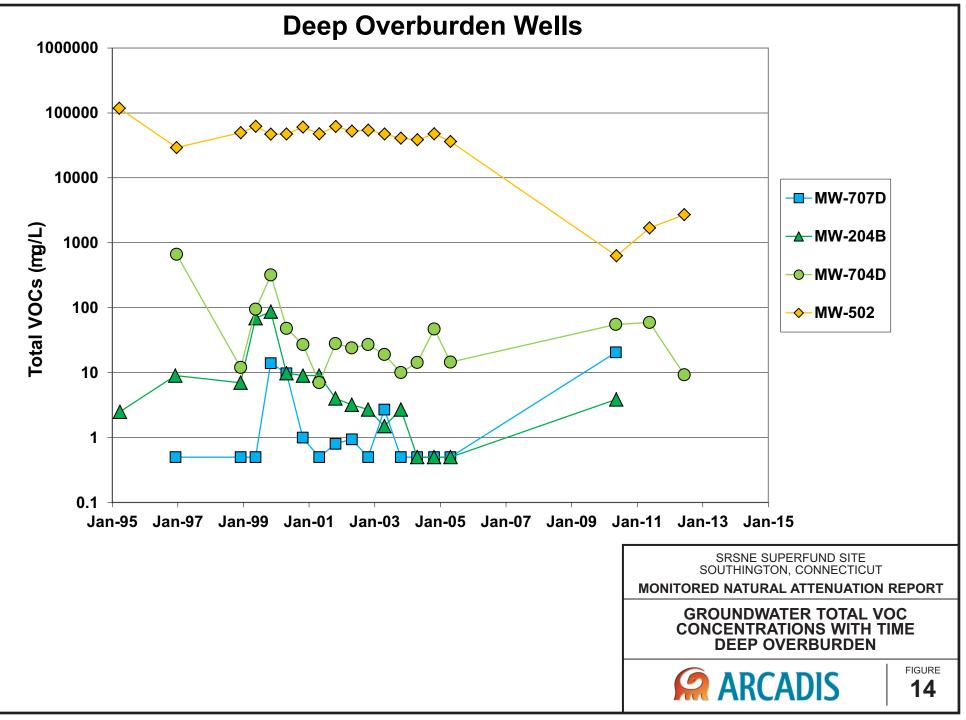


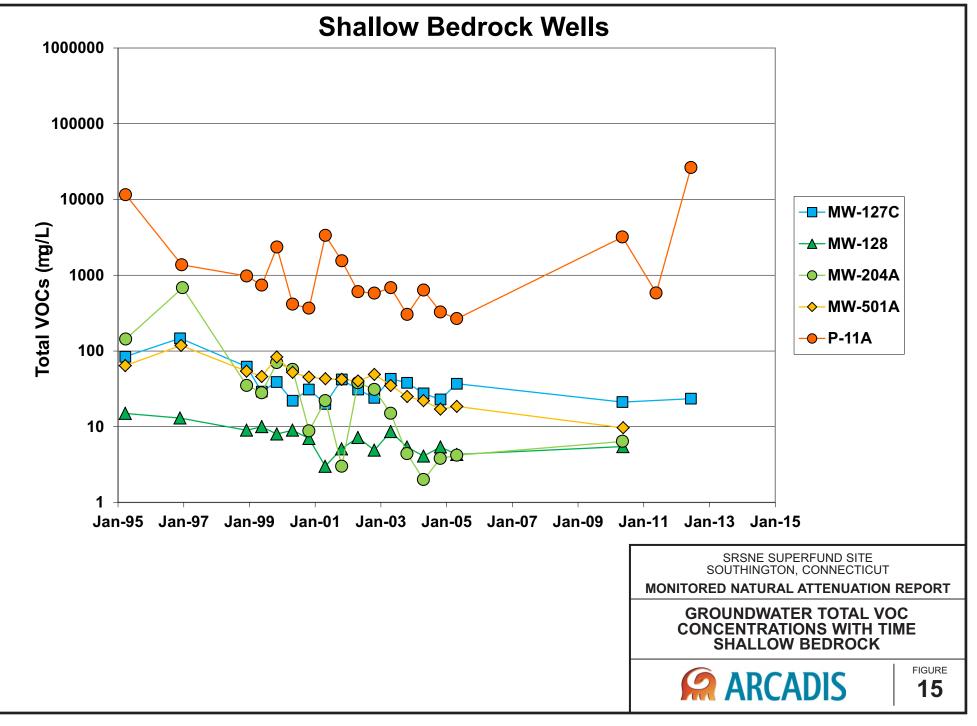


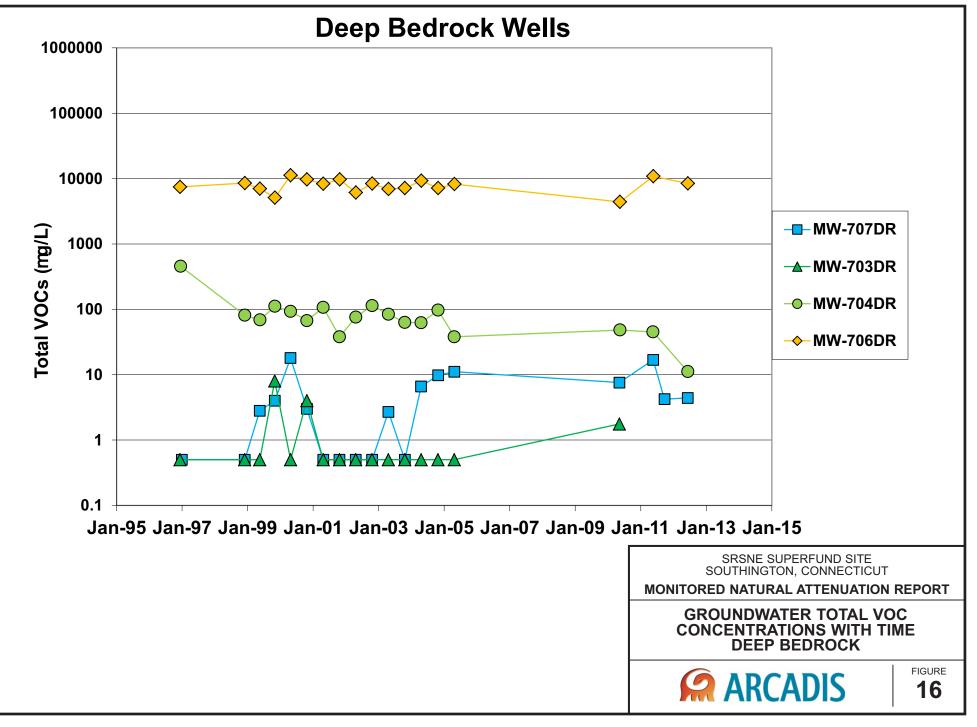


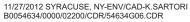


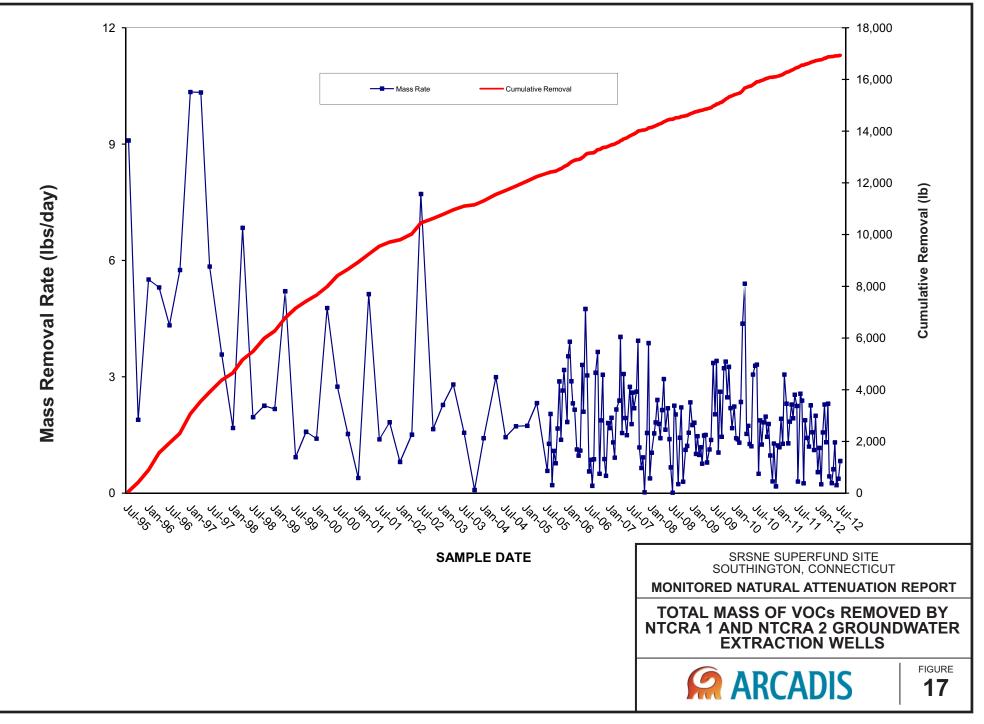












ARCADIS

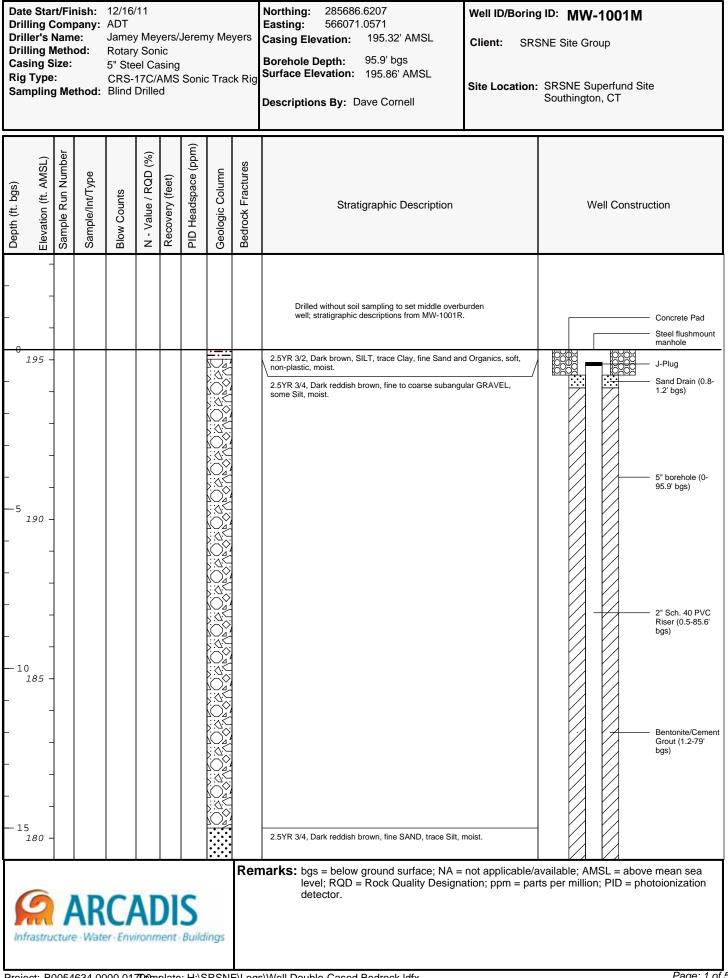
Appendices

ARCADIS

Appendix A

Profile Sheets and Well Construction Logs

l	MW-1001R			NG RESUL	TS (FOR	MW-1001M SCREEN DEPTH SE	LECTION)
Zone	Depth (ft bgs)	Profiling Sample Depth (ft bgs) ¹	Profiling Total VOCs (ug/L)	Highest Single VOC (ug/L)	Other VOCs (ug/L)	Geologic Description	Screen Interval (ft)
	0						
	10	Drill Water 120911	9.5	5.2 PCE	4.3 clf		
	20	Drill Water-2 121211	8.7	7.1 clf	0.8 cm 0.8 tol		
	30	-				47.0-50.5: SILT, little medium to fine Sand,	
		Water Supply	3.5	2.4 clf	1.1 cm	trace coarse Sand	
	40	121211				50.5-55: Fine SAND, trace Silt	
•		water	table at app	proximately 4	8 feet bgs	55-60: No recovery	
T T	50	50.00	40.0	0.5 -16	2.8 PCE	60-65: Fine SAND	
	60	58-60	13.2	9.5 clf		65-69.5: SILT, little fine Sand 69.5-70: Fine SAND, little Silt	
Shallow	00	68-70	2.8	2.8 clf	0.9 cm	70-72.5: SILT, trace fine Sand	
OB 48-87.3'	70	0070	2.0	2.0 01		72.5-73: Fine SAND, little Silt	
		78-80	3.1	2.4 clf	0.7 PCE	73-80: Medium SAND, trace fine SAND	
	80					80-85: SILT, trace to some fine Sand	MW-1001M
\uparrow	90	88-90	5.5	3.8 clf	1.7 PCE	85-90: Fine SAND, little Silt	screen 85.6'-95.6' sand 82'-95.9'
		98-100	5.1	2.7 clf	1.7 PCE	90-100: SILT, trace Clay	
Middle	100				0.7 tol	100-102: Silty CLAY, trace fine Sand	
87.3-126.7		108-110	7.1	5.5 clf	1.1 PCE	102-110: SILT, little fine Sand, trace Clay	
	110	118-120	6.8	6.3 clf	0.5 tol 0.5 PCE	110-119.5: Fine SAND, some Silt, trace Clay	
	120					119.5-130: SILT, some fine Sand, little to	
\uparrow	130					some coarse, medium and fine Gravel, trace 130-140.6: Coarse SAND, loose	
Deep OB 126.7-	140					140.6-150: SAND and GRAVEL, loose	
166'	150					150-166: Dense TILL	
	160	Тс	p of rock der	oth 166 feet bg	s		
Ť	170						
Shallow BR 166-196'	180						MW-1001R screen 175.3'-190.3' sand 170'-193'
	190						
Deep BR 196'+	200						


Depth Interval Calcul	ations
Shallow Overburden	
Top (water table)	48
Bottom	87.3
Middle Overburden	
Тор	87.3
Bottom	126.7
Deep Overburden	
Тор	126.7
Bottom (top of rock)	166

Notes: thf = tetrahydrofuran bz = benzene cd = carbon disulfide MIBK = 4-Methyl-2-pentanone ce = chloroethane cm = chloroethane tol = toluene ace = acetone clf = chloroform 11dca = 1,1-dichloroethane mc = methylene chloride ipbz = isopropylbenzene

1

xyl = xylenes cis12 = cis-1,2-Dichloroethene cdbm = chlorodibromomethane dcbm = dichlorobromomethane TCE = trichloroethene PCE = tetrachloroethene vc = vinyl chloride VOCs = volatile organic compounds ft bgs = feet below ground surface ug/L = micrograms per liter

1 - Overburden samples collected with HydroPunch.

SRSNE Superfund Site Southington, CT

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - - 20	- - - 175 - -									2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt, moist.	5" borehole (0- 95.9' bgs)
- - 25 - -	- - - - -										2" Sch. 40 PVC Riser (0.5-85.6" bgs)
- 30 - -											Bentonite/Ceme Grout (1.2-79' bgs)
6	260 -		\R					inos	Ren	n arks: bgs = below ground surface; NA = not applic level; RQD = Rock Quality Designation; ppm detector.	able/available; AMSL = above mean sea = parts per million; PID = photoionization

SRSNE Superfund Site Southington, CT

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - 40	- - 155 - -									2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist, odor.	5" borehole (0- 95.9' bgs)
- 45 -	- - 150 -									2.5YR 3/4, Dark reddish brown, medium SAND, odor, moist. 2.5YR 3/4, Dark reddish brown, SILT, little fine to medium Sand, trace	2" Sch. 40 PVC Riser (0.5-85.6' bgs)
- 50 -	- 145 - -									2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt, moist.	Bentonite/Cement Grout (1.2-79' bgs)
	140 -		D	C/			c		Ren	narks: bgs = below ground surface; NA = not applicable level; RQD = Rock Quality Designation; ppm = pa detector.	/available; AMSL = above mean sea arts per million; PID = photoionization

SRSNE Superfund Site Southington, CT

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - - 60 - -	- - 135 - - -									2.5YR 3/4, Dark reddish brown, fine SAND, moist to wet.	5" borehole (0- 95.9' bgs)
- 65 1 -	- 130 - - -									2.5YR 3/4, Dark reddish brown, SILT, little fine Sand, moist to wet.	2" Sch. 40 PVC Riser (0.5-85.6' bgs)
- - 70 - -	_ .25 - _ _									 2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist to wet. 2.5YR 3/4, Dark reddish brown, SILT, trace fine sand, moist to wet. 2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist to wet. 2.5YR 3/4, Dark reddish brown, medium SAND, trace fine Sand, mois wet. 	Bentonite/Cement Grout (1.2-79' bgs)
6	120 -			C/				lings	Ren	narks: bgs = below ground surface; NA = not applica level; RQD = Rock Quality Designation; ppm = detector.	ble/available; AMSL = above mean sea = parts per million; PID = photoionization

SRSNE Superfund Site Southington, CT

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
 - 80 115 ·	-								2.5YR 3/4, Dark reddish brown, SILT, trace fine Sand, wet.	Bentonite/Cement Grout (1.2-79 bgs) Bentonite Seal
- · ·	_								2.5YR 3/4, Dark reddish brown, SILT and fine SAND, wet. 2.5YR 3/4, Dark reddish brown, SILT, trace fine Sand, wet.	(79-82' bgs)
	-								2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, wet.	5" borehole (0- 95.9' bgs)
- 90 105 - - -	_								2.5YR 3/4, Dark reddish brown, SILT, trace Clay, non-plastic, wet.	2" ID, 0.010" slot Sch. 40 PVC Screen (85.6- 95.6' bgs)
- 95 100 -			~			C		Ren	narks: bgs = below ground surface; NA = not applic level; RQD = Rock Quality Designation; ppm detector.	PVC Sump (95.6-95.9' bgs) cable/available; AMSL = above mean sea a = parts per million; PID = photoionization
Project: B	ucture	e - Wate	er · Env		nent-					Page: 5 of

Dril Dril Dril Cas Rig	ling C ler's I ling M ing S Type	Com Nam Aeth Size:	oany: e: od:	12/7/1 ADT Jame Rotar 5" Ste CRS- 3" x 5	y Mey y Sor eel/7" 17C//	yers/ nic Ove AMS	Jeren rride Soni	Casing	g	Northing: 285697.9343 Easting: 566068.136 Casing Elevation: 196.47' AMSL Borehole Depth: 198.5 ft bgs Surface Elevation: 196.93' AMSL Descriptions By: D. Cornell/L. Terrell	g ID: MW-1001R SNE Site Group : SRSNE Superfund Si Southington, CT	te	
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description		Well Constru	iction
-	-												 Concrete Pad Steel flushmount manhole
- - 5 -	- 195 - - - 190 - - - - - -	1	0-10	NA	NA	6.0	0.0 0.0 0.0 0.0			2.5YR 3/2, Dark brown, SILT, trace Clay, fine Sand ar non-plastic, moist. 2.5YR 3/4, Dark reddish brown, fine to coarse subang some Silt, moist. Fine to medium Sand from 1.5-2' bgs.			 J-Plug Sand Drain (0.8- 1.2' bgs) 4" Black Steel Casing (2-172' bgs) Bentonite/Cement Grout (1.2-172' bgs) 2" Sch. 40 PVC Riser (0.5-175.3' bgs)
15	- 185 - - -	NA	NA	NA	NA	NA	NA			Poor recovery from 10-15'. 2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt,	moist.		- 7" borehole (0- 172' bgs)
Infi	rastru	cture	e-Wate	C) er - Env	ironn	nent	Build			2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt, narks: bgs = below ground surface; NA = level; HZ = horizontal fracture; M = ppm = parts per million; PID = pho	= not applicable/a = mechanical bre	eak; RQD = Rock Quali	

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column Bedrock Fractures	Stratigraphic Description	Well Construction
-	- 80	2	15-20	NA	NA	4.0	0.0 0.0 0.0 0.0		2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt, moist.	
	- 175 - - -	3	20-25	NA	NA	3.0	0.0 0.0 0.0 0.0		No Gravel between 20-25' bgs.	4" Black Steel Casing (2-172' bgs) Bentonite/Ceme Grout (1.2-172' bgs)
	- 170 - - -	4	25-30	NA	NA	3.0	0.0 0.0 0.0 0.0		Trace fine, medium and coarse round Gravel below 25' bgs.	2" Sch. 40 PVC Riser (0.5-175.3 bgs)
- 30 - <i>1</i> 	- 165 - - -	5	30-35	NA	NA	4.0	0.0 0.0 0.0 0.0			7" borehole (0- 172' bgs)
6	2		AR e-Wate						marks: bgs = below ground surface; NA = not applie level; HZ = horizontal fracture; M = mechani ppm = parts per million; PID = photoionization	ical break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column Bedrock Fractures	Stratigraphic Description	Well Construction
160 - -	- - 6 -	35-40	NA	NA	5.0	0.0 0.0 0.1 1.1 11.2		No Gravel from 35-39.6' bgs.	
- 40 - <i>155</i> -		40-45	NA	NA	5.0	0.0		2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist, odor.	4" Black Steel Casing (2-172' bgs) Bentonite/Cemer
- 						6.8 10.5		2.5YR 3/4, Dark reddish brown, medium SAND, odor, moist. No odor from 45-47' bgs.	Grout (1.2-172' bgs)
- 150 -	- 8	45-50	NA	NA	5.0	0.0 0.0 0.0 0.0		2.5YR 3/4, Dark reddish brown, SILT, little fine to medium Sand, trace coarse Sand, moist. Trace clay from 49.9-50' bgs.	2" Sch. 40 PVC Riser (0.5-175.3" bgs)
— 50 - - -	- 9	50-55	NA	NA	5.0	0.0 0.0 0.0 0.0		2.5YR 3/4, Dark reddish brown, fine SAND, trace Silt, moist.	7" borehole (0- 172' bgs)
- 55	-	AR	C			C	R	narks: bgs = below ground surface; NA = not applicabl level; HZ = horizontal fracture; M = mechanical ppm = parts per million; PID = photoionization d	break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
-	40 -	10	55-60	NA	NA	NA	NA			2.5YR 3/4, Dark reddish brown, fine SAND, moist to wet. Collected a vertical profile groundwater sample from 58- 60' bgs.	4" Black Steel
-	- !35 - - -	11	60-65	NA	NA	4.0	0.0 0.0 0.0 0.0				Bentonite/Ceme Grout (1.2-172' bgs)
	- 130 - - -	12	65-70	NA	NA	5.0	0.0 0.0 0.0 0.0			 2.5YR 3/4, Dark reddish brown, SILT, little fine Sand, moist to wet. Collected a vertical profile groundwater sample from 68- 70' bgs. Clayey Silt lamination at 69' bgs. 2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist to wet. 	2" Sch. 40 PVC Riser (0.5-175.3 bgs)
- 70 - 1 - 75	- 1.25 - - -	13	70-75	NA	NA	4.0	0.0 0.0 0.0 0.0			2.5YR 3/4, Dark reddish brown, SILT, trace fine sand, moist to wet. 2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, moist to wet. 2.5YR 3/4, Dark reddish brown, medium SAND, trace fine Sand, mowet.	Dist to
			\R • Wate					lings	Ren	narks: bgs = below ground surface; NA = not applic level; HZ = horizontal fracture; M = mechani ppm = parts per million; PID = photoionizatic	cal break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

3000	ning	ton, C	1							
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
120 -	14	75-80	NA	NA	5.0	0.0 0.0 0.0 0.0			Fining downward from fine Sand to Silt from 75-80' bgs. Collected vertical profile groundwater sample from 78-80' bgs.	
- 80 - - 115 - 85 -	15	80-85	NA	NA	5.0	0.7 0.8 0.7 0.8			 2.5YR 3/4, Dark reddish brown, SILT, trace fine Sand, wet. 2.5YR 3/4, Dark reddish brown, SILT and fine SAND, wet. 2.5YR 3/4, Dark reddish brown, SILT, trace fine Sand, wet. 	4" Black Steel Casing (2-172' bgs) Bentonite/Cement Grout (1.2-172' bgs)
- 110 - 	16	85-90	NA	NA	3.5	0.6 0.7 0.7 0.6			2.5YR 3/4, Dark reddish brown, fine SAND, little Silt, wet. Note: PID readings recorded in soils between 80 and 90' bgs were consistent with ambient air readings; likely "false positives" due to moisture. Collected vertical profile groundwater sample from 88-90' bgs.	2" Sch. 40 PVC Riser (0.5-175.3' bgs) 7" borehole (0-
	17	90-95	NA	NA	3.5	0.0 0.0 0.0 0.0			2.5YR 3/4, Dark reddish brown, SILT, trace Clay, non-plastic, wet.	172' bgs)
	ture						lings	Ren	narks: bgs = below ground surface; NA = not applic level; HZ = horizontal fracture; M = mechani ppm = parts per million; PID = photoionizatic	cal break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
100 		18	95- 100	NA	NA	3.5	0.0 0.0 0.0 0.0			2.5YR 3/4, Dark reddish brown, SILT, trace Clay, non-plastic, wet. Collected vertical profile groundwater sample from 98- 100' bgs.	
- 100 - 9. - 105 - 9. - 9. - 110	-	19	100- 110	NA	NA	8.5	0.0			Red brown, SILTY CLAY, trace fine Sand, saturated, slightly plastic. Red brown, SILT, little fine Sand, trace Clay, saturated, non-plastic. Trace fine Gravel from 106-108' bgs. Collected vertical profile groundwater sample from 108- 110' bgs.	4" Black Steel Casing (2-172' bgs) Bentonite/Cement Grout (1.2-172' bgs) 2" Sch. 40 PVC Riser (0.5-175.3' bgs) 7" borehole (0-
- 8. - - 115	2		110- 120					tings	Ren	Red brown, fine SAND, some Silt, trace Clay, saturated, non-plastic. narks: bgs = below ground surface; NA = not applicat level; HZ = horizontal fracture; M = mechanica ppm = parts per million; PID = photoionization	ble/available; AMSL = above mean sea al break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - - 12 - - - - -	- 75 - - -	21	120-	NA	NA	10	0.0			Vertical profiling groundwater sample collected from 118- 120' bgs. Red brown, SILT, some to little fine Sand, little fine, medium and coa subangular to subrounded Gravel, trace Clay, saturated, non-plastic possible Till. Red brown, SILT and fine SAND, some fine, medium and coarse subrounded Gravel, trace medium Sand and Clay (Till). Driller indicates harder drilling below 125' bgs.	arse , 4" Black Steel Casing (2-172' bgs) Bentonite/Cemer Grout (1.2-172' bgs)
- - - 13	- 70 - - - 30		130							Becoming very dense, decreasing Clay content from 128.5-130' bgs. Red brown, coarse SAND, some medium Sand, little fine Gravel and	2" Sch. 40 PVC Riser (0.5-175.3 bgs) d fine 7" borehole (0- 172' bgs)
- - - 13	- 65 - - -									Sand, trace Silt, loose, saturated. Slightly more dense between 133.6 and 133.9' bgs and between 135.3' and 136' bgs.	
	2		130- 140					lings	Ren	Driller indicates much easier drilling - slightly stiffer at bottom (-139' bgs). narks: bgs = below ground surface; NA = not applic level; HZ = horizontal fracture; M = mechanic ppm = parts per million; PID = photoionizatio	cal break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Southington, CT		
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet)	Geologic Column Bedrock Fractures Bedrock Fractures Bedrock Fractures	Well Construction
60 - - - - - - - - - - - - - - - - - - -	Increasing Silt content and decreasing coarse Sand; becoming more dense from 139.5-140' bgs. Red brown, medium to coarse SAND, little fine Sand and fine, mediur and coarse subrounded Gravel, trace Silt, loose, saturated. Red brown, fine to medium subrounded GRAVEL, little Silt and coarse Gravel, trace Cobbles and fine, medium and coarse Sand, loose, saturated. Driller indicates easy drilling from 140-150' bgs. Red brown, SILT, some fine, medium and coarse subrounded Gravel	Bentonite/Cement Grout (1.2-172' bgs) 2" Sch. 40 PVC Riser (0.5-175.3' bgs) 7" borehole (0-
45 - - - - - - - - - - - - - - - - - - -	little fine Sand, trace Clay, dense (Till).	
Infrastructure - Water - Environment - Bu		al break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
-	40 -	25	155- 160	NA	NA	5.0	0.0			Trace Cobbles. Driller indicates very dense drilling from 155-160' bgs.	
- 16 - - 16	- 35 - - -	26	160- 167	NA	NA	7.0	NA			BEDROCK at 166' bgs.	7" borehole (0- 172' bgs) 4" Black Steel Casing (2-172' bgs) 2" Sch. 40 PVC
- - 17 -	30 - - - - - - - - - - - - - - - - - - -	27	167- 171	NA	NA	4.0	NA			Red brown SANDSTONE (Arkose).	Riser (0.5-175.3' bgs)
- - - 17									ΗZ	Maroon, coarse grained SANDSTONE.	Silica Sand Pack (170-193' bgs)
			R					lings	Ren	narks: bgs = below ground surface; NA = not applid level; HZ = horizontal fracture; M = mechani ppm = parts per million; PID = photoionizatio	cal break; RQD = Rock Quality Description;

SRSNE Superfund Site Southington, CT

Borehole Depth: 198.5 ft bgs

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	bearock Fractures	Stratigraphic Description	Well Construction
20 - - - - 180 - 15 -	BR1	172.8- 183	NA	100	10.3	NA		м	Sandstone becoming fine grained below 177.45' bgs; large clast (~1.2" in diameter) at 177.4' bgs. Trace areas (patches) of gray coloration (GLEY 2 4/5B).	3.8" borehole (172-198.5' bgs)
- 185 - 10 - - 190 5 -	BR2	183- 193.3	NA	100	10.3	NA		M	Maroon, fine grained SANDSTONE. Trace areas (patches) of gray coloration (GLEY 2 4/5B).	2' ID, 0.010' slot Sch. 40 PVC Screen (175.3- 190.3' bgs) PVC Sump (190.3-190.6' bgs) Silica Sand Pack (170-193' bgs)
- - - 195 -	BR3	193.3- 198.5	NA	100	5.3	NA		м		Bentonite (193- 198.5' bgs)

Created/Edited by: Ray Stevenson

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1001R

	004		jion, o							
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description Well Construction
-	0 -	-							Μ	Maroon, fine grained SANDSTONE.
- - 20 - -	- 00 - -5 -	-								End of Boring at 198.5' bgs.
- 20 -	- 05 - - <i>10 -</i> -	-								
- - 21 - -	- 10 - <i>15</i> -	-								
- - - 21	- 15 -	-							Ren	marks: bgs = below ground surface; NA = not applicable/available; AMSL = above mean sea
Infi	rastru	cture	AR Wate	er - Env	ironn	nent	Build			level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Description; ppm = parts per million; PID = photoionization detector.

		Profiling				Bedro	k Packer T	ests				
Zone	Depth (ft bgs)	Sample	Profiling Total VOCs (ug/L)	Highest Single VOC (ug/L)	Other VOCs (ug/L)	Average Purge Rate (gpm)		Specific Capacity (gpm/ft)	Horiz. Frac.	Screen Interval (ft)		
	0			I		water	table at appro	oximately 4 f	eet	bgs		Depth Interva
Shallow	10	New Tank 1 021312	4.0	3.2 clf	0.8 cm							Shallow Overburde Top (water table) Bottom
OB 4-33.5'	20	New Tank 2 021312	3.1	3.1 clf	ND							Middle Overburden
<u> </u>	30					-						Bottom
Middle	40	Chase Tank X 022012	2.1	2.1 clf	ND							Deep Overburden Top Bottom (top of rock)
OB 33.5-63'	50											Bottom (top of fock)
	60											
Î	70											
Deep OB												
Deep OB 63-92.5'	80											
ОВ	80			Top of rook dor	oth 0.2.5 foot boo						Bodrock D	rilling
ОВ				Top of rock dep	oth 92.5 feet bgs						Bedrock D Core Run	•
08 63-92.5' Shallow BR 92.5-	80	101-120	ND	Top of rock dep	oth 92.5 feet bgs	0.1450	2.8500	0.0509		MW-1002R		rilling RQD 92%
08 63-92.5' Shallow BR 92.5-	80 90 100 110	101-120	ND	· · ·			2.8500 ge vol. = 66 ga			MW-1002R scr 105-120' sand 101-121'	Core Run	RQD
OB 63-92.5' Shallow BR	80 - 90 100	101-120	ND 80.4	· · ·						scr 105-120'	Core Run 101.9-110.3 ft bgs	92%
08 63-92.5' Shallow BR 92.5-	80 90 100 110 - 120 130			ND	ND	(total pur 0.1485	ge vol. = 66 g	allons) 0.0117		scr 105-120'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs	RQD 92% 99%
08 63-92.5' Shallow BR 92.5-	80 90 100 110 120	120-140	80.4	ND 79.3 tol	ND 1.1 clf	(total pur 0.1485 (total pur	ge vol. = 66 ga 12.6500 ge vol. = 56 ga	allons) 0.0117 allons)		scr 105-120'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs	RQD 92% 99% 100%
OB 63-92.5' Shallow BR 92.5-	80 90 100 110 - 120 130			ND	ND	(total pur 0.1485 (total pur 0.0803	ge vol. = 66 ga 12.6500	allons) 0.0117 allons) 0.0046		scr 105-120'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs 130.3-140.3 ft bgs	RQD 92% 99% 100% 99%
08 63-92.5' \$hallow BR 92.5- 122.5' V Deep BR	80 90 100 110 120 130 140	120-140 140-160	80.4	ND 79.3 tol 200.1 tol	ND 1.1 clf 49.6 ace 2.6 clf	(total pur 0.1485 (total pur 0.0803 (total pur	ge vol. = 66 g; 12.6500 ge vol. = 56 g; 17.5800 ge vol. = 34 g;	0.0117 0.0117 allons) 0.0046 allons)		scr 105-120'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs 130.3-140.3 ft bgs 140.3-150.3 ft bgs	RQD 92% 99% 100% 99% 100%
08 63-92.5' Shallow BR 92.5- 122.5' V Deep BR	80 90 100 110 120 130 140 150	120-140	80.4	ND 79.3 tol	ND 1.1 clf 49.6 ace	(total pur 0.1485 (total pur 0.0803 (total pur 0.0457	ge vol. = 66 g 12.6500 ge vol. = 56 g 17.5800	allons) 0.0117 allons) 0.0046 allons) 0.0050		scr 105-120'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs 130.3-140.3 ft bgs 140.3-150.3 ft bgs 150.3-160.3 ft bgs	RQD 92% 99% 100% 99% 100%
08 63-92.5' Shallow BR 92.5- 122.5' V Deep BR	80 90 100 110 120 130 140 150 160	120-140 140-160 160-180	80.4 252.3 226.3	ND 79.3 tol 200.1 tol	ND 1.1 clf 49.6 ace 2.6 clf 24.2 cis12; 1.1 bz 14.6 tol; 6.8 PCE ;	(total pur 0.1485 (total pur 0.0803 (total pur 0.0457	ge vol. = 66 g; 12.6500 ge vol. = 56 g; 17.5800 ge vol. = 34 g; 9.2200	0.0117 allons) 0.0046 allons) 0.0050 allons)		scr 105-120' sand 101-121' MW-1002DR scr 171-186'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs 130.3-140.3 ft bgs 140.3-150.3 ft bgs 150.3-160.3 ft bgs 160.3-170.3 ft bgs	RQD 92% 99% 100% 99% 100% 100%
08 63-92.5' Shallow BR 92.5- 122.5' V Deep BR	80 90 100 110 120 130 140 150 160 170	120-140 140-160	80.4	ND 79.3 tol 200.1 tol 171 TCE	ND 1.1 clf 49.6 ace 2.6 clf 24.2 cis12; 1.1 bz	(total pur 0.1485 (total pur 0.0803 (total pur 0.0457 (total pur 0.4800	12.6500 ge vol. = 56 g; 17.5800 ge vol. = 34 g; 9.2200 ge vol. = 67 g;	allons) 0.0117 allons) 0.0046 allons) 0.0050 allons) 0.8000		scr 105-120' sand 101-121' MW-1002DR scr 171-186'	Core Run 101.9-110.3 ft bgs 110.3-120.3 ft bgs 120.3-130.3 ft bgs 130.3-140.3 ft bgs 140.3-150.3 ft bgs 150.3-160.3 ft bgs 160.3-170.3 ft bgs 170.3-180.3 ft bgs	RQD 92% 99% 100% 99% 100% 100% 96%

Depth Interval Calculations

33.5

33.5 63.0

63.0

92.5

Notes: thf = tetrahydrofuran bz = benzene cd = carbon disulfide MIBK = 4-Methyl-2-pentanone ce = chloroethane cm = chloromethane tol = toluene ace = acetone clf = chloroform 11dca = 1,1-dichloroethane mc = methylene chloride ipbz = isopropylbenzene

xyl = xylenes cis12 = cis-1,2-Dichloroethene cdbm = chlorodibromomethane dcbm = dichlorobromomethane TCE = trichloroethene PCE = tetrachloroethene vc = vinyl chloride VOCs = volatile organic compounds ft bgs = feet below ground surface ug/L = micrograms per liter

Dril Dril Dril Cas Rig	Date Start/Finish: 2/20/12 - 3/15/12 Drilling Company: ADT Driller's Name: Tommy Sheerin/Tim Sabo Drilling Method: Sonic Casing Casing Size: 5" Steel/7" Override Casing Rig Type: CRS-17C/AMS Sonic Track Sampling Method: 3" x 5' Sampler, HQ Rock C							Casing c Trac	k Rig	Northing:285462.7832 565721.5553Well ID/Boring ID:MW-1002DRCasing Elevation:149.50' AMSLClient:SRSNE Site GroupBorehole Depth:200.3 ft bgs Surface Elevation:150.30' AMSLSite Location:SRSNE Superfund Site Southington, CT
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description Well Construction
-	- - 150 -									Locking Royer Cover J-Plug
 - - - 5	- - 145 -							22:02 202:02		Blind drilled to 5' bgs to set surface seal. Red-brown, fine, medium and coarse GRAVEL, some fine to medium Sand, trace Silt and Cobbles, saturated, non-plastic. Bentonite/Cernen Grout (0-163'
- - - 10	- - 140 -) -	. 1	5-10	NA	NA	1.5	0.0			Cobble stuck in drive shoe. bgs) 2" Sch. 80 PVC Riser (2.5' ags- 171' bgs)
- - - - 15	- - 135 - 5	2	10-15	NA	NA	4.0	0.0			7" borehole (0- 101' bgs)
Inf	rastru	cture	e - Wate	C/	ironn	nent	Build			Red-brown, fine SAND, some Silt, saturated, non-plastic. narks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160-180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees). SWell Double-Cased Bedrock.ldfx

Project: B0054634.0000.0170emplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1002DR.dat Date: 5/18/2012

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Borehole Depth: 200.3 ft bgs

Depth (ft. bgs) Elevation (ft. AMSL)		Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - - 130 - 20	-	3	15-20	NA	NA	4.5	0.0			Red-brown, fine SAND, some Silt, saturated, non-plastic.	4" Black Steel
- - - - 125		4	20-25	NA	NA	5.0	0.0 0.2 0.5 0.4 0.3			Red-brown, SILT, little fine Sand, trace Clay, saturated, non-plastic. Red-brown, medium to coarse SAND, saturated, non-plastic. Red-brown, SILT, little Clay, trace fine Sand, saturated, slightly plas	Casing (4' ags- 101' bgs) Bentonite/Cement Grout (0-163' bgs)
- - - - - - - - - - - - - - - - - - -	-	5	25-30	NA	NA	5.0	0.0 0.3 0.0			Gray-brown/red from 25-26.6' bgs. Red-brown, fine SAND, trace medium Gravel, saturated, non-plastic Containing little Silt below 28.8' bgs.	2" Sch. 80 PVC Riser (2.5' ags- 171' bgs) 7" borehole (0-
- 30 - - - - 115 - 35		6	30-35	NA	NA	3.1	0.3 0.0 0.0	<u><u> </u></u>		Red-brown, SILT and fine, medium and coarse subrounded to subangular GRAVEL, little fine to medium Sand, little to trace Clay, saturated, non-plastic.	iine,
Infrast	ruct	ture		er - Env	ironn	nent-	Build			 medium and coarse Sand and rounded Cobbles, trace Silt, saturate non-plastic. narks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizon Rock Quality Designation; ppm = parts per n Conducted packer testing to estimate specific vertical profile groundwater samples at 101-180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures cos/Well Double-Cased Bedrock.ldfx 	d, ound surface; NA = not applicable/available; ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector. ic capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160-

SRSNE Superfund Site Southington, CT

Sou	Southington, CT												
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column Bedrock Fractures	Stratigraphic Description Well Construction					
- - - 110 -	7	35-40	NA	NA	1.5	0.0	08080808080808	Red-brown, fine, medium and coarse subrounded GRAVEL, some fiine, medium and coarse Sand and rounded Cobbles, trace Silt, saturated, non-plastic.					
40 	8	40-45	NA	NA	2.0	0.0	90000000000000000000000000000000000000	4" Black Steel Casing (4' ags- 101' bgs) Bentonite/Cement Grout (0-163' bgs)					
	9	45-50	NA	NA	2.5	0.0	00000000000000000000000000000000000000	2" Sch. 80 PVC Riser (2.5' ags- 171' bgs) 7" borehole (0-					
	10	50-55	NA	NA	2.4	0.0		Red-brown, fine, medium and coarse SAND, little fine, medium and coarse subrounded Gravel, trace Silt, saturated, non-plastic.					
Infrastru								marks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).					

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction		
- - - - 90 -	11	55-60	NA	NA	3.0	0.0			Containing little to some Gravel below 55' bgs.	4" Black Steel		
- - - - - 85 -									Red-brown, SILT and fine, medium and coarse subrounded GRAVE little fine to medium Sand, trace Cobbles, coarse Sand and Clay (possible Till). Decreasing Clay and increasing coarse Sand from 61.8- 62.7' bgs.	Casing (4' ags- 101' bgs)		
- 65 - 80 -	13	65-70	NA	NA	2.2	0.0	0000000000		Some round Cobbles, little fine Sand, trace Clay and medium to coarse Sand, saturated, non-plastic, dense below 65' bgs.	2" Sch. 80 PVC Riser (2.5' ags- 171' bgs) 7" borehole (0-		
										101' bgs)		
Infrastru	Infrastructure - Water - Environment - Buildings								Red-brown, SILTY CLAY, saturated, plastic between 75.9 and 76.1 narks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizo Rock Quality Designation; ppm = parts per r Conducted packer testing to estimate specif vertical profile groundwater samples at 101- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures of	ound surface; NA = not applicable/available; ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector. ic capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160-		

SRSNE Superfund Site Southington, CT

Borehole Depth: 200.3 ft bgs

)L)	ber			(%)		(mdd		SS		
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
-		15	75-80	NA	NA	2.6	0.0			Red brown, SILT, some fine Sand and fine, medium and coarse subrounded Gravel, trace Cobbles and Clay (dense Till), moist, non plastic.	
- 80 - -	- 16 80-85 NA NA 5.0 0.0										4" Black Steel Casing (4' ags- 101' bgs) Bentonite/Cement Grout (0-163' bgs)
-	- - - 60 -	17	85-90	NA	NA	5.0	0.0			Red brown, chunks of ARKOSE (bedrock) with intermittent seams of Sand and Clay. Sitty fine Sand seams from 87.2-87.4' bgs and from 87.9- 88.15' bgs. SILTY CLAY seams from 87.55-87.65' bgs, 87.75-87.9' bgs, 88.5-88.65' bgs and 89-89.15' bgs.	
90 - - -	- 18 90- NA NA 2.5 0.0									ARKOSE pieces.	7" borehole (0- 101' bgs)
1.1.1			\R e-Wate					lings	Ren	narks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizor Rock Quality Designation; ppm = parts per r Conducted packer testing to estimate specif vertical profile groundwater samples at 101- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures c	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector. ic capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160-

Project: B0054634.0000.0170emplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1002DR.dat Date: 5/18/2012

SRSNE Superfund Site Southington, CT

Image: Second section second section second section second section second section second section second section second section second section second section second section second section second section second section second section section second section														
100.5 100.5 <td< th=""><th>Depth (ft. bgs) Elevation (ft. AMSL)</th><th>Sample Run Number</th><th>Sample/Int/Type</th><th>Blow Counts</th><th>N - Value / RQD (%)</th><th>Recovery (feet)</th><th>PID Headspace (ppm)</th><th>Geologic Column</th><th>Bedrock Fractures</th><th>Stratigraphic Description</th><th>Well Construction</th></td<>	Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction			
100 -	- - - -	19	92.5- 100.5	NA	NA	6.0	0.0			ARKOSE bedrock.	7" borehole (0- 101' bgs)			
45 -										Maroon, medium-grained SANDSTONE (Arkose), 2.5YR 3/3.	4* Black Steel Casing (4' ags- 101' bgs)			
BR1 101.8 NA 92 8.3 0.0 M M 40 M M M M M M M Riser (2.5 ag 1771 bgs) 11.0 BR1 110.3 NA 92 8.3 0.0 M M 40 M M M M M M M M 11.0 BR1 IO1.3 NA 92 8.3 0.0 M M 110 M M M M M M M M M M 110 M		-								Becoming coarser grained below 104.7' bgs.				
40 10 10 Possible Silt in fracture at 109.5' bgs; very fine grained below 109.5' bgs. 3.8' borehole (101-200.3' bg) 110 Maroon, very fine- to fine-grained SANDSTONE (Arkose). Maroon, very fine- to fine-grained SANDSTONE (Arkose). 3.8' borehole (101-200.3' bg) 35 Becoming finer grained below 113.8' bgs. Maroon, very fine- to fine-grained below 113.8' bgs. Maroon, very fine- to fine-grained below 113.8' bgs. 882 110.3- 120.3 NA 99 10 0.0 Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/availab AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD Rock Quality Designation; pm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collec vertical profile groundwater sampelies at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160' bgs and 180-200' bgs.		BR1		NA	92	8.3	0.0		M		2" Sch. 80 PVC Riser (2.5' ags- 171' bgs)			
35 - BR2 110.3- 120.3 NA 99 10 0.0 Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/availab AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160' 180' bgs and 180-200' bgs.		-								below 109.5' bgs.	3.8" borehole (101-200.3' bgs)			
Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/availab AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160 180' bgs and 180-200' bgs.										Becoming finer grained below 113.8' bgs.				
in unencal values in the Bedrock Fractures column represent up angles (in degrees).			٩R					ings	Ren	AMSL = above mean sea level; HZ = horizon Rock Quality Designation; ppm = parts per m Conducted packer testing to estimate specific vertical profile groundwater samples at 101-1	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector. c capacity of bedrock intervals and collect 20' bgs, 120-140' bgs, 140-160' bgs, 160-			

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Borehole Depth: 200.3 ft bgs

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description Well Construction
- - - -								ΗZ	Maroon, very fine-grained SANDSTONE (Arkose), 2.5YR 3/3.
30 - 								М	Bentonite/Cement Grout (0-163' bgs)
- 25 - - 125 - -	BR3	120.3- 130.3	NA	100	10	0.0		М	2" Sch. 80 PVC Riser (2.5' ags- 171' bgs)
- 20 - - 130 								M 5 5	Becoming coarser grained below 132' bgs (conglomerate- like).
- - - <i>15</i> - - 135 -									
Infrastru	Infrastructure - Water - Environment - Buildings								 harks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1002DR.dat Date: 5/18/2012

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- 140 - 140 - 140 		140.3-150.3	NA	100	10	0.0		M	Maroon, very fine-grained SANDSTONE (Arkose), 2.5YR 3/3. Maroon, very fine- to medium-grained SANDSTONE (Arkose), 2.5Y 3/3.	R Bentonite/Cemen Grout (0-163' bgs) 2" Sch. 80 PVC Riser (2.5' ags- 171' bgs) 3.8" borehole (101-200.3' bgs)
Project: B0054634.0000.017Demplate: H:\SRSNE\Lc									 harks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizon Rock Quality Designation; ppm = parts per r Conducted packer testing to estimate specif vertical profile groundwater samples at 101- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures of 	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector. ic capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160-

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
	10 -									Maroon, very fine- to medium-grained SANDSTONE (Arkose), 2.5YI 3/3.	R 3.8" borehole (101-200.3' bgs) Bentonite/Cemen Grout (0-163'
- 16 - 16	- - 15 - 5	BR7	160.3- 170.3	NA	100	10	0.0			Fine- to coarse-grained conglomerate structure from 161' 3" to 162' 1" bgs; from 167' 8" to 168' 5" bgs; and from 169' to 170' bgs.	2" Sch. 80 PVC Riser (2.5' ags- 171' bgs) Bentonite (163- 168' bgs)
- 17	- 20 - 0 - -								8 75	Conglomerate structure from 170' 3" to 171' 10.5" bgs. Silt in fracture at 171' 10.5" bgs. Very fine-grained SANDSTONE below 171' 10.5" bgs (abrupt change).	#0 Silica Sand Pack (168-188' bgs) 2" ID, 0.010" slot
- - 17	-	BR8	170.3- 180.3	NA	96	9.8	0.0		Ron	narks: bgs = below ground surface; ags = above ground su	Sch. 80 PVC Screen (171-186 bgs)
	ARCADIS							lings	Ken	AMSL = above mean sea level; HZ = horizor Rock Quality Designation; ppm = parts per m Conducted packer testing to estimate specifi vertical profile groundwater samples at 101-1 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures c	htal fracture; M = mechanical break; RQD = hillion; PID = photoionization detector. c capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160-

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction		
	- - 30 - 0								ΗZ	Maroon, very fine- to medium-grained SANDSTONE (Arkose), 2.5YR 3/3.	3.8" borehole (101-200.3' bgs)		
-									65	Maroon, very fine- to fine-grained SANDSTONE (Arkose), 2.5YR 3/3.	2" ID, 0.010" slot Sch. 80 PVC Screen (171-186" bgs) #0 Silica Sand Pack (168-188' bgs)		
- 18 		BR9	180.3- 190.3	NA	90	10	0.0		50 70 10 HZ	Coarse-grained sandstone from 186' to 186' 8" bgs and from 188' 2" to 189' 2" bgs.	PVC Sump (186- 186.35' bgs)		
- 19 - -	40 - 0 - -										Bentonite (188- 200.3' bgs)		
	-45 - -195 BR10 190.3- NA 100 10 0.0									1arks: bgs = below ground surface; ags = above ground s	urface: NA = not applicable/available:		
1.1.1.1								lings		AMSL = above mean sea level; HZ = horizontal frac Rock Quality Designation; ppm = parts per million; Conducted packer testing to estimate specific capa vertical profile groundwater samples at 101-120' bg 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures column	cture; M = mechanical break; RQD = PID = photoionization detector. Incity of bedrock intervals and collect gs, 120-140' bgs, 140-160' bgs, 160-		
Projec	piect: B0054634.0000.0170emplate: H:\SRSN							RSN	E\L ogs	Well Double-Cased Bedrock Idfx	Page: 10		

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1002DR

30												
Depth (ft. bgs) Elevation (#_AMSL)	Depth (tr. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column							Bedrock Fractures	Stratigraphic Description Well Construction			
- - 50 - 200	-50 - - 200								Gravel-sized conglomerate below 199' bgs.			
-	-								End of Boring at 200.3' bgs			
- - 55 - 205 -	-											
- - <i>60</i> 210 -												
- - - <i>-65</i> - 215	- 65 - - 215							Rem	narks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available;			
Infrast	Infrastructure - Water - Environment - Buildings								AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 101-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs and 180-200' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).			

Date Start/Finish:3/13/12 - 3/14/12Drilling Company:ADTDriller's Name:Tommy Sheerin/Tim SaboDrilling Method:Rotary SonicCasing Size:5" Steel/7" Override CasingRig Type:CRS-17C/AMS Sonic TracSampling Method:3" x 5' Sampler, HQ Rock of										Easting: 565/11./136 Casing Elevation: 152.37' AMSL Borehole Depth: 125 ft bgs Surface Elevation: 150.20' AMSL	ring ID: MW-1002R SRSNE Site Group on: SRSNE Superfund Site Southington, CT
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
-	155 – –										Locking Royer Cover J-Plug
- 5 - - - - - -	- 140 - -									Drilled without soil sampling to 100' bgs with 5" and 7" sonic casing to set 4" permanent steel casing into bedrock; see MW-1002DR for overburden drilling details.	Concrete Pad 4" Black Steel Casing (4' ags- 100' bgs) Bentonite/Cement Grout (0-100' bgs) 2" Sch. 80 PVC Riser (2.5' ags- 105' bgs) 7" borehole (0- 100' bgs)
Infi	ARCADIS									harks: bgs = below ground surface; ags = above grour AMSL = above mean sea level; HZ = horizontal Rock Quality Designation; ppm = parts per milli Numerical values in the Bedrock Fractures colu	fracture; M = mechanical break; RQD = on; PID = photoionization detector.

Client: SRSNE Site Group	Well/Boring ID: MW-1002R			
Site Location:	Borehole Depth: 125 ft bgs			
SRSNE Superfund Site Southington, CT				
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Siow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	Ires			
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm Geologic Column	Stratigraphic Description	Well Construction		
Depth (ft. bgs) Elevation (ft. A Sample Run N Sample/Int/Tyj Sample/Int/Tyj Blow Counts N - Value / RC Recovery (fee PID Headspac Geologic Colu		Weil Construction		
Del Ele	B0			
135 -				
- 20		4" Black Steel Casing (4' ags- 100' bgs)		
		100 bgs)		
-				
130 -		Bentonite/Cement Grout (0-100' bgs)		
- 25				
		2" Sch. 80 PVC Riser (2.5' ags- 105' bgs)		
- 125 -				
- 30		7" borehole (0-		
		100' bgs)		
120 -				
- 35				
	Remarks: bgs = below ground surface; ags = above g	round surface; NA = not applicable/available [.]		
ADCADIC	AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector.			
ARCADIS	Numerical values in the Bedrock Fractures	column represent dip angles (in degrees).		
Infrastructure · Water · Environment · Buildings				

Client: SRSNE Site Group	Well/Boring ID: MW-1002R				
Site Location:	Borehole Depth: 125 ft bgs				
SRSNE Superfund Site Southington, CT					
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Silow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	Salar				
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm Geologic Column	Stratigraphic Description	Well Construction			
Depth (ft. bgs) Elevation (ft. A Sample Run N Sample/Int/Tyl Blow Counts Blow Counts N - Value / RC Recovery (fee PID Headspac Geologic Colu		Weir Construction			
Gee PIC - Der	å				
115 -					
- 40		4" Black Steel Casing (4' ags- 100' bgs)			
		Bentonite/Cement			
		Grout (0-100' bgs)			
-					
- 45					
		2" Sch. 80 PVC			
		Riser (2.5' ags- 105' bgs)			
105 -					
- 50		7" borehole (0- 100' bgs)			
- 100 -					
- 55					
	Demontres to a la factoria de la				
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector.				
ARCADIS	Numerical values in the Bedrock Fractures				
Infrastructure · Water · Environment · Buildings					

0	Client	t: SR	SNE S	Site Gr	oup					Well/E	Boring ID: MW-1002R
	Site L	ocat	ion:							Boreh	ole Depth: 125 ft bgs
	SRS	SNE	Superf	und Si	te						
	Sou	ithing	ton, C	Т							
	(er			(%)		(md				
(Elevation (ft. AMSL)	Sample Run Number	/pe		N - Value / RQD (%)	et)	PID Headspace (ppm)	um	Bedrock Fractures		
t. bgs	n (ft. ,	Run I	/Int/Ty	unts	e/R	ry (fe	adspa	c Col	k Fra	Stratigraphic Description	Well Construction
Depth (ft. bgs)	vatio	mple	Sample/Int/Type	Blow Counts	- Valu	Recovery (feet)) He	Geologic Column	edroc		
De	Ele	Sai	Sa	Blo	z	Re	ЫЧ	9 G	Å		
	-										
_	95 -	-									
-	_										
_											
60	-										4" Black Steel
	-										Casing (4' ags- 100' bgs)
-	_										
-	90 -										
_	90 -										Bentonite/Cement Grout (0-100' bgs)
	-										-3-7
_	_	-									
— 65											
_											2" Sch. 80 PVC
	_										Riser (2.5' ags- 105' bgs)
	85 -										
-	_										
_											
— 70) –										7" borehole (0-
	_										100' bgs)
_	_										
_	80 -										
_	80										
	_										
	-	-									
- 75	;										
ļ											
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector.										
6	9		AR	C			5		1	Numerical values in the Bedrock Fractures of	
	ARCADIS								1		יסימוווו ובקובסבות עוף מווטופס (ווו עפטופפס).

Client: SRSNE Site Group	Well/E	Boring ID: MW-1002R									
Site Location: SRSNE Superfund Site Southington, CT											
SRSNE Superfund Site											
Southington, C1											
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	tures										
Depth (ft. bgs) Elevation (ft. AMS Sample Run Num Sample/Int/Type Sample/Int/Type Slow Counts N - Value / RQD (Recovery (feet) PID Headspace (t	Stratigraphic Description	Well Construction									
Depth (ft. bg Elevation (ft. Sample Run Sample/Int/T Sample/Int/T Blow Counts N - Value / F Recovery (ft PID Headspi Geologic Co											
Ge Provide Construction Const	<u> </u>										
- 75 -											
- 80		4" Black Steel Casing (4' ags- 100' bgs)									
70 -		Bentonite/Cement Grout (0-100' bgs)									
- 85											
		2" Sch. 80 PVC Riser (2.5' ags- 105' bgs)									
- 65 -											
- 90		7" borehole (0-									
		100' bgs)									
- 60 -											
- 95											
	Remarks: bgs = below ground surface; ags = above g AMSL = above mean sea level; HZ = horizo	ontal fracture; M = mechanical break; RQD =									
ARCADIS	Rock Quality Designation; ppm = parts per Numerical values in the Bedrock Fractures										
Infrastructure · Water · Environment · Buildings											

Cli	ent:	SR	SNE S	ite Gr	oup					Well/E	Boring ID: MW-1002R
Ci+		+	ion:							Boreh	ole Depth: 125 ft bgs
			Superf	und Si	te						
ę	Sout	hing	ton, C	Г							
					-		Ê				1
	SL)	Sample Run Number			(%)		PID Headspace (ppm)	c	res		
(sť	AM	INN C	Type	(0	RQD	eet)	ace	Ium	actu		
(ft. þ) (f	e Rui	e/Int/	ount:	ne /	ery (f	adsp	jic C	ck Fi	Stratigraphic Description	Well Construction
Depth (ft. bgs)	Elevation (ft. AMSL)	ample	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	DHe	Geologic Column	Bedrock Fractures		
ŏ	Ť	ŝ	ő	Ble	z	Ř	<u>-</u>	Ŭ	Ш		7" borehole (0-
	-										100' bgs)
- 5	55 -										Bentonite/Cement Grout (0-100' bgs)
-											Ugs)
	_										Bentonite (96- 101' bgs)
-	-										4" Black Steel
- 100										Maroon, coarse-grained SANDSTONE (Arkose), 2.5YR 3/3	Casing (4' ags- 100' bgs)
_											
	-										
- 5	50 -								ΗZ		2" Sch. 80 PVC Riser (2.5' ags-
-									HZ	Coarse-grained (Gravel-sized) conglomerate from 102.2'	105' bgs)
	-								28	to 103.6 bgs and from 104.5 to 105.9 bgs.	
-	_								HZ 12		
- 105		BR1	100-	NA	94	9.4	0.0		ΗZ		3.8" borehole (100-125' bgs)
_			110						HZ	Changes to fine-grained SANDSTONE (Arkose) below	
	-								45 HZ	105.9' bgs.	
- 4	15 -								HZ		
-											
	-										#0 Silica Sand Pack (101-121'
-	_								М		bgs)
- 110										Maroon, fine-grained SANDSTONE (Arkose), 2.5YR 3/3	
-											2" ID, 0.010" slot
	-										Screen (105-120 bgs)
- 4	10 -										
-											
	-										
-	_										
- 115		BR2	110-	NA	100	10	0.0				
	_		120								
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD =										
6	2	1		C		1	C			Rock Quality Designation; ppm = parts per r	
Tu	1	F	١R	U	4	Л	S			Numerical values in the Bedrock Fractures	column represent dip angles (in degrees).
			Wate					ings			

SRSNE Superfund Site Southington, CT

Borehole Depth: 125 ft bgs

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number Sample/Int/Tvpe	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
	3R3 12 12		100	5.0	0.0			Maroon, fine-grained SANDSTONE (Arkose), 2.5YR 3/3 Maroon, fine- to medium-grained SANDSTONE (Arkose). End of Boring at 125' bgs	#0 Silica Sand Pack (101-121' bgs) 2' ID, 0.010' slot Screen (105-120' bgs) PVC Sump (120- 120.35' bgs) 3.8" borehole (100-125' bgs) Bentonite (121- 125' bgs)
- 135 -									
						ings	Kem	 arks: bgs = below ground surface; ags = above grou AMSL = above mean sea level; HZ = horizonta Rock Quality Designation; ppm = parts per mil Numerical values in the Bedrock Fractures col 	al fracture; M = mechanical break; RQD = llion; PID = photoionization detector.

_		Profiling					ock Packer T	oste		-		
Zone	Depth (ft bgs)	Sample Depth (ft bgs)	Profiling Total VOCs (ug/L)	Highest Single VOC (ug/L)	Other VOCs (ug/L)	Average	Drawdown (ft)	Specific Capacity (gpm/ft)	Screen Interval (ft)			
	0											erval Calculations
	10	Chase Tank 081512	5.6	3.3 clf	1.9 tol, 0.43 bz						Shallow Overbu Top (water table	
	10	001512				water	table at appro	ximately 20	feet bgs		Bottom	;) 4!
1	20										Middle Overburg	
Bhallow OB 20-45'	30										Top Bottom	4
bgs											Deep Overburde	
<u></u>	40										Top Bottom (top of re	7) ock)
Aiddle OB	50											UCK)
45-70' bgs	60											
	70											
Deep OB												
70-95' bgs	80											
	90									Bedrock D		
Shallow	100			Top of rock dep	oth 95 feet bgs		Permanent S	eel Casing S	et at 100' bgs	Core Run	RQD	-
BR 95-125' bgs	110	100-120	8.2	3.7 clf, ace	0.31 tol, 0.27 TCE 0.24 bz	1.5600 (total pu) 7.2000 irge vol. = 29 g		MW-1003R scr 103-118'	100-110 ft bgs	95% 96%	-
	120								sand 100-120'	~		-
Ń	'	120-140	120.2	111 tol	7.3 ace, 2.1 clf	0.2590		0.010		120-130 ft bgs	100%	_
	130					(total pu	irge vol. = 50 g	allons)		130.3-140.55 ft bgs	97.5%	
	140	4.40,400	007.0	000 ()		0.4000	04.0500	0.0400		140.55-150.15 ft bgs	99%	
Deep BR	150	140-160	297.2	292 tol	3.8 clf, 1.3 TCE	0.4890 (total pu) 24.6500 irge vol. = 60 g	0.0198 allons)		150.15-160.35 ft bgs	99%	-
125'+	160											_
		160-180	373.6	370 tol	3.5 clf	0.8375		0.0183		160.45-170.45 ft bgs	100%	
	170					(total pu	irge vol. = 51 g	allons)	F	170.45-180 ft bgs	87%	multiple fractures at 178'
	180	400.000	590	500 tol	10.3 ace, 1.7 bz	0.5700		0.04.45	MW-1003DR	180-190 ft bgs	100%	indicated in core, A
	190	180-200	580	568 tol	10.5 ace, 1.1 bz	0.5700 (total pu) 39.3900 Irge vol. = 55 g		scr 177-192' sand 174-194'	190-200 ft bgs	100%	and caliper
	200									200-210 ft bgs	100%	-
	210	200-220	32.2	19 tol	8.7 ace, 4.7 clf	0.3340 (total pu) 27.4900 irge vol. = 49 g	0.0121 allons)		210-220 ft bgs	100%	
										220-230 ft bgs	100%	1
	220											
		220-240	50.4	38 tol	6.3 clf *, 5.0 ace, 1.4 xyl	0.3690 (total pu) 27.7100 Irge vol. = 55 g	0.0133 allons)		230-240 ft bgs	100%	-

Notes: thf = tetrahydrofuran bz = benzene cd = carbon disulfide MIBK = 4-Methyl-2-pentanone ce = chloroethane cm = chloromethane tol = toluene ace = acetone clf = chloroform 11dca = 1,1-dichloroethane mc = methylene chloride

xyl = xylenes cis12 = cis-1,2-Dichloroethene cdbm = chlorodibromomethane dcbm = dichlorobromomethane TCE = trichloroethene PCE = tetrachloroethene vc = vinyl chloride VOCs = volatile organic compounds ft bgs = feet below ground surface ug/L = micrograms per liter BOLD - exceedance of Action Level

Dril Dril Dril Cas Rig Geo San	ling C ler's l ling N sing S Type oprobe	Com Nam Meth Size: e 814 g Me	oany: e: od: 40 LC thod:	8/6/12 ADT Chris Sonic 6" Ou Mini-S	Jenki /HQ (ter/8" onic/(ins/T Corin ' Ove CME	g rride -75 H	SA Ri	g	Easting: 565642.1165 Casing Elevation: 154.77' AMSL Borehole Depth: 240' bgs Surface Elevation: 152.15' AMSL	Well ID/Boring ID: MW-1003DR Client: SRSNE Site Group Site Location: SRSNE Superfund Site Southington, CT		
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction		
-	155 - - -									4-inch Sonic Core Barrel Sampling from 0-100' bgs. HQ Rock Coring from 100-240' bgs.	Locking Royer Cover J-Plug		
- <u>-</u> -	- 150 - -	1	0-5	NA	NA	3.2	ND			Light brown-gray fine SAND, some Silt, trace medium Sand and R moist, non-plastic, 7.5YR 3/3. Red-brown, 7.5YR 4/6. Gray-brown medium to fine SAND, 7.5YR 4/3.	oots. Concrete Pad Concrete Pad 4" Black Steel Casing (3' ags- 100' bgs)		
-	- 145 - -	2	5-10	NA	NA	5.0	ND			Brown coarse, medium and fine SAND, moist, non-plastic, 7.5YR	Bentonite/Cement Grout (0-100' bgs) 2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)		
- 10 - - -	- 140 - -	3	10-15	NA	NA	5.0	ND			Trace fine Gravel from 10-15' bgs.	Bentonite/Cement Grout (0-169' bgs) 8" borehole (0- 100' bgs)		
Infi	rastru	cture	e-Wat	C/ er - Env	ironn	nent	Build			Rock Quality Designation; ppm = parts per no recovery; ND = not detected. Conducted packer testing to estimate speci	ontal fracture; M = mechanical break; RQD = million; PID = photoionization detector; NR = ific capacity of bedrock intervals and collect -120' bgs, 120-140' bgs, 140-160' bgs, 160- 20-240' bgs.		

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1003DR.dat Date: 11/30/2012

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- 135 - 	4	15-20	NA	NA	4.5	ND			Moist to wet from 15-19.5' bgs.	Bentonite/Cement Grout (0-169' bgs)
- 20 - 130 - 	5	20-25	NA	NA	2.4	ND			Brown-gray.	4" Black Steel Casing (3' ags- 100' bgs) Bentonite/Cement Grout (0-100' bgs)
- 25 - - 125 - 	6	25-30	NA	NA	5.0	ND			Gray-brown coarse SAND, some medium Sand, little fine Sand and f Gravel (multi-colored). Trace Cobbles at 27.4' bgs. Red-brown/maroon SILT, trace fine Sand and Clay, saturated, non- plastic, 2.5YR 3/4.	2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)
- 30 - - <i>120</i> - - 35 -	7	30-35	NA	NA	3.4	ND			Maroon Silty coarse, medium and fine SAND, some coarse, medium fine subrounded Gravel, trace Cobbles and Clay, saturated, non-plas 2.5YR 3/4. Maroon medium to fine SAND, some coarse, medium and fine subrounded Gravel, little coarse Sand and Silt, trace Clay and Cobbl	tic,
S Infrastru								Ren	saturated, non-plastic. narks: bgs = below ground surface; ags = above ground AMSL = above mean sea level; HZ = horizon Rock Quality Designation; ppm = parts per m no recovery; ND = not detected. Conducted packer testing to estimate specific vertical profile groundwater samples at 100-1 180' bgs, 180-200' bgs, 200-220' bgs and 220 Numerical values in the Bedrock Fractures co	und surface; NA = not applicable/available; tal fracture; M = mechanical break; RQD = illion; PID = photoionization detector; NR = capacity of bedrock intervals and collect 20' bgs, 120-140' bgs, 140-160' bgs, 160- 0-240' bgs.

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

	WRSL)													
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction				
- 115 - 	8	35-40	NA	NA	3.1	ND				Bentonite/Cemen Grout (0-169' bgs)				
- 40 - - 110 -	. 9	40-45	NA	NA	NR	NA			No recovery from 40-45' bas.	4" Black Steel Casing (3' ags- 100' bgs) Bentonite/Cemen				
 - 45 _	9	40-45	NA 				•••		Maroon coarse, medium and fine SAND, trace medium to fine Grave and Silt, saturated, non-plastic.	Grout (0-100' bgs)				
	10	45-50	NA	NA	4.4	ND				2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)				
50 _ 									Maroon medium to fine SAND, trace coarse Sand and fine Gravel, saturated, non-plastic.	8" borehole (0- 100' bgs)				
	• 11	50-60	NA	NA	8.1	ND			Maroon Silty coarse, medium and fine SAND, some coarse, medium fine subrounded Gravel, little Clay, saturated, non-plastic.	and				
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; NA = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).													

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1003DR.dat Date: 11/30/2012 Created/Edited by: Ray Stevenson

SRSNE Superfund Site Southington, CT

Borehole Depth: 240' bgs

Sou														
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction				
- 95 - 	-								Maroon coarse, medium and fine SAND, little to trace coarse, medium and fine subrounded Gravel, saturated, non-plastic. Maroon SILT, some coarse, medium and fine subrounded Gravel, little fine Sand, trace Cobbles, dense (Tiil-like), non-plastic.	Bentonite/Cement Grout (0-169' bgs)				
- 60 <u>-</u>	-									4" Black Steel Casing (3' ags- 100' bgs)				
- 90 - 	-								Maroon coarse, medium and fine SAND and coarse, medium and fine subrounded GRAVEL, trace Silt and Cobbles, saturated, non-plastic, 2.5YR 3/4. Maroon SILT, some fine Sand, some to little coarse, medium and fine subrounded Gravel, trace Cobbles and Clay, moderately dense (Till).	Bentonite/Cement Grout (0-100' bgs)				
- 65 - - 85- 	- 12	60-70	NA	NA	6.5	ND				2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)				
	-								Maroon SILT and fine SAND, some coarse, medium and fine subrounded Gravel, little coarse to medium Sand, trace Cobbles and Clay (Till), moist to wet, non-plastic, dense.	8" borehole (0- 100' bgs)				
	13	70-79.5	NA	NA	5.5	ND								
		AR e · Wate					lings	Ren	 harks: bgs = below ground surface; ags = above ground AMSL = above mean sea level; HZ = horizontal fi Rock Quality Designation; ppm = parts per millior no recovery; ND = not detected. Conducted packer testing to estimate specific cap vertical profile groundwater samples at 100-120' 180' bgs, 180-200' bgs, 200-220' bgs and 220-24 Numerical values in the Bedrock Fractures column 	racture; M = mechanical break; RQD = h; PID = photoionization detector; NR = bacity of bedrock intervals and collect bgs, 120-140' bgs, 140-160' bgs, 160- 0' bgs.				
Project: B	0054	1634.00	00.01	7 0 0m	plate	: H:\S	SRSNI	E\Loas	Well Double-Cased Bedrock.ldfx	Page: 4 of				

SRSNE Superfund Site Southington, CT

Borehole Depth: 240' bgs

	Southington, CT													
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction			
-	- 75 - -										Bentonite/Cement Grout (0-169' bgs)			
— 80 -) _									Gray COBBLE/BOULDER (possible limestone). Gray (GLEY 1 2.5/N) turning maroon fine Sandy SILT, some coarse medium and fine subrounded Gravel and Cobbles, little coarse to medium Sand, trace Clay, wet, non-plastic, dense.	4* Black Steel Casing (3' ags- 100' bgs)			
- - - 85	70 - - - -	14	79.5-85	NA	NA	3.3	ND				Bentonite/Cement Grout (0-100' bgs)			
-	- 65 - -	15	85-90	NA	NA	3.2	ND				2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)			
- 90 - -	- 60 	16	90-95	NA	NA	5.0	ND			Maroon (with gray mottling) SILT, some to little coarse, medium and subrounded Gravel and Cobbles (dense Till), little fine Sand and Cla moist, non-plastic.	I fine ay,			
- 95	_ :	-								Maroon pulverized ARKOSE, dry.				
										Maroon ARKOSE (Bedrock).				
Inf	Image: Construction of the second structure water - Environment - Buildings Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees). Image: Environment - Buildings Page: 5 of 1													

ogs ιp Data File:MW-1003DR.dat Date: 11/30/2012

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

	000		jion, o										
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction		
-	- 55 -	17	95-100	NA	NA	5.0	ND				8" borehole (0- 100' bgs) Bentonite/Cement Grout (0-100' bgs) 4" Black Steel Casing (3' ags- 100' bgs)		
10 - - -	0 _ 								5 5 HZ 30 M	Dark reddish brown, coarse-grained SANDSTONE, trace coarse Cla (green-gray), 2.5YR 3/3. Dark reddish brown, fine-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3.			
10 - -	⁵ – 45 –	BR1	100- 110	NA	95	9.5	NA		М	Dark reddish brown, coarse-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3.	n 2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)		
- 11 - -	0 _ 40 _								ΗZ	Dark reddish brown, fine-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3. Dark reddish brown, coarse-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3. Dark reddish brown, fine-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3.			
- 11	- 5	BR2	110- 120	NA	96	9.6	NA		M M 10	Dark reddish brown, fine-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3.			
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).												
									E\Logs	180' bgs, 180-200' bgs, 200-220' bgs and 22	20-240' bgs.		

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1003DR.dat Date: 11/30/2012 C

SRSNE Superfund Site Southington, CT

Borehole Depth: 240' bgs

							_					
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Constructi	on	
- 35 - - 120 - - 30 - - 125 - - 125 - 	BR3	120- 130	NA	100	10.3	NA		15 5 10 10 M HZ 30 M HZ	Coarsening downward. Dark reddish brown, coarse-grained SANDSTONE, trace gray-gree mottling, 2.5YR 3/3.		 Bentonite/Cement Grout (0-169' bgs) 2" Sch. 80 PVC Riser (2.5' ags- 177' bgs) 3.8" borehole (100-240' bgs) 	
	BR4	130.3- 140.55	NA	97.5	10	NA		HZ HZ				
Infrastru	Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).											

Data File:MW-1003DR.dat

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

Image: Section 2016 Image: Section 2016	Southington, CT											
140 Coarse-grained between 137.8° and 138.2 bgs. 140 Coarse-grained between 137.8° and 138.2 bgs. 140 Coarse-grained between 137.8° and 138.7 bgs. 141 Coarse-grained between 140.5° and 140.5° bgs. 142 Coarse-grained between 140.5° and 140.5° bgs. 143 Disk-inedia brance. 144 Disk-inedia brance. 145 Bit 100.1° 145 Bit 100.1° 146 Disk-inedia brance. 147 Coarse-grained between 143.4° and 143.6° bgs. 148 Mit 12 149 Disk-inedia brance. 140 Disk-inedia brance. 141 Disk-inedia brance. 142 Disk-inedia brance. 143 Bit 100.1° 144 Disk-inedia brance. 145 Bit 100.1° 146 Disk-inedia brance. 147 Disk-inedia brance. 148 Disk-inedia brance. 149 Disk-inedia brance. 140 Disk-inedia brance. 141 Disk-inedia brance. 142 Disk-inedia brance. 143	Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet)	PID Headspace (ppm) Geologic Column Bedrock Fractures	Stratigraphic Description	Well Construction								
AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).	- 140	NA 000 HZ 20 M M HZ HZ HZ M M M HZ HZ M	Coarse-grained between 139.3' and 139.7' bgs. Coarse-grained between 140.3' and 140.55' bgs. Dark reddish brown, coarse-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3. Coarse-grained between 143.4' and 143.65' bgs. Coarse-grained between 143.4' and 143.65' bgs.	Bentonite/Cement Grout (0-160' bgs) 2' Sch. 80 PVC Riser (2.5' ags- 177' bgs) 3.8" borehole (100-240' bgs)								
	Remarks: bgs = below ground surface; ags = above ground surface; NA = not an AMSL = above mean sea level; HZ = horizontal fracture; M = mechan Rock Quality Designation; ppm = parts per million; PID = photoionizat no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock inter vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 14- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs.											

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1003DR.dat Date: 11/30/2012 Cased State Date: 11/30/2012 Cased Stat

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
-	-5 - - -								ΗZ		3.8" borehole (100-240' bgs)
16 - 	50 _ - -10 - -									Dark reddish brown, medium- to coarse-grained SANDSTONE, trac gray-green mottling, 2.5YR 3/3.	Bentonite/Cement Grout (0-169' bgs)
- 16 - 	- 55 _ - - 15 -	BR7	160.45- 170.45	NA	100	10	NA		M HZ		2" Sch. 80 PVC Riser (2.5' ags- 177' bgs)
- - 17	_								М		
- -	-20 -								HZ		Bentonite (169- 174' bgs)
— 17	5_	BR8	170.45- 180	NA	87	8.3	NA				#0 Silica Sand Pack (174-194' bgs)
Infr	astru	cture	AR Wate	er · Env	ironn	nent	Build			harks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizo Rock Quality Designation; ppm = parts per r no recovery; ND = not detected. Conducted packer testing to estimate specif vertical profile groundwater samples at 100- 180' bgs, 180-200' bgs, 200-220' bgs and 22 Numerical values in the Bedrock Fractures of	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector; NR = ic capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160- 20-240' bgs.

Clier	t: SR	SNE S	ite Gr	oup					Well/B	oring ID: MW-1003DR
Site	Locat	ion:							Boreh	ole Depth: 240' bgs
SR	SNE	Superf ton, C	und Si T	te						
00	aanng	, on, o	•							
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
25 - - - 180	-							HZ	Fracture zone from 177.6-178.45' bgs.	2" Sch. 80 PVC Riser (2.5' ags- 177' bgs) 3.8" borehole (100-240' bgs)
- 30 -	_							М	Dark reddish brown, fine-grained SANDSTONE, trace gray-green mottling, 2.5YR 3/3.	
— 185 - 	– BR9 –	180- 190	NA	100	10	NA		10		2" ID, 0.010" slot Sch. 80 PVC Screen (177-192' bgs) #0 Silica Sand Pack (174-194'
- - — 190	-							М	Fine-grained Conglomerate from 189.5-190' bgs.	bgs)
- 40 -	-									PVC Sump (192- 192.4' bgs)
— 195	-BR10	190- 200	NA	100	10	NA		М	Dark reddish brown, coarse-grained SANDSTONE and fine-grained CONGLOMERATE, 2.5YR 3/3.	Bentonite (194- 217' bgs)
Infrastructure - Water - Environment - Buildings						Build	ings		harks: bgs = below ground surface; ags = above group AMSL = above mean sea level; HZ = horizor Rock Quality Designation; ppm = parts per n no recovery; ND = not detected. Conducted packer testing to estimate specifi vertical profile groundwater samples at 100- 180' bgs, 180-200' bgs, 200-220' bgs and 22 Numerical values in the Bedrock Fractures c	htal fracture; M = mechanical break; RQD = hillion; PID = photoionization detector; NR = c capacity of bedrock intervals and collect 120' bgs, 120-140' bgs, 140-160' bgs, 160- 0-240' bgs.

Created/Edited by: Ray Stevenson

SRSNE Superfund Site Southington, CT

Well/Boring ID: MW-1003DR

Borehole Depth: 240' bgs

		gion, c							
Depth (ft. bgs) Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description Well Construction
45 - - 200 -	-						0:0:0	M	Red/gray/brown fine-, medium- and coarse-grained CONGLOMERATE and reddish brown fine-grained SANDSTONE.
50 - 205 55 55 	- -BR1 -	1 200- 210	NA	100	10	NA	0.0 0	M	Reddish brown fine-grained SANDSTONE, little mottling.
- 210 60 7 - 215	- - - -BR1	2 210- 220	NA	100	10	NA		M M	Fine-to medium-grained Conglomerate between 210' and 220' bgs.
Infrastr	ructu		er · Env	ironn	nent	Build			harks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector; NR = no recovery; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and collect vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 160- 180' bgs, 180-200' bgs, 200-220' bgs and 220-240' bgs. Numerical values in the Bedrock Fractures column represent dip angles (in degrees).

Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx Data File:MW-1003DR.dat Date: 11/30/2012 Created/Edited by: Ray Stevenson

217 bgs) 227 bgs) 227 bgs) 3.8' borh (100-240'l 220 	03DR	Boring ID: MW-1003	Well/B			Client: SRSNE Site Group									
Southington, CT Southington, CT (1) </td <td>js</td> <td>nole Depth: 240' bgs</td> <td>Boreh</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td>	js	nole Depth: 240' bgs	Boreh					10							
								te	una S T	superf ton, C	thing	SRS			
217 bgs) 227 bgs) 220	onstruction	Well Const	tratigraphic Description	Bedrock Fractures	Geologic Column	PID Headspace (ppm)	Recovery (feet)	- Value / RQD	Blow Counts	Sample/Int/Type	Sample Run Number	Elevation (ft. AMSL)	Depth (ft. bgs)		
	3.8" borehole (100-240' bgs) Bentonite/Cement Grout (217-240'					NA	10	100	NA		BR13	-70 - -70 - -25 - -75 - - 30 - -	- - - 2 -		
			glomerate from 233.8-240' bgs.	м		NA	10	100	NA		BR14	- 35_	- 2		
Remarks: bgs = below ground surface; ags = above ground surface; NA = not applicable/avai AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RC Rock Quality Designation; ppm = parts per million; PID = photoionization detector; ND = not detected. Conducted packer testing to estimate specific capacity of bedrock intervals and coll vertical profile groundwater samples at 100-120' bgs, 120-140' bgs, 140-160' bgs, 1 Numerical values in the Bedrock Fractures column represent dip angles (in degrees Project: B0054634.0000.0170@mplate: H:\SRSNE\Logs\Well Double-Cased Bedrock.ldfx	nechanical break; RQD = ionization detector; NR = ock intervals and collect bgs, 140-160' bgs, 160-	ontal fracture; M = mecha million; PID = photoioniz fic capacity of bedrock ir -120' bgs, 120-140' bgs, 20-240' bgs.	SL = above mean sea level; HZ = horizon k Quality Designation; ppm = parts per n ecovery; ND = not detected. ducted packer testing to estimate specifi cal profile groundwater samples at 100- bgs, 180-200' bgs, 200-220' bgs and 22 herical values in the Bedrock Fractures o			Infrastructure · Water · Environment · Buildings									

Data File:MW-1003DR.dat Date: 11/30/2012

Client: SRSNE Site Group	Well/Bor	ing ID: MW-1003DR
Site Location:	Borehole	e Depth: 240' bgs
SRSNE Superfund Site Southington, CT		
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm)	Stratigraphic Description	Well Construction
85 - 		3.8" borehole (100-240' bgs) Bentonite/Cement Grout (217-240' bgs)
	End of Boring at 240' bgs	
90 		
95 - 		
- 250 _ 		
- 100 - 		
— 255 _		
Infrastructure - Water - Environment - Buildings	Remarks: bgs = below ground surface; ags = above grou AMSL = above mean sea level; HZ = horizonta Rock Quality Designation; ppm = parts per mill no recovery; ND = not detected. Conducted packer testing to estimate specific o vertical profile groundwater samples at 100-12 180' bgs, 180-200' bgs, 200-220' bgs and 220- Numerical values in the Bedrock Fractures colu	al fracture; M = mechanical break; RQD = lion; PID = photoionization detector; NR = capacity of bedrock intervals and collect 0' bgs, 120-140' bgs, 140-160' bgs, 160- 240' bgs.

Date Start/Finish: 8/6/12 - 9/5/12 Drilling Company: ADT Driller's Name: Chris Jenkins/Tim Sabo Drilling Method: Sonic/HQ Coring Casing Size: 6" Outer/8" Override Rig Type: Geoprobe 8140 LC Mini-Sonic/CME-75 HSA Rig Sampling Method: 4" Sonic Core Barrel; HQ Rock Coring Barrel	Northing: 285261.6391 Easting: 565644.5985 Casing Elevation: 155.23' AMSL Borehole Depth: 120' bgs Surface Elevation: 152.76' AMSL Descriptions By: L. Terrell, M. Eriksson, D. Cornell	Well ID/Boring ID: MW-1003R Client: SRSNE Site Group Site Location: SRSNE Superfund Site Southington, CT
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic Description	Well Construction
	4-inch Sonic Core Barrel Sampling from 0-100' b HQ Rock Coring from 100-120' bgs.	pgs.
	Drilled without soil sampling to 100' bgs with 6" a sonic casing to set 4" permanent steel casing int bedrock; see MW-1003DR for overburden and b drilling details.	and 8" o edrock above ground surface; NA = not applicable/available;
Infrastructure - Water - Environment - Buildings	AMSL = above mean sea level; HZ Rock Quality Designation; ppm = p	actor of global fracture; M = mechanical break; RQD = arts per million; PID = photoionization detector.

Client: SRSNE Site Group	Well/E	Boring ID: MW-1003R
Site Location:	Boreh	ole Depth: 120' bgs
SRSNE Superfund Site		
Southington, CT		
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic Description	
. bgs, (ft. <i>P</i> Nur N Nur N Nur N Nur V (ftee dspad dspad	Stratigraphic Description	Well Construction
Depth (ft. bgs) Elevation (ft. AMS Sample Run Num Sample/Int/Type Blow Counts N - Value / RQD (Recovery (feet) PID Headspace (t PID Headspace (t		
Der Elev San San N - N Rec Rec Geo	å	
_ 135 -		
- 20		4" Black Steel Casing (3' ags- 100' bgs)
130 -		Bentonite/Cement Grout (0-100'
		bgs)
- 25		
		2" Sch. 80 PVC
		Riser (2.5' ags- 103' bgs)
_ 125 -		
- 30		8" borehole (0- 100' bgs)
120 -		
- 35		
	Remarks: bgs = below ground surface; ags = above g AMSL = above mean sea level; HZ = horizo	round surface; NA = not applicable/available;
	Rock Quality Designation; ppm = parts per i	million; $PID = photoionization detector.$
ARCADIS	Numerical values in the Bedrock Fractures	column represent dip angles (in degrees).
Infrastructure · Water · Environment · Buildings		

Client: SRSNE Site Group	Well/E	Boring ID: MW-1003R
Site Location:	Boreh	ole Depth: 120' bgs
SRSNE Superfund Site		
Southington, CT		
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm) Geologic Column	s a la construction de la constr	
Depth (ft. bgs) Elevation (ft. AMS Sample Run Num Sample/Int/Type Sample/Int/Type Sample/Int/Type Sample/Int/Type Recovery (feet) PID Headspace (f	Stratigraphic Description	
Depth (ft. bgs) Elevation (ft. A Sample Run N Sample/Int/Tyr Sample/Int/Tyr Sample/Int/Tyr Sample/Int/Tyr Sample/Int/Tyr Sample/Int/Tyr Blow Counts PID Headspace Geologic Colu	Stratigraphic Description	Well Construction
Depth (ft. bg Elevation (ft. Sample Run Sample/Int/T Sample/Int/T Sample/Int/T N - Value / R Recovery (fé PID Headsp [:] Geologic Co	Bed	
115 -		
- 40		4" Black Steel
		Casing (3' ags- 100' bgs)
_ 110 -		Bentonite/Cement Grout (0-100' bgs)
- 45		
		2" Sch. 80 PVC
		Riser (2.5' ags- 103' bgs)
_ 105 -		
50		8" borehole (0- 100' bgs)
100 -		
5		
	Remarks: bgs = below ground surface; ags = above g	round surface; NA = not applicable/available;
ADCADIC	AMSL = above mean sea level; HZ = horizo Rock Quality Designation; ppm = parts per r	ntal fracture; IVI = mechanical break; RQD = million; PID = photoionization detector.
ARCADIS	Numerical values in the Bedrock Fractures	column represent dip angles (in degrees).
Infrastructure · Water · Environment · Buildings		

Client: SRSNE Site Group		Well/E	Boring ID: MW-1003R
Site Location:		Boreh	ole Depth: 120' bgs
SRSNE Superfund Site			
Southington, CT			
Depth (ft. bgs) Elevation (ft. AMSL) Sample Run Number Sample/Int/Type Blow Counts N - Value / RQD (%) Recovery (feet) PID Headspace (ppm)	nres		
Depth (ft. bgs) Elevation (ft. AM Sample Run Nun Sample/Int/Type Sample/Int/Type Slow Counts N - Value / RQD N - Value / RQD Recovery (feet) PID Headspace (Geologic Column Bedrock Fractures		
Depth (ft. bgs) Elevation (ft. A Sample Run N Sample/Int/Tyj Sample/Int/Tyj Sample/Int/Tyj Recovery (fee PID Headspac	ogic o	Stratigraphic Description	Well Construction
Depth (ft. bg Elevation (ft. Sample Run Sample/Int/T Sample/Int/T N - Value / R Recovery (fé PID Headspi	Bed		
95 -			
- 60			4" Black Steel
			Casing (3' ags- 100' bgs)
90 -			Bentonite/Cement Grout (0-100' bgs)
- 65			
			2" Sch. 80 PVC
			Riser (2.5' ags- 103' bgs)
- 85 -			
- 70			8" borehole (0- 100' bgs)
80 -			
- 75			
	Remarks: b	gs = below ground surface; ags = above gr	round surface; NA = not applicable/available;
ADCADIC		MSL = above mean sea level; HZ = horizo ock Quality Designation; ppm = parts per r	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector.
ARCADIS	N	umerical values in the Bedrock Fractures of	column represent dip angles (in degrees).
Infrastructure · Water · Environment · Buik			

Clie	ent: SF	SNE S	Site Gr	oup					Well/E	Boring ID: MW-1003R
Site	Loca	ion							Boreh	ole Depth: 120' bgs
SI	RSNE	Superf	und S	ite						
S	outhing	gton, C	Т							
	er			()		(m				
	Elevation (It. AMSL) Sample Run Number	be		N - Value / RQD (%)	j.	PID Headspace (ppm)	L L L	Bedrock Fractures		
bgs.	Sun N	nt/Ty	Ints	e/RC	y (fee	dspa	Colt	Frac	Stratigraphic Description	Well Construction
Depth (ft. bgs)	nple F	Sample/Int/Type	Blow Counts	Value	Recovery (feet)	Hea	Geologic Column	drock		
Dep	San	Sar	Blov	ż	Re	DIA	Gec	Be		
-										
- 75	5 -									
_	-									
80										4" Black Steel Casing (3' ags- 100' bgs)
-	1									
_	-									
70	0 -									Bentonite/Cement Grout (0-100'
_										bgs)
-										
— 85	-									
	-									2" Sch. 80 PVC
										Riser (2.5' ags- 103' bgs)
-										
- 65	5 -									
_	-									
90										8" borehole (0- 100' bgs)
-	1									
_	-									
60	0 -									
_										
-										
— 95	-									
	_									
								Ren	narks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizo	round surface; NA = not applicable/available; ntal fracture; M = mechanical break: ROD =
0		AR	C	ΛΓ	1	C		1	Rock Quality Designation; ppm = parts per r	nillion; PID = photoionization detector.
							in an		Numerical values in the Bedrock Fractures of	column represent dip angles (in degrees).
intrast	ructur	e - Wate	ertenv	ronn	ient-	Build	ings	1		
								1		

SRSNE Superfund Site Southington, CT

Borehole Depth: 120' bgs

Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description	Well Construction
- - - - - - - - - - - - - - - - - -	- 45 - -	BR1	100- 110	NA	97	10	NA		HZ HZ 5 HZ M	Maroon coarse-grained SANDSTONE (Arkose), gray patches of discoloration throughout, 2.5YR 3/3. Becoming very coarse-grained (conglomerate-like) between 101.1' and 102.7' bgs. Becoming finer grained between 102.7' and 104' bgs. 2.5YR 3/2 between 107' and 109' bgs.	8" borehole (0- 100' bgs) 2" Sch. 80 PVC Riser (2.5' ags- 103' bgs) 4" Black Steel Casing (3' ags- 100' bgs) 3.8" borehole (100-120' bgs) #0 Silica Sand Pack (100-120' bgs) 2" ID, 0.010" slot Sch. 80 PVC Sector (102' 148]
- - - 1	- 40 - 15 - -		110- 120					ings	¹⁵ M	Maroon coarse-grained SANDSTONE (Arkose), 2.5YR 3/3. Becoming finer grained below 113.4' bgs. narks: bgs = below ground surface; ags = above gr AMSL = above mean sea level; HZ = horizor Rock Quality Designation; ppm = parts per n Numerical values in the Bedrock Fractures c	ntal fracture; M = mechanical break; RQD = nillion; PID = photoionization detector.

Site Location:

SRSNE Superfund Site Southington, CT

Borehole Depth: 120' bgs

	000		jion, o	•						
Depth (ft. bgs)	Elevation (ft. AMSL)	Sample Run Number	Sample/Int/Type	Blow Counts	N - Value / RQD (%)	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Bedrock Fractures	Stratigraphic Description Well Construction
	- 35 - - 20 - - 30 - - 25 - - - 25 - - - - 30 - - - - - - - - - - - - - - - - - - -	BR3	110-120	NA	98	10	NA		HZ 15 15 15 60 15	End of Boring at 120' bgs
- - - 13	20 - - 35									
			AR • Wate			nent	Build			narks: bgs = below ground surface; ags = above ground surface; NA = not applicable/available; AMSL = above mean sea level; HZ = horizontal fracture; M = mechanical break; RQD = Rock Quality Designation; ppm = parts per million; PID = photoionization detector. Numerical values in the Bedrock Fractures column represent dip angles (in degrees). Well Double Conced Bedrock left:

ARCADIS

Appendix B

Geophysical Applications Report Borehole Geophysics Logging Report Wells MW-1001R & MW-1002DR SRSNE Site Southington, Connecticut

> Prepared for ARCADIS U.S., INC. May 2012

INCORPORATED

May 9, 2012

Mr. Ray Stevenson ARCADIS U.S., INC. 160 Chapel Road – Suite 201 Manchester, CT 06042

phone: 860-533-9917 email: rstevenson@arcadis-us.com

Subject: Borehole Geophysics Logging Report Wells MW-1001R & MW-1002DR SRSNE Site Southington, Connecticut

Dear Mr. Stevenson:

This report describes borehole geophysics logging performed by Geophysical Applications, Inc. at the above-noted site, to help identify and characterize hydraulically-active bedrock fractures encountered by two bedrock boreholes. MW-1001R was adjacent to the Oak Hill Cemetery entrance driveway, near the intersection of Route 10 and Flanders Street. MW-1002DR was located west of Route 10, in a low-lying wooded area.

The contracted logging suite included conventional logs (caliper, fluid temperature, and fluid resistivity) and acoustic televiewer imaging. Heat-pulse flowmeter testing during both ambient and pumping conditions was also requested at MW-1001R.

METHODS OF INVESTIGATION

Survey Control

All borehole log depths were referenced to depths below ground surface. The geophysical logging winch contains an optical depth encoder, to maintain depth measurements accurate within approximately \pm 0.2 feet throughout a borehole.

Borehole Geophysics Logging

A Mount Sopris model 4MXB logging winch was used with a Mount Sopris caliper probe to obtain the conventional geophysical-log data. These logs were recorded at 0.1-foot depth increments, as determined by the logging winch's digital depth encoder.

Fluid temperature (FTemp) and fluid resistivity (FRes) logs were recorded during the first logging run at each well, using a downward logging speed of approximately five feet per minute, to help identify subtle variations in those fluid properties. A sub-assembly on the bottom of the caliper probe obtained these fluid measurements. Caliper logging was subsequently performed while pulling the probe upward through the borehole at approximately 12 feet per minute.

215 Hopping Brook Road • Holliston • MA • 01746 508-429-2430 • FAX 508-429-0488

Mr. Ray Stevenson ARCADIS U.S., INC.

Acoustic televiewer (ABI) data were obtained using an Advanced Logic Technologies (ALT) model ABI40 acoustic televiewer probe, with the Mount Sopris winch and an ALT model Abox electronics console. ATV data were recorded at 0.01-foot depth intervals, with one pixel for each 1.25-degree arc-segment around the borehole wall, at a logging speed of approximately 3.3 feet per minute.

A pair of centralizer assemblies positioned the televiewer probe near the middle of the boreholes. Each centralizer included four stainless-steel bow springs, clamped to the probe housing with brass compression fittings, at positions recommended by the probe manufacturer to minimize the risk of interference with the probe's internal three-component magnetometers.

Flowmeter data were recorded at MW-1001R with a Mount Sopris heat-pulse flowmeter probe, at specific depths inferred from field plots of the FRes, FTemp, caliper and acoustic televiewer logs. Flowmeter data were initially recorded under ambient conditions. The same test depths were subsequently repeated while pumping from a short distance below the water level with a variable-speed Fultz pump.

All geophysical log data were recorded on a laptop computer's hard drive, and copied to CD-ROM as a backup precaution.

Post-survey plot scales were adjusted to display as much detail as possible. All conventional logs and flowmeter data were merged onto one plot, to aid data correlation. Televiewer logs are presented on a separate page, at an expanded vertical scale, for clarity.

Equipment Decontamination Procedures

On-site decontamination consisted of an Alconox scrub and tap-water rinse of the logging cable and probes after each logging run.

SURVEY LIMITATIONS

Measured geophysical-log depths are estimated to be accurate within \pm 0.2 feet at this site, allowing for some slippage of the winch's depth-measurement wheel.

The caliper-probe's arms can measure borehole diameters up to approximately 16 inches. Caliper logs can most-confidently detect fractures that cross a borehole at moderate angles, e.g. less than approximately 70 degrees from horizontal. Caliper logs may not accurately detect near-vertical fractures.

The acoustic televiewer probe relies on three-component magnetometers to orient the recorded images with respect to magnetic north. Per Arcadis' request, the televiewer images were rotated to correct for magnetic declination (13.93 degrees west), resulting in televiewer logs and interpretations that are referenced to true north. Dip orientations of televiewer-inferred features within four to six feet of a steel casing are therefore approximate.

The heat-pulse flowmeter probe can measure water flow rates between 0.02 and approximately 1.2 gallons per minute (gpm). Higher flow rates may be erroneously characterized as zero flow by this probe.

Hydraulically-active fracture zones were inferred by correlating numerous geophysical logs. These interpretations are a subjective judgment based upon available data.

RESULTS

Geophysical log data and generalized log interpretations are described below. Specific interpretations regarding possible hydraulically-active depths are listed in the "comments" column on the conventional log plot.

All geophysical logs described in this report are presented in Appendix A. Summary televiewer interpretations are provided in Appendix B. This televiewer-interpretation table is an Excel spreadsheet listing observed planar-feature depths, down-dip compass direction for each planar feature (note that these are perpendicular to the strike direction, and are referenced to true north), dip angles with respect to horizontal, and whether an inferred feature was judged to be relatively open or less-open.

The caliper log is presented in the left-most conventional log-plot column. Inflections to the right indicate borehole enlargements, for example where the drill bit passed through a fracture zone.

Fluid temperature (FTemp) and fluid resistivity (FRes) logs are presented in the next panel on each conventional-log plot. Localized inflections or changes in slope of FTemp or FRes logs typically represent water entering or exiting a borehole. Large inflections at the very bottom of a borehole may represent only accumulated sediments with temperature or electrical properties that contrast with the water column.

Heat-pulse flowmeter data are presented on the caliper column (ambient flow measurements) and on the FTemp/FRes column (flow measurements while pumping) on the MW-1001R conventional log plot. Shaded boxes to the left of centerline on either panel would represent downward water flow, with the box length indicating the flow magnitude in gpm. Shaded boxes to the right of a panel's centerline represent upward water flow. Filled circles represent depths where "zero" flow was observed (i.e., flow less than the probe's minimum detectable rate, approximately 0.02 gpm).

Flow rates shown on the conventional log plot are as reported by the instrument vendor's dataacquisition software.

Acoustic televiewer data are presented via two columns (ABI40 "traveltime" and "amplitude"), where each column represents a cylindrical image sliced down the north edge and laid flat on the printed page. True north is at the left edge of each column, and the images progress through east, south, west, and back to north at the right-hand edge.

The acoustic televiewer log was evaluated using WellCAD's image-processing module, to measure planar-feature dip angles and down-dip azimuths. All interpreted down-dip azimuths are referenced to true north. Measured feature orientations are indicated by a tadpole plot, where each filled-circle indicates a feature's dip angle from horizontal (plotted on a graph that ranges between 0 and 90 degrees from left to right). Each tadpole tail points in the down-dip azimuth, assuming true north is straight up on the printed page. Note that the down-dip azimuth indicated by each tadpole tail is perpendicular to the feature's strike direction.

Features represented on both the ABI travel-time and amplitude plots are denoted as "open". Features represented only on the ABI amplitude plots are likely to have smaller apertures (or possibly represent bedding planes or thin, mineral-filled joints), and are therefore judged relatively "less open". Red tadpoles, and red sine-curve lines superimposed on the ABI plots, represent inferred "open" fractures. Black tadpoles, and black sine curves on the ABI plots, represent interpreted "less-open" features.

Televiewer interpretations are also summarized using rose diagrams, to indicate the predominant down-dip azimuths of planar features observed in each well. These rose diagrams are presented with true north oriented straight up on the printed page. The red rose diagram represents inferred open features, and the black rose diagram represents inferred less-open features.

A stereoplot also summarizes the open and less-open feature orientations inferred from the acoustic televiewer log. The stereoplot was prepared using an equal-angle (Schmidt) projection of the southern hemisphere.

Annotations on the conventional log plot describe interpreted hydraulically-active depths, based on correlations between all of the available log data. Selected observations that may be of particular interest are described below.

MW-1001R

This well's caliper log shows steel casing to approximately 171 feet deep. The uncased section shows very little variation in diameter, except for an enlargement immediately below the casing bottom.

FTemp and/or FRes changes judged to possibly represent hydraulically active zones were observed near the following depths: 174, 177, possibly 178, 185, 186, 190, 194.5, and 196 feet.

Ambient flowmeter tests did not disclose measurable water flow, indicating that transmissive fractures encountered by this borehole may have similar hydraulic head.

Pumping flowmeter tests disclosed weak upward flow possibly entering between 192 to 195 feet deep, and exiting at a zone of lower head between 182 to 187 feet. Additional upward flow while pumping may have entered between 173 to 178 feet deep; some of this upward flow may have exited at a zone of lower hydraulic head near the casing bottom (the remainder flowed upward through the casing as the water level recovered).

Note that the submersible pump lowered the water level by approximately 1.5 feet, before the pump motor failed. The water level remained near that lowered elevation during the subsequent "pumping" flowmeter tests.

Note that the acoustic televiewer image shows an uncommonly smooth borehole wall, with very few fractures.

Most interpreted less-open planar features (black rose diagram) dip down toward the southwest, with a few additional planes dipping down toward the west, northwest, and east-northeast.

Only one open planar feature was observed, nearly coincident with the casing bottom. That plane dips down toward the west-northwest, as shown on the red rose plot.

The stereoplot shows two small clusters of planar-feature poles. The larger cluster, located to the right of the stereoplot's center, represents less-open and open planes that dip less than 10 degrees from horizontal down toward the southwest, west, and northwest.

Mr. Ray Stevenson ARCADIS U.S., INC.

A second small cluster of feature poles is plotted slightly left of the stereoplot's center. This cluster's black poles represent less-open planes that dip down toward the east-northeast between 10 to 15 degrees from horizontal.

MW-1002DR

This borehole's caliper log shows steel casing to approximately 101 feet, and the uncased section at greater depth. Minor enlargements in diameter are visible near 152, 172, 185 and 189 feet.

FRes and/or FTemp inflections judged likely to represent hydraulically active zones were noted near the following depths: 105, 108 to 109, 119 to 120, 125, 130, 133 to 136, 140.5, 142, 145, 148, 150, 154, 172, 177, 185, 189, possibly 193 to 195, and 196 feet. The FRes increase near 198 feet deep probably represents accumulated drilling residue.

The black rose diagram shows that most less-open planes dip down toward the northeast and southeast. Additional less-open planes dip down toward the east, east-southeast south, north, northwest, and west.

Observed open planar features (red rose diagram) dip down toward the south-southwest, southeast, and north-northwest.

The stereoplot diagram shows a group of five black poles below and left of the diagram's center that represent less-open planes dipping down toward the north-northeast to northeast between 20 and 40 degrees from horizontal. Red and black poles plotted left and slightly above the diagram's center represent open and less-open planes that dip down toward the east, east-southeast, and southeast, between 15 to 30 degrees from horizontal.

Three black poles plotted a short distance above the diagram's center represent less-open planes dipping down toward the south. Two red poles and one black pole located above and slightly right of the diagram's center represent open and less-open planes dipping down toward the south-southwest at approximately 30 degrees from horizontal. The red pole plotted near the stereoplot's lower-right edge represents an open plane dipping down toward the north-northwest at roughly 70 degrees from horizontal.

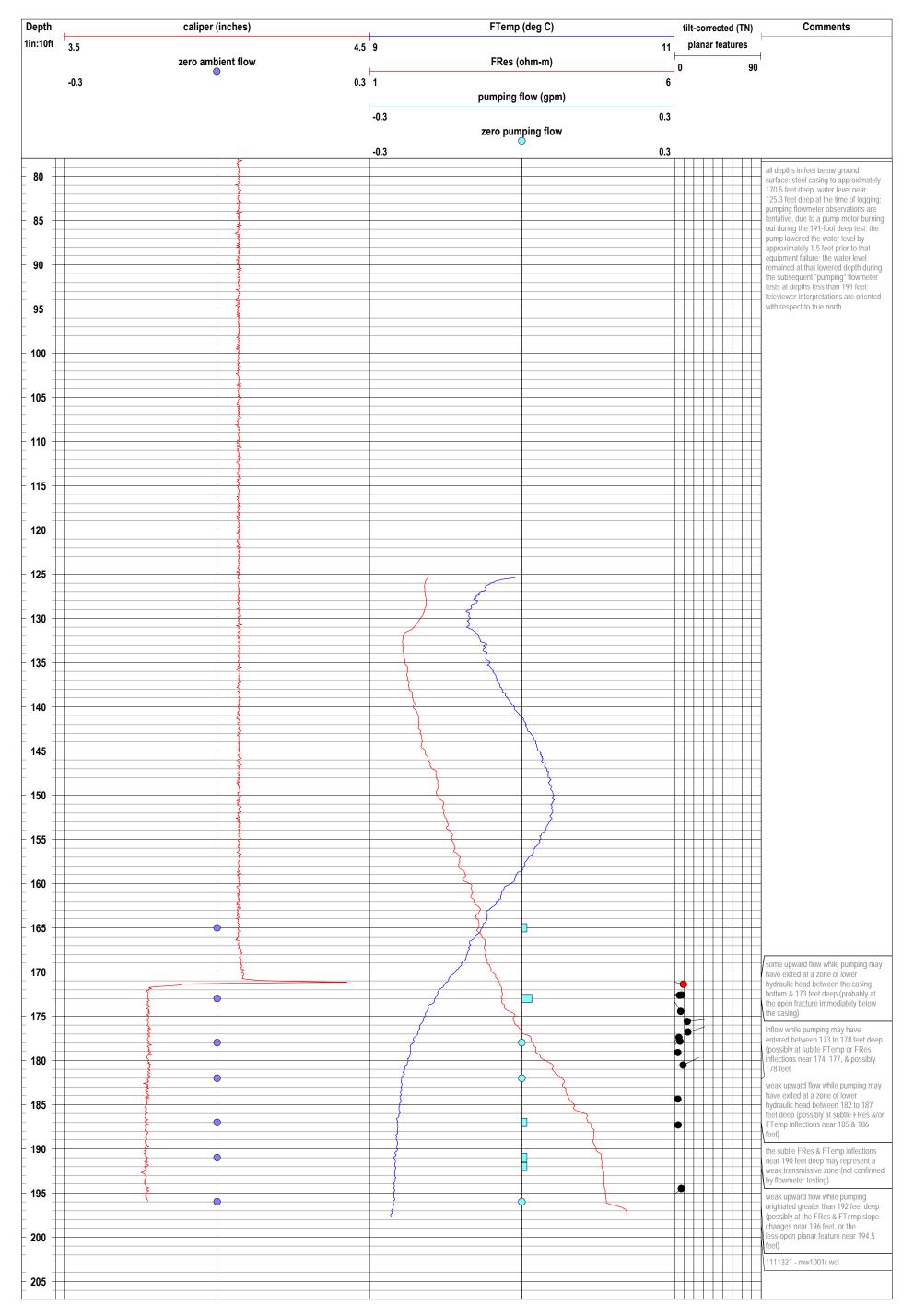
We appreciate this opportunity to provide geophysical services, and we welcome questions concerning this report. Please call the undersigned at 508/429-2430 if we may provide additional information that would benefit Arcadis' project.

* * * * *

Sincerely,

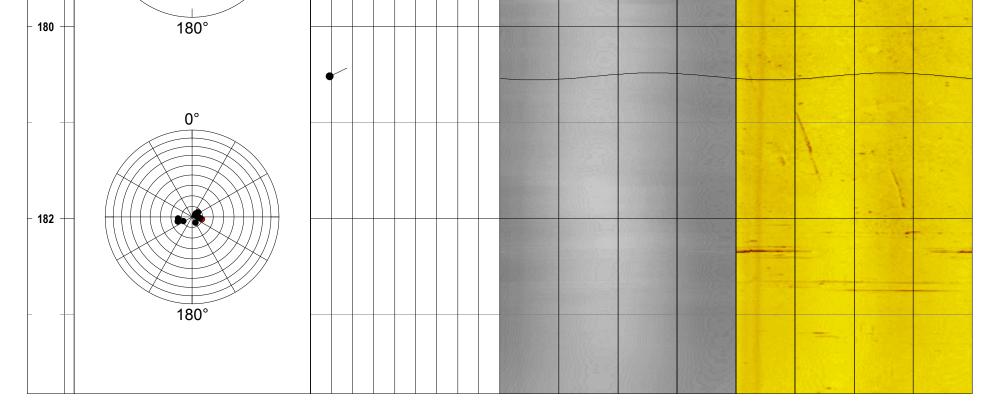
GEOPHYSICAL APPLICATIONS, INC.

Mark E. Blackey


Principal and Geophysicist

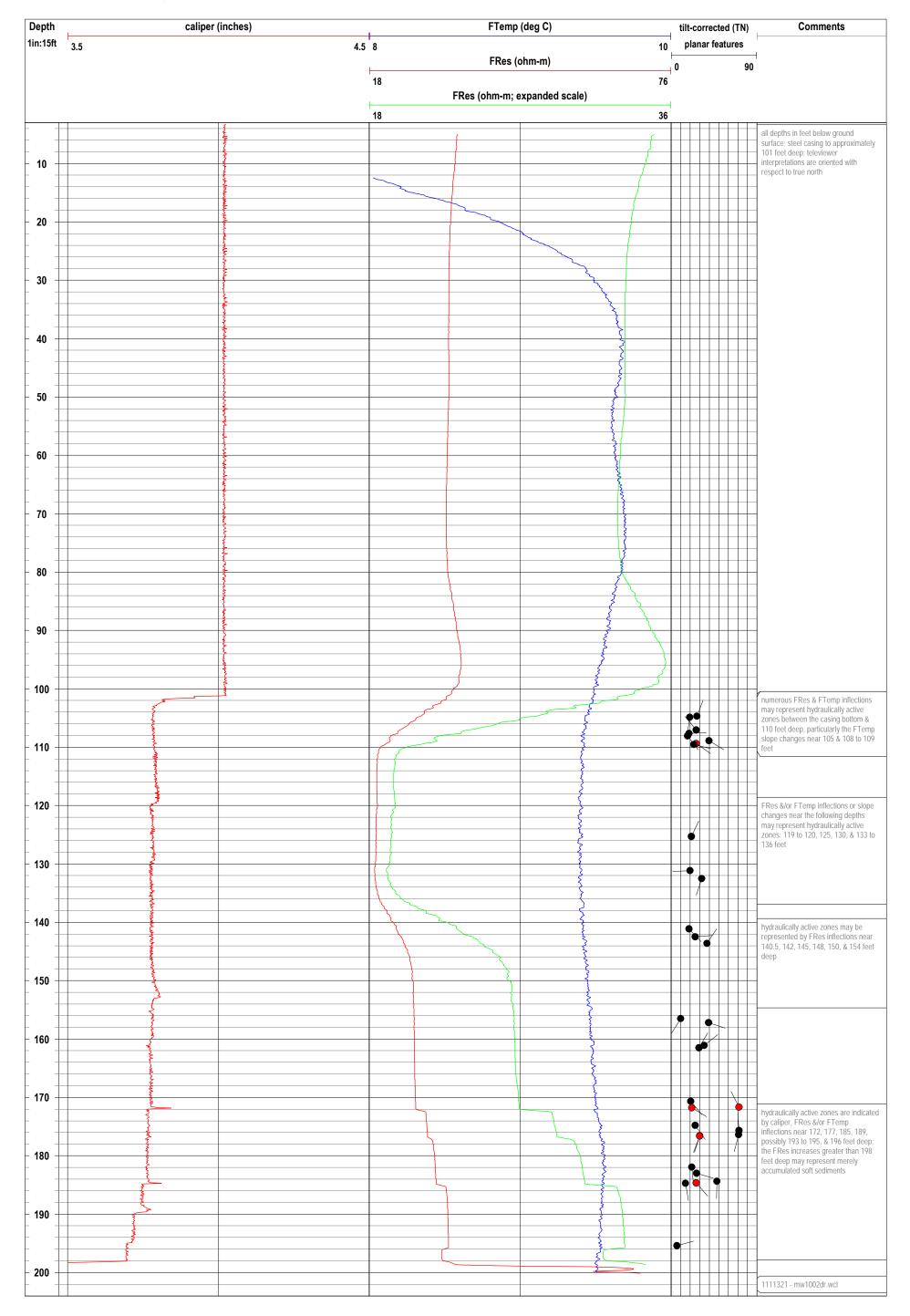
1111321 - 1111321-rpt.doc

Appendix A

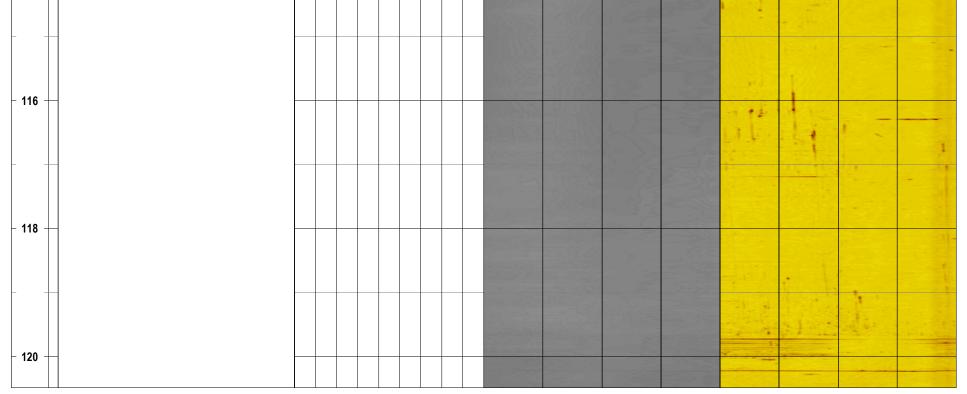

Borehole Geophysics Log Plots

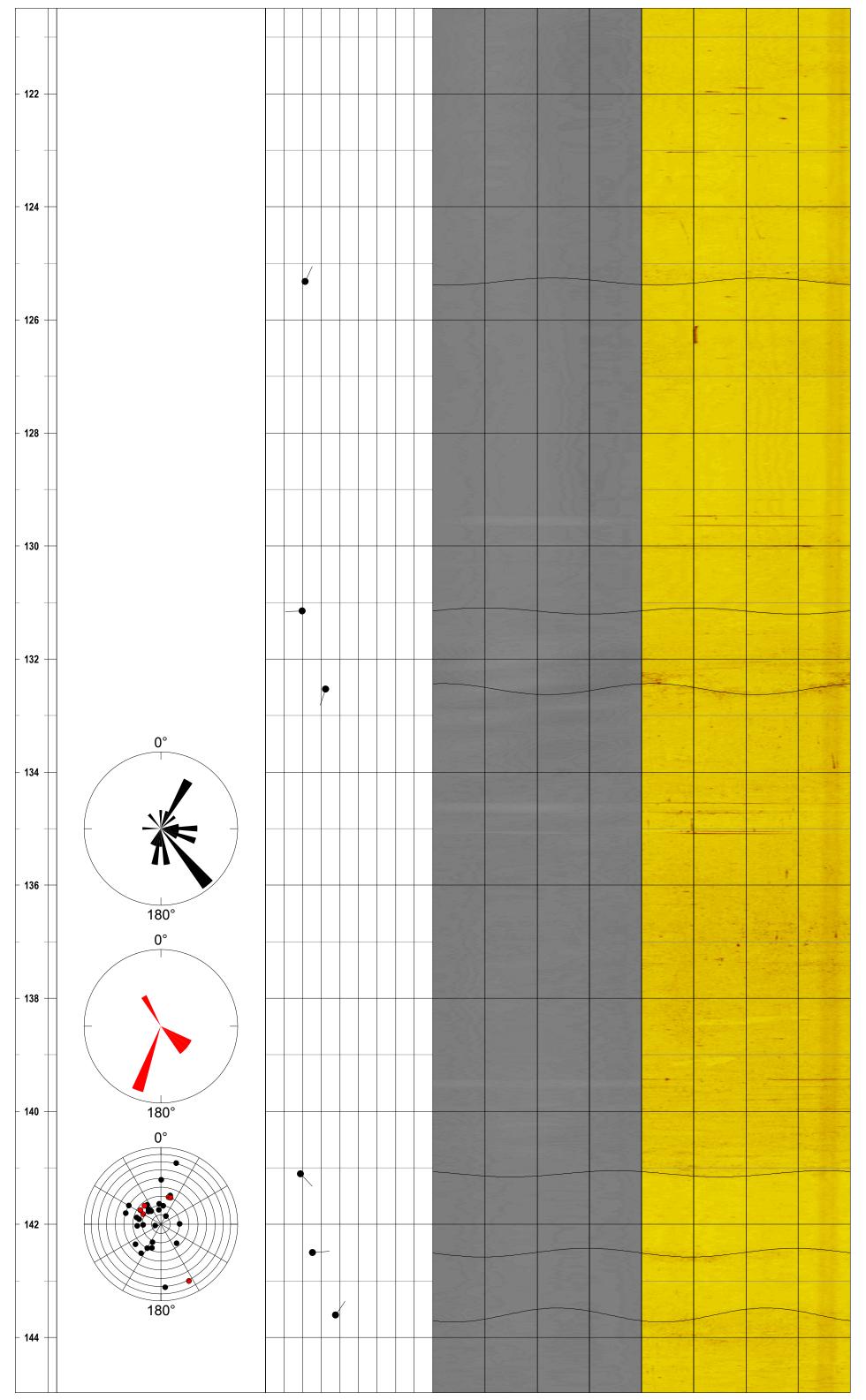
ARCADIS / Southington, CT - MW-1001R conventional log plot

ARCADIS / Southington, CT - MW-1001R acoustic televiewer log plot

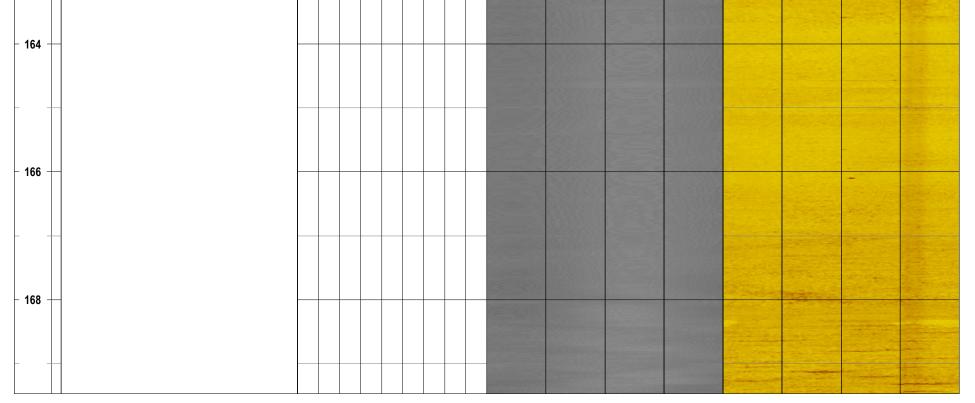

Depth	less-open feature rose	tilt-corrected planar features			ABI40 traveltime)			mplitude	
1in:1ft	Azimuth Count - Percent Interval open feature rose	0	90 0°	90° 4 F	180° BI40 planar featu	270°	0° 0°		30° 270° nar features	° 0°
H	Azimuth Count - Percent Interval		0°	90°	180°	270°	0° 0°		30° 270	° 0°
1	stereoplot	1	Ū	50	100	210	0 0	50 10	50 270	Ū
	Schmidt Plot - LH - fracs									
										120
- 170 -										1
										18:
								Praint Print		120
			6				-			
			120			in the second	. <u>)</u> è	Barn	A DECEMBER OF	SHAT AND
			Ser.						1000	5
								10000	NEL.	1200
- 172							1. (43 +74		with the art	
							- Andrew		and the	1. S.
							1			6.32
						and the second				100
			11 - 214							
							in Sugar		1000	
									-	
							1000			
- 174									100	
	0°									1.3
							and the		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
					SA CA	A Star		Section 1		
						all and				
- 176					16-21	1 Aller		-		
170						ANNE-			1.20	
						and the second	1			
			(Marco)				1			
	180°				1.25	1112-				-
							1		-	
					1997 (0 1990 (0 1997 (0 19))))))))))			-		
					2	A.	1	-		
- 178	0°				S					
								1.		
						alle:				
					72	and the second	-		1200	
- +					2510	1105				.Fr
					12 Carlos	Moste	- the			
						100 10 10 10 10 10 10 10 10 10 10 10 10			-	

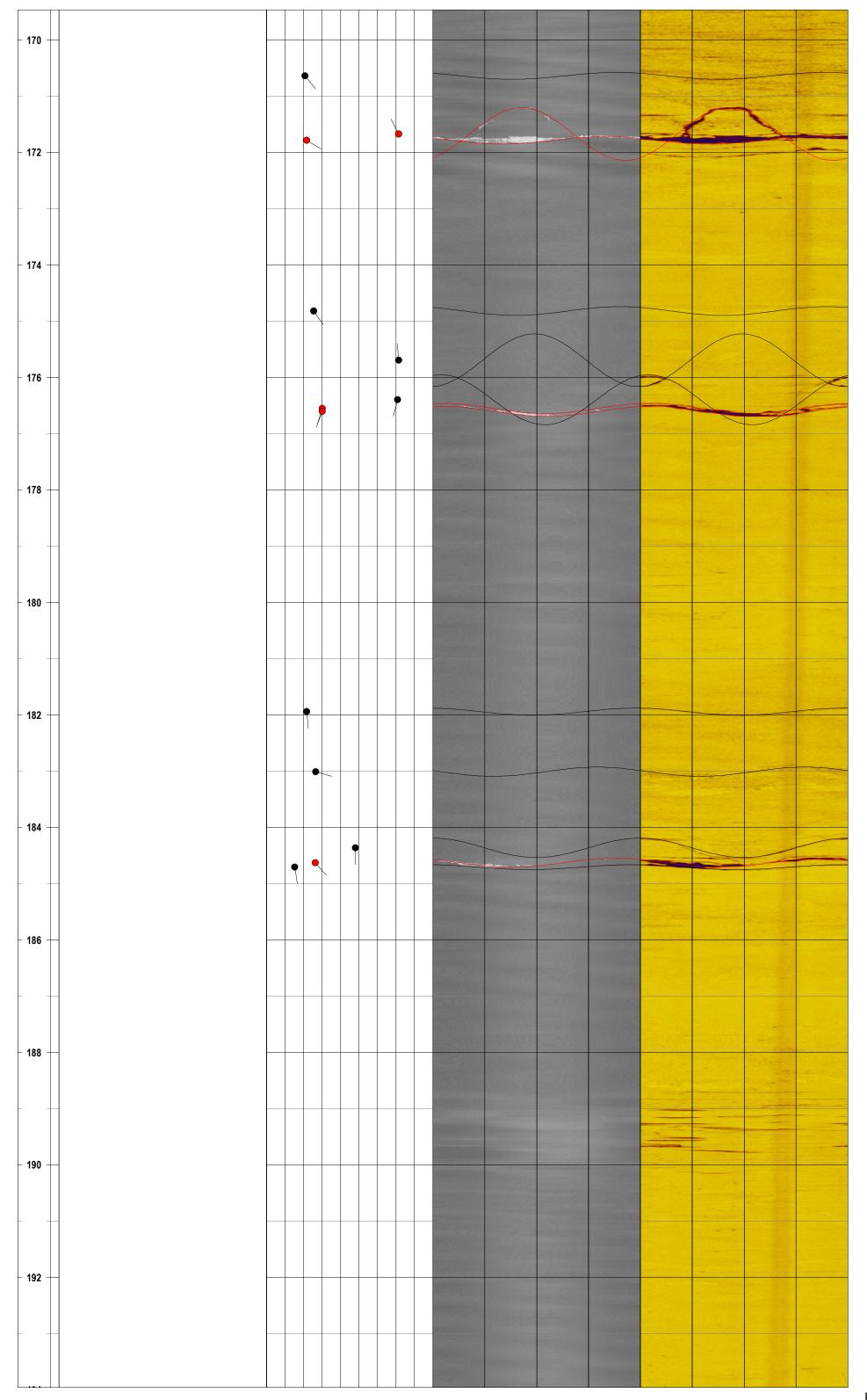
Page 1


- 184								
	•					ſ		
- 186								
	•							
- 188						l	1	-
							1	
							•	
- 190 —								
- 192							-	
								and the second se
- 194						1		-
	•							1
								L
- 196								
							1	
					1	11		
				1. 1151000				


ARCADIS / Southington, CT - MW-1002DR conventional log plot

ARCADIS / Southington, CT - MW-1002DR acoustic televiewer log plot


Depth	less-open feature rose		corrected pla	anar features				40 traveltime					mplitude	
in:1.5ft	Azimuth Count - Percent Interval open feature rose	0			90 0°	9	0° planar	180° ABI40 featu	270° 'es	0° 0°		90° 18 planar AB	30° 270 40 features)°
	Azimuth Count - Percent Interval stereoplot				0°	⁹ 9	0°	180°	270°	0° 0°	1		30° 270)°
	Schmidt Plot - LH - fracs													
										-353	1.00			
							2		in the second				ç	and a
									and the second		183			
100 —					110	1. 200 1. 1. 1. 1.	Mr. Carl	1.2.7 1.8 C (d)					6	and the second
														-
							1995 - D				1			
_														
							-			-	aller -			
							-			1	1			12.43
02 —										223	A A A A			
									10-11 (10-11)				1.1.1	
										1	927		Carlete	
							13653							
										the second				
												1		
											Part -	20.00		
04 +											-			
													and a start	1
														-
			7					-				1		
										2		1.1.1.1	A state	1
										3			1. 2. 2.	A.S.C.
06 —											ALC:			-
											and the			de la
												100	No. Carlos	
											100	-		Sec.
											-	0		1
													Contraction of the	the second
08 —												Tota a		-
											Sile.		and the second	-
												*		
					_						200			
											-2			
											-		-	
							Section of							
10 +														
										S.S.				
+										al se				
													-	
													-	
12 —														
										The second				
										222				
					27			11 813				5.00		
										28				
							CZ S.	(
114 —							Z Z	12 19-2		i j	1			
												-		
1 1		- I I												



Page 2

					5						-
										19 Faire	
- 146 +									and the second second		-
- 148 +											
										「花毛玉	
							<u> </u>			9333	1262
- 150											 • •
- +							133				
					24						
							O Re				
- 152					LE EEE	188-A.	31	11111			
							125-2-1				
- 154								144 2			
- 156									- Starle -		
	•					333777					
		•	\sim								
					1999		2-21				
- 158							1	1.37 3			
- +											
							1 = 2				
											12
- 160						1753		2.000.00			
									2-		
- +											
											1.0
- 162						13-13-13-13-13-13-13-13-13-13-13-13-13-1				1.000	
- +											
					the state					1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

- 196	•			•		
- 198						
- 200						

Page 5

Appendix B

Planar Feature Orientations Measured from the Acoustic Televiewer Logs

Planar-feature Orientations Interpreted from the MW-1001DR Acoustic Televiewer Log SRSNE Site Southington, CT Prepared for: Arcadis U.S., Inc. 1111321 - mw1001dri.xls

depth (feet)	down-dip compass azimuth (degrees)	dip angle (degrees)	interpreted planar feature category	
171.38	284.4	9.7	open	
172.59	279.4	7.9	less-open	Note that down-dip compass azimuth
172.64	276.6	5.8	less-open	is perpendicular to the strike direction.
174.44	328.4	6.6	less-open	
175.61	83.4	13.4	less-open	Note that interpreted down-dip compass
176.80	72.6	14.4	less-open	azimuths are with respect to
177.42	227.2	5.0	less-open	true north
177.84	237.68	5.88	less-open	
179.12	253.83	3.93	less-open	Down-dip azimuths & dip angles were
180.52	63.8	9.3	less-open	corrected for borehole deviation from
184.39	234.6	3.6	less-open	vertical.
187.31	234.8	4.1	less-open	
194.51	233.0	7.3	less-open	

Planar-feature Orientations Interpreted from the MW-1002DR Acoustic Televiewer Log SRSNE Site Southington, CT Prepared for: Arcadis U.S., Inc. 1111321 - mw1002dri.xls

	down-dip compass	dip	interpreted planar	
depth	azimuth	angle	feature	
(feet)	(degrees)	(degrees)	category	
104.67	21.13	27.19	less-open	
104.89	187.9	19.8	less-open	Note that down-dip compass azimuth
107.08	320.4	26.6	less-open	is perpendicular to the strike direction.
107.62	86.9	19.0	less-open	
108.07	142.9	17.4	less-open	Note that interpreted down-dip compass
108.91	120.4	40.1	less-open	azimuths are with respect to
109.36	125.1	26.5	open	true north
109.52	103.4	23.9	less-open	
125.32	25.4	21.5	less-open	Down-dip azimuths & dip angles were
131.15	268.05	19.93	less-open	corrected for borehole deviation from
132.53	198.13	32.41	less-open	vertical.
141.10	136.3	19.0	less-open	
142.50	85.9	25.4	less-open	
143.61	34.5	37.9	less-open	
156.51	212.7	10.4	less-open	
157.18	107.5	39.7	less-open	
161.09	51.7	35.0	less-open	
161.51	29.61	29.58	less-open	
170.64	140.92	20.89	less-open	
171.67	333.59	71.52	open	
171.79	120.05	21.83	open	
174.82	144.96	25.58	less-open	
175.7	355.92	71.5	less-open	
176.40	194.3	71.1	less-open	
176.55	196.4	30.2	open	
176.61	200.2	30.3	open	
181.94	174.6	21.9	less-open	
183.01	105.6	26.8	less-open	
184.36	180.5	48.3	less-open	
184.63	138.4	26.4	open	
184.71	171.2	15.4	less-open	
195.40	75.2	6.4	less-open	

Borehole Geophysics Logging Report Well MW-1003DR Southington, Connecticut

> Prepared for ARCADIS U.S., INC. September 2012

GEOPHYSICAL APPLICATIONS

INCORPORATED

September 14, 2012

Mr. David Cornell, P.G., C.W.D. ARCADIS U.S., INC. 6723 Towpath Road – P.O. Box 66 Syracuse, NY 13214

phone: 315-671-9379 email: david.cornell@arcadis-us.com

Subject: Borehole Geophysics Logging Report Well MW-1003DR SRSNE Site Southington, Connecticut

Dear Mr. Cornell:

This report describes borehole geophysics logging performed by Geophysical Applications, Inc. at the above-noted site, to help identify and characterize hydraulically-active bedrock fractures encountered a bedrock borehole. MW-1003DR is located in a wooded area south of Lazy Lane.

The contracted logging suite included conventional logs (caliper, fluid temperature, and fluid resistivity) and acoustic televiewer imaging.

METHODS OF INVESTIGATION

Survey Control

All borehole log depths were referenced to depths below ground surface. The geophysical logging winch contains an optical depth encoder, to maintain depth measurements accurate within approximately \pm 0.2 feet throughout a borehole.

Borehole Geophysics Logging

A Mount Sopris model 4MXB logging winch was used with a Mount Sopris caliper probe to obtain the conventional geophysical-log data. These logs were recorded at 0.1-foot depth increments, as determined by the logging winch's digital depth encoder.

Fluid temperature (FTemp) and fluid resistivity (FRes) logs were recorded during the first logging run at each well, using a downward logging speed of approximately five feet per minute, to help identify subtle variations in those fluid properties. A sub-assembly on the bottom of the caliper probe obtained these fluid measurements. Caliper logging was subsequently performed while pulling the probe upward through the borehole at approximately 12 feet per minute.

Acoustic televiewer (ABI) data were obtained using an Advanced Logic Technologies (ALT) model ABI40 acoustic televiewer probe, with the Mount Sopris winch and an ALT model Abox electronics console. ABI data were recorded at 0.01-foot depth intervals, with one pixel for

215 Hopping Brook Road • Holliston • MA • 01746 508-429-2430 • FAX 508-429-0488 each 1.25-degree arc-segment around the borehole wall, at a logging speed of approximately 3.3 feet per minute.

A pair of centralizer assemblies positioned the televiewer probe near the middle of the borehole. Each centralizer included four stainless-steel bow springs, clamped to the probe housing with brass compression fittings, at positions recommended by the probe manufacturer to minimize the risk of interference with the probe's internal three-component magnetometers.

All geophysical log data were recorded on a laptop computer's hard drive, and copied to CD-ROM as a backup precaution.

Post-survey plot scales were adjusted to display as much detail as possible. All conventional logs and flowmeter data were merged onto one plot, to aid data correlation. Televiewer logs are presented on a separate page, at an expanded vertical scale, for clarity.

Equipment Decontamination Procedures

On-site decontamination consisted of an Alconox scrub and tap-water rinse of the logging cable and probes after each logging run.

SURVEY LIMITATIONS

Measured geophysical-log depths are estimated to be accurate within \pm 0.2 feet at this site, allowing for some slippage of the winch's depth-measurement wheel.

The caliper-probe's arms can measure borehole diameters up to approximately 16 inches. Caliper logs can most-confidently detect fractures that cross a borehole at moderate angles, e.g. less than approximately 70 degrees from horizontal. Caliper logs may not accurately detect near-vertical fractures.

The acoustic televiewer probe relies on three-component magnetometers to orient the recorded images with respect to magnetic north. Dip orientations of televiewer-inferred features within four to six feet of a steel casing are therefore approximate.

Hydraulically-active fracture zones were inferred by correlating numerous geophysical logs. These interpretations are a subjective judgment based upon available data.

RESULTS

Geophysical log data and generalized log interpretations are described below. Specific interpretations regarding possible hydraulically-active depths are listed in the "comments" column on the conventional log plot. Per Arcadis' request, the televiewer images were rotated to correct for magnetic declination (13.93 degrees west), resulting in televiewer logs and interpretations that are referenced to true north.

All geophysical logs described in this report are presented in Appendix A. Summary televiewer interpretations are provided in Appendix B. This televiewer-interpretation table is an Excel spreadsheet listing observed planar-feature depths, down-dip compass direction for each planar feature (note that these are perpendicular to the strike direction, and are referenced to true north),

Mr. David Cornell, P.G., C.W.D.	September 14, 2012
ARCADIS U.S., INC.	Page 3

dip angles with respect to horizontal, and whether an inferred feature was judged to be relatively open or less-open.

The caliper log is presented in the left-most conventional log-plot column. Inflections to the right indicate borehole enlargements, for example where the drill bit passed through a fracture zone.

Fluid temperature (FTemp) and fluid resistivity (FRes) logs are presented in the next panel on each conventional-log plot. Localized inflections or changes in slope of FTemp or FRes logs typically represent water entering or exiting a borehole. Large inflections at the very bottom of a borehole may represent only accumulated sediments with temperature or electrical properties that contrast with the water column.

Acoustic televiewer data are presented via two columns (ABI40 "traveltime" and "amplitude"), where each column represents a cylindrical image sliced down the north edge and laid flat on the printed page. True north is at the left edge of each column, and the images progress through east, south, west, and back to north at the right-hand edge.

The acoustic televiewer log was evaluated using WellCAD's image-processing module, to measure planar-feature dip angles and down-dip azimuths. All interpreted down-dip azimuths are referenced to true north. Measured feature orientations are indicated by a tadpole plot, where each filled-circle indicates a feature's dip angle from horizontal (plotted on a graph that ranges between 0 and 90 degrees from left to right). Each tadpole tail points in the down-dip azimuth, assuming true north is straight up on the printed page. Note that the down-dip azimuth indicated by each tadpole tail is perpendicular to the feature's strike direction.

Features represented on both the ABI travel-time and amplitude plots are denoted as "open". Features represented only on the ABI amplitude plots are likely to have smaller apertures (or possibly represent bedding planes or thin, mineral-filled joints), and are therefore judged relatively "less open". Red tadpoles, and red sine-curve lines superimposed on the ABI plots, represent inferred "open" fractures. Black tadpoles, and black sine curves on the ABI plots, represent interpreted "less-open" features.

Televiewer interpretations are also summarized using rose diagrams, to indicate the predominant down-dip azimuths of planar features observed in each well. These rose diagrams are presented with true north oriented straight up on the printed page. The red rose diagram represents inferred open features, and the black rose diagram represents inferred less-open features.

A stereoplot also summarizes the open and less-open feature orientations inferred from the acoustic televiewer log. The stereoplot was prepared using an equal-angle (Schmidt) projection of the southern hemisphere.

Annotations on the conventional log plot describe interpreted hydraulically-active depths, based on correlations between all of the available log data. Selected observations that may be of particular interest are described below.

MW-1003DR

This well's caliper log shows steel casing to approximately 100 feet deep. The uncased section shows very little variation in diameter except for a slight enlargement between 111 to 125 feet, and an enlargement near 178 feet.

FTemp and/or FRes changes judged to possibly represent hydraulically active zones were observed near the following depths: 103, 107, 109, 113, 118, 131, 135, 141, 177, 180, and 183 feet.

Note that the acoustic televiewer image shows an uncommonly smooth borehole wall, with very few fractures.

Interpreted less-open planar features (black rose diagram) dip down toward the northeast, west to west-southwest, and east-southeast.

Interpreted open planar features (red rose diagram) dip down toward the south-southwest, southsoutheast to southeast, and east-southeast.

The stereoplot shows roughly four small clusters of planar-feature poles. A cluster of four red poles, located above the stereoplot's center, represents open planes that dip 20 to 30 degrees from horizontal down toward the south-southwest, south-southeast, and southeast. A second group of several black poles and one red pole, located left of the stereoplot's center, represents less-open planes and one open plane dipping down toward the east-southeast between 20 to 40 degrees from horizontal.

A third small cluster of feature poles is plotted slightly right of the stereoplot's center. These black poles represent less-open planes that dip down toward the west between 10 to 30 degrees from horizontal. A fourth small cluster of black poles, located at the stereoplot's center, represents less-open planes that dip less than 10 degrees from horizontal in multiple directions.

We appreciate this opportunity to provide geophysical services, and we welcome questions concerning this report. Please call the undersigned at 508/429-2430 if we may provide additional information that would benefit Arcadis' project.

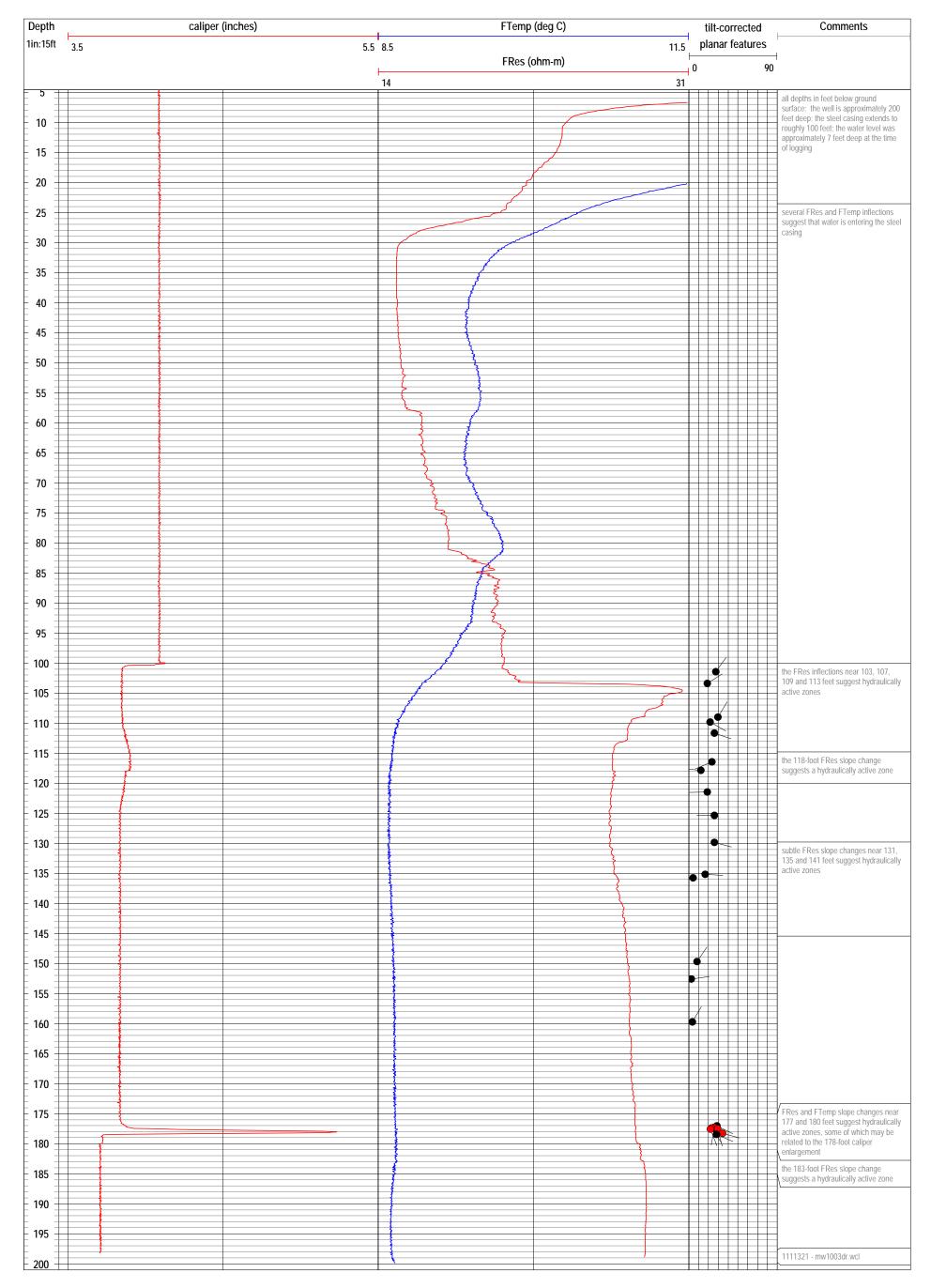
* * * * *

Sincerely,

GEOPHYSICAL APPLICATIONS, INC.

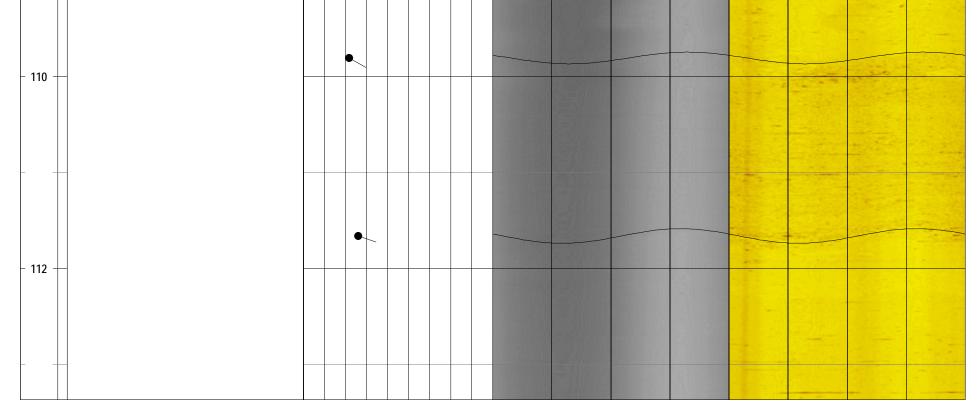
Lars Andresen Geophysicist

M.E. Blackeyous

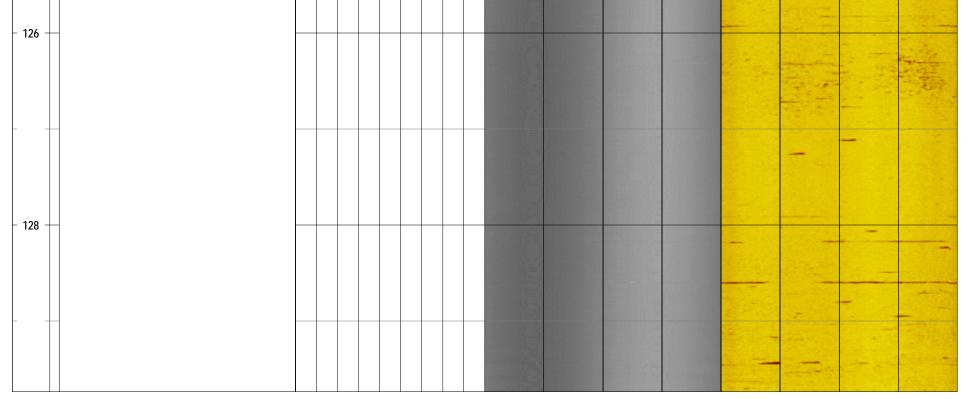

Mark E. Blackey Principal and Geophysicist

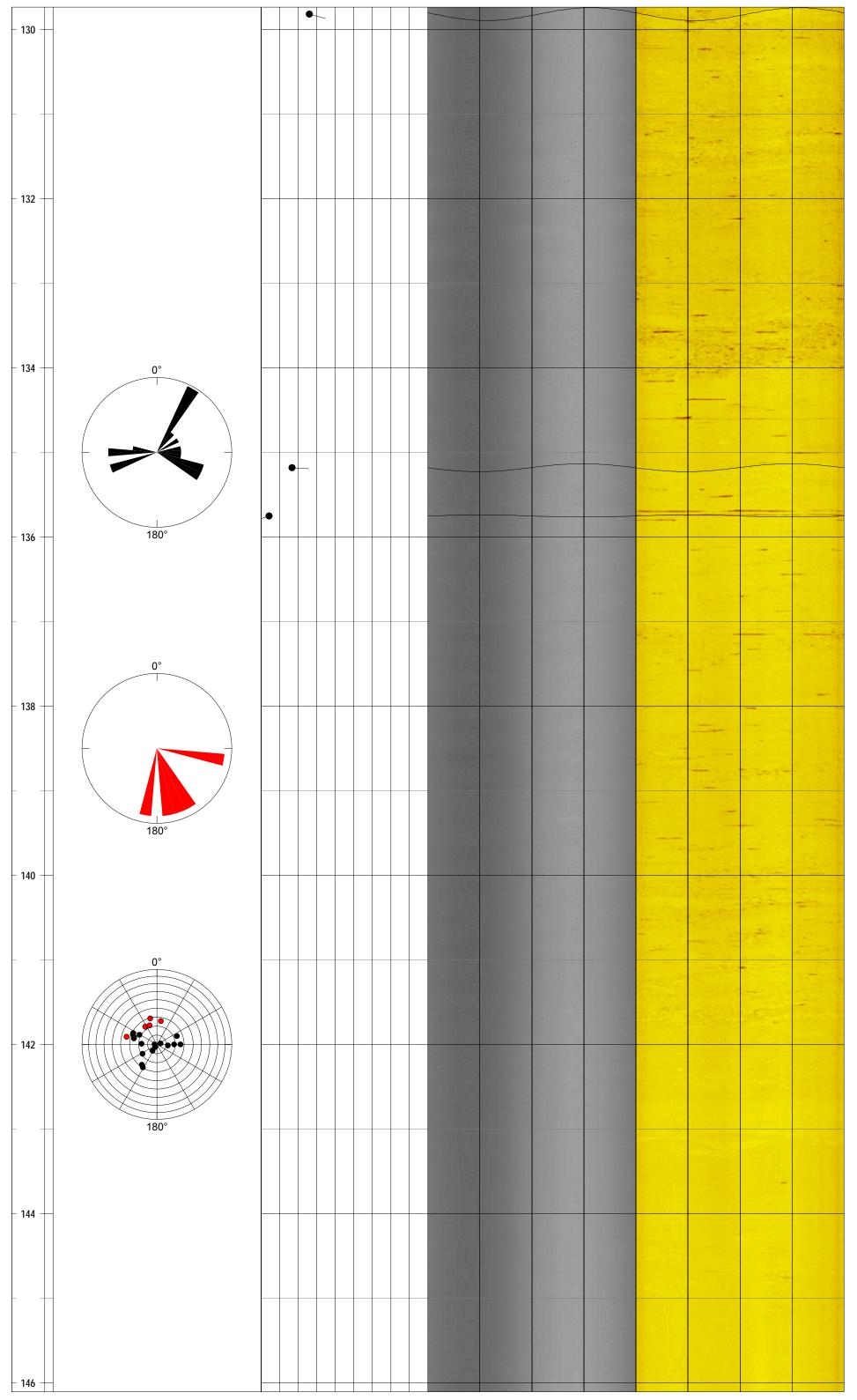
1111321-rpt_mw-1003dr.doc

Appendix A

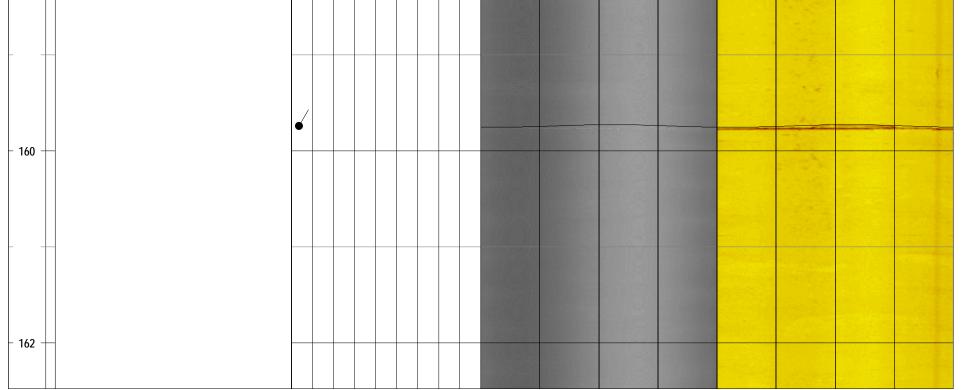

Borehole Geophysics Log Plot

ARCADIS / Southington, CT - MW-1003DR conventional log plot

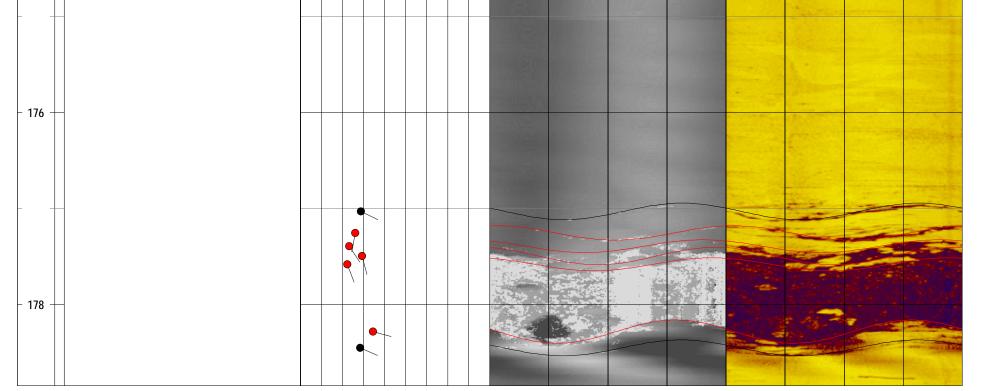


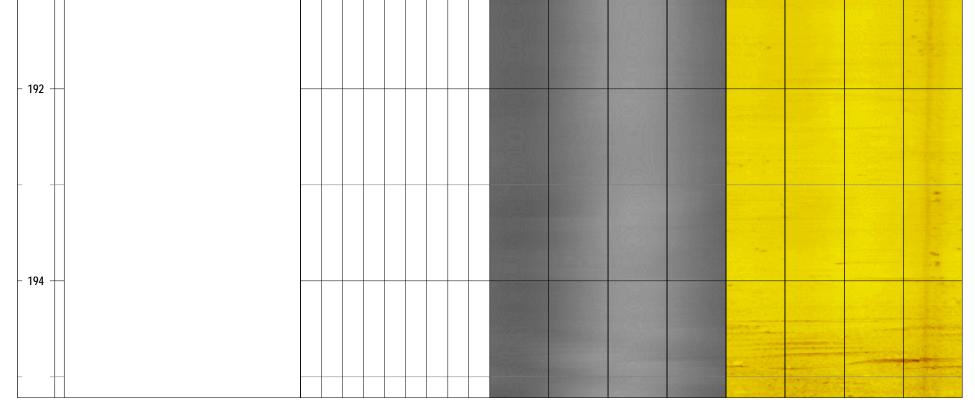

ARCADIS / Southington, CT - MW-1003DR acoustic televiewer log plot

Depth	less-open feature rose	, til	lt-correcte	d planar feature	es	A	BI40 travelti	me	_		ABI40	amplitud	le	
1in:1ft ⊢	Azimuth Count - Percent Interval	0			90 0°	90°	180°	270°	0° 0°	>	90° [.]	180°	270°	0°
⊢	open feature rose						ar ABI40 fea		0° 0'		planar Al			
	Azimuth Count - Percent Interval stereoplot				0°	90°	180°	270°	0°0		90° .	180°	270°	0°
	Schmidt Plot - LH - frac													
100													1	
- 100 —									A 49-5 - 1	1.057			Sector Mag	
													- 20 (3)	
									2	-	and a fight	1		
										E.		120		
									_	L.A.		1367		
										1				
102														
- 102 —											100			
												-		
								22 44						
										210				
										1				
- 104								14. 13						
- 104											11000			
										-				
						111 778								
											1000			
									2			1		
104													1.	
- 106 —														
												1		
										-				
									3			ant		
											-			
										-				
- 108											124			
											1.2.5			
											-	140		
											1		10	1
									4					
								NICE AND						
							A SALES CONTRACTOR			1	in the sound		Carlo Carlos	



	CONTRACT DESIGNATION AND ADDRESS OF ADDRESS	
- 114		
- 116		
- 118		
120		
- 122		
		and the second sec
		the state of the s
- 124		
F +		




- 148				Non-				
				Date: Sold State				
- 150	•			1. 11 11 11 11 11 11 11 11 11 11 11 11 1	8			
- 152				A CONTRACTOR	M. M.			
				The second second				
- 154								
				N. O. W				
- 156 —								
				a maria				
- 158				1000				

- 174 -		- 172 -		170	- 170 -	- 168 -	- 166 -		- 164 -	
10.010	00000	10000								
0.0		0.00	010		1000	0	en se		10 - 10 A	
								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

				Contraction of the local division of the			
180							
- 182							
- 184							
- 186 —							
- 188							
- 190							

- 196	_						
							Nerve Street
- 198 -							

Appendix B

Planar Feature Orientations Measured from the Acoustic Televiewer Log

Planar-feature Orientations Interpreted from the MW-1003DR Acoustic Televiewer Log SRSNE Site Southington, CT Prepared for: Arcadis U.S., Inc. 1111321 - mw1003dri.xls

	down-dip compass	dip	interpreted planar	
depth (feet)	azimuth (degrees)	angle (degrees)	feature category	
101.46	36.1	27.8	less-open	
103.41	56.9	18.9	less-open	Note that down-dip compass azimuth
109.00	31.3	29.8	less-open	is perpendicular to the strike direction.
109.81	119.4	21.8	less-open	
111.66	108.6	26.1	less-open	Note that interpreted down-dip compass
116.46	247.01	23.78	less-open	azimuths are with respect to
117.84	275.6	12.31	less-open	true north
121.46	269.2	18.9	less-open	
125.35	270.0	26.2	less-open	Down-dip azimuths & dip angles were
129.82	104.9	26.2	less-open	corrected for borehole deviation from
135.18	93.1	16.8	less-open	vertical.
135.75	252.44	4.38	less-open	
149.7	34.57	8.65	less-open	
152.58	82.2	2.6	less-open	
159.74	29.8	3.7	less-open	
177.03	115.86	28.75	less-open	
177.26	190.18	26.09	open	
177.4	146.11	23.24	open	
177.49	165.01	29.43	open	
177.58	159.09	22.37	open	
178.29	104.33	34.62	open	
178.45	112.8	28.5	less-open	

ARCADIS

Appendix C

Hydraulic Conductivity Calculations

Table 1 - Specific Capacity Test Results and Estimated Hydraulic Conductivity Values for New Wells Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut Southington, Connecticut

	Development/S		K Estimates (cm/sec)		
Location	C Test Completion Date	Time Drawdown (Jacob) Analysis	Specific Capacity (Walton) Analysis	Steady-State (Thiem) Analysis ¹	Average K Estimate (cm/sec)
Overburden Monitoring Well	s				
MW-1001M	12/28/11	1.7E-05		4.5E-05	3.1E-05
Bedrock Monitoring Wells					
MW-1001R	12/28/11	2.9E-06	5.2E-06		4.1E-06
MW-1002DR	03/20/12	6.8E-06	8.9E-06		7.9E-06
MW-1002R	03/20/12	4.9E-07	6.4E-07		5.7E-07

Notes:

cm/sec - centimeters per second

-- - not analyzed

gpm - gallons per minute

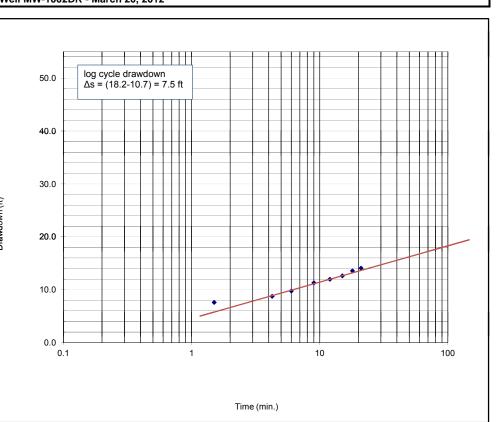
 Calculation of Jacob and Thiem analysis based on Kruseman, G.P., and N.A. de Ridder. Analysis and Evaluation of Pumping Test Data. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 377 p. 1990. Calculation of Walton analysis based on Walton, W.C. Selected Analytic Methods for Well and Aquifer Evaluation. Illinois State Water Survey. Bulletin 49. 1962.

Table 2 - Slug Test Hydraulic Conductivity Estimates for New Low-Yield Wells Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

		K Estimates (cm/sec)		
Location	Development/SC Test Completion Date	Bouwer and Dico	Average K (cm/sec)	Comments
Bedrock Monitoring We	ells			
MW-1003DR	09/26/12	1.7E-07	1.5E-07	Multiple recovery periods were
	09/20/12	1.3E-07	1.52-07	analyzed for MW-1003DR test data
MW-1003R	09/24/12	2.9E-07	2.6E-07	Multiple recovery periods were
10100-1005K	03/24/12	2.2E-07	2.02-07	analyzed for MW-1003R test data

Notes:

cm/sec - centimeters per second


1. Hydraulic conductivity values were estimated by analyzing water level recovery between pumping periods using the Bouwer and Rice solution for a slug test in a confined aquifer. Significant wellbore storage effects precluded the use of transient drawdown analysis of test data.

Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.

Well ID			MW-1001M												
Date Statia Wata	r Level (ft b	taa)	12/28/11 45.9			20.0									
	r Level (ft b ter (inches)	100)	45.9			20.0		==						Ħ	ŦĦ
Time	Minutes	Water Level (ft btoc)	Drawdown (ft)	Pumping Rate (gpm)		19.0 18.0 17.0 16.0	log cycle Δs = (16								
13:00	0	45.90	0.00	0.4		15.0							- 10		
13:05	5	55.28	9.38	0.1		14.0									
13:10	10	56.32		0.1		13.0							•		
13:15	15	57.20		0.1		12.0		1				•			
13:20	20	58.47	12.57	0.1		11.0						•			
13:25	25	59.20	13.30	0.1											
13:30	30	60.55	14.65	0.1	(I	10.0									
13:35	35	60.91	15.01	0.1	ů.	9.0									
13:40	40	61.16	15.26	0.1	op	8.0									
13:45	45	61.32	15.42	0.1	Drawdown (ft)	7.0									
13:50	50	61.51	15.61	0.1	ā	6.0		=							ŦŦ
13:55	55	61.72		0.1											
14:00	60	61.80	15.90	0.1		5.0									
	mping Rate (umping Rate			0.12 0.08		4.0									
	umping rate	(a), gpill		0.00		3.0									
		in	take length, ft	13.9		2.0									
			$\Delta s, ft$	4.1		1.0									
			, π T, gpd/ft	4.1 5.1		0.0								EE	
			K, gpd/sqft	0.4		0.0			1		1	0			10
			K, gpu/sqn K, cm/sec	1.7E-05		Ŭ						-			

Vell ID Date			MW-1001R 12/28/11															
	r Level (ft b	toc)	79.33			-					 			,,				
Nell diamet		,	2			-				Ц							+++	\pm
Time	Minutes	Water Level (ft btoc)	Drawdown (ft)	Pumping Rate (gpm)		50.0	cycle dr • (53-21											/
9:25 9:30	0 5	79.33 91.37	0.00 12.04	0.3		40.0										•		
9:35	10	99.71	20.38	0.3											1			
9:40	15	106.71	27.38	0.3							 				•		\square	41
9:45	20	110.60	31.27	0.3		-					 	+ $+$ $+$				\rightarrow	+++	
9:50	25	113.98	34.65	0.3		30.0												
9:55	30	116.73	37.40	0.3	æ				+++								+++	+1
10:00	35	118.51	39.18	0.3	Drawdown (ft)													
10:05	40	119.47	40.14	0.3	Nor						 							
10:10	45	119.70	40.37	0.3	awo	20.0								4				
10:15	50	122.58	43.25	0.3	ă	-			+++				\mathbf{A}			++	+++	+1
10:20	55	124.20	44.87	0.3													+++	+
10:25	60	125.41	46.08	0.3		-			+++								+++	+1
	mping Rate (0.30		10.0						Y						
Corrected Pu	umping Rate	(Q), gpm		0.17		10.0												
						-					 _					\rightarrow	+++	4
		in	take length, ft	23		-						+ $+$	\vdash			++	+++	+1
			∆s, ft	32				+	+++	11		++	++			++	+++	+
			T, gpd/ft	1.4		0.0	I – I			1			ццц ,					
			K, gpd/sqft K, cm/sec	0.06 2.9E-06		0.				1			1	10				100

					SRSNE	ecific Capa Time-Drav Site - Sou MW-1002I	vdown Me Ithington,	thod Con	nec	ticu	ıt	-
Well ID			MW-1002DR									_
Date			03/20/12									
Static Wate	r Level (ft b	toc)	15.54			_		_	<u>г</u> -т	_		
Well diamet	•		2									ſ
Time	Minutes	Water Level (ft btoc)	Drawdown (ft)	Pumping Rate (gpm)		50.0	log cycl Δs = (18				5 ft	
8:00	0	15.54	0.00	0.10		40.0						
8:01	2	23.15	7.61	0.10		40.0						
8:04	4	24.31	8.77	0.13							Ш	
8:06	6	25.30	9.76	0.14						_		
8:09	9	26.85	11.31	0.35				-	\vdash	+	H	
8:12	12	27.52	11.98	0.24		30.0						
8:15	15	28.17	12.63	0.20	£							
8:18	18	29.12	13.58	0.33	.) u/							
8:21	21	29.62	14.08	0.14	NOP							
Average Pur				0.19	Drawdown (ft)	20.0					\square	
Corrected P	umping Rate	e (Q), gpm		0.08	ā						\square	
		in	take length, ft	20								
			Δs, ft	7.5		40.0			\vdash		H	
			T, gpd/ft	2.9		10.0						
			K, gpd/sqft	0.14								
			K, cm/sec	6.8E-06		_			\square			
									\vdash	\square	Н-	
						0.0					i L	ļ

Nell ID			MW-1002R														
Date			03/20/12														
Static Wate	er Level (ft b	toc)	3.15			ſ				1	1 1	- 1 1				ттт	٦
Nell diame	ter (inches)		2							l							
Time	Minutes	Water Level (ft btoc)	Drawdown (ft)	Pumping Rate (gpm)		50.0	$\log cyc$ $\Delta s = (3$		ו 								-
8:00	0	3.15		0.13												++++	-
8:01	1	3.15		0.13		40.0											
8:03	3	5.80		0.13													
8:06	6	6.75		0.04		-											X
8:09	9	7.68	4.53	0.05		-										НИ	-
8:12	12	8.75	5.60	0.04		30.0											-
8:15	15	9.94	6.79	0.09	£	-											-
8:18	18	13.50	10.35	0.35	f) u												-
8:21	21	14.95	11.80	0.11	Nor												
	mping Rate			0.12	Drawdown (ft)	20.0											_
Corrected P	umping Rate	e (Q), gpm		0.03	ő			_			+ +					$\left\{ + + + \right\}$	_
						-											-
		in	itake length, ft	20		-											-
			∆s, ft	33		10.0											
			T, gpd/ft	0.2		10.0					_						_
			K, gpd/sqft	0.010		-		_								$\left \right \left \right $	_
			K, cm/sec	4.9E-07		-							•				-
											Ť						-
						0.0 + 0.				1				10	 		

Calculation of Steady-State Pumping Rate Thiem Analysis

	Well Name Test Date	MW-1001M 12/28/2011
Hydraulic conductivity	K (cm/sec)	4.5E-05
Hydraulic conductivity (conversion) Steady-state depth to water (approx.) Initial depth to water Saturated sandpack length Estimated radius of influence Radius of pumping well	K (ft/min) s(t) (ft) s(0) (ft) B (ft) Ro (ft) rw (ft)	8.86E-05 61.02 45.90 13.9 500 0.42
Calculated Steady-State Pumping Rate (0.12

Note: 1) Calculation based on Thiem Equation, in Kruseman, G.P., and N.A. de Ridder. Analysis and Evaluation of Pumping Test Data. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 377 p. 1990.

Well ID	Aquifer Type: 1 for confined; 0 for unconfined.If Aquifer Type is 0, do you want to make drawdown correction?	(see	Pumping Period (minutes)	(Click to toggle b/w Gallon and Liter)	Initial Water Level (ft) below Measurement Point	Final Water Level (ft) below Measurement Point	SandPack Top(ft, bgs)	SandPack Bottom(ft, bgs)		Total Well Depth (ft, bgs)	0	Well Borehole Diameter (inch)	Reference Point Elevation (ft, ags)	gallon and liter)	gallon and liter)	from Aquifer (click b to toggle b/w gallon and liter)	cm/sec)
MW-1001M	1 n	0.01	60	Gallon	3 45.9	61.8	87	95.9	0.3	95.9		5	-0.54	Gallon	Gallon	Gallon 0.405870542 N	cm/sec
MW-1001M MW-1001R MW-1002DR	1 n 1 n	0.01 0.01	60 21	20 4.6	79.33		170	193 188	0.3	190.6	5 2	3.8	-0.34 -0.46 3.61	2.39E+00 7.52E+00 2.30E+00	0	12.48191915 2.302808631	5.2E-06 8.9E-06
MW-1002DK MW-1002R	1 n	0.01	21	2.3	3.15			188	0.3			3.8	2.17	1.93E+00	0	0.374797006	6.4E-07

Input yellow-highlighted column information first. Then go to "Run Model" Tab and click "Get T". Calculated output will be in the green-highlighted columns.

SLUGCOMP.WK1 BBL, 3/88 Modified 12/21/89, 6/10/92, 5/14/9		
	-	
Project:	SRSNE	
Project No.:	B0054634.0000	
Well No.:	MW-1003DR	
Test Date:	9/26/2012	
Formation Tested:	Bedrock	
Rising (R) or Falling Head (F):	R	
		(cm)
Reference Stickup (ft)	2.8	85.04
Static water depth from	10.64	324.31
stickup (ft)	l l	
Depth to bottom of screen	192	5852.16
from ground level (ft)	l l	
Boring Diameter (in)	1.9	4.88
Riser Diameter (in)	1.0	2.54
Screen Diameter (in)	1.0	2.54
Screen Length (ft)	20	609.60
Depth to Boundary	200	6096.00
Delta H at Time 0 (ft)	37.60	1146.05
Delta H at Time t (ft)	33.17	1011.02
Time t (seconds)	5520	
Assumed Kh/Kv Ratio	100	
Porosity of Filter Pack	0.3	
	gpd/ft2	cm/sec
K, (Bouwer-Rice)	0.004	1.7E-07

SLUGCOMP.WK1 BBL, 3/8	8	
Modified 12/21/89, 6/10/92, 5/14/9	93	
Project:	SRSNE	
Project No.:	B0054634.0000	
Well No.:	MW-1003DR	
Test Date:	9/26/2012	
Formation Tested:	Bedrock	
Rising (R) or Falling Head (F):	R	
		(cm)
Reference Stickup (ft)	2.8	85.04
Static water depth from	10.64	324.31
stickup (ft)	I	
Depth to bottom of screen	192	5852.16
from ground level (ft)	I	
Boring Diameter (in)	1.9	4.88
Riser Diameter (in)	1.0	2.54
Screen Diameter (in)	1.0	2.54
Screen Length (ft)	20	609.60
Depth to Boundary	200	6096.00
Delta H at Time 0 (ft)	100.11	3051.35
Delta H at Time t (ft)	91.47	2788.01
Time t (seconds)	5100	
Assumed Kh/Kv Ratio	100	
Porosity of Filter Pack	0.3	
	 gpd/ft2	cm/sec
K, (Bouwer-Rice)	0.003	1.3E-07

SLUGCOMP.WK1 BBL, 3/88		
Modified 12/21/89, 6/10/92, 5/14/9	3	
Project:	SRSNE	
Project No.:	B0054634.0000	
Well No.:	MW-1003R	
Test Date:	9/24/2012	
Formation Tested:	Bedrock	
Rising (R) or Falling Head (F):	R	
		(cm)
Reference Stickup (ft)	2.5	76.20
Static water depth from	8.85	269.75
stickup (ft)	Í	
Depth to bottom of screen	120	3657.60
from ground level (ft)		
Boring Diameter (in)	1.9	4.88
Riser Diameter (in)	1.0	2.54
Screen Diameter (in)	1.0	2.54
Screen Length (ft)	20	609.60
Depth to Boundary	200	6096.00
Delta H at Time 0 (ft)	110.31	3362.25
Delta H at Time t (ft)	104.32	3179.67
Time t (seconds)	1200	
Assumed Kh/Kv Ratio	100	
Porosity of Filter Pack	0.3	
	gpd/ft2	cm/sec
K, (Bouwer-Rice)	0.006	2.9E-07

SLUGCOMP.WK1 BBL, 3/8	8	
Modified 12/21/89, 6/10/92, 5/14/		
Project:	SRSNE	
Project No.:	B0054634.0000	
Well No.:	MW-1003R	
Test Date:	9/24/2012	
Formation Tested:	Bedrock	
Rising (R) or Falling Head (F):	R	
		(cm)
Reference Stickup (ft)	2.5	76.20
Static water depth from	8.85	269.75
stickup (ft)	i	
Depth to bottom of screen	120	3657.60
from ground level (ft)	l l	
Boring Diameter (in)	1.9	4.88
Riser Diameter (in)	1.0	2.54
Screen Diameter (in)	1.0	2.54
Screen Length (ft)	20	609.60
Depth to Boundary	200	6096.00
Delta H at Time 0 (ft)	117.18	3571.65
Delta H at Time t (ft)	96.72	2948.03
Time t (seconds)	5400	
Assumed Kh/Kv Ratio	100	
Porosity of Filter Pack	0.3	
	 gpd/ft2	cm/sec
K, (Bouwer-Rice)	0.005	2.2E-07

ARCADIS

Appendix D

Field Sampling Forms

Project	SRSNE			Site Location	Southing	gton, CT				
Project No.	B0054634.00	0.01900		Well ID	MW-1001	1M	Sample ID	MW-1001M-	02072012	2
Sample Date	02/07/2012			Sampled By	Michael S	Skowronek				
Sample Time	Begin 9:3) End	10:29	Recorded By	Michael S	Skowronek				
Weather	Cold, Sunny			Replicate No.	Dup-GW-	-02072012-;	#1			
Instrument l	dentification				Field Param	eters				
Water Quality	Meter # 1	YSI 600	XL/8861		Water Quality	Meter # 2	Solins	st 101/96179		
Casing Materia	al	PVC			Purge Method	l	BP:Q	ED 13521		
Casing Diame	ter (in)	2.00			Screen Interva	al (ft bmp)	Тор	85.06	Bottom	95.06
Sounded Dept	th (ft bmp)	95.36 (ir	nstalled)		Pump Intake [Depth (ft bm	ıp)	90.00		90.00
Depth to Wate	r (ft bmp)	46.31			Purge Time		Begir	8:00	End	10:30
PID Reading(p	opm)	0.00								
Casing Diame Sounded Dept Depth to Wate	ter (in) th (ft bmp) r (ft bmp)	2.00 95.36 (in 46.31	nstalled)		Screen Interva Pump Intake [al (ft bmp)	Top	85.06 90.00		90.00

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:16	16.82	100.00 mL/min	0.42	9.25	7.04	2.489 mS/cm	-36.20	8.51	24.40	46.66
8:21	21.32	100.00 mL/min	0.55	10.15	7.59	1.311 mS/cm	5.90	7.87	17.10	46.36
8:26	26.53	100.00 mL/min	0.69	9.92	7.83	1.226 mS/cm	13.90	6.87	12.50	46.31
8:30	30.83	100.00 mL/min	0.79	9.16	8.03	1.147 mS/cm	16.60	6.64	35.50	46.32
8:36	36.70	100.00 mL/min	0.95	9.31	8.19	1.142 mS/cm	59.40	6.63	15.20	46.35
8:40	40.18	100.00 mL/min	1.06	9.29	8.22	1.139 mS/cm	76.70	6.49	15.10	46.36
8:46	46.38	100.00 mL/min	1.21	8.95	8.26	1.130 mS/cm	95.90	6.20	16.10	46.36
8:50	50.53	100.00 mL/min	1.32	8.90	8.25	1.126 mS/cm	107.50	6.05	14.70	46.36
8:54	54.58	100.00 mL/min	1.43	8.96	8.26	1.130 mS/cm	116.50	6.03	13.00	46.36
9:01	61.57	100.00 mL/min	1.61	9.72	8.26	1.157 mS/cm	132.00	6.03	11.70	46.36
9:06	66.97	100.00 mL/min	1.74	10.23	8.24	1.173 mS/cm	137.60	6.36	9.90	46.36
9:13	73.85	100.00 mL/min	1.93	9.83	8.23	1.173 mS/cm	131.50	6.51	8.80	46.36
9:17	77.63	100.00 mL/min	2.03	9.71	8.25	1.173 mS/cm	125.80	6.60	8.50	46.36
9:20	80.98	100.00 mL/min	2.11	9.43	8.25	1.168 mS/cm	121.50	6.68	8.50	46.36
9:26	86.58	100.00 mL/min	2.27	9.43	8.24	1.168 mS/cm	119.70	6.72	8.40	46.36
9:30	90.27	100.00 mL/min	2.38	9.48	8.22	1.171 mS/cm	121.50	6.75	8.30	46.36

Sampling Personnel:

Michael Skowronek

Signature:

Mnn

			Well Ca	asing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3	" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.47		
°C	Degrees Celsius		in	Inches		N/A	Not Applicable		
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units		
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential		
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per centin	meter	uS/cm	Microsiemens per centimeter		
gpm	Gallons per minu	ıte	mV	Millivolts					
Material Code									
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropy	/lene	T - Teflon	S - Silicone O - Other		

Purging Code

Project	SRSNE				Site Location	Southington, C	СТ	
Project No.	B005463	34.0000.01	1900		Well ID	MW-1001M	Sample ID	MW-1001M-02072012
Sample Date	02/07/20	12			Sampled By	Michael Skowr	onek	
Sample Time	Begin	9:30	End	10:29	Recorded By	Michael Skowr	onek	
Weather	Cold, Su	nny			Replicate No.	Dup-GW-0207	2012-#1	
Collected Sar	nple Cond	ition	Color	clear	Odor	None	Appeara	nce NA

	Parameter	Container	Number	Preservative
	1,4-Dioxane	CG 40 mL VOA	1	HCL
	TAL Dissolved Metals	PE 500 mL	1	HNO3
	TAL Total Metals	PE 500 mL	1	HNO3
	VOCs	CG 40 mL VOA	2	HCL
Commonto	Note: the time tablet cleak time w			

Comments Note: the time tablet clock time was 2 hours slow.

Sampling Personnel:

Michael Skowronek

Signature:

MM

Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3"	= 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.47			
°C	Degrees Celsius		in	Inches		N/A	Not Applicable			
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units			
DO	Dissolved oxyger	n	min	Minutes		ORP	Oxidation reduction potential			
DTW	Depth to water		mL	Milliliter		ppm	Parts per million			
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units			
gal	Gallons		mS/cm	Millisiemens per centim	eter	uS/cm	Microsiemens per centimeter			
gpm	Gallons per minu	ite	mV	Millivolts						
Material Code										
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropyle	ene T	- Teflon	S - Silicone O - Other			
			Purgi	ing Code			,			

Project	SRSNE				Site Location	ı	Southington, CT				
Project No.		4.0000.019	00		Well ID		MW-1001R	Sample ID	MW-1001R-	02062012	
Sample Date	02/06/202	12			Sampled By		Michael Skowronel	k			
Sample Time	Begin	12:21	End	12:40	Recorded By	/	Michael Skowronel	k			
Weather	Cold, Wir	ndy, Sunny			Replicate No).	N/A				
Instrument Ide	entificatio	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/8861		Wate	er Quality Meter # 2	Solin	st 101/96179		
Casing Material			PVC			Purg	e Method	BP:Q	ED 13521		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	174.84	Bottom	189.84
Sounded Depth	(ft bmp)		190.14 (installed)		Pum	p Intake Depth (ft b	mp)	183.00		183.00
Depth to Water	(ft bmp)		107.77			Purg	je Time	Begir	n 9:52	End	12:40
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:52	0.13	100.00 mL/min	0.00	12.17	12.61	6.205 mS/cm	-94.80	8.46	40.20	107.48
9:57	4.80	100.00 mL/min	0.13	11.86	12.59	6.184 mS/cm	-104.50	8.05	12.70	107.90
10:03	11.37	100.00 mL/min	0.30	11.87	12.58	6.180 mS/cm	-108.50	7.81	5.30	108.73
10:07	14.75	100.00 mL/min	0.39	11.90	12.58	6.170 mS/cm	-109.20	7.68	3.20	108.92
10:15	22.63	100.00 mL/min	0.60	12.07	12.69	6.162 mS/cm	-111.70	7.38	1.50	109.03
10:19	26.52	100.00 mL/min	0.70	12.14	12.59	6.159 mS/cm	-112.40	7.28	1.50	109.57
10:23	31.23	100.00 mL/min	0.82	12.27	12.59	6.169 mS/cm	-113.30	7.19	1.40	109.83
10:29	37.10	100.00 mL/min	0.98	12.77	12.58	6.232 mS/cm	-114.80	7.06	1.30	110.06
10:33	41.25	100.00 mL/min	1.09	12.92	12.58	6.259 mS/cm	-115.60	7.02	1.30	110.23
10:40	48.33	100.00 mL/min	1.28	12.90	12.57	6.383 mS/cm	-116.00	7.05	1.20	110.30
10:45	53.15	100.00 mL/min	1.40	12.68	12.61	6.229 mS/cm	-116.30	7.13	1.20	110.62
10:49	57.28	100.00 mL/min	1.51	12.17	12.61	6.083 mS/cm	-115.50	7.14	1.20	111.03
10:54	61.68	100.00 mL/min	1.63	12.10	12.60	6.056 mS/cm	-114.00	7.12	1.70	111.43
11:02	70.28	100.00 mL/min	1.86	11.73	12.60	5.979 mS/cm	-109.70	7.17	2.10	112.49
11:05	72.77	100.00 mL/min	1.92	11.68	12.60	5.970 mS/cm	-108.60	7.16	2.10	112.95
11:10	78.45	100.00 mL/min	2.07	11.63	12.61	5.934 mS/cm	-107.40	7.13	2.20	113.72
11:14	81.85	100.00 mL/min	2.16	11.65	12.61	5.922 mS/cm	-106.90	7.11	2.20	114.23

Sampling Personnel:

Michael Skowronek

Signature:

mp

			Well Ca	sing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = 0.65 6"=1.47		
°C	Degrees Celsius		in	Inches		N/A	Not Applicable		
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units		
DO	Dissolved oxyger	I	min	Minutes		ORP	Oxidation reduction potential		
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minute	e	s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per ce	ntimeter	uS/cm	Microsiemens per centimeter		
gpm	Gallons per minu	e	mV	Millivolts					
Material Code									
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone O - Other		

Purging Code

roject	SF	SNE			Site I	Location	Southington, CT				
Project No	. <u>В</u> 0	054634.0000.0190	00		Well	ID	MW-1001R Sample ID MW-1001R-0			MW-1001R-02062	012
ample Da	ate	/06/2012			Sam	pled By	Michael Skowronek				
ample Tir	me Be	gin 12:21	End 2	12:40	Reco	Recorded By Michael Skowronek					
Veather	Co	ld, Windy, Sunny			Replicate No. N/A						
11:20	87.93	100.00 mL/min	2.32	11.63	12.60	5.893 m	S/cm	-106.70	7.08	2.10	115.25
11:24	92.03	100.00 mL/min	2.43	11.69	12.60	5.883 m	S/cm	-107.80	7.03	1.90	115.75
11:27	95.47	100.00 mL/min	2.52	11.67	12.61	5.876 m	S/cm	-108.10	7.01	1.70	116.33
11:32	99.68	100.00 mL/min	2.63	11.69	12.61	5.862 m	S/cm	-108.10	6.98	2.10	116.96
11:38	105.70	100.00 mL/min	2.79	11.70	12.61	5.845 m	S/cm	-109.20	6.95	2.00	117.87
11:43	110.72	100.00 mL/min	2.92	11.67	12.61	5.825 m	S/cm	-108.60	6.93	1.80	118.58
11:47	115.35	100.00 mL/min	3.05	11.74	12.61	5.807 m	S/cm	-108.60	6.90	1.90	119.24
11:54	122.12	100.00 mL/min	3.22	11.74	12.61	5.786 m	S/cm	-109.30	6.80	1.70	120.32
11:58	126.47	100.00 mL/min	3.34	11.72	12.61	5.773 m	S/cm	-109.40	6.87	1.80	121.02
12:08	135.97	100.00 mL/min	3.59	11.72	12.62	5.741 m	S/cm	-110.10	6.86	1.50	122.36
12:14	141.92	100.00 mL/min	3.75	11.76	12.62	5.731 m	S/cm	-110.60	6.84	1.50	123.00
12:21	148.48	100.00 mL/min	3.92	11.82	12.62	5.726 m	S/cm	-110.80	6.82	1.40	123.89

Parameter	Container	Number	Preservative
1,4-Dioxane	CG 40 mL VOA	1	HCL
TAL Dissolved Metals	PE 500 mL	1	HNO3
TAL Total Metals	PE 500 mL	1	HNO3
VOCs	CG 40 mL VOA	2	HCL

Comments Note: the time tablet clock time was 2 hours slow.

Sampling Personnel:

Michael Skowronek

Signature:

mn

			Well Ca	sing Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	4" = 0.65	6"=1	.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable		
bmp	Below measuring	point	mg/L	Milligrams per liter	r	NTUs	Nephelometric Tu	rbidity Units	
DO	Dissolved oxygen	1	min	Minutes		ORP	Oxidation reduction	on potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per	centimeter	
gpm	Gallons per minut	te	mV	Millivolts					
			Mate	rial Code					
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyp	oropylene	T - Teflon	S - Silicone	O - Other	
			Purg	ing Code					Vers

Project	SRSNE				Site Location		Southington, CT				
Project No.	B005463	4.0000.019	00		Well ID		MW-1001R	Sample ID	MW-1001R	-04052012	
Sample Date	04/05/20	12			Sampled By		David Birdsey				
Sample Time	Begin	16:10	End	16:17	Recorded By	,	David Birdsey				
Weather	Cool, Sur	nny			Replicate No		N/A				
Instrument Ide	entificatio	on				Field	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01k0893a1		Wate	er Quality Meter # 2	LaMo	otte 2020e/MI	E-13249	
Casing Material			PVC			Purg	e Method	BP:Q	ED 169d10		
Casing Diamete	r (in)		2.00			Scre	en Interval (ft bmp)	Тор	174.84	Bottom	189.84
Sounded Depth	(ft bmp)		190.14 (i	installed)		Pum	p Intake Depth (ft b	mp)	182.50		182.50
Depth to Water	(ft bmp)		75.22			Purg	e Time	Begir	13:47	End	16:17
PID Reading(pp	m)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
13:54	726.55	140.00 mL/min	N/A	14.36	12.77	6,147 uS/cm	5.50	8.79	53.90	N/A
14:00	732.75	100.00 mL/min	N/A	15.07	12.84	6,092 uS/cm	6.80	12.50	45.30	N/A
14:10	742.92	100.00 mL/min	1.00	15.39	12.80	6,038 uS/cm	9.30	10.98	42.30	80.81
14:15	747.73	100.00 mL/min	N/A	15.52	12.79	6,017 uS/cm	9.80	9.38	23.80	81.52
14:25	757.23	70.00 mL/min	N/A	15.96	12.83	6,002 uS/cm	6.40	8.49	16.50	82.71
14:35	767.93	70.00 mL/min	N/A	16.34	12.84	5,980 uS/cm	2.00	7.99	12.30	83.90
14:40	773.10	100.00 mL/min	N/A	16.39	12.85	5,990 uS/cm	1.20	7.95	19.70	84.70
14:55	787.70	100.00 mL/min	1.50	14.28	12.88	6,010 uS/cm	3.30	8.11	10.40	87.00
15:00	792.63	100.00 mL/min	N/A	14.60	12.88	5,993 uS/cm	0.30	7.02	8.96	88.00
15:10	82.18	50.00 mL/min	N/A	15.09	12.85	5,949 uS/cm	2.00	7.91	6.89	89.34
15:15	807.75	50.00 mL/min	2.00	15.35	12.87	5,931 uS/cm	1.60	7.83	7.42	89.92
15:20	812.65	50.00 mL/min	N/A	15.88	12.89	5,919 uS/cm	3.50	7.77	5.39	90.31
15:26	818.47	50.00 mL/min	N/A	16.28	12.98	5,898 uS/cm	-6.70	7.72	5.23	90.80
15:30	822.15	50.00 mL/min	N/A	16.53	12.88	5,892 uS/cm	-6.40	7.67	9.60	90.92
15:35	828.07	50.00 mL/min	2.25	17.29	12.82	5,863 uS/cm	-2.00	7.55	4.98	91.42
15:40	832.22	50.00 mL/min	N/A	17.42	12.81	5,863 uS/cm	-0.90	7.55	4.23	91.68
15:45	837.67	50.00 mL/min	N/A	17.53	12.81	5,872 uS/cm	-0.30	7.55	4.69	91.98

Sampling Personnel:

David Birdsey

Signature:

and Rivdey

0.1/5/				ising Volumes	~ ~ ~ ~			o
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turk	oidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction	potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per c	entimeter
gpm	Gallons per minut	e	mV	Millivolts				
			Mate	rial Code				
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone	O - Other

Purging Code

Project		SRS	NE			Site I	ocation	Southi	ngton, CT			
Project N	NO.	B005	4634.0000.0190	0		Well	ID	MW-10	01R	Sample ID	MW-1001R-04052	012
Sample I	Date	04/05	5/2012			_ Sam	oled By	David I	Birdsey			
Sample ⁻	Time	Begir	n <u>16:10</u>	End	16:17	Reco	rded By	David I	Birdsey			
Weather		Cool	Sunny			Repli	cate No.	N/A				
15:50	842	.47	50.00 mL/min	2.50	17.58	12.81	5,879 uS	S/cm	-0.35	7.56	4.21	92.02
15:55	848	.13	50.00 mL/min	N/A	17.62	12.80	5,883 uS	S/cm	-0.40	7.58	3.26	92.05
16:00	853	.12	50.00 mL/min	N/A	17.58	12.80	5,889 uS	S/cm	-0.30	7.60	2.96	92.06
16:05	857	.63	50.00 mL/min	N/A	17.62	12.80	5,892 uS	S/cm	-0.30	7.62	2.36	92.10
16:10	143	.07	50.00 mL/min	2.75	17.63	12.81	5,896 uS	S/cm	-0.30	7.64	2.10	92.11
Collect	ed San	nple C	ondition	Color c	lear		Odor N	lone		Appearanc	ce NA	
			Parameter Metals				ontainer 500 mL		N	lumber 1		rvative NO3

CG 40 mL VOA

Sampling Personnel:

Comments

David Birdsey

VOCs

Signature:

and Rividey

2

HCL

			Well Ca	asing Volumes		
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.47
°C	Degrees Celsius	6	in	Inches	N/A	Not Applicable
bmp	Below measurin	g point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyge	en	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per min	ute	mV	Millivolts		
			Mate	rial Code		
AG - Ambe	er Glass CG	G - Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Ver

Project	SRSNE				Site Location	l	Southington, CT				
Project No.	B005463	4.0000.019	900		Well ID		MW-1002DR	Sample ID	MW-1002DF	-0405201	2
Sample Date	04/05/20	12			Sampled By		David Birdsey				
Sample Time	Begin	12:44	End	12:46	Recorded By	,	David Birdsey				
Weather	Cool, Sur	nny			Replicate No		N/A				
Instrument Ide	entificatio	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01k0893a1		Wat	er Quality Meter # 2	LaMo	tte 2020e/ME	-13249	
Casing Material			PVC			Purg	ge Method	BP:Q	ED 169d10		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	170.20	Bottom	185.20
Sounded Depth	(ft bmp)		199.50 (installed)		Pum	ip Intake Depth (ft br	mp)	178.50		178.50
Depth to Water	(ft bmp)		29.61			Purg	ge Time	Begir	8:25	End	12:44
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:29	3.47	110.00 mL/min	N/A	8.93	11.73	2,860 uS/cm	122.10	5.55	7.23	29.23
8:34	8.40	110.00 mL/min	N/A	9.45	11.76	2,818 uS/cm	129.90	4.04	6.23	29.92
8:39	14.00	110.00 mL/min	N/A	9.58	11.59	2,608 uS/cm	136.40	2.70	33.20	30.72
8:43	17.87	60.00 mL/min	N/A	9.64	11.43	2,492 uS/cm	140.70	2.25	271.00	30.93
8:53	27.55	60.00 mL/min	0.50	9.24	11.31	2,442 uS/cm	142.40	1.91	225.00	31.16
9:13	47.42	65.00 mL/min	0.75	9.48	11.17	2,391 uS/cm	166.40	2.45	191.00	31.55
9:23	57.25	65.00 mL/min	N/A	9.45	11.73	2,443 uS/cm	149.60	1.50	191.00	31.67
9:43	78.10	65.00 mL/min	1.25	9.62	11.74	2,424 uS/cm	144.90	1.39	158.00	31.82
9:53	87.30	65.00 mL/min	N/A	10.09	11.65	2,370 uS/cm	141.00	1.15	103.00	31.93
10:03	98.18	65.00 mL/min	N/A	9.93	11.47	2,313 uS/cm	141.70	1.19	94.40	31.97
10:13	107.70	65.00 mL/min	1.75	9.99	11.17	2,247 uS/cm	143.50	1.14	226.00	31.99
10:23	117.25	65.00 mL/min	N/A	10.45	10.84	2,211 uS/cm	144.20	1.06	579.00	31.98
10:33	127.62	50.00 mL/min	2.00	10.77	10.36	2,184 uS/cm	134.80	0.99	743.00	31.92
10:43	137.53	65.00 mL/min	N/A	10.95	9.96	2,158 uS/cm	128.10	1.03	1,429.00	31.98
10:53	147.78	65.00 mL/min	2.25	11.07	9.47	2,149 uS/cm	120.40	0.98	1,852.00	32.04
11:03	158.10	65.00 mL/min	2.50	11.32	9.15	2,147 uS/cm	105.10	0.84	1,987.00	32.09
11:13	167.60	65.00 mL/min	N/A	11.44	8.99	2,135 uS/cm	95.10	0.84	2,252.00	32.12

Sampling Personnel:

David Birdsey

Signature:

Und Birdsey

			Well Ca	asing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.	50 4" = 0.65 6"=1.4
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per cent	timeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minut	e	mV	Millivolts			
			Mate	rial Code			
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyprop	pylene	T - Teflon	S - Silicone O - Other

Purging Code

Project	S	SRSNE				Site I	te Location Southington, CT		ington, CT			
Project N	o. <u>B</u>	300546	34.0000.0190	00		Well	ID	MW-10	002DR	Sample ID	MW-1002DR-0405	52012
Sample [Date _	4/05/2	012			Sam	oled By	David	Birdsey			
Sample T	Time B	Begin	12:44	End	12:46	Reco	rded By	David	Birdsey			
Weather	C	Cool, Si	unny			Repli	cate No.	N/A				
11:18	172.70)	65.00 mL/min	N/A	11.80	8.98	2,138 u	S/cm	90.50	0.79	3,632.00	32.12
11:23	177.53	3	65.00 mL/min	N/A	11.55	9.01	2,126 u	S/cm	84.20	0.72	3,058.00	32.12
11:28	182.73	3	65.00 mL/min	N/A	11.23	9.03	2,100 u	S/cm	72.50	0.82	3,251.00	32.12
11:33	187.60)	65.00 mL/min	N/A	11.78	9.08	2,119 u	S/cm	77.30	0.73	3,212.00	32.12
11:38	192.27	7	65.00 mL/min	N/A	11.72	9.02	2,112 u	S/cm	72.50	0.83	3,120.00	32.12
11:43	197.38	3	65.00 mL/min	3.00	12.15	9.02	2,098 u	S/cm	61.10	0.71	3,254.00	32.12
11:45	200.20)	65.00 mL/min	N/A	12.16	9.01	2,102 u	S/cm	59.60	0.67	3,216.00	32.12
11:50	204.53	3	65.00 mL/min	N/A	11.79	8.98	2,097 u	S/cm	57.40	0.73	3,058.00	32.12
11:55	209.53	3	65.00 mL/min	N/A	12.01	8.85	2,156 u	S/cm	53.40	0.76	2,714.00	32.12
12:00	214.27	7	65.00 mL/min	N/A	12.01	8.82	2,153 u	S/cm	52.40	0.71	2,100.00	32.14
12:05	219.55	5	65.00 mL/min	N/A	12.06	8.80	2,152 u	S/cm	51.50	0.65	2,135.00	32.14
12:10	225.15	5	65.00 mL/min	N/A	12.16	8.75	2,143 u	S/cm	51.40	0.72	2,030.00	32.15
12:15	230.15	5	65.00 mL/min	N/A	12.53	8.71	2,141 u	S/cm	47.50	0.69	1,962.00	32.15
12:20	234.27	7	65.00 mL/min	N/A	12.35	8.65	2,140 u	S/cm	44.70	0.71	1,825.00	32.15
12:25	239.93	3	65.00 mL/min	N/A	12.08	8.58	2,253 u	S/cm	41.40	0.68	1,210.00	32.15
12:30	244.30)	65.00 mL/min	N/A	12.27	8.58	2,253 u	S/cm	40.80	1.06	1,059.00	32.12
12:35	249.60)	65.00 mL/min	3.50	12.24	8.57	2,250 u	S/cm	40.00	1.00	1,030.00	32.15
12:40	254.93	3	65.00 mL/min	N/A	12.27	8.57	2,246 u	S/cm	38.60	0.98	1,023.00	32.15
Collecte	ed Sampl	le Con	dition	Color li	ight reddish	n-brown	Odor I	None		Appearan	ce NA	

Parameter	Container	Number	Preservative
VOCs	CG 40 mL	2	HCL

Comments

Re-calibrates to confirm high pH values

Sampling Personnel:

David Birdsey

Signature:

Und Birdsey

			Well Ca	ising Volumes		
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	3-1/2":= 0.5	50 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches	N/A	Not Applicable
bmp	Below measuring) point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyger	า	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	te	mV	Millivolts		
			Mate	rial Code		
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Vers

Project	SRSNE				Site Location		Southington, CT				
Project No.	B005463	4.0000.019	00		Well ID		MW-1002R	Sample ID	MW-1002F	8-04042012	
Sample Date	04/04/20	12			Sampled By		David Birdsey				
Sample Time	Begin	13:58	End	14:00	Recorded By	,	David Birdsey				
Weather	Cool, Par	tly Cloudy			Replicate No		N/A				
Instrument Ide	entificati	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01k089341		Wate	er Quality Meter # 2	LaMo	otte 2020e/M	e-13249	
Casing Material			PVC			Purg	e Method	BP:Q	ED 169d10		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	107.17	Bottom	122.17
Sounded Depth	(ft bmp)		127.17 (installed)		Pum	p Intake Depth (ft b	mp)	112.50	_	112.50
Depth to Water	(ft bmp)	_	4.10			Purg	je Time	Begir	n 11:04	End	14:01
PID Reading(pp	om)	-	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
11:09	5.53	100.00 mL/min	0.10	12.46	8.76	3,953 uS/cm	182.00	3.53	6.79	4.00
11:14	10.10	100.00 mL/min	0.15	12.51	8.77	3,844 uS/cm	179.40	2.93	14.30	5.67
11:19	14.92	125.00 mL/min	0.25	12.53	8.82	3,732 uS/cm	179.70	3.06	12.90	7.02
11:24	20.67	125.00 mL/min	0.30	12.50	8.84	3,709 uS/cm	185.50	2.84	12.20	7.35
11:29	25.03	125.00 mL/min	0.50	12.68	8.84	3,653 uS/cm	188.40	2.89	17.60	8.15
11:34	30.37	75.00 mL/min	0.60	12.68	8.80	3,549 uS/cm	195.40	2.90	12.20	9.03
11:39	35.15	50.00 mL/min	0.60	12.97	8.81	3,499 uS/cm	192.70	2.89	10.90	9.35
11:51	47.27	50.00 mL/min	1.00	13.46	8.84	3,400 uS/cm	167.80	2.57	9.59	10.02
11:55	50.97	50.00 mL/min	1.10	13.76	8.79	3,329 uS/cm	169.40	3.17	7.09	10.37
12:00	56.65	50.00 mL/min	1.10	13.84	8.80	3,373 uS/cm	168.10	2.93	6.02	10.66
12:08	64.22	50.00 mL/min	1.25	13.83	8.81	3,389 uS/cm	167.20	2.82	6.23	11.06
12:13	69.43	50.00 mL/min	1.30	14.00	8.81	3,356 uS/cm	166.20	2.92	5.36	11.30
12:18	74.05	50.00 mL/min	1.40	14.18	8.81	3,412 uS/cm	165.30	3.01	12.20	11.52
12:23	79.32	50.00 mL/min	N/A	14.35	8.81	3,389 uS/cm	164.60	2.93	2.39	11.62
12:27	83.28	50.00 mL/min	N/A	14.40	8.82	3,338 uS/cm	163.40	2.77	6.36	11.81
12:33	89.37	50.00 mL/min	N/A	14.19	8.82	3,322 uS/cm	162.70	2.96	3.72	12.02
12:38	94.60	50.00 mL/min	N/A	13.91	8.82	3,297 uS/cm	162.30	2.84	3.23	12.12

Sampling Personnel:

David Birdsey

Signature:

(hind Birdsey

	Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = 0.65 6"=1.47				
°C	Degrees Celsius		in	Inches		N/A	Not Applicable				
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter		ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per minut	e	mV	Millivolts							
Material Code											
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone O - Other				

Purging Code

Project	SRSNE				Site I	_ocation	South	ington, CT					
Project N	lo.	B005	4634.0000.0190	0		Well	ID	MW-10	002R	Sample ID	/W-1002R-04042	2012	
Sample I	Date	04/04	/2012			Sam	pled By	David	Birdsey				
Sample ⁻	Time	Begir	า 13:58	End 1	14:00	Reco	orded By	David	Birdsey				
Weather		Cool,	Partly Cloudy			 Repli	cate No.	N/A					
12:43	99.2	5	50.00 mL/min	N/A	13.95	8.82	3,441 u	S/cm	161.50	2.61	3.62	12.27	
12:48	104.8	33	50.00 mL/min	1.88	14.43	8.82	3,396 u	S/cm	159.70	2.67	3.03	12.46	
12:53	109.8	37	50.00 mL/min	N/A	14.70	8.81	3,349 u	S/cm	158.00	2.67	4.23	12.52	
12:58	114.6	65	50.00 mL/min	N/A	14.53	8.81	3,379 u	S/cm	158.60	2.72	4.81	12.69	
13:03	119.4	45	50.00 mL/min	N/A	14.78	8.79	3,340 u	S/cm	158.10	2.62	3.23	12.81	
13:08	124.2	23	50.00 mL/min	2.10	14.92	8.80	3,306 u	S/cm	157.40	2.90	3.96	12.90	
13:13	129.5	53	50.00 mL/min	N/A	15.08	8.79	3,293 u	S/cm	156.90	2.76	4.81	13.02	
13:18	133.9	98	50.00 mL/min	N/A	15.12	8.78	3,258 u	S/cm	156.30	2.85	9.26	13.13	
13:23	139.1	13	50.00 mL/min	2.25	15.18	8.81	3,210 u	S/cm	154.70	2.79	4.23	13.23	
13:33	149.3	30	50.00 mL/min	N/A	15.40	8.81	3,173 u	S/cm	154.30	2.66	4.23	13.33	
13:38	154.4	43	50.00 mL/min	N/A	15.49	8.79	3,167 u	S/cm	153.90	2.68	7.87	13.41	
13:43	159.7	75	50.00 mL/min	2.50	15.57	8.78	3,139 u	S/cm	153.70	2.87	3.48	13.48	
13:48	164.5	57	50.00 mL/min	N/A	15.68	8.74	3,139 u	S/cm	153.90	2.63	3.23	13.52	
13:52	168.1	18	50.00 mL/min	2.63	15.66	8.73	3,116 u	S/cm	154.20	2.59	3.21	13.55	
13:57	173.7	77	50.00 mL/min	2.70	15.62	8.72	3,132 u	S/cm	154.30	2.57	3.19	13.59	
Collect	ed Sam	ple C	ondition	Color c	lear		Odor I	None		Appearance	e NA		
			Parameter				ontainer		N	umber		rvative	
			VOCs			CG 40 mL VOA			2		H	HCL	

Comments

Sampling Personnel:

David Birdsey

Signature:

Chill Birdsey

			Well Ca	asing Volumes		
Gal./Ft.	1-1/4" = 0.06	6 1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	3-1/2":= 0.5	50 4" = 0.65 6"=1.47
°C	Degrees Celsi	ius	in	Inches	N/A	Not Applicable
bmp	Below measu	ring point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxy	gen	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to wate	r	mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per m	inute	mV	Millivolts		
			Mate	rial Code		
AG - Ambei	er Glass (CG - Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Vers

Project	SRSNE				Site Location	1	Southington, CT				
Project No.	B005463	4.0000.0190	0		Well ID		MW-127C	Sample ID	MW-127C-(06122012	
Sample Date	06/12/20	12			Sampled By		Michael Skowronel	k			
Sample Time	Begin	12:07	End	12:54	Recorded By	/	Gary Williams				
Weather	Cloudy, C	Cold, Humid			Replicate No		DUP-GW-0626201	2-#1			
Instrument Ide	entificati	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/19091		Wate	er Quality Meter # 2	LaMo	otte 2020e/10	426	
Casing Material			PVC			Purg	e Method	BP:C)ED		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	93.93	Bottom	103.93
Sounded Depth	(ft bmp)		102.12 (6/12/2012)		Pum	p Intake Depth (ft b	mp)	99.00		N/A
Depth to Water	(ft bmp)	_	3.31			Purg	je Time	Begii	า 10:55	End	12:56
PID Reading(pp	om)	_	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
11:04	8.98	100.00 mL/min	0.24	13.57	6.88	0.012 mS/cm	351.60	4.69	6.12	3.47
11:09	14.63	100.00 mL/min	0.37	14.32	7.07	0.012 mS/cm	342.50	4.10	23.10	3.52
11:16	21.45	100.00 mL/min	0.55	14.75	7.23	0.013 mS/cm	336.70	2.97	30.00	3.55
11:21	26.15	100.00 mL/min	0.69	14.92	7.29	0.013 mS/cm	334.80	2.57	31.20	3.57
11:25	29.72	100.00 mL/min	0.79	14.89	7.33	0.013 mS/cm	327.00	2.40	26.30	3.58
11:29	34.15	100.00 mL/min	0.90	3.60	7.35	0.013 mS/cm	327.40	2.14	21.40	3.60
11:33	38.25	100.00 mL/min	1.00	14.58	7.35	0.013 mS/cm	327.70	1.91	16.50	3.61
11:38	42.88	100.00 mL/min	1.14	14.61	7.40	0.013 mS/cm	322.40	1.95	16.50	3.63
11:43	48.50	100.00 mL/min	1.27	14.61	7.35	0.013 mS/cm	325.60	1.73	16.70	3.64
11:49	53.75	100.00 mL/min	1.43	14.50	7.35	0.013 mS/cm	327.50	1.67	11.20	3.64
11:54	59.27	100.00 mL/min	1.56	14.46	7.35	0.013 mS/cm	329.10	1.65	8.37	3.64
11:59	64.40	100.00 mL/min	1.69	14.53	7.35	0.013 mS/cm	332.10	1.57	8.27	3.64
12:07	72.03	100.00 mL/min	1.90	14.56	7.35	0.013 mS/cm	333.50	1.56	8.01	3.64
Collect	ed Sample C	Condition	Color cle	ear		Odor None		Appearance	NA	

Sampling Personnel:

Michael Skowronek

Signature:

MAZ

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.8	50 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tur	bidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction	n potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minut	e	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone	O - Other

Purging Code

Project	SRSNE			Site Location	Southington, C	Т	
Project No.	B0054634.0000.01	900		Well ID	MW-127C	Sample ID	MW-127C-06122012
Sample Date	06/12/2012			Sampled By	Michael Skowro	nek	
Sample Time	Begin 12:07	End	12:54	Recorded By	Gary Williams		
Weather	Cloudy, Cold, Humi	d		Replicate No.	DUP-GW-06262	2012-#1	
	Parameter			Container		Number	Preservative
	Alkalinity			PE 250 mL		1	None
(Chloride, Nitrate/Nitrit	e, Sulfate		PE 500 mL		1	None
	Dissolved Fe/M	/In		PE 250 mL		1	HNO3
	Dissolved Gas	es		CG 40 mL VOA	<u> </u>	2	Trisodium phosphate
	ТОС			CG 40 mL VOA	<u> </u>	2	H2SO4
	Total Fe/Mn			PE 250 mL	1		HNO3
	VOCs			AG 40 mL VOA	·	2	HCL
-							

Comments

Sampling Personnel:

Michael Skowronek

Signature:

MAZ

			Well Ca	asing Volumes		
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.	37 3-1/2":= 0.	50 4" = 0.65 6"=1.47
°C	Degrees Celsiu	5	in	Inches	N/A	Not Applicable
bmp	Below measurin	g point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyge	en	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per min	ute	mV	Millivolts		
			Mate	rial Code		
AG - Ambe	er Glass CC	G - Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Versi

Project	SRSNE				Site Location		Southington, CT				
Project No.	B0054634	.0000.0190	00		Well ID		MW-707DR	Sample ID	MW-707DR-	06122012	
Sample Date	06/12/201	2			Sampled By		Matt Pingitor				
Sample Time	Begin	10:39	End	10:39	Recorded By	,	Matt Pingitor				
Weather	Cloudy, Ho	ot, Humid			Replicate No		N/A				
Instrument Ide	entificatio	n				Fiel	d Parameters				
Water Quality M	leter # 1	_	YSI 600	XL/01G0130		Wate	er Quality Meter # 2	LaMo	otte 2020e/ME	14058	
Casing Material		_	PVC			Purg	e Method	BP:Q	ED 11169		
Casing Diamete	r (in)	_	2.00			Scre	en Interval (ft bmp)	Тор	162.92	Bottom	192.92
Sounded Depth	(ft bmp)		194.60 (6	6/12/2012)		Pum	p Intake Depth (ft b	mp)	177.00		177.00
Depth to Water	(ft bmp)	-	10.10			Purg	e Time	Begir	n 8:56	End	10:39
PID Reading(pp	m)	_	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:00	4.28	50.00 mL/min	0.06	14.05	6.52	0.032 mS/cm	-139.90	5.33	2.80	9.45
9:13	16.50	50.00 mL/min	0.22	13.92	6.90	0.032 mS/cm	-185.90	7.33	2.23	10.58
9:21	25.28	50.00 mL/min	0.33	12.08	7.22	0.060 mS/cm	-185.60	4.05	322.00	11.30
9:29	33.30	50.00 mL/min	0.44	12.00	7.51	0.054 mS/cm	-179.70	0.96	268.00	12.50
9:34	38.25	50.00 mL/min	0.50	11.94	7.61	0.053 mS/cm	-179.50	0.39	195.00	12.86
9:40	44.03	50.00 mL/min	0.58	11.86	7.65	0.051 mS/cm	-179.30	0.23	170.00	13.30
9:45	48.52	50.00 mL/min	0.64	12.32	7.66	0.052 mS/cm	-182.40	0.30	142.00	13.46
9:51	55.20	50.00 mL/min	0.73	12.41	7.64	0.050 mS/cm	-186.40	0.15	112.00	13.56
9:57	60.67	50.00 mL/min	0.80	12.39	7.64	0.050 mS/cm	-190.70	0.22	86.00	13.60
10:05	68.47	50.00 mL/min	0.90	12.53	7.64	0.049 mS/cm	-197.50	0.13	90.00	13.65
10:10	74.43	50.00 mL/min	0.98	11.85	7.63	0.048 mS/cm	-205.80	0.14	75.90	13.75
10:17	81.07	50.00 mL/min	1.07	11.06	7.56	0.045 mS/cm	-217.40	0.06	49.20	14.42
10:23	86.78	50.00 mL/min	1.15	11.19	7.55	0.045 mS/cm	-218.90	0.06	37.50	14.75
10:28	91.85	50.00 mL/min	1.21	11.13	7.54	0.045 mS/cm	-219.50	0.03	30.10	14.90
10:33	96.73	50.00 mL/min	1.34	11.08	7.54	0.044 mS/cm	-221.40	0.05	28.10	15.12
10:38	101.53	50.00 mL/min	1.47	11.26	7.54	0.043 mS/cm	-221.60	0.07	16.50	15.24
15:30	394.08	100.00 mL/min	1.60	11.55	7.05	0.023 mS/cm	-33.00	1.31	23.00	8.72

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	sing Volumes			
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	4" = 0.65 6"=1.4
°C	Degrees Celsius		in	Inches		N/A	Not Applicable
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units
DO	Dissolved oxygen		min	Minutes		ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million
ft	Feet		mL/min	Milliliters per minut	e	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per ce	entimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minut	e	mV	Millivolts			
			Mate	rial Code			
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypr	opylene	T - Teflon	S - Silicone O - Other

Purging Code

SRSNE			Site	Location	Southi	ington, CT				
B0054634.0000.01900	0		Well	Well ID MW-70)7DR Sa	ample ID MW	-707DR-06122	012	
06/12/2012			_ Sam	_ Sampled By Matt		ingitor				
Begin 10:39	End 1	0:39	Reco	orded By	Matt Pi	Matt Pingitor				
Cloudy, Hot, Humid			— Repl	icate No.	N/A					
.02 100.00 mL/min	1.74	10.83	7.07	0.022 m	S/cm	-57.00	1.21	17.20	11.57	
.33 100.00 mL/min	1.86	10.73	7.09	0.022 m	S/cm	-72.10	1.21	16.80	12.70	
.78 100.00 mL/min	1.99	10.58	7.11	0.022 m	S/cm	-85.00	1.18	15.00	13.87	
15:50 413.87 100.00 mL/min 2.16 10.48			7.12	0.022 m	S/cm	-94.60	1.19	15.70	14.83	
nple Condition	Color cl	ear		Odor <u>1</u>	None		Appearance	NA		
Parameter Alkalinity			-	Container				Preservative None		
,	Sulfate								one	
	Canalo								103	
									SP	
TOC								-		
								HNO3		
								HNOS		
	B0054634.0000.01900 06/12/2012 Begin 10:39 Cloudy, Hot, Humid .02 100.00 mL/min .33 100.00 mL/min .87 100.00 mL/min .88 100.00 mL/min .90 Dissolved Fe/Mn Dissolved Gases Dissolved Gases	B0054634.0000.01900 06/12/2012 Begin 10:39 End 1 Cloudy, Hot, Humid .02 100.00 mL/min .03 100.00 mL/min .78 100.00 mL/min .87 100.00 mL/min .88 Color .99 .90 .87 100.00 mL/min .90 .90 .91 .91 .92 .91 .93 .91 .94 .91 .95 .91	B0054634.0000.01900 06/12/2012 Begin 10:39 End 10:39 Cloudy, Hot, Humid .02 100.00 mL/min 1.74 10.83 .33 100.00 mL/min 1.86 10.73 .78 100.00 mL/min 1.99 10.58 .87 100.00 mL/min 2.16 10.48 nple Condition Color clear Clear Parameter Alkalinity thloride, Nitrate/Nitrite, Sulfate Dissolved Fe/Mn Dissolved Gases TOC Total Fe/Mn	B0054634.0000.01900 Well 06/12/2012 Sam Begin 10:39 End 10:39 Reco Cloudy, Hot, Humid Repl Repl Repl 02 100.00 mL/min 1.74 10.83 7.07 33 100.00 mL/min 1.86 10.73 7.09 78 100.00 mL/min 1.99 10.58 7.11 87 100.00 mL/min 2.16 10.48 7.12 nple Condition Color clear Color Clear Parameter Color Alkalinity PE Dissolved Fe/Mn PE Dissolved Fe/Mn PE Color CG TOC CG CG CO	B0054634.0000.01900 Well ID 06/12/2012 Sampled By Begin 10:39 End 10:39 Cloudy, Hot, Humid Replicate No. 02 100.00 mL/min 1.74 10.83 33 100.00 mL/min 1.86 10.73 7.09 0.022 m 33 100.00 mL/min 1.86 10.73 7.09 0.022 m 78 100.00 mL/min 1.99 10.58 7.11 0.022 m 87 100.00 mL/min 2.16 10.48 7.12 0.022 m nple Condition Color clear Odor M horide, Nitrate/Nitrite, Sulfate PE 250 mL M Dissolved Fe/Mn PE 250 mL Dissolved Gases CG 40 mL VOA TOC CG 40 mL VOA TOC CG 40 mL VOA	B0054634.0000.01900 Well ID MW-70 06/12/2012 Sampled By Matt P Begin 10:39 End 10:39 Recorded By Matt P Cloudy, Hot, Humid Replicate No. N/A .02 100.00 mL/min 1.74 10.83 7.07 0.022 mS/cm .33 100.00 mL/min 1.86 10.73 7.09 0.022 mS/cm .78 100.00 mL/min 1.99 10.58 7.11 0.022 mS/cm .87 100.00 mL/min 2.16 10.48 7.12 0.022 mS/cm mple Condition Color clear Odor None Parameter Alkalinity PE 250 mL Dissolved Fe/Mn PE 250 mL Dissolved Fe/Mn PE 250 mL Dissolved Gases CG 40 mL VOA TOC CG 40 mL VOA Total Fe/Mn PE 250 mL	B0054634.0000.01900 Well ID MW-707DR Sampled By Begin 10:39 End 10:39 Recorded By Matt Pingitor Cloudy, Hot, Humid Replicate No. N/A 002 100.00 mL/min 1.74 10.83 7.07 0.022 mS/cm -57.00 33 100.00 mL/min 1.86 10.73 7.09 0.022 mS/cm -72.10 78 100.00 mL/min 1.86 10.73 7.09 0.022 mS/cm -94.60 apple Condition Color clear Odor None -94.60 Parameter Container Num Num -94.60 -94.60 apple Condition Color clear Odor None -94.60 Alkalinity PE 250 mL 1 1 1 -94.60 -94.60 apple Condition Color clear Odor None -94.60 -94.60 apple Condition Color clear Odor Num -94.60 -94.60 -94.60<	B0054634.0000.01900 Well ID MW-707DR Sample ID MW 06/12/2012 Sampled By Matt Pingitor Matt Pingitor Matt Pingitor Begin 10:39 End 10:39 Recorded By Matt Pingitor Cloudy, Hot, Humid Replicate No. N/A N/A N/A 02 100.00 mL/min 1.74 10.83 7.07 0.022 mS/cm -72.10 1.21 33 100.00 mL/min 1.86 10.73 7.09 0.022 mS/cm -72.10 1.21 78 100.00 mL/min 1.99 10.58 7.11 0.022 mS/cm -94.60 1.19 apple Condition Color Clear Odor None Appearance Parameter Container Number Alkalinity PE 250 mL 1 1 biosolved Fe/Mn PE 250 mL 1 1 Dissolved Gases CG 40 mL VOA 2 2 Total Fe/Mn PE 250 mL 1 1	B0054634.0000.01900 Well ID MW-707DR Sample ID MW-707DR-06122 06/12/2012 Sampled By Matt Pingitor Sample ID MW-707DR-06122 Begin 10:39 End 10:39 Recorded By Matt Pingitor 02 100.00 mL/min 1.74 10.83 7.07 0.022 mS/cm -57.00 1.21 17.20 33 100.00 mL/min 1.86 10.73 7.09 0.022 mS/cm -72.10 1.21 16.80 78 100.00 mL/min 1.99 10.58 7.11 0.022 mS/cm -94.60 1.19 15.70 87 100.00 mL/min 2.16 10.48 7.12 0.022 mS/cm -94.60 1.19 15.70 87 100.00 mL/min 2.16 10.48 7.12 0.022 mS/cm -94.60 1.19 15.70 87 100.00 mL/min 2.16 10.48 7.12 0.022 mS/cm -94.60 1.19 15.70 91e Condition Color clear Odor None	

Comments Tablet clock time is off 2 hours. Temporary pause during purge. Samples collected at 1555.

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring) point	mg/L	Milligrams per liter		NTUs	Nephelometric Tu	rbidity Units
DO	Dissolved oxyger	า	min	Minutes		ORP	Oxidation reduction	on potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per centi	meter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	er Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyprop	ylene	T - Teflon	S - Silicone	O - Other
			Purgi	ing Code				Vers

Project	SRSNE				Site Location	1	Southington, CT				
Project No.	B005463	4.0000.019	00		Well ID		MW-901R	Sample ID	MW-901R-0	6142012	
Sample Date	06/14/20	12			Sampled By		Matt Pingitor				
Sample Time	Begin	15:23	End	15:23	Recorded By	,	Matt Pingitor				
Weather	Hot, Hum	nid, Partly C	loudy		Replicate No.		DUP-GW-0614201	12-#3			
Instrument Id	entification			Fiel	d Parameters						
Water Quality M	leter # 1		YSI 600	XL/01G0130		Wate	er Quality Meter # 2	<u>LaMo</u>	otte 2020e/ME	10367	
Casing Material			Sch80 P	VC	Purge Method		BP:C	BP:QED 11169			
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	27.44	Bottom	42.44
Sounded Depth	(ft bmp)		42.29 (6	/14/2012)		Pum	p Intake Depth (ft b	omp)	32.50		32.50
Depth to Water	(ft bmp)	-	18.78			Purg	je Time	Begi	า 14:31	End	15:23
PID Reading(pp	om)	-	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
14:31	0.12	100.00 mL/min	0.10	10.42	5.66	0.014 mS/cm	53.30	8.44	28.00	18.80
14:37	5.98	100.00 mL/min	0.16	9.84	5.41	0.012 mS/cm	69.10	7.57	116.00	18.81
14:44	13.28	100.00 mL/min	0.34	9.71	5.35	0.011 mS/cm	84.10	7.18	100.00	18.83
14:52	21.73	100.00 mL/min	0.55	10.18	5.23	0.011 mS/cm	103.00	6.93	80.20	18.83
14:58	27.77	100.00 mL/min	0.71	10.59	5.21	0.011 mS/cm	109.10	6.77	74.00	18.84
15:03	32.60	100.00 mL/min	0.84	10.66	5.17	0.012 mS/cm	115.10	6.56	69.80	18.84
15:08	36.93	100.00 mL/min	0.98	10.67	5.15	0.012 mS/cm	119.90	6.46	56.10	18.84
15:13	42.63	100.00 mL/min	1.11	10.62	5.15	0.012 mS/cm	122.10	6.39	44.50	18.86
15:18	47.25	100.00 mL/min	1.24	10.54	5.11	0.012 mS/cm	125.10	6.35	40.80	18.86
15:23	52.82	100.00 mL/min	1.37	10.46	5.16	0.012 mS/cm	123.40	6.39	32.10	18.87
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	0 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tu	rbidity Units
DO	Dissolved oxyger	1	min	Minutes		ORP	Oxidation reduction	on potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other
			Purg	ing Code				Ve

Project	SRSNE		Site Location	Southington, CT			
Project No.	B0054634.0000.01900		Well ID	MW-901R Sample ID		MW-901R-06142012	
Sample Date	06/14/2012		Sampled By	Matt Pingitor			
Sample Time	Begin 15:23 End	15:23	Recorded By	Matt Pingitor			
Weather	Hot, Humid, Partly Cloudy		Replicate No.	DUP-GW-061420			
	Parameter		Container	I	Number	Preservative	
	Alkalinity		PE 250 mL		1	None	
(Chloride, Nitrate/Nitrite, Sulfate		PE 500 mL		1	None	
	Dissolved Fe/Mn		PE 250 mL		1	HNO3	
	Dissolved Gases		CG 40 mL VOA	2		TSP	
	TOC		CG 40 mL VOA	2		H2SO4	
	Total Fe/Mn		PE 250 mL	1		HNO3	
	VOCs		AG 40 mL VOA		2	HCL	
Comments	Tablet clock time is incorrect	Sample time of	on COC is 16:30				

Comments Tablet clock time is incorrect. Sample time on COC is 16:30.

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50) 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbid	lity Units
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction p	otential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cent	timeter	uS/cm	Microsiemens per cer	ntimeter
gpm	Gallons per minu	ite	mV	Millivolts				
			Mate	rial Code				
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyprop	oylene	T - Teflon	S - Silicone O	- Other
			Purg	ing Code				Vers

Project	SRSNE				Site Location	ı	Southington, CT				
Project No.	B0054634	4.0000.0190	00		Well ID		MW-126C	Sample ID	MW-12	26C-06132012	
Sample Date	06/13/201	12			Sampled By		Matt Pingitor				
Sample Time	Begin	9:10	End	9:10	Recorded By	/	Matt Pingitor				
Weather	Cloudy, H	lumid, Rain			Replicate No).	N/A				
Instrument Id	entificatio	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01G0130		Wate	er Quality Meter # 2	LaMo	otte 2020	0e/ME14058	
Casing Material	I	_	PVC			Purg	e Method	BP:Q	ED		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	23.4	41 Bottom	33.41
Sounded Depth	ı (ft bmp)	_	33.64 (6/	13/2012)		Pum	p Intake Depth (ft b	mp)	28.0	00	28.00
Depth to Water	(ft bmp)	_	1.94			Purg	je Time	Begir	n 8:3	35 End	9:11
PID Reading(pp	om)	_	0.00								
0.11	,	-									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:40	5.42	100.00 mL/min	0.13	12.82	5.80	0.011 mS/cm	83.60	6.24	1.14	1.90
8:45	9.65	100.00 mL/min	0.26	12.42	5.96	0.011 mS/cm	77.20	5.47	0.76	1.90
8:50	14.62	100.00 mL/min	0.40	12.26	5.97	0.011 mS/cm	80.10	5.18	1.01	1.92
8:55	19.57	100.00 mL/min	0.53	12.24	5.99	0.011 mS/cm	81.40	4.98	0.96	1.92
9:00	24.58	100.00 mL/min	0.66	12.30	6.01	0.010 mS/cm	83.20	4.84	1.11	1.92
9:05	30.33	100.00 mL/min	0.79	12.15	5.99	0.010 mS/cm	82.60	4.80	1.25	1.92
9:10	34.53	100.00 mL/min	0.92	12.19	6.00	0.011 mS/cm	83.12	4.83	1.52	1.93
Collect	ed Sample C	Condition	Color cle	ear		Odor None		Appearance	NA	

Collected Sample Condition

NA

	Parameter	Container	Number	Preservative
	Dissolved TAL Metals	PE 250 mL	1	HNO3
	Total TAL Metals	PE 250 mL	1	HNO3
Comments	Tablet clock time is off 2 hours. Samp	le time on COC is 11:10 am.		

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	ising Volumes		
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	3-1/2":= 0.5	504" = 0.656"=1.47
°C	Degrees Celsius		in	Inches	N/A	Not Applicable
bmp	Below measuring	g point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyge	n	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	ute	mV	Millivolts		
			Mate	rial Code		
AG - Amber	er Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Ver

Project	SRSNE				Site Location	l	Southington, CT					
Project No.	B0054634	4.0000.0190	00		Well ID		MW-03	Sample ID <u>MW-03-06152012</u>				
Sample Date	06/15/202	12			Sampled By		Chris Trowbridge					
Sample Time	Begin	7:05	End	7:05	Recorded By	,	N/A					
Weather	Muggy, P	artly Cloudy	1		Replicate No		N/A					
Instrument Id	entificatio	on				Fiel	d Parameters					
Water Quality M	leter # 1	_	YSI 600 2	XL/00J0695 AA		Wate	er Quality Meter # 2	LaMo	otte 2020e/1	1693		
Casing Material			PVC			Purg	e Method	BP:Q	ED 10693			
Casing Diamete	er (in)	_	1.50			Scre	en Interval (ft bmp)	Тор	55.51	Bottom	85.51	
Sounded Depth	(ft bmp)		82.70 (6/	12/2012)		Pum	p Intake Depth (ft b	mp)	67.50		67.50	
Depth to Water	(ft bmp)	-	6.95			Purg	je Time	Begir	n 6:15	End	7:02	
PID Reading(pp	om)	-	0.00									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
6:20	5.27	50.00 mL/min	0.07	14.01	6.37	0.011 mS/cm	6.30	6.27	8.41	6.95
6:25	9.98	50.00 mL/min	0.13	13.41	6.31	0.012 mS/cm	-14.80	4.47	6.72	6.95
6:30	14.73	50.00 mL/min	0.19	13.17	6.34	0.012 mS/cm	-30.40	3.38	3.76	6.95
6:35	19.78	50.00 mL/min	0.26	12.86	6.57	0.007 mS/cm	-59.10	2.05	2.13	6.95
6:40	25.27	50.00 mL/min	0.33	12.56	6.81	0.007 mS/cm	-83.60	1.20	2.54	6.95
6:45	29.87	50.00 mL/min	0.39	12.54	7.05	0.006 mS/cm	-107.20	0.83	1.86	6.95
6:50	34.90	50.00 mL/min	0.46	12.52	7.13	0.006 mS/cm	-114.80	0.76	1.52	6.95
6:55	40.07	50.00 mL/min	0.53	12.56	7.24	0.007 mS/cm	-126.40	0.61	0.86	6.95
7:00	45.42	50.00 mL/min	0.60	12.54	7.32	0.006 mS/cm	-139.20	0.58	0.95	6.95
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Sampling Personnel:

Chris Trowbridge

Signature:

pla

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tur	bidity Units
DO	Dissolved oxyger	ו	min	Minutes		ORP	Oxidation reductio	n potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute	;	s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per ce	ntimeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Amber	er Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	opylene	T - Teflon	S - Silicone	O - Other
			Purg	ing Code				Ver

Project	SRSNE			Site Location	Southington	, CT	
Project No.	B0054634.000	0.01900		Well ID	MW-03	Sample ID	MW-03-06152012
Sample Date	06/15/2012			Sampled By	Chris Trowbr	idge	
Sample Time	Begin 7:0	5 End	7:05	Recorded By	N/A		
Weather	Muggy, Partly	Cloudy		Replicate No.	N/A		
	Param	eter		Container		Number	Preservative
	Alkali	nity		PE 250 mL		1	None
(Chloride, Nitrate	Nitrite, Sulfate		PE 500 mL		1	None
	Dissolved	Fe/Mn		PE 250 mL		1	HNO3
	Dissolved	Gases		CG 40 mL VOA	\	2	TSP
	TO	2		CG 40 mL VOA	\	2	H2SO4
	Total F	e/Mn		PE 250 mL		1	HNO3
	VOC	s		AG 40 mL VOA	<u> </u>	2	HCL
<u> </u>	T 1 1 4 1		0 1 1	000 1 0 05			

Comments Tablet clock is 2 hours off. Sample time on COC is 9:05 am.

Sampling Personnel:

Chris Trowbridge

Signature:

ø la

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	5 1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	0 4" = 0.65 6"=1.47	
°C	Degrees Celsi	us	in	Inches		N/A	Not Applicable	
bmp	Below measur	ing point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units	
DO	Dissolved oxy	gen	min	Minutes		ORP	Oxidation reduction potential	
DTW	Depth to wate	r	mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens per centimeter	
gpm	Gallons per m	inute	mV	Millivolts				
			Mate	rial Code				
AG - Ambei	r Glass C	CG - Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone O - Other	
			Purg	ing Code			V	/ersi

Project	SRSNE				Site Location		Southington, CT					
Project No.	B005463	4.0000.019	00		Well ID		MW-126B	Sample ID <u>MW-126B-06132012</u>				
Sample Date	06/13/20 ⁻	12			Sampled By		Matt Pingitor					
Sample Time	Begin	7:51	End	7:51	Recorded By		Matt Pingitor					
Weather	Humid, P	artly Cloudy	/		Replicate No.		DUP-GW-0613201	16-#1				
Instrument Id	entificatio	on				Field	d Parameters					
Water Quality M	leter # 1		YSI 600	XL/01G0130		Wate	er Quality Meter # 2	LaM	otte 20	20e/ME1	4058	
Casing Material			PVC			Purg	e Method	BP:0	2ED 11	169		
Casing Diamete	er (in)	_	2.00			Scre	en Interval (ft bmp)	Тор	6	6.90	Bottom	11.90
Sounded Depth	(ft bmp)		12.09 (6/	13/2012)		Pum	p Intake Depth (ft b	omp)	1	0.00		10.00
Depth to Water	(ft bmp)	-	2.83			Purg	e Time	Beg	n T	7:07	End	7:51
PID Reading(pp	om)	-	0.00									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
7:13	6.20	100.00 mL/min	0.16	13.82	5.96	0.015 mS/cm	3.90	1.84	19.60	2.85
7:20	12.83	100.00 mL/min	0.34	12.36	5.51	0.013 mS/cm	14.60	1.01	12.70	2.86
7:25	17.87	100.00 mL/min	0.48	11.89	5.46	0.012 mS/cm	17.40	0.80	6.39	2.88
7:30	23.70	100.00 mL/min	0.61	11.81	5.44	0.012 mS/cm	20.40	0.79	8.10	2.90
7:35	28.67	100.00 mL/min	0.74	11.89	5.42	0.012 mS/cm	23.60	0.81	5.45	2.91
7:40	33.08	100.00 mL/min	0.87	11.76	5.42	0.012 mS/cm	24.90	0.78	5.16	2.91
7:45	38.50	100.00 mL/min	1.00	11.69	5.42	0.011 mS/cm	24.60	0.76	6.33	2.92
7:50	42.98	100.00 mL/min	1.14	11.70	5.40	0.012 mS/cm	23.40	0.81	5.58	2.92
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50) 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tu	rbidity Units
DO	Dissolved oxyger	ו	min	Minutes		ORP	Oxidation reduction	on potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cent	imeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	er Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyprop	oylene	T - Teflon	S - Silicone	O - Other
			Purgi	ing Code				Ve

Project	SRSNE	Site Location	Southington, C	Т			
Project No.	B0054634.0000.01900	Well ID	MW-126B	Sample ID	MW-126B-06132012		
Sample Date	06/13/2012	_ Sampled By	Matt Pingitor				
Sample Time	Begin <u>7:51</u> End <u>7:51</u>	Recorded By	Recorded By Matt Pingitor				
Weather	Humid, Partly Cloudy	Replicate No.	DUP-GW-06132	2016-#1			
	Parameter	Container		Number	Preservative		
	Alkalinity	PE 250 mL		1	None		
(Chloride, Nitrate/Nitrite, Sulfate	PE 500 mL		1	None		
	Dissolved TAL Metals	PE 250 mL		1	HNO3		
	Dissolved Fe/Mn	PE 250 mL 1			HNO3		
	Dissolved Gases	CG 40 mL VOA	<u> </u>	2	TSP		
	TOC	CG 40 mL VOA	2		H2SO4		
	Total Fe/Mn	PE 250 mL	1		HNO3		
	Total TAL Metals	PE 250 mL	1		HNO3		
	VOCs	AG 40 mL VOA	· · · · · · · · · · · · · · · · · · ·	2	HCL		
Comments	Tablet clock time is off 2 hours Sample t	time on COC is 9.50 a					

Comments Tablet clock time is off 2 hours. Sample time on COC is 9:50 am.

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turb	idity Units
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction	potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens per c	entimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	er Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other
			Purgi	ing Code				Versi

Project	SRSNE				Site Location	ı	Southington, CT					
Project No.	B005463	34.0000.019	00		Well ID		MW-209A	Sample ID	MW-2	209A-06	142012	
Sample Date	06/14/20)12			Sampled By		Chris Trowbridge					
Sample Time	Begin	17:00	End	17:00	Recorded By	/	Chris Trowbridge					
Weather	Humid, I	Partly Cloudy	/		Replicate No).	N/A					
Instrument Id	lentificat	ion				Field	d Parameters					
Water Quality N	/leter # 1		YSI 600	XL/00J0695 AA		Wate	er Quality Meter # 2	YSI 6	650 MD	S/11J10	0750	
Casing Materia	I		PVC			Purg	e Method	BP:C)ED			
Casing Diameter	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	20	.12	Bottom	40.12
Sounded Depth	n (ft bmp)	_	40.10 (ir	nstalled)		Pum	p Intake Depth (ft b	mp)	28	.00		N/A
Depth to Water	(ft bmp)	-	21.81			Purg	e Time	Begir	n 16	:25	End	17:04
PID Reading(p)	pm)	_	0.00									
		-										

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
16:25	0.10	100.00 mL/min	0.01	11.74	5.86	0.006 mS/cm	-144.60	7.03	15.40	21.81
16:30	4.47	100.00 mL/min	0.12	12.11	6.11	0.011 mS/cm	-129.10	6.87	19.30	21.81
16:35	10.27	100.00 mL/min	0.27	12.01	5.95	0.008 mS/cm	-116.40	6.83	14.20	21.81
16:40	14.93	100.00 mL/min	0.39	11.99	5.89	0.011 mS/cm	-114.20	6.78	12.30	21.81
16:45	19.48	100.00 mL/min	0.51	11.90	5.87	0.010 mS/cm	-111.00	6.77	11.20	21.81
16:50	24.48	100.00 mL/min	0.65	11.86	6.65	0.005 mS/cm	-109.10	7.11	10.30	21.81
16:55	30.10	100.00 mL/min	0.79	11.83	5.85	0.004 mS/cm	-108.20	7.15	9.82	21.81
17:00	34.43	100.00 mL/min	0.91	11.82	5.84	0.004 mS/cm	-106.20	7.18	8.57	21.81
2 - 11 4	od Samplo ()	Color d	n ar		Odor Nono		Appearance	NΛ	

Collected Sample Condition Color clear Odor None Appearance NA

Parameter	Container	Number	Preservative
TAL Dissolved Metals	PE 250 mL	1	HNO3
TAL Total Metals	PE 250 mL	1	HNO3

Comments

Sampling Personnel:

Chris Trowbridge

Signature:

den M

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	0 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity	y Units
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction pot	ential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cen	timeter	uS/cm	Microsiemens per centi	meter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone O - O	Other
			Purgi	ing Code				Vers

SRSNE				Site Location	۱	Southington, CT				
B0054634	4.0000.019	00		Well ID		MW-701DR	Sample ID	MW-701DR-	06152012	
06/15/201	12			Sampled By		Matt Pingitor				
Begin	8:45	End	8:45	Recorded By	/	Matt Pingitor				
Hot, Hum	id, Sunny			Replicate No.).	N/A				
entificatio	on				Field	d Parameters				
eter # 1		YSI 600	XL/01G0130		Wate	er Quality Meter # 2	LaMo	otte 2020e/ME	10367	
		PVC			Purg	e Method	BP:Q	ED		
r (in)	_	2.00			Scre	en Interval (ft bmp)	Тор	95.76	Bottom	110.26
(ft bmp)		106.32 (6	6/15/2012)		Pum	p Intake Depth (ft b	mp)	101.00		101.00
(ft bmp)	-	17.28			Purg	e Time	Begir	n 7:58	End	8:44
m)	-	0.00								
	B0054634 06/15/201 Begin Hot, Hum entificatio eter # 1 r (in) (ft bmp) ft bmp)	B0054634.0000.0190 06/15/2012 Begin <u>8:45</u> Hot, Humid, Sunny entification eter # 1 r (in) (ft bmp) ft bmp)	B0054634.0000.01900 06/15/2012 Begin 8:45 Hot, Humid, Sunny entification eter # 1 YSI 600 PVC r (in) 2.00 (ft bmp) 106.32 (ft bmp) ft bmp) 17.28	B0054634.0000.01900 06/15/2012 Begin 8:45 Hot, Humid, Sunny entification eter # 1 YSI 600 XL/01G0130 PVC r (in) 2.00 (ft bmp) 106.32 (6/15/2012) ft bmp) 17.28	B0054634.0000.01900 Well ID 06/15/2012 Sampled By Begin 8:45 End 8:45 Recorded By Hot, Humid, Sunny Replicate No entification PVC PVC r (in) 2.00 106.32 (6/15/2012) 17.28	B0054634.0000.01900 Well ID 06/15/2012 Sampled By Begin 8:45 End 8:45 Recorded By Hot, Humid, Sunny Replicate No. Field eter # 1 YSI 600 XL/01G0130 Wate PVC Purg r (in) 2.00 Scree (ft bmp) 106.32 (6/15/2012) Purg ft bmp) 17.28 Purg	B0054634.0000.01900 Well ID MW-701DR 06/15/2012 Sampled By Matt Pingitor Begin 8:45 End 8:45 Recorded By Matt Pingitor Hot, Humid, Sunny Replicate No. N/A entification YSI 600 XL/01G0130 Water Quality Meter # 2 PVC Purge Method r (in) 2.00 Screen Interval (ft bmp) (ft bmp) 106.32 (6/15/2012) Purge Time	B0054634.0000.01900 Well ID MW-701DR Sample ID 06/15/2012 Sampled By Matt Pingitor Begin 8:45 End 8:45 Recorded By Matt Pingitor Hot, Humid, Sunny Replicate No. N/A Frield Parameters VSI 600 XL/01G0130 Water Quality Meter # 2 LaMo PVC Purge Method BP:Q r (in) 2.00 Screen Interval (ft bmp) Top (ft bmp) 106.32 (6/15/2012) Purge Time Begir	B0054634.0000.01900 Well ID MW-701DR Sample ID MW-701DR- 06/15/2012 Sampled By Matt Pingitor Matt Pingitor Matt Pingitor Begin 8:45 End 8:45 Recorded By Matt Pingitor Hot, Humid, Sunny Replicate No. N/A Field Parameters Matt Pingitor Porter # 1 YSI 600 XL/01G0130 Water Quality Meter # 2 LaMotte 2020e/ME PVC Purge Method BP:QED r (in) 2.00 Screen Interval (ft bmp) Top 95.76 (ft bmp) 106.32 (6/15/2012) Purge Time Begin 7:58	B0054634.0000.01900 Well ID MW-701DR Sample ID MW-701DR-06152012 06/15/2012 Sampled By Matt Pingitor Metric Pingitor Begin 8:45 End 8:45 Recorded By Matt Pingitor Hot, Humid, Sunny Replicate No. N/A Field Parameters VSI 600 XL/01G0130 Water Quality Meter # 2 LaMotte 2020e/ME10367 PVC Purge Method BP:QED Screen Interval (ft bmp) Top 95.76 Bottom (ft bmp) 106.32 (6/15/2012) Purge Time Begin 7:58 End

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:04	6.02	100.00 mL/min	0.16	10.79	7.42	0.015 mS/cm	24.20	9.35	4.55	18.30
8:09	10.78	100.00 mL/min	0.29	10.75	7.47	0.016 mS/cm	27.10	9.26	3.17	18.30
8:14	15.73	100.00 mL/min	0.42	10.67	7.54	0.015 mS/cm	33.10	8.70	7.75	18.32
8:19	20.88	100.00 mL/min	0.55	10.71	7.57	0.015 mS/cm	39.10	8.43	5.98	18.33
8:24	25.65	100.00 mL/min	0.69	10.82	7.64	0.015 mS/cm	46.00	8.32	5.23	18.33
8:29	31.07	100.00 mL/min	0.82	10.72	7.63	0.015 mS/cm	50.30	8.41	6.13	18.34
8:34	36.20	100.00 mL/min	0.95	10.69	7.60	0.015 mS/cm	54.50	8.41	4.56	18.34
8:39	40.62	100.00 mL/min	1.08	10.65	7.61	0.015 mS/cm	52.90	8.44	3.46	18.34
8:44	45.95	100.00 mL/min	1.21	10.68	7.61	0.016 mS/cm	53.50	8.39	3.11	18.35
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Sampling Personnel:

Matt Pingitor

Signature:

1.01

			Well Ca	asing Volumes		
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.3	7 3-1/2":= 0.5	50 4" = 0.65 6"=1.47
°C	Degrees Celsius		in	Inches	N/A	Not Applicable
bmp	Below measuring	point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units
DO	Dissolved oxyger	ı	min	Minutes	ORP	Oxidation reduction potential
DTW	Depth to water		mL	Milliliter	ppm	Parts per million
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter
gpm	Gallons per minu	te	mV	Millivolts		
			Mate	rial Code		
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other
			Purg	ing Code		Vers

Purging Code

Project	SRSNE				Site Location	Southington,	СТ	
Project No.	B0054634	.0000.01900	0		Well ID	MW-701DR	Sample ID	MW-701DR-06152012
Sample Date	06/15/201	2			_ Sampled By	Matt Pingitor		
Sample Time	Begin	8:45	End	8:45	Recorded By	Matt Pingitor		
Weather	Hot, Humi	d, Sunny			Replicate No.	N/A		
	Ра	rameter			Container		Number	Preservative
	A	lkalinity			PE 250 mL		1	None
	Chloride, Nit	rate/Nitrite, \$	Sulfate		PE 500 mL		1	None
	Disso	lved Fe/Mn			PE 250 mL		1	HNO3
	Disso	lved Gases			CG 40 mL VOA	<u> </u>	2	TSP
	TAL Dis	solved Meta	als		PE 250 mL		1	HNO3
	TAL 1	otal Metals			PE 250 mL		1	HNO3
		тос			CG 40 mL VOA	<u> </u>	2	H2SO4
	Tot	al Fe/Mn			PE 250 mL		1	HNO3
	,	VOCs			AG 40 mL VOA		2	HCL

Comments

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3"	= 0.37	3-1/2":= 0.50	0 4" = 0.65 6"= ⁻	1.47
°C	Degrees Celsiu	S	in	Inches		N/A	Not Applicable	
bmp	Below measurir	ng point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units	6
DO	Dissolved oxyge	en	min	Minutes		ORP	Oxidation reduction potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per centim	neter	uS/cm	Microsiemens per centimeter	
gpm	Gallons per min	ute	mV	Millivolts				
			Mate	rial Code				
AG - Ambei	r Glass CO	G - Clear Glass	PE - Polyethylene	PP - Polypropyl	ene 1	F - Teflon	S - Silicone O - Other	
			Purgi	ing Code				Vers

Project	SRSNE				Site Location	1	Southington, CT				
Project No.	B005463	4.0000.019	00		Well ID		P-12	Sample ID	P-12-0612	2012	
Sample Date	06/12/20	12			Sampled By		Matt Pingitor				
Sample Time	Begin	13:28	End	13:28	Recorded By	1	Matt Pingitor				
Weather	Cloudy, H	lot, Humid,	Windy		Replicate No		N/A				
Instrument Id	entificati	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/01G0130		Wate	er Quality Meter # 2	LaMo	otte 2020e/N	IE14058	
Casing Material			PVC			Purg	e Method	BP:Q	ED		
Casing Diameter	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	11.55	Bottom	16.55
Sounded Depth	(ft bmp)		17.26 (6	/12/2012)		Pum	p Intake Depth (ft b	mp)	14.00		12.00
Depth to Water	(ft bmp)		6.92			Purg	je Time	Begir	n 12:33	End	13:27
PID Reading(pp	om)		0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
12:41	8.27	50.00 mL/min	0.11	13.16	6.66	0.012 mS/cm	10.10	0.26	100.20	7.06
12:48	15.68	50.00 mL/min	0.20	12.70	6.63	0.012 mS/cm	6.20	0.35	51.30	7.10
12:55	22.75	50.00 mL/min	0.29	12.37	6.53	0.011 mS/cm	6.30	0.23	34.40	7.14
13:00	27.57	50.00 mL/min	0.36	12.36	6.48	0.011 mS/cm	7.50	0.08	15.40	7.16
13:05	32.43	50.00 mL/min	0.42	11.71	6.50	0.011 mS/cm	5.90	0.24	10.50	7.21
13:11	38.28	50.00 mL/min	0.50	11.47	6.45	0.011 mS/cm	9.00	0.16	9.64	7.26
13:16	43.63	50.00 mL/min	0.57	11.42	6.41	0.011 mS/cm	10.70	0.21	9.01	7.31
13:21	48.05	50.00 mL/min	0.63	11.39	6.40	0.011 mS/cm	12.70	0.18	8.86	7.34
13:26	53.12	50.00 mL/min	0.70	11.38	6.39	0.011 mS/cm	11.30	0.20	8.12	7.37
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity	Units
DO	Dissolved oxyger	1	min	Minutes		ORP	Oxidation reduction pote	ntial
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cent	imeter	uS/cm	Microsiemens per centin	neter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyprop	oylene	T - Teflon	S - Silicone O - O	ther
			Purg	ing Code				Versi

Purging Code

Project	SRSNE			Site Location	Southington, C	т	
Project No.	B0054634.0000.0	1900		Well ID	P-12	Sample ID	P-12-06122012
Sample Date	06/12/2012			Sampled By	Matt Pingitor		
Sample Time	Begin 13:28	End	13:28	Recorded By	Matt Pingitor		
Weather	Cloudy, Hot, Hum	id, Windy		Replicate No.	N/A		
	Paramete)r		Container		Number	Preservative
	Alkalinity			PE 250 mL		1	None
(Chloride, Nitrate/Nit	ite, Sulfate		PE 500 mL		1	None
	Dissolved Fe	/Mn		PE 250 mL		1	HNO3
	Dissolved Ga	ises		CG 40 mL VOA	<u> </u>	2	TSP
	TOC			CG 40 mL VOA	<u> </u>	2	H2SO4
	Total Fe/M	n		PE 250 mL		1	HNO3
	VOCs			AG 40 mL VOA	<u> </u>	2	HCL
	-						

Comments Tablet clock time is off 2 hours. Sample time on COC is 15:30.

Sampling Personnel:

Matt Pingitor

Signature:

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tu	rbidity Units
DO	Dissolved oxyger	า	min	Minutes		ORP	Oxidation reduction	n potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone	O - Other
			Purg	ing Code				Versio

		uildings		ŀ	lydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900				Well ID:	TW-08D		
Sample:	TW-08D-H	IS-061	52012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:	 [•	Stic	k Up		Flush	Mount				
Measuring Pt:	тос	-		-	_		-	Top of Casing Elevation	on:	161.48
Total Depth As	Constructed (ft bmp)		26.58			Screened In	terval (ft bmp):	19.58 - 2	24.58
Well Casing:	Diameter:	2.	.00		Mate	rial:	 Stainless Steel			
Well Screen:	Diameter:	2.	.00							
Deployment										
Date and Time	of Deploymer	nt:		Date	:	06/11	1/2012	Time:	11:15 ar	n
Weather Cond	itions:				_	Sunny				
Depth to groun	idwater at time	of dep	oloyment:		_	5.81				
Total well dept	h at time of de	ployme	ent:		_	25.87				
Dimensions of	HydraSleeve	TM:		Leng	gth (in.)	36.0	0	Diameter(in.)	1.90	
Deployment M	ethod/Position	of Wei	ght:		_	Top W	eight			
Deployment De	epth (Top of H	ydraSle	eveTM) (ftl	ogs):		25.87				
PID						2.3				
Retrieval										
Date and Time	of Retrieval [.]			Date		06/14	5/2012	Time:	9:20 an	n
Total # of days				Duto	-	4	5/2012		0.20 un	
Weather Cond					-		, Humid			
Depth to groun		of retr	ieval:		-	5.69				
Total well depti					-	25.87				
PID:		nevai.			-	2.3				
Downhole Field	d Parameters	Inon E	Potrioval.		-	2.0				
Temp: 12 (0		ORP:		(mV)	SCond	: 0.03	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.43	3	DO:	0.41(mg	/L)	- Turb:	14.20	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color	clear	-	0	dor None	Арре	arance	CLEAR
Ch	Param Iloride, Nitrate		Sulfate			Cont PE 25	ainer 50 mL	Number 1		Preservative None
	Dissolved	Gases	;			CG 2	0 mL	2		Trisodium phosphate
	Dissolved	Fe/Mn	1			PE 25	i0 mL	1		HNO3
	TO					CG 4		2		H2SO4
	Total F					PE 25		1		HNO3
	Alkali	,				PE 6		2		None
	VOC	S				AG 4	U mL	2		HCL

e:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	TW-08D		
Sample:	TW-08D-HS	-06152012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	TOC			T	op of Casing Elev	ation:	161.48
Total Depth As	Constructed (ft	bmp):	26.58	Screened Int	terval (ft bmp):	19.58	- 24.58
		2.00	Material:	Stainless Steel			
Well Casing:	Diameter:	2.00					

Christopher Trowbridge

UR.

	CADIS	uildings		Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900			Well ID:	TW-08B		
Sample:	TW-08B-H	S-0615	2012			Replicate No.	N/A		
Well Type:	Monitoring	Well							
Well Finish:		Stick	< Up	Flus	h Mount				
Measuring Pt:	тос	-		_		-	Top of Casing Elevatic	on:	162.01
Total Depth As	Constructed (ft bmp):	:	35.09		Screened In	terval (ft bmp):	24.09 -	34.09
Well Casing:	Diameter:	2.	00	Mate	erial:	Stainless Steel	-		
Well Screen:	Diameter:	2.	00						
Deployment									
Date and Time	of Deploymen	it:		Date:	06/1	1/2012	Time:	11:26 a	m
Weather Condit	tions:				Sunny	/			
Depth to ground	dwater at time	of dep	loyment:		6.34				
Total well depth	at time of de	ployme	nt:		28.82	2			
Dimensions of I	HydraSleeve ⁻	ΓM:		Length (in.)	36.0	00	Diameter(in.)	1.90	
Deployment Me	ethod/Position	of Wei	ght:		Bottor	m Anchor			
Deployment De	pth (Top of Hy	/draSle	eveTM) (ftb	gs):	25.82	2			
PID					56.8				
Retrieval									
Date and Time	of Potrioval:			Date:	06/1	5/2012	Time:	10:41 a	~
				Dale.		5/2012	nine.	10:41 a	m
Total # of days					4				
Weather Condit		·				y, Humid			
Depth to ground			eval:		6.63				
Total well depth	at time of ret	ieval:			28.82	2			
PID:					56.8				
Downhole Field									
Temp: <u>12 (C</u>		ORP:	-207.90 (1			? (mS/cm)	Water quality	meter:	YSI 600 XL
pH: 10.5		DO:	0.08(mg/l	_) Turb:	26.3	80	Serial #:		00J0695 AA
Collected Samp	ole Condition		Color c	lear	(Odor None	Арре	arance	N/A
Chl	Param oride, Nitrate/		Sulfate		Con PE 2	tainer 50 mL	Number 1		Preservative None
	Dissolved	Fe/Mn			PE 2	50 mL	1		HNO3
	Alkaliı	nity				60 ml	1		None
	Total Fe				PE 2		1		HNO3
	TO				CG 4		2		H2SO4
	VOC Dissolved			·		mL VOA 20 mL	2		HCL TSP
	DISSOIVED	00385			00 2		Z		135

e:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.00	00.01900		Well ID:	TW-08B		
Sample:	TW-08B-HS-0	06152012		Replicate No.	N/A		
Well Type:	Monitoring W	ell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	TOC			т	op of Casing Elev	ation:	162.01
0							
Total Depth As	Constructed (ft b	mp):	35.09	Screened Int	erval (ft bmp):	24.09	- 34.09
Total Depth As Well Casing:	Constructed (ft b Diameter:	mp): 2.00	35.09 Material:	Screened Int Stainless Steel	erval (ft bmp):	24.09	- 34.09

Christopher Trowbridge

Signature:

H A

	CADIS	uildings		Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900			Well ID:	TW-08A		
Sample:	TW-08A-H	IS-0614	2012			Replicate No.	N/A		
Well Type:	Monitoring	y Well							
Well Finish:		Stic	k Up	Flus	h Mount				
Measuring Pt:	тос	-				7	Top of Casing Elevation	on:	161.97
Total Depth As	Constructed (ft bmp)	:	17.53		Screened In	terval (ft bmp):	6.53 - 1	6.53
Well Casing:	Diameter:	2.	.00	Mate	erial:	 Stainless Steel			
Well Screen:	Diameter:	2.	.00						
Deployment									
Date and Time	of Deploymer	nt:		Date:	06/1	1/2012	Time:	11:06 a	m
Weather Condi	tions:				Sunny	,			
Depth to groun	dwater at time	e of dep	loyment:		5.34				
Total well depth	n at time of de	ployme	nt:		14.50				
Dimensions of	HydraSleeve	TM:		Length (in.)	36.0)0	Diameter(in.)	1.90	
Deployment Me	ethod/Position	of Wei	ght:		Botton	n Anchor			
Deployment De	epth (Top of H	ydraSle	eveTM) (ftbgs	s):	11.25				
PID		-			2.7				
Retrieval									
							_		
Date and Time				Date:		4/2012	Time:	2:53 pr	n
Total # of days					3				
Weather Condi					Cloud	у			
Depth to groun			eval:		6.12				
Total well depth	n at time of ret	rieval:			14.50				
PID:					2.7				
Downhole Field	Parameters	Upon F	etrieval:						
Temp: 12 (C	;)	ORP:	-170.40 (m ^v	V) SCond	d: <u>0.01</u>	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.44		DO:	0.28(mg/L)	Turb:	29.6	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color cle	ar	C	Odor None	Арре	earance	Clear
	Param TO				Cont CG 4	t ainer 0 mL	Number 2		Preservative H2SO4
	VOC	Cs			AG 40 r	mL VOA	2		HCL
	Dissolved		1		PE 25		1		HNO3
	Total F				PE 25		1		HNO3
Ch	loride, Nitrate				PE 25		1		None
	Dissolved		1		CG 2		2		TSP
	Alkali	nity			PE 6	i0 ml	1		None

e:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.00	000.01900		Well ID:	TW-08A		
Sample:	TW-08A-HS-	06142012		Replicate No.	N/A		
Well Type:	Monitoring W	/ell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	TOC			T	op of Casing Elev	ation:	161.97
	Constructed (ft I	omp):	17.53	Screened Int	erval (ft bmp):	6.53 -	16.53
Total Depth As							
Total Depth As Well Casing:	Diameter:	2.00	Material:	Stainless Steel		_	

Christopher Trowbridge

Ø 11

	CADIS environment, but	uildings		Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900			Well ID:	PZR-2R		
Sample:	PZR-2R-H	IS-0613	2012			Replicate No.	N/A		
Well Type:	Monitoring	l Well							
Well Finish:		Stick	(Up	Flus	n Mount				
Measuring Pt:	тос	-				-	Top of Casing Elevation	on:	153.78
Total Depth As		ft bmp):		139.50			terval (ft bmp):		- 142.23
Well Casing:	Diameter:	2.	-	Mate	erial:	– PVC			
Well Screen:	Diameter:	2.	00						
Deployment									
Date and Time	of Deploymer	nt:		Date:	06/1	2/2012	Time:	12:47 p	m
Weather Cond	itions:				Cloud	y			
Depth to grour	ndwater at time	e of dep	loyment:		6.93				
Total well dept	h at time of de	ployme	nt:		142.0	7			
Dimensions of	HydraSleeve	TM:		Length (in.)	36.0)0	Diameter(in.)	1.90	
Deployment M	ethod/Position	of Wei	ght:		Botton	n Anchor			
Deployment D	epth (Top of H	vdraSle	eveTM) (ftbg	s):	132.7	5			
PID		-			0				<u> </u>
Retrieval									
Date and Time				Date:	06/1	3/2012	Time:	2:57 pr	n
Total # of days					1				
Weather Cond					Cloud	y			
Depth to grour	ndwater at time	e of retri	eval:		9.22				
Total well dept	h at time of ret	rieval:			142.0	7			<u> </u>
PID:					0				
Downhole Fiel	d Parameters	Upon R	etrieval:						
Temp: 10 (0	C)	ORP:	-182.90 (m	NV) SCond	l: <u>0.07</u>	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 7.90)	DO:	0.71(mg/L)) Turb:	26.4	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color cle	ear	C	Odor None	Арре	earance	Clear
	Param Dissolved				Cont CG 2	t ainer 0 mL	Number 2		Preservative TSP
	TO	С			CG 4	0 mL	2		H2SO4
	Dissolved	l Fe/Mn			PE 25		1		HNO3
	Alkali	,			PE 6		1		None
	Total F		Oulfate		PE 25		1		HNO3
Cr	nloride, Nitrate/ VOC		Suitate		PE 25 AG 40 r		2		None HCL
	vot				-0 401		Z		110L

	SRSNE			Site Location:	Southington, C	Γ	
Project No.	B0054634.00	00.01900		Well ID:	PZR-2R		
Sample:	PZR-2R-HS-	06132012		Replicate No.	N/A		
Well Type:	Monitoring W	ell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	TOC				Top of Casing Eleva	ation:	153.78
Total Depth As 0	Constructed (ft b	mp):	139.50	Screened In	terval (ft bmp):	122.23	3 - 142.23
Well Casing:	Diameter:	2.00	Material:	PVC			
Well Screen:	Diameter:	2.00					
Well Casing:	Diameter:	2.00		—	terval (π bmp):		3 - 142.23

Chris Trowbridge

Ch M

	CADIS environment, but	uildings		ŀ	lydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900				Well ID:	PZO-2M		
Sample:	PZO-2M-H	IS-0613	32012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:	 [~	Sticl	k Up	Г	Flush	Mount				
Measuring Pt:	тос	-					-	Top of Casing Elevation	on:	154.77
Total Depth As	Constructed (ft bmp)	:	58.10			Screened In	terval (ft bmp):	48.07 -	58.07
Well Casing:	Diameter:	2.	.00		Mater	ial:	PVC			
Well Screen:	Diameter:	2.	.00							
Deployment										
Date and Time	of Deploymer	nt:		Date	:	06/12	2/2012	Time:	12:20 p	m
Weather Cond	itions:				_	Cloudy	/			
Depth to grour	ndwater at time	of dep	loyment:		_	5.86				
Total well dept	h at time of de	ployme	nt:		_	58.18				
Dimensions of	HydraSleeve	TM:		Leng	th (in.)	36.0	0	Diameter(in.)	1.90	
Deployment M	ethod/Position	of Wei	ght:		_	Bottom	n Anchor			
Deployment D	epth (Top of H	ydraSle	eveTM) (ftl	bgs):	_	55.18				
PID					_	0				
Retrieval										
Date and Time	of Retrieval:			Date	:	06/13	3/2012	Time:	1:42 pr	n
Total # of days	deployed:					1				
Weather Cond					-	Cloudy	1			
Depth to grour	ndwater at time	of retri	ieval:		-	7.72	·			
Total well dept					-	58.18				
PID:					-	0				
Downhole Fiel	d Parameters	Upon R	tetrieval:		-					
Temp: 10 (0		ORP:		(mV)	SCond	0.02	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 8.3	5	DO:	9.85(mg	/L)	Turb:	25.30	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color	clear		0	dor None	Appe	earance	Clear
	Param TO					Cont	ainer 0 mL	Number 2		Preservative H2SO4
	Dissolved	Gases	,			CG 2	0 mL	2		TSP
	VOC				A		nL VOA	2		HCL
	Dissolved					PE 25		1		HNO3
Cr	nloride, Nitrate		Sulfate			PE 25		1		None
	Total F					PE 25 PE 6		1		HNO3
	Alkali	iity				FE 0		1		None

te:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	PZO-2M		
Sample:	PZO-2M-HS-06132012		Replicate No.	N/A		
Well Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mount				
Measuring Pt:	ТОС			op of Casing Eleva	ation:	154.77
Ū.	TOC Constructed (ft bmp):	58.10		fop of Casing Eleva terval (ft bmp):		 - 58.07
Ū.		58.10 Material:				

Chris Trowbridge

El 12

	RCADIS	uildings			Hydra	Sleev	ve™ Field Fe	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900				Well ID:	PZO-2D		
Sample:	PZO-2D-H	S-0613	2012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:	: -	Stick	< Up		Flush	Mount				
Measuring	Pt: TOC	_					٦	Top of Casing Elevation	on:	154.14
Total Depth	As Constructed (ft bmp):	:	86.8	0		Screened In	terval (ft bmp):	76.76 -	86.76
Well Casing	g: Diameter:	2.	00		Mater	rial:	PVC			
Well Screer	n: Diameter:	2.	00		-					
Deploymen	nt				-					
Date and Ti	ime of Deploymer	ıt:		Dat	e:	06/12	2/2012	Time:	1:03 pr	n
Weather Co	onditions:				-	Cloudy	/			
Depth to gro	oundwater at time	of dep	loyment:		_	7.34				
Total well de	epth at time of de	ployme	nt:			85.22				
Dimensions	s of HydraSleeve	TM:		Ler	ngth (in.)	36.0	00	Diameter(in.)	1.90	
Deploymen	t Method/Position	of Wei	ght:			Botton	n Anchor			
Deploymen	t Depth (Top of H	draSle	eveTM) ((ftbgs):	-	82.22				
PID					-	0				
Retrieval					-					
Date and Ti	ime of Retrieval:			Dat	· o .	06/1	3/2012	Time:	2:22 pr	n
	ays deployed:			Du	.0.	1	0/2012		2.22 pi	
Weather Co					-	Cloudy	1			
	oundwater at time	of retri	eval.		-	7.18	y			
	epth at time of ret		eval.		-	85.22				
PID:	eptil at time of let	neval.			-					
	Field Parameters	Inon D	atriaval		-	0				
	0 (C)	ORP:		0 (mV)	SCond	: 0.02	(mS/cm)	Water quality	meter [.]	YSI 600 XL
	3.09	DO:	8.56(m		- Turb:	27.4	· · · ·	Serial #:		00J0695 AA
_	ample Condition		Color	clear	_		dor None		arance	Clear
	•									
	Param Dissolved					Cont CG 2	a iner 0 mL	Number 2		Preservative TSP
	VOC				A		nL VOA	2	_	HCL
	Total Fo					PE 25		1		HNO3
	Dissolved					PE 25		1		HNO3
	Alkali	•				PE 6		1		None
	TO Chloride, Nitrate/		Sulfata		·	CG 4 PE 25		2		H2SO4 None
	Shionue, Miliale/	i viu ite,	Juilate			1 L 20		I		

ite:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.00	000.01900		Well ID:	PZO-2D		
Sample:	PZO-2D-HS-	-06132012		Replicate No.	N/A		
Well Type:	Monitoring W	/ell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	тос				Fop of Casing Eleva	ation:	154.14
Total Depth As C	Constructed (ft I	bmp):	86.80	Screened In	terval (ft bmp):	76.76	- 86.76
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					

Chris Trowbridge

Eh leh

	ARCADIS	uildinas		I	Hydra	Sleev	re™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project N	o. B0054634	.0000.0	1900				Well ID:	P-101C		
Sample:	P-101C-H	S-06142	2012				Replicate No.	DUP-GW-061420 ²	12-#2	
Well Type	e: Monitoring	l Well								
Well Finis	sh: 🔽	Stick	k Up	Г	Flush	Mount				
Measuring	g Pt: TOC	-		-	_		Т	op of Casing Elevation	on:	150.61
Total Dep	oth As Constructed (ft bmp)	:	15.40)		Screened Int	erval (ft bmp):	4.89 - 1	4.89
Well Casi	ing: Diameter:	2.	00		Mate	rial:	 PVC			
Well Scre	en: Diameter:	2.	00							
Deploym	ent									
Date and	Time of Deploymer	nt:		Date	e:	06/11	1/2012	Time:	1:21 pr	n
Weather (Conditions:					Beauti	ful Day, Hot, Humi	d		
Depth to g	groundwater at time	e of dep	loyment:		-	3.62				
Total well	depth at time of de	ployme	nt:		-	15.14				
Dimensio	ons of HydraSleeve	TM:		Lenç	- gth (in.)	36.0	0	Diameter(in.)	1.90	
Deployme	ent Method/Positior	of Wei	ght:			Bottom	n Anchor			
Deployme	ent Depth (Top of H	ydraSle	eveTM) (ftbgs):	-	13.50				
PID					-	0				
Retrieval					-					
Date and	Time of Retrieval:			Date		06/1/	4/2012	Time:	10:19 a	m
	days deployed:			Date		3	+/2012		10.19 a	
	Conditions:				-		, Hot Humid			
		f. w twi	in velu		-		/, Hot, Humid			
	groundwater at time		evai:		-	4.86				
	depth at time of ref	rievai:			-	15.26				
PID:					-	0				
	e Field Parameters	•					<i>.</i>			
Temp:	10 (C)	ORP:			SCond		(mS/cm)	Water quality	meter:	YSI 600 XL
pH:	7.30	DO:	0.82(m		Turb:	29.10		Serial #:		01G0130
Collected	Sample Condition		Color	clear		0	dor None	Appe	earance	CLEAR
	Paran Alkali					Cont PE 6	ainer 0 ml	Number 1		Preservative None
	Total F	e/Mn				PE 25	0 mL	1		HNO3
	VOO					AG 40 n		2		HCL
	Dissolved					PE 25				HNO3
	Dissolved					CG 2		2		TSP None
	Chloride, Nitrate		Junate			CG 4		2		H2SO4
	10	-				50 4	~ L	<u> </u>		11200-1

e:	SRSNE		Site Location:	Southington, C	Г	
roject No.	B0054634.0000.01900		Well ID:	P-101C		
Sample:	P-101C-HS-06142012		Replicate No.	DUP-GW-06142	2012-#2	
Vell Type:	Monitoring Well					
Vell Finish:	Stick Up	Flush Mount				
Vell Fillisti.						
Measuring Pt:				Top of Casing Eleva	ation:	150.61
Aeasuring Pt:		15.40		Top of Casing Eleva terval (ft bmp):	ation: 	
Aeasuring Pt:	тос				-	

Michael Skowronek

HA_

	RCADIS	uildinas		I	Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	. B0054634	.0000.0	1900				Well ID:	P-101B		
Sample:	P-101B-H	S-06142	2012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish	n: 🔽	Stick	(Up	Г	Flush	Mount				
Measuring	Pt: TOC	-		-			-	Top of Casing Elevation	on:	150.48
-	n As Constructed (ft bmp):		46.60)			terval (ft bmp):	35.95 -	 45.95
Well Casin			00		Mate	rial:	– PVC			
Well Scree	-		00		-					
Deployme										
Date and T	ime of Deploymer	nt:		Date	9:	06/1 ⁻	1/2012	Time:	1:08 pr	n
Weather C	onditions:					Hot, H	umid			
Depth to gr	roundwater at time	of dep	loyment:		-	2.36				
Total well d	lepth at time of de	ployme	nt:		-	46.52				
Dimension	s of HydraSleeve	TM:		Len	- gth (in.)	36.0	00	Diameter(in.)	1.90	
Deploymer	nt Method/Position	of Weig	ght:			Botton	n Anchor			
Deploymer	nt Depth (Top of H	ydraSle	eveTM) ((ftbgs):	-	44.50				
PID					-	0				<u> </u>
Retrieval					-					
								_		
	ime of Retrieval:			Date	9:		4/2012	Time:	9:15 ar	n
	lays deployed:				-	3				
Weather C					-	Cloudy	y, Hot, Humid			
Depth to gr	roundwater at time	of retri	eval:		-	2.30				
Total well d	lepth at time of ret	rieval:			-	46.65				
PID:					-	0				
Downhole	Field Parameters	Upon R	etrieval:							
Temp: 1	10 (C)	ORP:	-100.7	0 (mV)	_ SCond	0.02	(mS/cm)	Water quality	meter:	YSI 600 XL
pH:	7.22	DO:	0.66(m	ng/L)	Turb:	15.10	0	Serial #:		01G0130
Collected S	Sample Condition		Color	orange		С	dor None	Арре	earance	Cloudy
	Param Dissolved					Cont	a iner 0 mL	Number 2		Preservative TSP
	VOC	Cs			A	AG 40 n	nL VOA	2		HCL
	Alkali	nity				PE 6		1		None
	Total Fe					PE 25		1		HNO3
	Dissolved					PE 25		1		HNO3
	TO		0.15.			CG 4		2		H2SO4
	Chloride, Nitrate/	Nitrite,	Sultate			PE 25	0 mL	1		None

Site:	SRSNE			Site Location:	Southington, C	Г	
Project No.	B0054634.0	000.01900		Well ID:	P-101B		
Sample:	P-101B-HS-	06142012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	TOC			1	Fop of Casing Eleva	ation:	150.48
Total Depth As	Constructed (ft	bmp):	46.60	Screened Int	terval (ft bmp):	35.95	- 45.95
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					
Notes/Observatio	ne.						

Michael Skowronek

Signature:

2

	ARCADIS	uildinas			Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project N	No. B0054634	.0000.0)1900				Well ID:	P-13		
Sample:	P-13-HS-(061520 ⁻	12				Replicate No.	N/A		
Well Typ	e: Monitoring	g Well								
Well Fini	sh:	Stic	k Up]	Flush	Mount				
Measurir	ng Pt: TOC	_		-	_		Т	op of Casing Elevation	on:	157.88
Total De	pth As Constructed	(ft bmp)		17.50)		Screened Int	terval (ft bmp):	6.74 - 10	6.74
Well Cas	sing: Diameter:	2.	.00		Mater	rial:	PVC			
Well Scr	een: Diameter:	2.	.00		-					
Deploym	nent				-					
Date and	Time of Deployme	nt:		Date	e:	06/1	1/2012	Time:	9:27 an	1
Weather	Conditions:				-	Cloudy	y			
Depth to	groundwater at time	e of dep	loyment:		-	10.32				
Total we	ll depth at time of de	ployme	ent:		-	16.99				
Dimensio	ons of HydraSleeve	TM:		Len	gth (in.)	36.0	00	Diameter(in.)	1.90	
Deploym	ent Method/Positior	n of Wei	ght:		-	Top W	eight			
Deploym	ent Depth (Top of H	ydraSle	eveTM) (ftbgs):	-	16.99				
PID					_	0				
Retrieva	I									
Date and	d Time of Retrieval:			Date	e:	06/1	5/2012	Time:	8:50 an	1
	f days deployed:					4				<u>.</u>
	Conditions:				-		umid, Sunny			
	groundwater at time	e of retr	ieval [.]		-	10.78				
	I depth at time of re		loval.		-	16.99				
PID:		li le val.			-	0				
	e Field Parameters	Linon F	etrieval.		-	0				
Temp:	10 (C)	ORP:		(mV)	SCond	: 0.01	(mS/cm)	Water quality	meter:	YSI 600 XL
pH:	8.02	DO:	7.38(m	ig/L)	– Turb:	53.2	0	Serial #:		01j0034aa
Collected	d Sample Condition		Color	brown	_	C	odor None	Арре	arance	N/A
	Paran Alkal					Cont PE 6	t ainer 60 ml	Number 1		Preservative None
	VO	Cs				PE 25	50 mL	2		HNO3
	Dissolved		;			CG 2		2		TSP
	TO					CG 4		2		H2SO4
	Dissolved					PE 25		1		HNO3
	Chloride, Nitrate Total F		Suilate			PE 25		1		None HNO3
	IUIdi I	UNIT .				· L Z				

ite:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	P-13		
Sample:	P-13-HS-06	152012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	тос				Top of Casing Eleva	ation:	157.88
Total Depth As C	Constructed (ft	bmp):	17.50	Screened In	terval (ft bmp):	6.74 -	16.74
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					

Michael Skowronek

The <

	RCADIS	uildinas			Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No	B0054634	.0000.0	01900				Well ID:	P-11A		
Sample:	P-11A-HS	06142	012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish	n: 🔽	Stic	k Up		Flush	Mount				
Measuring	Pt: TOC	-4		ľ			ſ	Top of Casing Elevation	on:	152.73
-	h As Constructed (ft bmp)	:	70.0	0			terval (ft bmp):	59.59 - (69.59
Well Casin		• •	.00		Mate	rial:	– PVC	,		
Well Scree	-		.00		-					
Deployme					-					
Date and T	Fime of Deploymer	nt:		Dat	e:	06/1 ⁻	1/2012	Time:	2:56 pn	n
Weather C	conditions:					Cloudy	y, Hot, Humid			
Depth to g	roundwater at time	of dep	oloyment:		•	5.54				
Total well o	depth at time of de	ployme	ent:		-	68.30				
	s of HydraSleeve			Len	gth (in.)	36.0		Diameter(in.)	1.90	
	nt Method/Position		aht:		J ² ()		n Anchor			
	nt Depth (Top of H		-	(fthas):	-	65.25				
PID		yaraolo		(1090).		00.20				
Retrieval					•	•				
Retrieval										
Date and T	Time of Retrieval:			Dat	e:	06/14	4/2012	Time:	12:50 pi	m
Total # of c	days deployed:					3				
Weather C	conditions:					Cloudy	y, Hot, Humid			
Depth to g	roundwater at time	of retr	ieval:			5.64				
Total well o	depth at time of ret	rieval:				68.38				
PID:						0				
Downhole	Field Parameters	Upon F	Retrieval:							
Temp:	10 (C)	ORP:	-140.7	'0 (mV)	SCond	: 0.03	(mS/cm)	Water quality	meter:	YSI 600 XL
pH:	7.44	DO:	0.28(n	ng/L)	Turb:	60.00	0	Serial #:		01G0130
Collected S	Sample Condition		Color	brown		C	dor Yes	Appe	arance	N/A
	Param TO					Cont	a iner 0 mL	Number 2		Preservative H2SO4
	Dissolved		1			PE 25		1		HNO3
	Dissolved	Gases	3			CG 2	0 mL	2		TSP
	Chloride, Nitrate	Nitrite,	Sulfate			PE 25		1		None
	Total F					PE 25		1		HNO3
	Alkali	-				PE 6		1		None
	VOC)s				AG 40 n	nL VOA	2		HCL

Site:	SRSNE			Site Location:	Southington, C	Г	
Project No.	B0054634.0	000.01900		Well ID:	P-11A		
Sample:	P-11A-HS-06	6142012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	TOC				Fop of Casing Eleva	ation:	152.73
Total Depth As	Constructed (ft	bmp):	70.00	Screened In	terval (ft bmp):	59.59	- 69.59
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					
Notes/Observatio	ns.						

Matt Pingitor

AH B

	environment, bu	uildings			Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900				Well ID:	MWL-309		
Sample:	MWL-309-	HS-06	132012				Replicate No.	DUP-GW-061320 ²	12-#3	
Well Type:	Monitoring	Well								
Well Finish:		Stic	k Up	[Flush	Mount				
Measuring Pt	TOC	_		•			Т	Top of Casing Elevation	on:	155.20
Total Depth A	s Constructed (ft bmp)):	13.0)		Screened Int	terval (ft bmp):	3.51 - 1	3.51
Well Casing:	Diameter:	2.	.00		Mater	ial:	PVC			
Well Screen:	Diameter:	2	.00		-					
Deployment					-					
Date and Time	e of Deploymer	nt:		Date	e:	06/1 ⁻	1/2012	Time:	4:11 pr	n
Weather Cond	ditions:					Hot, H	umid, Sunny			
Depth to grou	ndwater at time	e of dep	loyment:		-	4.87				
Total well dep	th at time of de	ployme	ent:		-	13.15				
Dimensions o	f HydraSleeve	TM:		Len	- gth (in.)	36.0	00	Diameter(in.)	1.90	
Deployment N	/lethod/Position	of Wei	ight:			Top W	eight			
Deployment D	Depth (Top of H	ydraSle	eveTM)	(ftbgs):	-	13.15				
PID					-	0				
Retrieval					•					
Date and Time	o of Dotrioval			Det		00/11	2/2012	Time	10:40 -	
				Date	.		3/2012	Time:	12:40 p	m
Total # of days					-	2				
Weather Cond		<i>.</i> .			-		y, Hot, Humid			<u> </u>
	ndwater at time		ieval:		-	5.10				<u> </u>
	th at time of ret	rieval:			-	13.11				
PID:					-	0				
	ld Parameters									
Temp: 10 (ORP:			_ SCond		(mS/cm)	Water quality	meter:	YSI 600 XL
pH: <u>6.4</u>		DO:	1.29(n	ng/L)	Turb:	58.20	0	Serial #:		01G0130
Collected Sar	nple Condition		Color	brown		С	odor None	Арре	earance	turbid, Cloudy
	Param Alkali					Cont	t ainer 60 ml	Number 1		Preservative None
	TO	С				CG 4	0 mL	2		H2SO4
	VOC				A		nL VOA	2		HCL
	Dissolved					PE 25		1		HNO3
	Dissolved		;			CG 2		2		TSP
	Total F hloride, Nitrate		Sulfata			PE 25		1		HNO3
U		initite,	Sunate			FE 25		I		None

ie:	SRSNE		Site Location:	Southington, C	Г	
roject No.	B0054634.0000.01900		Well ID:	MWL-309		
Sample:	MWL-309-HS-06132012		Replicate No.	DUP-GW-06132	2012-#3	
Well Type:	Monitoring Well					
Vell Finish:	✓ Stick Up	Flush Mount				
Well Finish: Measuring Pt:	TOC Stick Up	Flush Mount	ī	Fop of Casing Eleva	ation:	155.20
Measuring Pt:		Flush Mount		Top of Casing Eleva terval (ft bmp):	ation: 3.51 - 1	
Measuring Pt:	тос			, ç		

Signature:

Michael Skowronek

Theme

	ADIS	ildinas		Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634.0	0.0000	1900			Well ID:	MWL-307		
Sample:	MWL-307-H	IS-061	52012			Replicate No.	N/A		
Well Type:	Monitoring	Well							
Well Finish:		Stick	Up	Flush	Mount				
Measuring Pt:	тос					г	op of Casing Elevation	on:	159.14
Total Depth As C	Constructed (ff	: bmp):		12.60		Screened Int	terval (ft bmp):	2.51 - 12	2.51
Well Casing:	Diameter:	2.0		Mater	ial:	PVC			
Well Screen:	Diameter:	2.0	00						
Deployment									
Date and Time of	of Deployment	:		Date:	06/11	1/2012	Time:	1:28 pm	1
Weather Conditi	ons:			-	Cloudy	/, Hot, Humid			
Depth to ground	water at time	of depl	oyment:	-	4.50				
Total well depth	at time of dep	loymer	nt:	_	12.71				
Dimensions of H	lydraSleeve T	M:		Length (in.)	36.0	0	Diameter(in.)	1.90	
Deployment Met	thod/Position	of Weig	ght:	_	Bottom	n Anchor			
Deployment Dep	oth (Top of Hy	draSlee	eveTM) (ftbgs)):	9.71				
PID					30.4				
Retrieval									
Date and Time of	of Retrieval:			Date:	06/1	5/2012	Time:	12:34 pn	n
Total # of days c	leployed:				4				
Weather Conditi	ons:			-	Hot, H	umid, Sunny			
Depth to ground	water at time	of retrie	eval:	-	4.50				
Total well depth				-	12.71				
PID:				-	30.4				
Downhole Field	Parameters U	lpon Re	etrieval:	-					
Temp: 11 (C)	1	ORP:	-5.50 (mV)	SCond	0.01	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.15		DO:	0.06(mg/L)	Turb:	9.61		Serial #:		01G0130
Collected Samp	le Condition		Color clea	ar	0	dor None	Арре	earance	N/A
Chlo	Parame oride, Nitrate/N		Sulfate		Cont PE 25	ainer 50 mL	Number 1		Preservative None
	TOC				CG 4		2	·	H2SO4
	VOC	S		A	G 40 n	nL VOA	2		HCL
	Dissolved	Gases			CG 2		2		TSP
	Dissolved				PE 25		1		HNO3
	Total Fe				PE 25		1	·	HNO3
	Alkalin	кy			PE 6	u mi	1		None

te:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	MWL-307		
Sample:	MWL-307-HS-06152012		Replicate No.	N/A		
Well Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mount				
Well Finish: Measuring Pt:	Stick Up	Flush Mount	ï	Top of Casing Eleva	ation:	159.14
Measuring Pt:		Flush Mount		Fop of Casing Eleva	ation: 2.51 -	
Measuring Pt:	тос					

Signature:

Sampling Personnel:

Christopher Trowbridge

A

	ADIS	ąs	Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE				Site Location:	Southington, CT		
Project No.	B0054634.0000	0.01900			Well ID:	MWL-304		
Sample:	MWL-304-HS-0	6142012			Replicate No.	N/A		
Well Type:	Monitoring Well							
Well Finish:	St	ick Up	Flush	Mount				
Measuring Pt:	тос					Top of Casing Elevati	on:	163.12
Total Depth As C	onstructed (ft bm	p):	13.30		Screened Ir	nterval (ft bmp):	3.02 - 13	.02
Well Casing:	Diameter:	2.00	Mater	rial:	PVC			
Well Screen: Deployment	Diameter:	2.00						
Date and Time of	f Deployment:		Date:	06/11	1/2012	Time:	3:00 pm	
Weather Condition	ons:			Cloudy	/, Hot, Humid			
Depth to groundv	water at time of de	eployment:	-	5.57				
Total well depth a	at time of deployn	nent:	-	15.93				
Dimensions of Hy	ydraSleeve TM:		- Length (in.)	36.0	0	Diameter(in.)	1.90	
Deployment Meth	nod/Position of W	/eight:		Bottom	n Anchor			
Deployment Dep	th (Top of HydraS	SleeveTM) (ftbg	- IS):	12.00				
PID			-	0				
Retrieval								
Date and Time of	f Retrieval:		Date:	06/14	4/2012	Time:	2:07 pm	
Total # of days de			2010	3			2.07 pm	
Weather Condition			-	Cloudy	/			
Depth to groundv		etrieval:	-	7.40	,			
Total well depth a			-	15.93				
PID:			-	0				
Downhole Field F	Parameters Upon	Retrieval:	-					
Temp: 13 (C)	OR	P: -165.20 (n	nV) SCond	: 0.03	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.40	DO	0.20(mg/L) Turb:	16.20	0	Serial #:		00J0695 AA
Collected Sample	e Condition	Color cl	ear	0	dor None	Арре	earance	Clear
	Parameter Dissolved Gas			Cont	ainer 0 mL	Number 2		Preservative TSP
	Total Fe/Mn			PE 25	i0 mL	1		HNO3
Chlo	ride, Nitrate/Nitrit			PE 25		1		None
	Dissolved Fe/N	<i>l</i> In		PE 25		1		HNO3
	VOCs			AG 4		2		HCL HCL
	VOCs Alkalinity			AG 40 n PE 6		2		None
	TOC			CG 4		2		H2SO4
				-				

Site:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	MWL-304		
Sample:	MWL-304-H	S-06142012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	тос			1	Top of Casing Eleve	ation:	163.12
Total Depth As	Constructed (ft	bmp):	13.30	Screened Int	terval (ft bmp):	3.02 -	13.02
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					
	ons:						

Matt Pingitor

MU

	RCADIS	uildinas		I	Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No	. B0054634	.0000.0	1900				Well ID:	MW-1002R		
Sample:	MW-1002F	R-HS-0	6132012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish	ı: 🔽	Stick	k Up	[Flush	Mount				
Measuring	Pt: TOC	-		L			ſ	Top of Casing Elevation	on:	152.37
-	n As Constructed (ft bmp):	:	127.1	17			terval (ft bmp):		- 122.17
Well Casin	g: Diameter:	2.	00		Mater	ial:	– PVC			
Well Scree	-	2.	00		-					
Deployme					-					
Date and T	ime of Deploymer	nt:		Date	e:	06/1 ⁻	1/2012	Time:	3:13 pr	n
Weather C	onditions:					Beauti	ful Day, Hot, Hum	id		
Depth to g	roundwater at time	e of dep	loyment:		-	4.46				
Total well o	lepth at time of de	ployme	nt:		-	122.2	1			
Dimension	s of HydraSleeve	TM:		Len	- gth (in.)	36.0	00	Diameter(in.)	1.90	
Deploymer	nt Method/Position	of Wei	ght:			Botton	n Anchor			
Deploymer	nt Depth (Top of H	ydraSle	eveTM) (ftbgs):	-	117.0	0			
PID					-	0				
Retrieval					-					
Data and I	ime of Detrieval			Det		00/4	0/0040	Time	10:00 -	
	ime of Retrieval:			Date	9:		3/2012	Time:	10:30 a	m
	lays deployed:				-	2				
Weather C					-	Rain				
	roundwater at time		eval:		-	6.93				
	lepth at time of ret	rieval:			-	122.2	1			
PID:					-	0				
Downhole	Field Parameters	Upon R	etrieval:							
Temp: 1	10 (C)	ORP:	-59.20	(mV)	_ SCond	0.37	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: _	7.61	DO:	0.55(m	g/L)	Turb:	16.2	0	Serial #:		00J0695 AA
Collected S	Sample Condition		Color	clear		C	odor None	Appe	earance	Clear
	Param Chloride, Nitrate/		Sulfate			Cont PE 25	ainer 50 mL	Number 1		Preservative None
	Alkali	nity				PE 6	0 ml	1		None
	Dissolved					PE 25		1		HNO3
	TO						nL VOA	2		H2SO4
	Dissolved					CG 2		2		Trisodium phosphate
	Total Fo					PE 25	50 mL nL VOA	<u> </u>		HNO3 HCL
	VUL				F	40 h		Z		

te:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	MW-1002R		
Sample:	MW-1002R-HS-06132012		Replicate No.	N/A		
Well Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mount				
Well Finish: Measuring Pt:	Stick Up	Flush Mount		Top of Casing Eleva	ation:	152.37
Measuring Pt:		Flush Mount		Γοp of Casing Eleva terval (ft bmp):		
Measuring Pt:	тос					

Michael Skowronek

Ch U

	CADIS	dinas		Hydra	Sleev	e™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634.0	000.01900				Well ID:	MW-1002DR		
Sample:	MW-1002DI	R-HS-061320 ²	12			Replicate No.	N/A		
Well Type:	Monitoring V	Vell							
Well Finish:		Stick Up		Flush	Mount				
Measuring Pt:	тос		•			-	Top of Casing Elevation	on:	153.91
Total Depth As	Constructed (ft	bmp):	199.	50		Screened In	terval (ft bmp):	170.20 -	- 185.20
Well Casing:	Diameter:	2.00		Mate	rial:	_ PVC			
Well Screen:	Diameter:	2.00		-					
Deployment				-					
Date and Time	of Deployment:		Dat	e:	06/11	/2012	Time:	2:43 pn	n
Weather Condit	ions:			-	Cloudy	v, Hot, Humid			
Depth to ground	dwater at time o	of deployment	:	-	29.50				
Total well depth	at time of depl	oyment:		-	188.0	1			
Dimensions of H	HydraSleeve TI	M:	Len	gth (in.)	36.0	0	Diameter(in.)	1.90	
Deployment Me	thod/Position c	of Weight:			Bottom	Anchor			
Deployment De	pth (Top of Hyd	traSleeveTM)	(ftbgs):	-	182.7	5			
PID				-	0				
Retrieval				•					
Date and Time	of Potrioval:		Dat	0.	06/1/	2/2012	Timo:	10:54 0	~
			Dat	е.		3/2012	Time:	10:54 ai	
Total # of days				-	2				
Weather Condit		f a dati di		-	Rain				
Depth to ground				-	30.93				
Total well depth	at time of retri	eval:		-	188.0	1			
PID:	_			-	0				
Downhole Field									
Temp: <u>11 (C</u>	,) (mV)	_ SCond		(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 10.79		DO: <u>1.49(</u>	ng/L)	Turb:	26.80		Serial #:		00J0695 AA
Collected Samp	ble Condition	Color	clear		0	dor None	Арре	earance	Slight orange hue
	Parame VOCs			Ļ	Cont AG 40 m		Number 2		Preservative HCL
	Dissolved F	e/Mn			PE 25	0 mL	1		HNO3
	Alkalini	ty			PE 6	0 ml	1		None
Chl	oride, Nitrate/N				PE 25		1		None
	Dissolved (CG 20		2		Trisodium phosphate
	Total Fe/	Mn			PE 25		1		HNO3
	TOC	17(11		(G 40 n		2		H103

te:	SRSNE			Site Location:	Southington, C	Г	
Project No.	B0054634.0000	0.01900		Well ID:	MW-1002DR		
Sample:	MW-1002DR-H	IS-06132012		Replicate No.	N/A		
Well Type:	Monitoring Well	1					
Well Finish:	St	tick Up	Flush Mount				
Well Finish: Measuring Pt:	TOC St	tick Up	Flush Mount	ï	op of Casing Eleva	ation:	153.91
Measuring Pt:			Flush Mount		īοp of Casing Eleva terval (ft bmp):		 153.91 0 - 185.20
Measuring Pt:	TOC Constructed (ft bm						

Michael Skowronek

0hh

Infrastructure, ei	nvironment, bu	iildinas		Ну	dra	Sleev	e™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900				Well ID:	MW-907M		
Sample:	MW-907M	-HS-06 ⁻	142012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:	 ✓	Stick	(Up	Π	Flush	Mount				
Measuring Pt:	тос						1	Top of Casing Elevati	on:	154.47
Total Depth As	Constructed (ft bmp):		40.69			Screened In	terval (ft bmp):	30.69 - 4	40.69
Well Casing:	Diameter:	2.0	-		Mater	ial:	PVC sch 40			
Well Screen:	Diameter:	2.0	00							
Deployment										
Date and Time	of Deploymen	ıt:		Date:	_	06/11	/2012	Time:	2:31 pm	ı
Weather Condit	tions:				_	Hot, H	umid, Sunny			
Depth to ground	dwater at time	of depl	loyment:		_	6.98				
Total well depth	at time of de	oloymeı	nt:		_	38.89				
Dimensions of I	HydraSleeve ⁻	ſM:		Length	(in.)	36.0	0	Diameter(in.)	1.90	
Deployment Me	thod/Position	of Wei	ght:			Bottom	Anchor			
Deployment De	pth (Top of Hy	/draSle	eveTM) (ftbg	s):	_	35.35				
PID					_	0				
Retrieval										
Data and Time	of Dotriouolu			Datai		00/4	1/0040	Time	40.00	
Date and Time				Date:			/2012	Time:	10:30 ar	Π
Total # of days					-	3				
	tions:					Sunny				
Weather Condit					-					
Depth to ground			eval:		-	8.34				
Depth to ground Total well depth			eval:		-	8.34 26.03				
Depth to ground Total well depth PID:	at time of ret	rieval:			-	8.34				
Depth to ground Total well depth	at time of ret	rieval:	etrieval:		-	8.34 26.03 0				
Depth to ground Total well depth PID:	at time of ret	rieval:		<u>∣V)</u> 5	- - - 6Cond:	8.34 26.03 0	(mS/cm)	Water quality	v meter:	YSI 600 XL
Depth to ground Total well depth PID: Downhole Field	at time of ret	rieval: Jpon Re	etrieval:	,	- - - SCond: Furb:	8.34 26.03 0		Water quality	v meter:	YSI 600 XL 00J0695 AA
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u>	Parameters (rieval: Jpon Re ORP: DO:	etrieval: -115.70 (m 0.25(mg/L	,		8.34 26.03 0 <u>0.05</u> 17.20		Serial #:	v meter: earance	
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u> pH: <u>6.77</u>	Parameters (rieval: Jpon Ro ORP: DO: eter	etrieval: <u>-115.70 (m</u> <u>0.25(mg/L</u> Color cle) 1		8.34 26.03 0 <u>0.05</u> 17.20) dor None ainer	Serial #:		00J0695 AA
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u> pH: <u>6.77</u>	at time of ret	rieval: Jpon Ri ORP: DO: eter Fe/Mn	etrieval: <u>-115.70 (m</u> <u>0.25(mg/L</u> Color cle) 1		8.34 26.03 0 0.05 17.20 0 Cont) dor None ainer 0 mL	Serial #: App Number		00J0695 AA Clear Preservative
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u> pH: <u>6.77</u>	at time of ret	rieval: Jpon Ri ORP: DO: eter Fe/Mn e/Mn Gases	etrieval: <u>-115.70 (m</u> <u>0.25(mg/L</u> Color cle) 1		8.34 26.03 0 <u>0.05</u> <u>17.20</u> 0 Cont PE 25 PE 25 CG 20	dor None ainer 0 mL 0 mL	Serial #: App Number 1 1 2		00J0695 AA Clear Preservative HNO3 HNO3 TSP
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u> pH: <u>6.77</u> Collected Samp	at time of ret Parameters ()))))))))))))))))))	rieval: Jpon Rr ORP: DO: eter Fe/Mn Gases	etrieval: <u>-115.70 (m</u> <u>0.25(mg/L</u> Color cle) 1		8.34 26.03 0 <u>0.05</u> <u>17.20</u> 0 Cont PE 25 CG 20 CG 40) dor None ainer 0 mL 0 mL) mL	Serial #: App Number 1 1 2 2		00J0695 AA Clear Preservative HNO3 HNO3 TSP H2SO4
Depth to ground Total well depth PID: Downhole Field Temp: <u>10 (C</u> pH: <u>6.77</u> Collected Samp	at time of ret	rieval: Jpon Ri ORP: DO: eter Fe/Mn Gases C Nitrite, S	etrieval: <u>-115.70 (m</u> <u>0.25(mg/L</u> Color cle) 1		8.34 26.03 0 <u>0.05</u> <u>17.20</u> 0 Cont PE 25 PE 25 CG 20	dor None ainer 0 mL 0 mL 0 mL 0 mL 0 mL 0 mL 0 mL 0 mL	Serial #: App Number 1 1 2		00J0695 AA Clear Preservative HNO3 HNO3 TSP

Site:	SRSNE			Site Location:	Southington, C	Т		
Project No.	B0054634.0	000.01900		Well ID:	MW-907M			
Sample:	MW-907M-H	IS-06142012		Replicate No.	N/A			
Well Type:	Monitoring V	Vell						
Well Finish:	•	Stick Up	Flush Mount					
Measuring Pt:	тос			1	154.47			
Total Depth As	Constructed (ft	bmp):	40.69	Screened Int	terval (ft bmp):	30.69	- 40.69	
Well Casing:	Diameter:	2.00	Material:	PVC sch 40		_		
	Diameter:	2.00						

Matt Pingitor

	CADIS	dings		Hydra	Sleev	e™ Field F	orm		Page 1 of 2		
Site:	SRSNE					Site Location:	Southington, CT				
Project No.	B0054634.0	000.01900				Well ID:	MW-907DR				
Sample:	MW-907DR-	-HS-061520)12			Replicate No.	N/A				
Well Type:	Monitoring V	Vell									
Well Finish:		Stick Up	1	Flush	Mount						
Measuring Pt:	тос			_		-	Top of Casing Elevation	on:	154.04		
Total Depth As	Constructed (ft	bmp):	177.	.98		Screened In	terval (ft bmp):	162.78	- 177.78		
Well Casing:	Diameter:	2.00		Mater	rial:	PVC Sch 80					
Well Screen:	Diameter:	2.00		-							
Deployment				-							
Date and Time	of Deployment:		Dat	te:	06/11	/2012	Time:	4:08 pr	n		
Weather Condit	tions:			-	Cloudy	1					
Depth to ground	dwater at time o	of deployme	ent:	-	3.28						
Total well depth	at time of depl	oyment:		-	172.5	9					
Dimensions of I	imensions of HydraSleeve TM: Length (in.				36.0	0	Diameter(in.)	1.90			
Deployment Me	ethod/Position o	f Weight:			Bottom Anchor						
Deployment De	epth (Top of Hyd	IraSleeveTl	M) (ftbgs):	-	157.02						
PID				-	0						
Retrieval				-							
Date and Time	of Potrioval:		Det	to:	06/1/	-/2012	Timo:	10.09 0	~		
			Dat	le.		5/2012	Time:	10:08 a			
Total # of days				-	4						
Weather Condit		e		-		umid, Sunny					
Depth to ground				-	3.28						
Total well depth	at time of retrie	eval:		-	172.59	9					
PID:				-	0						
Downhole Field											
Temp: 10 (C			1.60 (mV)	SCond		(mS/cm)	Water quality	meter:	YSI 600 XL		
pH: 9.03	I	DO: <u>0.5</u>	6(mg/L)	Turb:	10.80)	Serial #:		01j0034aa		
Collected Samp	ole Condition	Colo	r clear		0	dor None	Арре	arance	N/A		
	Parame Dissolved (Cont	ainer 0 mL	Number 2		Preservative TSP		
	Total Fe/	Mn			PE 25	0 mL	1		HNO3		
Chl	oride, Nitrate/N		le		PE 25		1		None		
	VOCs			A	AG 40 m		2		HCL		
	Dissolved F	e/Mn			PE 25				HNO3		
	TOC Alkalinity					CG 40 mL 2 H2SO4 PE 60 ml 1 None					
	Aikaiini	ıy			PE 0		I		INDITE		

e:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	MW-907DR		
Sample:	MW-907DR-HS-0615201	2	Replicate No.	N/A		
Well Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mount				
Measuring Pt:			ï	Top of Casing Eleva	ation:	154.04
Measuring Pt:		177.98		նօր of Casing Eleva terval (ft bmp)։		<u>154.04</u> 3 - 177.78
Measuring Pt:	тос					

Chris Trowbridge

A

	environment, bu	uildinas		Hydra	Sleev	/e™ Field F	orm		Page 1 of 2	
Site:	SRSNE					Site Location:	Southington, CT			
Project No.	B0054634	.0000.0)1900			Well ID:	MW-907D			
Sample:	MW-907D	-HS-06	142012			Replicate No.	N/A			
Well Type:	Monitoring	Well								
Well Finish:		Stic	k Up	Flush	n Mount					
Measuring Pt	тос –	-				-	Top of Casing Elevation	on:	154.75	
-	s Constructed (ft bmp)	:	51.94		Screened In	terval (ft bmp):	41.94 -	 51.94	
Well Casing:	Diameter:	2	-	Mate	rial:	PVC sch 40				
Well Screen:	Diameter:	2	.00							
Deployment										
Date and Tim	e of Deploymer	nt:		Date:	06/1	1/2012	Time:	8:25 an	n	
Weather Con	ditions:				Muggy	y, Partly Cloudy				
Depth to grou	Indwater at time	e of dep	oloyment:		7.51					
Total well dep	oth at time of de	ployme	ent:		52.46	i				
Dimensions o	of HydraSleeve	TM:		Length (in.)	36.0	00	Diameter(in.)	1.90		
Deployment N	Method/Position	of We	ight:		Bottor	Bottom Anchor				
	Depth (Top of H		-	s):	49.00					
PID		-			0	0				
Retrieval										
	e of Retrieval:			Date:		4/2012	Time:	10:59 ai	m	
Total # of day					3					
Weather Con					Sunny	1				
Depth to grou	indwater at time	e of retr	ieval:		7.48					
Total well dep	oth at time of ret	rieval:			52.46	;				
PID:					0					
Downhole Fie	eld Parameters	Upon F	Retrieval:							
Temp: 9 (0	C)	ORP:	-143.90 (m	V) SCond	l: <u>0.03</u>	(mS/cm)	Water quality	meter:	YSI 600 XL	
pH: 7.3	33	DO:	0.23(mg/L)	Turb:	12.3	0	Serial #:		00J0695 AA	
Collected Sar	mple Condition		Color cle	ear	C	Odor None	Арре	arance	Clear	
	Param Total F				Cont PE 25	t ainer 50 mL	Number 1		Preservative HNO3	
C	hloride, Nitrate	/Nitrite,	Sulfate		PE 25	50 mL	1		None	
	Dissolved]		PE 25		1		HNO3	
	TO				CG 4		2		H2SO4	
	VOC					mL VOA	2		HCL	
Alkalinity					PE 60 ml 1 None CG 20 mL 2 TSP					
	Dissolved Gases						2		TSP	

e:	SRSNE		Site Location:	Southington, C	Г	
roject No.	B0054634.0000.01900)	Well ID:	MW-907D		
Sample:	MW-907D-HS-061420	12	Replicate No.	N/A		
Nell Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mount				
Measuring Pt:	ТОС		1	Top of Casing Eleva	ation:	154.75
Ū	TOC Constructed (ft bmp):	51.94		Top of Casing Eleva terval (ft bmp):		 - 51.94
Ū		51.94 Material:				

Chris Trowbridge

Elm

	ADIS	dings	[Hydra	Sleev	ve™ Field Fe	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634.0	000.01900)			Well ID:	MW-902M		
Sample:	MW-902M-H	IS-061520)12			Replicate No.	N/A		
Well Type:	Monitoring V	Vell							
Well Finish:		Stick Up]	Flush	Mount				
Measuring Pt:	тос					ſ	Top of Casing Elevation	on:	160.39
Total Depth As 0	Constructed (ft	bmp):	22.00)		Screened In	terval (ft bmp):	15.00 - 2	20.00
Well Casing:	Diameter:	2.00		Mate	rial:	 Stainless Steel			
Well Screen:	Diameter:	2.00		-					
Deployment				-					
Date and Time of	of Deployment:		Date	e:	06/11	1/2012	Time:	12:47 pr	m
Weather Conditi	ons:				Cloudy	y, Hot			
Depth to ground	water at time o	f deploym	ient:		8.30				
Total well depth	at time of deplo	oyment:			26.03				
Dimensions of H	lydraSleeve TN	/ :	Len	gth (in.)	36.0	00	Diameter(in.)	1.90	
Deployment Me	thod/Position o	f Weight:		Top We		eight			
Deployment Dep	oth (Top of Hyd	raSleeve	「M) (ftbgs):		26.03				
PID					0.2				
Retrieval									
Date and Time of	of Retrieval [.]		Date	ə.	06/1	5/2012	Time:	11:20 ar	n
Total # of days of			200		4	0,2012		11.20 al	
Weather Conditi						umid, Sunny			
Depth to ground		f retrieval			8.21				
Total well depth					26.03				
PID:		vai.			0.2				
Downhole Field	Parameters Ir	on Petrie	val:		0.2				
Temp: 10 (C)			4.70 (mV)	SCond	· 0.01	(mS/cm)	Water quality	motor:	YSI 600 XL
pH: 7.16			06(mg/L)	– Turb:	18.30		Serial #:	meter.	01G0130
Collected Samp		Col				o Odor None		arance	N/A
Collected Samp		CON	Ji Cleal		0	NOT NOTE	Арре	arance	N/A
	Paramet VOCs			ļ	Cont AG 40 n	a iner nL VOA	Number 2		Preservative HCL
	Dissolved F	e/Mn			PE 25	50 mL	1		HNO3
	TOC				CG 4		2		H2SO4
	Total Fe/I				PE 25		1		HNO3
Chlo	oride, Nitrate/N		ate		PE 25		1		None
	Alkalinit Dissolved G	-			PE 6 CG 2		2		None TSP
					55 2	• ····	<u> </u>		101

te:	SRSNE			Site Location:	Southington, C	Г	
Project No.	B0054634.000	0.01900		Well ID:	MW-902M		
Sample:	MW-902M-HS-06152012			Replicate No.	N/A		
Vell Type:	Monitoring Wel	11					
Nell Finish:	✓ s	Stick Up	Flush Mount				
Well Finish: Measuring Pt:	✓ S TOC	Stick Up	Flush Mount	т	op of Casing Elev	ation:	160.39
Measuring Pt:			Flush Mount		Fop of Casing Eleve		
Measuring Pt:	TOC						

Christopher Trowbridge

1/ 12

	rastracture, environment, balangs						re™ Field Fo	orm		Page 1 of 2		
Site:	SRSNE						Site Location:	Southington, CT				
Project No.	B0054634	.0000.0	1900				Well ID:	MW-902D				
Sample:	MW-902D-	HS-06	152012				Replicate No.	N/A				
Well Type:	Monitoring	Well										
Well Finish:] Stick	< Up		Flush	Mount						
Measuring Pt:	тос	-					٦	Top of Casing Elevation	on:	159.96		
Total Depth As	Constructed (1	ft bmp):	:	27.37			Screened Int	terval (ft bmp):	- 21.37 - 2	26.37		
Well Casing:	Diameter:	2.	00		Mate	rial:	PVC					
Well Screen:	Diameter:	2.	00									
Deployment												
Date and Time	of Deploymen	it:		Date	:	06/11	1/2012	Time:	1:04 pm	l		
Weather Condit	tions:				-	Cloudy, Hot, Humid						
Depth to ground	epth to groundwater at time of deployment: tal well depth at time of deployment: imensions of HydraSleeve TM: Length (ir				-	8.42						
Total well depth					_	21.42						
Dimensions of H					th (in.)	36.0	0	Diameter(in.)	1.90			
Deployment Me	thod/Position	of Weig	ght:			Top Weight						
Deployment De	pth (Top of Hy	/draSle	eveTM) (ftt	ogs):	-	21.42						
PID					-	10.8						
Retrieval												
Date and Time	of Retrieval:			Date	:	06/1	5/2012	Time:	12:11 pm	1		
Total # of days	deployed:					4						
Weather Condit	tions:				-	4 Hot, Humid, Sunny						
Depth to ground	dwater at time	of retri	eval:		-	8.49						
Total well depth					-	21.42						
PID:					-	10.8						
Downhole Field	Parameters l	Jpon R	etrieval:		-							
Temp: 11 (C)	ORP:	-72.10 (r	nV)	SCond	: 0.01	(mS/cm)	Water quality	meter:	YSI 600 XL		
pH: 6.96		DO:	0.09(mg/	/L)	Turb:	11.30)	Serial #:		01G0130		
Collected Samp	ble Condition		Color	clear	•	0	dor None	Арре	earance	N/A		
Chl	Param /oride, Nitrate		Sulfate			Cont PE 25	ainer 0 mL	Number 1		Preservative None		
	Alkalir			·		PE 6		1		None		
	VOC	s			ŀ	AG 40 n		2		HCL		
	TOC					CG 4		2		H2SO4		
	Dissolved					CG 20 mL 2 TSP DE 250 mL 1 1						
	Total Fe/Mn						PE 250 mL 1 HNO3 PE 250 mL 1 HNO3					
	Dissolved Fe/Mn							1		HNO3		

	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	MW-902D		
Sample:	MW-902D-H	S-06152012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	TOC			1	op of Casing Eleva	ation:	159.96
Total Depth As	Constructed (ft	bmp):	27.37	Screened Int	terval (ft bmp):	21.37	- 26.37
Well Casing:	Diameter:	2.00	Material:	PVC		_	
0	Diameter:	2.00					
Well Screen:	Diameter.						

Christopher Trowbridge

Signature:

MM

	CADIS environment, bu	ildings		Hydra	Sleev	re™ Field Fo	orm		Page 1 of 2		
Site:	SRSNE					Site Location:	Southington, CT				
Project No.	B0054634.	0000.0 ²	1900			Well ID:	MW-706DR				
Sample:	MW-706DF	R-HS-06	3142012			Replicate No.	N/A				
Well Type:	Monitoring	Well									
Well Finish:	√	Stick	Up	Flush	Mount						
Measuring Pt:	TOC					т	Top of Casing Elevation	on:	149.91		
Total Depth As	s Constructed (f	t bmp):	12	8.60		Screened Int	terval (ft bmp):	118.23 - 1	28.23		
Well Casing:	Diameter:	2.0)0	Mater	ial:	PVC					
Well Screen:	Diameter:	2.0	0	_							
Deployment											
Date and Time	e of Deploymen	t:	D	ate:	06/13	3/2012	Time:	7:35 am			
Weather Cond	ditions:			-	Cloudy	, Cool, Light rain					
Depth to grou	ndwater at time	of depl	oyment:	-	1.38						
Total well dep	otal well depth at time of deployment:					128.76					
Dimensions o	mensions of HydraSleeve TM: Length (in.)					36.00Diameter(in.)1.90					
Deployment M	lethod/Position	of Weig	Jht:	_	Bottom Anchor						
Deployment D	Depth (Top of Hy	draSlee	eveTM) (ftbgs):	_	125.50						
PID				_	0						
Retrieval											
Date and Time	e of Retrieval:		D	ate:	06/14	4/2012	Time:	9:45 am			
Total # of days	s deployed:				1						
Weather Cond	ditions:			-	Cloudy, Hot, Humid						
Depth to grou	ndwater at time	of retrie	eval:	-	2.90						
Total well dep	th at time of retr	ieval:		-	128.7	6					
PID:				-	0						
Downhole Fie	ld Parameters L	Jpon Re	etrieval:	-							
Temp: 10 ((C)	ORP:	-99.00 (mV)	SCond	0.06	(mS/cm)	Water quality	meter:	YSI 600 XL		
pH: 8.1	· ·	DO:	0.80(mg/L)	Turb:	45.50		Serial #:		01G0130		
Collected San	nple Condition		Color clear		0	dor None	Арре	arance	N/A		
	Param					ainer	Number		Preservative		
C	hloride, Nitrate/l		Sulfate		PE 25		2		None HCL		
	Dissolved			A					HNO3		
	Alkalir				PE 250 mL PE 60 ml		1 None				
	Total Fe	/Mn			PE 250 mL 1		HNO3				
	тос	;			CG 40 mL 2 H2SO4			H2SO4			
	Dissolved	Gases			CG 2	0 mL	2		TSP		

Site:	SRSNE			Site Location:	Southington, C	Т		
Project No.	B0054634.0	000.01900		Well ID:	MW-706DR			
Sample:	MW-706DR-	HS-06142012		Replicate No.	N/A			
Well Type:	Monitoring V	Vell						
Well Finish:		Stick Up	Flush Mount					
Measuring Pt:	тос				Fop of Casing Eleva	ation:	n: 149.91	
Total Depth As 0	Constructed (ft	bmp):	128.60	Screened In	terval (ft bmp):	118.23	8 - 128.23	
Well Casing:	Diameter:	2.00	Material:	PVC		_		
Well Screen:	Diameter:	2.00						

Gary Williams

	infastructure, environment, buildings						ve™ Field Fo	orm		Page 1 of 2	
Site:	SRSNE						Site Location:	Southington, CT			
Project No.	B0054634.	0000.0	1900				Well ID:	MW-705DR			
Sample:	MW-705DF	R-HS-06	6132012				Replicate No.	N/A			
Well Type:	Monitoring	Well									
Well Finish:	 ✓	Stick	: Up		Flush	Mount					
Measuring Pt:	тос			_			г	op of Casing Elevati	on:	160.99	
Total Depth As 0	Constructed (f	t bmp):		102.1	0		Screened Int	terval (ft bmp):	- 91.93 - 1	01.93	
Well Casing:	Diameter:	2.0	00		Mate	rial:	PVC				
Well Screen:	Diameter:	2.0	00								
Deployment											
Date and Time of	of Deploymen	t:		Date	e:	06/11	1/2012	Time:	5:12 pm		
Weather Conditi	ons:					Hot, H	umid, Windy, Suni	ny			
Depth to ground	water at time	of depl	oyment:			4.68					
Total well depth	at time of dep	loymer	nt:		-	103.1	2				
Dimensions of H	lydraSleeve T	M:		Lenç	gth (in.)	36.0	0 Diameter(in.)				
Deployment Me	thod/Position	of Weig	ght:		-	Bottom Anchor					
Deployment Dep	oth (Top of Hy	draSle	eveTM) (ftbgs):	-	100.0	0				
PID					-	0					
Retrieval											
Date and Time of	of Retrieval:			Date	:	06/13	3/2012	Time:	11:31 an	1	
Total # of days of	leployed:					2					
Weather Conditi	ons:				-	Cloudy, Humid, Light rain					
Depth to ground	water at time	of retrie	eval:		•	4.65					
Total well depth	at time of retr	ieval:			-	103.1	2				
PID:					•	0					
Downhole Field	Parameters L	Jpon R	etrieval:		•						
Temp: 10 (C))	ORP:	-54.20	(mV)	SCond	: 0.02	(mS/cm)	Water quality	meter:	YSI 600 XL	
pH: 6.89		DO:	0.37(m	ıg/L)	Turb:	29.50	0	Serial #:		00J0695 AA	
Collected Samp	le Condition		Color	brown	-	0	dor Yes	Арро	earance	N/A	
	Parame Dissolved					Cont	ainer	Number 2		Preservative TSP	
	Dissolved					PE 25		1		HNO3	
	TOC					CG 4		2		H2SO4	
	VOC	s			ŀ	AG 40 n	nL VOA	2		HCL	
	Alkalin	,							None		
	Total Fe/Mn						PE 250 mL 1 HNO3				
Chlo	oride, Nitrate/I	vitrite, S	Sultate			PE 25	0 mL	1		None	

Site:	SRSNE			Site Location:	Southington, C	Т		
Project No.	B0054634.00	000.01900		Well ID:	MW-705DR			
Sample:	MW-705DR-	HS-06132012		Replicate No.	N/A			
Well Type:	Monitoring W	/ell						
Well Finish:	\checkmark	Stick Up	Flush Mount					
Measuring Pt:	TOC			1	op of Casing Elev	ation:	160.99	
Total Depth As	Constructed (ft b	ucted (ft bmp): 102.10		Screened Int	terval (ft bmp):	91.93	101.93	
Well Casing:	Diameter:	2.00	Material:	PVC		_		
	Diameter:	2.00						
Well Screen:								

Michael Skowronek

Signature:

	CADIS	ildinas		Hydra	Sleev	e™ Field Fo	orm		Page 1 of 2
Site:	SRSNE	nanrga				Site Location:	Southington, CT		
Project No.	B0054634	0000.0	1900			Well ID:	MW-704M		
Sample:	MW-704M	.HS-06 [,]	142012			Replicate No.	DUP-GW-061420 ²	12-#1	
Well Type:	Monitoring	Well							
Well Finish:	<u></u>	-	Up	Flush	Mount				
Measuring Pt:	тос					ſ	Top of Casing Elevation	on:	152.34
Total Depth As (Constructed (1	t bmp):	4	9.10		Screened Inf	terval (ft bmp):	- 38.66 - 4	8.66
Well Casing:	Diameter:	2.0	00	Mate	rial:	– PVC			
Well Screen:	Diameter:	2.0	00						
Deployment									
Date and Time	of Deploymen	t:		Date:	06/11	/2012	Time:	10:50 am	1
Weather Condit	ions:				Sunny				
Depth to ground	dwater at time	of depl	loyment:	-	6.04				
Total well depth	at time of dep	oloymei	nt:	-	47.83				
Dimensions of H	- HydraSleeve	M:		Length (in.)	36.0	0	Diameter(in.)	1.90	
Deployment Me	Deployment Method/Position of Weight:					Anchor			
Deployment De	pth (Top of Hy	/draSle	eveTM) (ftbgs):	-	44.83				
PID				-	0				
Retrieval				-					
Data and Time				Deter	00/4	10010	T ime of		
Date and Time				Date:		/2012	Time:	7:44 am	
Total # of days of				-	3				
Weather Condit				-	Hot, Hı	umid, Windy, Sun	ny		
Depth to ground			eval:	-	6.40				
Total well depth	at time of ret	ieval:		-	47.81				
PID:				-	0				
Downhole Field	Parameters I	Jpon R	etrieval:						
Temp: 10 (C)	ORP:	-105.00 (mV)	SCond	0.02	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 7.01		DO:	0.70(mg/L)	Turb:	7.57		Serial #:		01G0130
Collected Samp	le Condition		Color clear		0	dor Yes	Арре	arance	N/A
	Param Dissolved				Conta PE 25		Number 1		Preservative HNO3
	Dissolved	Gases			CG 20		2		TSP
Chl	oride, Nitrate/	Nitrite,	Sulfate		PE 25	0 mL	1		None
	Total Fe	₂/Mn			PE 25	0 mL	1		HNO3
	TOC				CG 40		2		H2SO4
	VOC			<i></i>	AG 40 m		2		HCL
	Alkalir	iity			PE 60) ml	1		None

e:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	MW-704M		
Sample:	MW-704M-HS-06142012		Replicate No.	DUP-GW-06142		
Well Type:	Monitoring Well					
Well Finish:	C Stield Lin					
Well Fillisti.	✓ Stick Up	Flush Mount				
Measuring Pt:			T	Γοp of Casing Eleva	ation:	152.34
Measuring Pt:		49.10		Γοp of Casing Eleva terval (ft bmp)։	ation: 38.66 -	
Measuring Pt:	тос					

Christopher Trowbridge

MA

	ADIS	dings	Hydra	Sleev	e™ Field Fo	orm		Page 1 of 2
Site:	SRSNE				Site Location:	Southington, CT		
Project No.	B0054634.0	000.01900			Well ID:	MW-704DR		
Sample:	MW-704DR-	HS-06142012			Replicate No.	N/A		
Well Type:	Monitoring V	Vell						
Well Finish:		Stick Up	Flush	n Mount				
Measuring Pt:	тос				ſ	Top of Casing Elevation	on:	152.84
Total Depth As (Constructed (ft	bmp):	134.50		Screened Int	terval (ft bmp):	- 104.27 -	134.27
Well Casing:	Diameter:	2.00	Mate	rial:	_ PVC			
Well Screen:	Diameter:	2.00						
Deployment								
Date and Time	of Deployment:		Date:	06/11	/2012	Time:	11:23 am	1
Weather Condit	ions:			Sunny				
Depth to ground	lwater at time c	of deployment:		33.29				
Total well depth	at time of deple	oyment:		134.54	ļ			
Dimensions of H	HydraSleeve TN	И:	Length (in.)	36.00)	Diameter(in.)	1.90	
Deployment Me	-		/		Anchor			
Deployment De		-	- bgs):	119.54				
PID			•	0				
Retrieval								
				00///	100.10	-		
Date and Time			Date:	06/14	/2012	Time:	7:14 am	
Total # of days of				3				
Weather Condit					Windy, Sunny			
Depth to ground	lwater at time o	f retrieval:		36.72				
Total well depth	at time of retrie	eval:		136.51				
PID:				0				
Downhole Field	Parameters Up	oon Retrieval:						
Temp: 10 (C) (DRP: -116.00	(mV) SCond	l: 0.03 ((mS/cm)	Water quality	meter:	YSI 600 XL
pH: 7.22	[DO: 0.77(mg	/L) Turb:	10.90		Serial #:		01G0130
Collected Samp	le Condition	Color	clear	00	dor None	Арре	arance	N/A
	Parame Dissolved G			Conta CG 20		Number 2		Preservative TSP
	Total Fe/			PE 250		1		HNO3
	Dissolved F	e/Mn		PE 250) mL	1		HNO3
Chle	oride, Nitrate/N	itrite, Sulfate		PE 250) mL	1		None
	TOC			CG 40		2		H2SO4
	Alkalinit	•		PE 60		1		None
	VOCs		ŀ	AG 40 m	L VOA	2		HCL

te:	SRSNE			Site Location:	Southington, C	Г		
Project No.	B0054634.00	000.01900		Well ID:	MW-704DR			
Sample:	MW-704DR-H	HS-06142012		Replicate No.	N/A			
Well Type:	Monitoring W	/ell						
Well Finish:	•	Stick Up	Flush Mount					
Measuring Pt:	тос			1	fop of Casing Eleva	Elevation: 152.84		
	Constructed (ft b	structed (ft bmp): 134.50		Screened Interval (ft bmp): 10			104.27 - 134.27	
Total Depth As								
Total Depth As Well Casing:	Diameter:	2.00	Material:	PVC		_		

Christopher Trowbridge

Signature:

L

Hydra	Sleeve™ Field Fe	orm	Page 1 of 2
	Site Location:	Southington, CT	
	Well ID:	MW-704D	
	Replicate No.	N/A	
Flush	Mount		
	1	Top of Casing Elevation:	153.43
65.60			- 65.41
Mate	ial: PVC		
Date:	06/11/2012	Time: 11:36	am
	Sunny		
-	6.76		
-	63.98		
Length (in.)	36.00	Diameter(in.) 1.90)
_ 、 ,	Bottom Anchor		
- 6):	60.98		
•	0		
		_	
Date:		Lime: 6:50 a	am
	Humid, Windy, Sunny		
	7.09		
	64.00		
	0		
V) SCond	0.02 (mS/cm)	Water quality meter:	YSI 600 XL
Turb:	14.70	Serial #:	01G0130
ar	Odor None	Appearance	N/A
	Container PE 250 mL	Number 1	Preservative HNO3
	G 40 mL VOA	2	HCL
	PE 250 mL	1	None
		-	
	CG 40 mL	2	H2SO4
	CG 40 mL CG 20 mL PE 250 mL	2 2 1	H2SO4 TSP HNO3
	65.60 Mater Date: Length (in.) s): Date: Quarter Turb: sar	Site Location: Well ID: Replicate No. Replicate No. 65.60 Screened In Material: PVC Date: 06/11/2012 Sunny 6.76 63.98 Screened In Length (in.) 36.00 Bottom Anchor 60.98 0 0 Date: 06/14/2012 3 Humid, Windy, Sunny 7.09 64.00 0 0 V) SCond: 0.02 (mS/cm) Y) SCond: 0.02 (mS/cm) car Odor None Container PE 250 mL AG 40 mL VOA AG 40 mL VOA	Well ID: MW-704D Replicate No. N/A Flush Mount Top of Casing Elevation: 65.60 Screened Interval (ft bmp): 55.41 Material: PVC Date: 06/11/2012 Time: 11:36 Sunny 6.76 63.98 6.76 Length (in.) 36.00 Diameter(in.) 1.90 Bottom Anchor 0 0 0 Date: 06/14/2012 Time: 6:50 a 0 3

Site:	SRSNE			Site Location:	Southington, C	Т		
Project No.	B0054634.0	000.01900		Well ID:	MW-704D			
Sample:	MW-704D-H	S-06142012		Replicate No.	N/A	N/A		
Well Type:	Monitoring V	Vell						
Well Finish:	•	Stick Up	Flush Mount					
Measuring Pt:	TOC			1	op of Casing Eleve	ation:	153.43	
Total Depth As	Constructed (ft	cted (ft bmp): 65.60		Screened Interval (ft bmp):		55.41	- 65.41	
Well Casing:	Diameter:	2.00	Material:	PVC		_		
Well Screen:	Diameter:	2.00						
Notes/Observatio								

Matt Pingitor

11/2

	CADIS environment, bi	uildinas		I	Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900				Well ID:	MW-502		
Sample:	MW-502-H	IS-0613	32012				Replicate No.	N/A		
Well Type:	Monitoring	y Well								
Well Finish:	 [•	_	k Up		Flush	Mount				
Measuring Pt:	тос	-		-			-	Top of Casing Elevation	on:	155.84
Total Depth As		ft bmp)	:	37.60)			terval (ft bmp):	17.54 -	37.54
Well Casing:	Diameter:		.00		Mater	rial:	 PVC	΄ Γ,		
Well Screen:	Diameter:		.00		•					
Deployment					-					
Date and Time	of Deploymer	nt:		Date	e:	06/1 ⁻	1/2012	Time:	3:03 pr	n
Weather Cond	itions:					Hot, H	umid, Sunny			
Depth to groun	ndwater at time	e of dep	loyment:		-	7.27				
Total well dept	h at time of de	ployme	nt:		-	35.80				
Dimensions of	HydraSleeve	TM:		Len	- gth (in.)	36.0	00	Diameter(in.)	1.90	
Deployment M	eployment Method/Position of Weight:						n Anchor			
Deployment Deployment	epth (Top of H	ydraSle	eveTM) (fl	tbgs):	-	27.25				
PID		-			-	0.3				
Retrieval					-					
Data and Time	of Dotain role			Det		00/4	2/22.42	T :	40.00	
Date and Time				Date	3.		3/2012	Time:	12:03 p	m
Total # of days					-	2				
Weather Cond					-		y, Humid			
Depth to groun			leval:		-	7.30				
Total well dept	h at time of ref	rieval:			-	35.55				
PID:					-	0.3				
Downhole Field	d Parameters	Upon R	etrieval:							
Temp: 10 (0	C)	ORP:	-145.10	(mV)	_ SCond	0.02	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.30)	DO:	0.73(mg	g/L)	Turb:	70.9	0	Serial #:		01G0130
Collected Sam	ple Condition		Color	brown		С	odor Yes	Appe	earance	turbid, Cloudy
Ch	Param Noride, Nitrate		Sulfate			Cont PE 25	a iner 60 mL	Number 1		Preservative None
	Total F					PE 25	50 mL	1		HNO3
	TO					CG 4		2		H2SO4
	Dissolved					CG 2		2		TSP
	Dissolved		1			PE 25		1		HNO3
	Alkali	,				PE 6		1		None
	VOO	28			F	40 n	nL VOA	2		HCL

Site:	SRSNE			Site Location:	Southington, C	Т		
Project No.	B0054634.00	000.01900		Well ID:	MW-502			
Sample:	MW-502-HS-	06132012		Replicate No.	N/A	N/A		
Well Type:	Monitoring W	/ell						
Well Finish:	•	Stick Up	Flush Mount					
Measuring Pt:	TOC				Fop of Casing Eleva	ation:	155.84	
Total Depth As (Constructed (ft b	omp):	37.60	Screened In	terval (ft bmp):	17.54	- 37.54	
Well Casing:	Diameter:	2.00	Material:	PVC		_		
	Diameter:	2.00						

Matt Pingitor

	CADIS	ildinas			Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900				Well ID:	MW-416		
Sample:	MW-416-H	IS-0615	52012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:		Sticl	k Up	[Flush	Mount				
Measuring P	t: TOC						٦	Top of Casing Elevation	on:	159.98
Total Depth	As Constructed (ft bmp)	:	52.00)		Screened In	terval (ft bmp):	32.00 - {	52.00
Well Casing:	Diameter:	2.	00		Mate	rial:	PVC			
Well Screen	Diameter:	2.	00		-					
Deployment										
Date and Tin	ne of Deploymer	it:		Date	e:	06/11	1/2012	Time:	12:23 pr	n
Weather Cor	nditions:				-	Cloudy	1			
Depth to gro	undwater at time	of dep	loyment:			7.39				
Total well de	pth at time of de	ployme	nt:			51.67				
Dimensions	of HydraSleeve	TM:		Len	gth (in.)	36.0	0	Diameter(in.)	1.90	
Deployment	Method/Position	of Wei	ght:			Bottom	n Anchor			
Deployment	Depth (Top of H	/draSle	eveTM) (ftbgs):	-	42.75				
PID					-	0				
Retrieval										
Date and Tin	ne of Retrieval:			Date	<u>ə</u> .	06/14	5/2012	Time:	10:51 ar	n
Total # of da				200		4			10.01 4	
Weather Co					-		umid, Sunny			
	undwater at time	of retri	eval:			7.37				
	pth at time of ret		o van		-	51.67				
PID:		nevai.				0				
	eld Parameters	Inon P	otrioval:		-	0				
	(C)	ORP:		(mV)	SCond	: 0.01	(mS/cm)	Water quality	meter:	YSI 600 XL
· _	04	DO:	0.28(m		– Turb:	7.72	, ,	Serial #:		01G0130
· _	mple Condition		Color	clear	_		dor None	Appe	arance	N/A
	Param Chloride, Nitrate/		Sulfate			Cont PE 25	ainer 60 mL	Number 1		Preservative None
	TO	C				CG 4		2		H2SO4
	Alkali					PE 6		1		None
	VOC					AG 40 n		2		HCL
	Dissolved					CG 2		2		
	Total Fo					PE 25 PE 25		1		HNO3 HNO3
	Dissolved					1 - 20		I		11103

e:	SRSNE			Site Location:	Southington, C	Г		
Project No.	B0054634.0000.0	1900		Well ID:	MW-416			
Sample:	MW-416-HS-0615	2012		Replicate No.	N/A			
Nell Type:	Monitoring Well							
Well Finish:	Stick	(Up	Flush Mount					
	TOC			Top of Casing Elevation: 159.98				
Measuring Pt:	100							
Ū.	Constructed (ft bmp):		52.00	Screened Int	erval (ft bmp):	32.00	- 52.00	
Ū.	Constructed (ft bmp):		52.00 Material:	Screened Int	erval (ft bmp):	32.00	- 52.00	

Signature:

Sampling Personnel:

Christopher Trowbridge

27

		uildinas		Hydra	Sleev	/e™ Field Fo	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900			Well ID:	MW-415		
Sample:	MW-415-H	IS-061	52012			Replicate No.	N/A		
Well Type:	Monitoring	y Well							
Well Finish:		Stic	k Up	Flush	Mount				
Measuring Pt:	тос	-				1	Top of Casing Elevation	on:	160.75
Total Depth As	Constructed (ft bmp)	:	14.50			terval (ft bmp):	9.34 - 1	4.34
Well Casing:	Diameter:	2	.00	Mater	ial:	– PVC			
Well Screen:	Diameter:	2	.00						
Deployment									
Date and Time	of Deploymer	nt:		Date:	06/1	1/2012	Time:	4:42 pr	n
Weather Condi	tions:				Hot, H	lumid, Sunny			
Depth to groun	dwater at time	e of dep	loyment:	-	5.75				
Total well depth	n at time of de	ployme	nt:	-	14.08				
Dimensions of	HydraSleeve	TM:		- Length (in.)	36.0)0	Diameter(in.)	1.90	
Deployment Me	ethod/Position	of Wei	ght:		Top W	/eight			
Deployment De	epth (Top of H	ydraSle	eveTM) (ftbgs	- 6):	14.08	-			
PID				-	0				
Retrieval				-					
Data and Time	of Dotrioval			Deter	00/4	5/0040	Timer	44.50	
Date and Time				Date:		5/2012	Time:	11:52 a	m
Total # of days				-	4				
Weather Condi				-	-	, Humid			
Depth to groun			ieval:	-	5.69				
Total well depth	n at time of ret	rieval:		-	14.08				
PID:				-	0				
Downhole Field	l Parameters	Upon F	Retrieval:						
Temp: <u>11 (C</u>	;)	ORP:	-192.80 (m	V) SCond	0.01	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.39		DO:	0.25(mg/L)	Turb:	15.5	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color cle	ar	C	Odor None	Арре	arance	CLEAR
Ch	Param loride, Nitrate		Sulfate		Cont PE 25	t ainer 50 mL	Number 1		Preservative None
	Total F	e/Mn			PE 25	50 mL	1		HNO3
	TO				CG 4		2		H2SO4
	Alkali				PE 6		1		None
	Dissolved		1		PE 25		1		HNO3
	VO			A		mL VOA	2		HCL
	Dissolved	Gases	5		CG 2		2		TSP

Site:	SRSNE			Site Location:	Southington, C	Г	
Project No.	B0054634.00	000.01900		Well ID:	MW-415		
Sample:	MW-415-HS-	-06152012		Replicate No.	N/A		
Well Type:	Monitoring W	/ell					
Well Finish:	\checkmark	Stick Up	Flush Mount				
Measuring Pt:	тос			1	Top of Casing Eleva	ation:	160.75
Total Depth As	Constructed (ft b	omp):	14.50	Screened Int	terval (ft bmp):	9.34 -	14.34
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					
lotes/Observatio	ns.						

Signature:

Sampling Personnel:

Michael Skowronek

Î

		ildinas		Hyd	raSlee	eve™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900			Well ID:	MW-413		
Sample:	MW-413-H	IS-0615	52012			 Replicate No. 	N/A		
Well Type:	Monitoring	Well				-			
Well Finish:		Sticl	k Up	FI	ush Mou	– nt			
Measuring Pt:	тос	-				-	Top of Casing Elevation	on:	160.49
Total Depth As		ft bmp)	:	22.50			terval (ft bmp):	17.25 - 2	
Well Casing:	Diameter:	2.	00	М	aterial:	PVC			
Well Screen:	Diameter:	2.	00						
Deployment									
Date and Time	of Deploymer	it:		Date:	06	/11/2012	Time:	4:40 pn	n
Weather Condi	tions:				Hot,	Humid, Sunny			
Depth to groun	dwater at time	of dep	loyment:		5.53	3			
Total well depth	n at time of de	ployme	nt:		22.1	15			
Dimensions of	HydraSleeve ⁻	TM:		Length (in	.) 36	3.00	Diameter(in.)	1.90	
Deployment Me	ethod/Position	of Wei	ght:		Тор	Weight			
Deployment De	epth (Top of H	/draSle	eveTM) (ftbg	IS):	22.1				
PID			, ()	, , ,	0				
Retrieval									
							_		
Date and Time				Date:		/15/2012	Time:	12:14 pi	m
Total # of days					4				
Weather Condi					Sun	ny			
Depth to groun	dwater at time	of retri	eval:		5.56	6			
Total well depth	n at time of ret	rieval:			22.1	15			
PID:					0				
Downhole Field	d Parameters	Jpon R	etrieval:						
Temp: 13 (C	2)	ORP:	-190.10 (n	nV) SC	ond: 0.0	03 (mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.02		DO:	0.36(mg/L) Tur	b: <u>25</u>	.30	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color gr	reen		Odor None	Арре	earance	CLEAR
	Param Dissolved					ntainer 250 mL	Number 1		Preservative HNO3
	Dissolved	Gases	1		CG	20 mL	2		TSP
Ch	loride, Nitrate/		Sulfate			250 mL	1		None
	VOC) mL VOA	2		HCL
	Total Fe					250 mL	1		HNO3
	Alkalii	-				60 ml 40 mL	<u> </u>		None H2SO4
	100	<i>.</i>			00		2		11200+

ite:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	MW-413		
Sample:	MW-413-HS	-06152012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	TOC				Fop of Casing Eleva	ation:	160.49
Fotal Depth As	Constructed (ft	bmp):	22.50	Screened In	terval (ft bmp):	17.25	- 22.25
Well Casing:	Diameter:	2.00	Material:	PVC		_	
	Diameter:	2.00					

Michael Skowronek

1/h /m

	ARCADIS ture, environment, bi	uildinas		I	Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project N	lo. B0054634	.0000.0)1900				Well ID:	MW-124C		
Sample:	MW-124C	-HS-06	122012				Replicate No.	N/A		
Well Type	e: Monitoring	Well								
Well Finis	sh:	Stic	k Up		Flush	Mount				
Measurin	ng Pt: TOC	_		_			г	lop of Casing Elevation	on:	158.00
Total Dep	oth As Constructed (ft bmp)	:	48.40)		Screened Int	terval (ft bmp):	37.73 - 4	47.73
Well Cas	ing: Diameter:	2.	.00		Mater	rial:	PVC			
Well Scre	een: Diameter:	2.	.00							
Deploym	ent									
Date and	I Time of Deploymer	nt:		Date	9:	06/1	1/2012	Time:	10:16 ar	n
Weather	Conditions:				-	Cloudy	/			
Depth to	groundwater at time	e of dep	loyment:		-	7.03				
Total wel	l depth at time of de	ployme	nt:		-	47.51				
Dimensio	ons of HydraSleeve	TM:		Len	gth (in.)	36.0	00	Diameter(in.)	1.90	
Deploym	ent Method/Positior	of Wei	ght:		_	Botton	n Anchor			
Deploym	ent Depth (Top of H	ydraSle	eveTM) (f	ftbgs):	_	44.51				
PID					_	0				
Retrieva										
Date and	Time of Retrieval:			Date	e:	06/1:	2/2012	Time:	3:15 pm	1
Total # of	f days deployed:					1				
	Conditions:				-	Cloud	y, Cool, Light rain			
	groundwater at time	e of retri	ieval:		-	6.99				
	l depth at time of ref				-	47.51				
PID:					-	0				
Downhol	e Field Parameters	Upon R	Retrieval:		-	-				
Temp:	9 (C)	ORP:		(mV)	SCond	: 0.01	(mS/cm)	Water quality	meter:	LaMotte 2020e
pH:	6.62	DO:	7.90(m	g/L)	– Turb:	18.3	0	Serial #:		19091
Collected	Sample Condition		Color	clear	-	C	dor None	Арре	earance	N/A
	Param Alkali					Cont PE 6	a iner 0 ml	Number 1		Preservative None
	TO	С				CG 4	0 mL	2		H2SO4
	Dissolved					CG 2		2		TSP
	Dissolved					PE 25		1		HNO3
	VO0 Chloride, Nitrate		Sulfate		A	AG 40 n PE 25		2		HCL None
	Total F		Sundle			PE 25		1		HNO3

	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	MW-124C		
Sample:	MW-124C-H	IS-06122012		Replicate No.	N/A		
Well Type:	Monitoring V	Vell					
Well Finish:		Stick Up	Flush Mount				
Measuring Pt:	тос				Fop of Casing Elev	ation:	158.00
Total Depth As	Constructed (ft	bmp):	48.40	Screened In	terval (ft bmp):	37.73	- 47.73
Well Casing:	Diameter:	2.00	Material:	PVC			
wen oasing.	Diamatan	2.00					
Well Screen:	Diameter:						

Christopher Trowbridge

The

	CADIS	ildinas		[Hydra	Sleev	ve™ Field Fo	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0	1900				Well ID:	MW-121M		
Sample:	MW-121M	-HS-06	132012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:		Stick	< Up]	Flush	n Mount				
Measuring Pt:	тос	-		•			1	Top of Casing Elevation	on:	153.83
Total Depth As	Constructed (ft bmp):	:	33.82	2		Screened In	terval (ft bmp):	23.82 -	33.82
Well Casing:	Diameter:	2.	00		Mate	rial:	PVC sch 40			
Well Screen:	Diameter:	2.	00		-					
Deployment					-					
Date and Time	of Deploymer	it:		Date	e:	06/11	1/2012	Time:	2:07 pr	n
Weather Cond	itions:					Hot, H	umid			
Depth to groun	dwater at time	of dep	loyment:			6.40				
Total well dept	h at time of de	oloyme	nt:		·	33.41				
Dimensions of	HydraSleeve -	ΓM:		Len	gth (in.)	36.0	00	Diameter(in.)	1.90	
Deployment M	ethod/Position	of Weig	ght:			Bottom	n Anchor			
Deployment De	epth (Top of H	/draSle	eveTM) (ftbgs):		30.70				
PID						0.6				
Retrieval					•					
Date and Time	of Dotrioval			Det		00/4/	2/2012	Time	0.50 ar	
				Date	σ.		3/2012	Time:	8:50 ar	11
Total # of days						2				
Weather Cond						Rain				
Depth to groun			eval:			6.71				
Total well dept	h at time of ret	rieval:				30.70				
PID:						0.6				
Downhole Field	d Parameters	Jpon R	etrieval:							
Temp: 10 (0	C)	ORP:			_ SCond	: 0.03	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: 6.29)	DO:	0.15(m	ıg/L)	Turb:	13.70	0	Serial #:		00J0695 AA
Collected Sam	ple Condition		Color	orange		0	odor None	Арре	earance	Clear top to orange
Ch	Param loride, Nitrate/		Sulfate			Cont PE 25	a iner 50 mL	Number 1		Preservative None
	Total Fe	e/Mn				PE 25	i0 mL	1		HNO3
	Alkali					PE 6		1		None
	Dissolved					PE 25		1		HNO3
	TO				(CG 40 n		2		H2SO4
	Dissolved Gases CG 20 mL VOCs CG 40 mL VOA				2		Trisodium phosphate HCL			
	v00	/3						2		

Site:	SRSNE		Site Location:	Southington, C	T
Project No.	B0054634.0000.01900)	Well ID:	MW-121M	
Sample:	MW-121M-HS-061320	12	Replicate No.	N/A	
Well Type:	Monitoring Well				
Well Finish:	Stick Up	Flush Moun	t		
Measuring Pt:	ТОС			Fop of Casing Elev	ration: 153.83
-					
Total Depth As	Constructed (ft bmp):	33.82	Screened In	terval (ft bmp):	23.82 - 33.82
Total Depth As Well Casing:	Constructed (ft bmp): Diameter: 2.00	33.82 Material:	Screened In PVC sch 40	terval (ft bmp):	23.82 - 33.82

Signature:

Sampling Personnel:

Michael Skowronek

Chel V/2

	ADIS	dings	I	Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE					Site Location:	Southington, CT		
Project No.	B0054634.0	000.01900				Well ID:	MW-121C		
Sample:	MW-121C-F	IS-06142012				Replicate No.	N/A		
Well Type:	Monitoring V	Vell							
Well Finish:	\checkmark	Stick Up	[Flush	Mount				
Measuring Pt:	тос						Top of Casing Elevati	ion:	152.93
Total Depth As C	Constructed (ft	bmp):	70.70)		Screened Ir	nterval (ft bmp):	60.65 - 7	0.65
Well Casing:	Diameter:	2.00		Mater	rial:	PVC			
Well Screen:	Diameter:	2.00							
Deployment									
Date and Time of	of Deployment:		Date	e:	06/11	1/2012	Time:	2:18 pm	
Weather Conditi	ons:			-	Hot, H	umid			
Depth to ground	water at time of	of deployment:		-	5.75				
Total well depth	at time of depl	oyment:		-	70.04				
Dimensions of H	lydraSleeve TI	M:	Len	gth (in.)	36.0	0	Diameter(in.)	1.90	
Deployment Met	thod/Position c	of Weight:		-	Bottom	Anchor			
Deployment Dep	oth (Top of Hyd	traSleeveTM)	(ftbgs):	-	67.00				
PID				-	0				
Retrieval									
Date and Time c	of Retrieval:		Date	9:	06/14	4/2012	Time:	8:56 am	
Total # of days d	leployed:				3				
Weather Conditi				-	Sunny				
Depth to ground	water at time of	of retrieval:		-	5.68				
Total well depth	at time of retri	eval:		-	70.04				
PID:				-	0				
Downhole Field	Parameters U	pon Retrieval:		-					
Temp: 10 (C))	ORP: -31.40	(mV)	SCond	0.02	(mS/cm)	Water quality	/ meter:	YSI 600 XL
pH: 6.89		DO: 0.55(n	ng/L)	– Turb:	7.68		Serial #:		00J0695 AA
Collected Samp	le Condition	Color	clear	_	0	dor None	Арре	earance	Clear
	Parame VOCs				Cont	ainer nL VOA	Number 2		Preservative HCL
	Dissolved F				PE 25		1		HNO3
	Alkalini	ty			PE 6	0 ml	2		None
	Dissolved (Gases			CG 20		2		TSP
	TOC				CG 4		2		H2SO4
Chlo	oride, Nitrate/N Total Fe/				PE 25 PE 25		<u>1</u> 1		None HNO3
	VOCs				AG 40		2		HNO3

ie:	SRSNE		Site Location:	Southington, C	Т	
Project No.	B0054634.0000.0190	0	Well ID:	MW-121C		
Sample:	MW-121C-HS-06142	012	Replicate No.	N/A		
Well Type:	Monitoring Well					
Well Finish:	Stick Up	Flush Mou	- nt			
Well Finish: Measuring Pt:	Stick Up	Flush Mou		Top of Casing Elev	ation:	152.93
Measuring Pt:		Flush Mour		Top of Casing Eleva	ation: 60.65 - 70.0	
Measuring Pt:						

Michael Skowronek

Oh M

	ARCADIS	uildings			Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No	o. B0054634	.0000.0)1900				Well ID:	MW-121B		
Sample:	MW-121B	-HS-06	142012				Replicate No.	N/A		
Well Type	: Monitoring	Well								
Well Finis	sh: 🔽	Stic	k Up		Flush	Mount				
Measuring	g Pt: TOC	-		•				Top of Casing Elevation	on:	152.91
Total Dept	th As Constructed (ft bmp)	:	54.1	0		Screened In	terval (ft bmp):	44.04 -	54.04
Well Casi	ng: Diameter:	2.	.00		Mater	rial:	PVC			
Well Scree	en: Diameter:	2.	.00		-					
Deployme	ent				-					
Date and	Time of Deploymer	nt:		Dat	e:	06/1 ⁻	1/2012	Time:	3:41 pr	n
Weather (Conditions:				_	Hot, H	umid, Sunny			
Depth to g	groundwater at time	e of dep	loyment:		_	5.75				
Total well	depth at time of de	ployme	nt:		-	53.80				
Dimensior	ns of HydraSleeve	TM:		Len	- gth (in.)	36.0	00	Diameter(in.)	1.90	
Deployme	ent Method/Position	of Wei	ght:			Botton	n Anchor			
Deployme	ent Depth (Top of H	ydraSle	eveTM) ((ftbgs):	-	51.10				
PID					-	0				
Retrieval					-					
Date and	Time of Retrieval:			Dat	o.	06/1	4/2012	Time:	9:39 an	2
	days deployed:			Dat	c .	3	4/2012	nne.	9.59 an	
	Conditions:				-					
		of rotr	ioval:		-	Sunny				
	groundwater at time		eval.		-	5.69				
	depth at time of ret	rievai:			-	53.80				
PID:					-	0				
	e Field Parameters	•				.				
	9 (C)	ORP:		. ,	_ SCond		(mS/cm)	Water quality	meter:	YSI 600 XL
pH:	6.91	DO:	0.59(m		Turb:	6.79		Serial #:		00J0695 AA
Collected	Sample Condition		Color	clear		С	odor None	Appe	earance	Clear
	Param Dissolved		;			Cont	a iner 0 mL	Number 2		Preservative Trisodium phosphate
	Dissolved	l Fe/Mn				PE 25	50 mL	1		HNO3
	Alkali	-				PE 6		1		None
	Total F					250		1		HNO3
	TO						nL VOA	2		H2SO4
	VOC		Quifete		A			2		HCL
	Chloride, Nitrate	initifie,	Sunate			PE 25		1		None

te:	SRSNE		Site Location:	Southington, C	Г	
Project No.	B0054634.0000.01900		Well ID:	MW-121B		
Sample:	MW-121B-HS-06142012		Replicate No.	N/A		
Nell Type:	Monitoring Well					
Nell Finish:	Stick Up	Flush Mount				
Well Finish: Measuring Pt:	Stick Up	Flush Mount		Fop of Casing Elev	ation:	152.91
Measuring Pt:		Flush Mount 54.10		Fop of Casing Elevater		 - 54.04
Measuring Pt:	тос					

Michael Skowronek

ON M

	RCADIS	uildinas			Hydra	Sleev	ve™ Field F	orm		Page 1 of 2
Site:	SRSNE						Site Location:	Southington, CT		
Project No.	B0054634	.0000.0)1900				Well ID:	CPZ-4A		
Sample:	CPZ-4A-H	S-0614	2012				Replicate No.	N/A		
Well Type:	Monitoring	Well								
Well Finish:		Sticl	k Up		Flush	Mount				
Measuring F	Pt: TOC	-					-	Top of Casing Elevation	on:	159.44
-	As Constructed (ft bmp)	:	26.7	0			terval (ft bmp):	11.51 - 2	 25.51
Well Casing			.00		Mate	rial:	– PVC			
Well Screer			.00		-					
Deploymen					_					
Date and Ti	me of Deploymer	nt:		Dat	e:	06/1 ⁻	1/2012	Time:	4:01 pr	n
Weather Co	onditions:					Hot, H	umid, Sunny			
Depth to gro	oundwater at time	of dep	loyment:		-	9.81				
Total well de	epth at time of de	ployme	nt:		-	27.03				
Dimensions	of HydraSleeve	TM:		Ler	• Igth (in.)	36.0	00	Diameter(in.)	1.90	
Deployment	t Method/Position	of Wei	ght:			Botton	n Anchor			
Deployment	t Depth (Top of H	ydraSle	eveTM) ((ftbgs):	-	22.00				
PID					-	0				
Retrieval					-					
				5.				_		
	me of Retrieval:			Dat	e:		4/2012	Time:	12:05 pi	<u>m</u>
	ays deployed:				-	3				
Weather Co					-		y, Hot, Humid			
	oundwater at time		eval:		-	10.15				
	epth at time of ret	rieval:			-	26.05				
PID:					-	0				
Downhole F	ield Parameters	Upon R	etrieval:							
Temp: 10	0 (C)	ORP:	-138.1	0 (mV)	SCond	0.02	(mS/cm)	Water quality	meter:	YSI 600 XL
pH: <u>6</u>	6.91	DO:	0.39(m	ng/L)	Turb:	20.8	0	Serial #:		00J0695 AA
Collected S	ample Condition		Color	clear		C	dor None	Appe	earance	N/A
	Param TO					Cont CG 4	a iner 0 mL	Number 2		Preservative H2SO4
	Alkali	nity				PE 6	0 ml	1		None
	Total F	e/Mn				PE 25		1		HNO3
	Dissolved					PE 25		1		HNO3
	Chloride, Nitrate/		Sulfate			PE 25		1		None
	VOC				<i>H</i>		nL VOA	2		HCL
	Dissolved	Gases				CG 2	0 mL	2		TSP

ite:	SRSNE			Site Location:	Southington, C	Т	
Project No.	B0054634.0	000.01900		Well ID:	CPZ-4A		
Sample:	CPZ-4A-HS-	06142012		Replicate No.	N/A		
Well Type:	Monitoring V	/ell					
Well Finish:	•	Stick Up	Flush Mount				
Measuring Pt:	тос				Top of Casing Elev	ation:	159.44
Total Depth As (Constructed (ft	omp):	26.70	Screened In	terval (ft bmp):	11.51	- 25.51
Well Casing:	Diameter:	2.00	Material:	PVC		_	
Well Screen:	Diameter:	2.00					

Sampling Personnel:

Michael Skowronek

Signature:

MAR

Project	SRSNE				Site Location		Southington, CT				
Project No.	B005463	4.0000.019	00		Well ID		PZO-2M	Sample ID	PZO-2M-0	8272012	
Sample Date	08/27/20	12			Sampled By		Michael Skowrone	(
Sample Time	Begin	11:08	End	11:10	Recorded By		Michael Skowrone	K			
Weather	Hot, Hum	nid, Sunny			Replicate No.		DUP-GW-0827201	2-#1			
Instrument Id	entificati	on				Field	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/6488		Wate	er Quality Meter # 2	LaM	otte 2020e/1	3906	
Casing Material			PVC			Purg	e Method	BP:C	QED 9131		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	48.07	Bottom	58.07
Sounded Depth	(ft bmp)	-	58.18 (6/	/12/2012)		Pum	p Intake Depth (ft b	mp)	53.00		53.00
Depth to Water	(ft bmp)	-	9.01			Purg	e Time	Begi	n 10:09	End	11:21
PID Reading(pp	om)	-	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
10:25	16.20	100.00 mL/min	0.42	23.58	7.44	231 uS/cm	-16.20	5.80	7.15	8.99
10:29	20.53	100.00 mL/min	0.54	22.59	7.50	201 uS/cm	3.80	6.74	6.69	8.53
10:35	26.22	100.00 mL/min	0.69	20.96	7.61	184 uS/cm	11.60	8.05	5.53	9.03
10:39	30.28	100.00 mL/min	0.79	21.05	7.67	184 uS/cm	11.70	8.23	5.29	9.03
10:45	36.02	100.00 mL/min	0.95	21.81	7.71	186 uS/cm	11.80	8.00	8.30	9.03
10:50	40.88	100.00 mL/min	1.08	21.09	7.78	184 uS/cm	13.00	8.66	6.21	9.03
10:56	47.48	100.00 mL/min	1.24	20.81	7.79	182 uS/cm	16.20	8.64	6.22	9.03
11:02	53.47	100.00 mL/min	1.40	20.23	7.79	183 uS/cm	17.20	8.56	6.03	9.03
11:08	59.48	100.00 mL/min	1.56	20.70	7.78	185 uS/cm	17.40	8.57	5.97	9.03
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

 Parameter
 Container
 Number
 Preservative

 VOCs
 AG 40 mL VOA
 4
 HCL

Comments

Sampling Personnel:

Michael Skowronek

Signature:

min

Well Casing Volumes										
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" = 0.37	3-1/2":= 0.5	60 4" = 0.65 6"=1.47				
°C	Degrees Celsi	us	in	Inches	N/A	Not Applicable				
bmp	Below measur	ing point	mg/L	Milligrams per liter	NTUs	Nephelometric Turbidity Units				
DO	Dissolved oxy	gen	min	Minutes	ORP	Oxidation reduction potential				
DTW	Depth to water		mL	Milliliter	ppm	Parts per million				
ft	Feet		mL/min	Milliliters per minute	s.u.	Standard Units				
gal	Gallons		mS/cm	Millisiemens per centimeter	uS/cm	Microsiemens per centimeter				
gpm	Gallons per mi	nute	mV	Millivolts						
			Mate	rial Code						
AG - Ambe	r Glass C	G - Clear Glass	PE - Polyethylene	PP - Polypropylene	T - Teflon	S - Silicone O - Other				
			Purg	ing Code		Vers				

Project	SRSNE				Site Location		Southington, CT				
Project No.	B0054634	4.0000.019	00		Well ID		MW-707DR	Sample ID	MW-707DR	-08272012	
Sample Date	08/27/201	12			Sampled By		Michael Skowronek	ζ.			
Sample Time	Begin	9:31	End	9:33	Recorded By		Michael Skowronek	ζ.			
Weather	Hot, Hum	id, Sunny			Replicate No.		N/A				
Instrument Id	entificatio	on				Fiel	d Parameters				
Water Quality N	leter # 1		YSI 600 2	XL/6488		Wate	er Quality Meter # 2	LaMo	otte 2020e/13	906	
Casing Material			PVC			Purg	e Method	BP:C	ED 9131		
Casing Diamete	er (in)		2.00			Scre	en Interval (ft bmp)	Тор	162.92	Bottom	192.92
Sounded Depth	(ft bmp)	_	194.60 (6	6/12/2012)		Pum	p Intake Depth (ft bi	mp)	177.00		177.00
Depth to Water	(ft bmp)	-	11.32			Purg	je Time	Begii	า 8:37	End	9:33
PID Reading(pp	om)		0.00								
		_									

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
8:40	2.38	75.00 mL/min	0.06	16.70	6.12	29 uS/cm	-158.30	2.28	25.30	10.46
8:46	8.95	75.00 mL/min	0.18	15.91	6.78	270 uS/cm	-172.80	1.56	15.30	11.04
8:52	15.08	75.00 mL/min	0.30	16.55	7.06	482 uS/cm	-170.60	1.70	10.30	11.58
8:58	20.98	75.00 mL/min	0.42	16.36	7.13	480 uS/cm	-177.00	1.65	5.88	11.82
9:02	24.55	75.00 mL/min	0.50	15.95	7.20	505 uS/cm	-176.70	1.27	5.38	11.93
9:07	29.17	75.00 mL/min	0.59	15.87	7.27	526 uS/cm	-175.00	1.11	6.03	11.97
9:11	33.55	75.00 mL/min	0.67	16.07	7.30	539 uS/cm	-156.60	1.06	5.99	12.03
9:16	38.57	75.00 mL/min	0.77	16.20	7.32	548 uS/cm	-167.70	1.10	5.38	12.07
9:22	44.88	75.00 mL/min	0.89	16.44	7.30	544 uS/cm	-170.20	0.91	6.33	12.11
9:26	48.55	75.00 mL/min	0.97	16.56	7.29	541 uS/cm	-183.40	0.89	6.12	12.13
9:31	53.77	75.00 mL/min	1.07	16.41	7.26	540 uS/cm	-180.80	0.88	6.00	12.14
Collect	ed Sample C	Condition	Color cl	ear		Odor None		Appearance	NA	

Parameter	Container	Number	Preservative
VOCs	AG 40 mL VOA	6	HCL

Comments

Sampling Personnel:

Signature:

Michael Skowronek

Wifn

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.50	4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Tur	bidity Units
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction	n potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per cer	itimeter	uS/cm	Microsiemens per	centimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypro	pylene	T - Teflon	S - Silicone	O - Other
			_					

Purging Code

Project	SRSNE	RSNE			Site Location	1	Southington, CT				
Project No.	B005463	4.0000.0190	00		Well ID		MW-1003R	Sample ID	MW-1003R-	10152012	
Sample Date	10/15/20	12			Sampled By		Michael Skowrone	ĸ			
Sample Time	Begin	12:56	End	12:56	Recorded By	/	Michael Skowrone	ĸ			
Weather	Humid, P	artly Cloudy			Replicate No		DUP-GW-1015201	2-#1			
Instrument Ide	entificatio	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/7302		Wate	er Quality Meter # 2	LaMo	otte 2020e/182	253	
Casing Material		_	Sch. 80	PVC		Purg	e Method	BP:C	ED 9513		
Casing Diamete	r (in)		2.00			Scre	en Interval (ft bmp)	Тор	105.47	Bottom	120.47
Sounded Depth	(ft bmp)		120.87 (installed)		Pum	p Intake Depth (ft b	mp)	116.00		116.00
Depth to Water	(ft bmp)	_	9.07			Purg	e Time	Begir	า 11:59	End	12:58
PID Reading(pp	m)	_	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
12:05	5.15	50.00 mL/min	N/A	13.84	11.03	1.111 mS/cm	11.90	5.45	45.60	7.81
12:10	10.07	50.00 mL/min	N/A	14.94	10.97	1.114 mS/cm	12.00	4.57	25.60	9.11
12:15	15.67	50.00 mL/min	N/A	14.06	10.98	1.100 mS/cm	11.95	4.36	15.60	10.90
12:19	19.57	50.00 mL/min	N/A	13.88	10.98	1.086 mS/cm	11.90	4.25	13.70	12.30
12:24	24.28	50.00 mL/min	N/A	13.76	11.01	1.080 mS/cm	11.90	4.16	10.54	12.52
12:29	29.52	50.00 mL/min	N/A	14.17	11.00	1.086 mS/cm	12.00	4.06	9.34	12.80
12:34	34.57	50.00 mL/min	N/A	14.39	11.00	1.092 mS/cm	11.90	4.02	12.90	13.56
12:39	39.05	50.00 mL/min	N/A	14.35	11.01	1.091 mS/cm	11.90	4.00	10.56	14.11
12:44	44.88	50.00 mL/min	N/A	14.25	11.01	1.087 mS/cm	12.00	3.97	9.23	14.35
12:50	50.58	50.00 mL/min	N/A	14.32	10.98	1.088 mS/cm	12.00	3.94	8.51	14.55
12:56	56.33	50.00 mL/min	N/A	14.29	10.97	1.087 mS/cm	11.90	3.92	8.75	14.63
Collect	ed Sample C	Condition	Color cle	ear		Odor None		Appearance	NA	

Sampling Personnel:

Michael Skowronek

Signature:

- - - -

1.01

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3	8" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.4	47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units	
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per centir	meter	uS/cm	Microsiemens per centimeter	
gpm	Gallons per minu	ite	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropy	lene	T - Teflon	S - Silicone O - Other	
			Purgi	ing Code				Vers

SRSNE	Site Location	Southington, C	Г	
B0054634.0000.01900	Well ID	MW-1003R	Sample ID	MW-1003R-10152012
10/15/2012	Sampled By	Michael Skowro	nek	
Begin <u>12:56</u> End <u>12:56</u>	Recorded By	Michael Skowro		
Humid, Partly Cloudy	Replicate No.	DUP-GW-10152	2012-#1	
Parameter	Container		Number	Preservative
Alkalinity	PE 250 mL		1	None
Chloride, Nitrate/Nitrite, Sulfate	PE 500 mL		1	None
Dissolved Fe/Mn	PE 250 mL		1	HNO3
Dissolved Gases	CG 40 mL VOA		2	Trisodium phosphate
тос	CG 40 mL VOA		2	H2SO4
Total Fe/Mn	PE 250 mL	1		HNO3
VOCs		A 3		HCL
	B0054634.0000.01900 10/15/2012 Begin 12:56 Humid, Partly Cloudy Parameter Alkalinity chloride, Nitrate/Nitrite, Sulfate Dissolved Fe/Mn Dissolved Gases TOC Total Fe/Mn	B0054634.0000.01900 Well ID 10/15/2012 Sampled By Begin 12:56 End 12:56 Humid, Partly Cloudy Replicate No. Parameter Container Alkalinity PE 250 mL biloride, Nitrate/Nitrite, Sulfate PE 500 mL Dissolved Fe/Mn PE 250 mL Dissolved Gases CG 40 mL VOA TOC CG 40 mL VOA Total Fe/Mn PE 250 mL	B0054634.0000.01900 Well ID MW-1003R 10/15/2012 Sampled By Michael Skowro Begin 12:56 End 12:56 Humid, Partly Cloudy Replicate No. DUP-GW-10152 Parameter Container Alkalinity PE 250 mL Dissolved Fe/Mn PE 250 mL Dissolved Gases CG 40 mL VOA TOC CG 40 mL VOA Total Fe/Mn PE 250 mL	B0054634.0000.01900Well IDMW-1003RSample ID10/15/2012Sampled ByMichael SkowronekBegin12:56End12:56Recorded ByMichael SkowronekHumid, Partly CloudyReplicate No.DUP-GW-10152012-#1ParameterContainerNumberAlkalinityPE 250 mL1Dissolved Fe/MnPE 250 mL1Dissolved GasesCG 40 mL VOA2TOCCG 40 mL VOA2Total Fe/MnPE 250 mL1

Comments

Sampling	Personnel:
----------	------------

Michael Skowronek

Signature:

			Well Ca	ising Volumes					
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3" :	= 0.37	3-1/2":= 0.50	4" = 0.6	5 6"=1	.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable		
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric T	urbidity Units	
DO	Dissolved oxygen	1	min	Minutes		ORP	Oxidation reduct	ion potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million		
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units		
gal	Gallons		mS/cm	Millisiemens per centime	eter	uS/cm	Microsiemens pe	er centimeter	
gpm	Gallons per minut	te	mV	Millivolts					
			Mate	rial Code					
AG - Ambei	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropyle	ne T	- Teflon	S - Silicone	O - Other	
			Purg	ing Code					Ver

Project	SRSNE				Site Location	۱	Southington, CT				
Project No.	B005463	4.0000.0190	0		Well ID		MW-1003DR	Sample ID	MW-1003DR	-1015201	2
Sample Date	10/15/20	12			Sampled By		Michael Skowrone	c			
Sample Time	Begin	10:43	End	10:43	Recorded By	/	Michael Skowrone	c			
Weather	Humid, P	artly Cloudy			Replicate No).	N/A				
Instrument Ide	entificatio	on				Fiel	d Parameters				
Water Quality M	leter # 1		YSI 600	XL/7302		Wate	er Quality Meter # 2	LaMo	tte 2020e/182	53	
Casing Material			Sch. 80	PVC		Purg	ge Method	BP:Q	ED 9513		
Casing Diamete	r (in)	_	2.00			Scre	en Interval (ft bmp)	Тор	179.62	Bottom	194.62
Sounded Depth	(ft bmp)		195.02 (i	installed)		Pum	ip Intake Depth (ft b	mp)	190.00		190.00
Depth to Water	(ft bmp)	_	16.21			Purg	je Time	Begin	9:15	End	10:44
PID Reading(pp	m)	_	0.00								

Field Parameter Measurements During Purging

Time	Cuml. Prg. Time (min)	Flow Rate	Cuml. Vol. Purged (gal)	TEMP. (°C)	pH (s.u.)	Specific Conductivity	ORP (mV)	DO (mg/L)	TURB (NTUs)	DTW (ft)
9:21	6.52	50.00 mL/min	N/A	13.33	12.35	3.214 mS/cm	-40.80	4.02	23.70	11.59
9:26	11.08	50.00 mL/min	N/A	13.36	12.36	3.265 mS/cm	-44.30	3.55	40.50	13.11
9:30	15.80	50.00 mL/min	N/A	13.91	12.37	3.373 mS/cm	-45.50	3.10	31.90	14.02
9:36	21.45	50.00 mL/min	N/A	14.01	12.40	3.446 mS/cm	-44.30	2.42	25.60	14.98
9:43	28.00	50.00 mL/min	N/A	14.28	12.39	3.486 mS/cm	-42.50	2.62	21.90	15.94
9:48	33.55	50.00 mL/min	N/A	14.00	12.40	3.466 mS/cm	-39.60	2.62	12.80	16.89
9:52	37.92	50.00 mL/min	N/A	13.95	12.41	3.443 mS/cm	-36.30	4.05	11.20	17.92
9:58	43.53	50.00 mL/min	N/A	13.91	12.41	3.390 mS/cm	-32.90	4.12	9.04	19.40
10:04	49.25	50.00 mL/min	N/A	14.13	12.34	3.422 mS/cm	-25.10	3.86	10.87	20.63
10:10	55.17	50.00 mL/min	N/A	14.16	12.34	3.396 mS/cm	-17.40	3.72	8.43	21.56
10:16	61.03	50.00 mL/min	N/A	15.05	12.31	3.433 mS/cm	-8.60	3.59	7.21	21.76
10:21	66.60	50.00 mL/min	N/A	14.64	12.32	3.401 mS/cm	-5.10	3.41	7.97	21.86
10:27	72.08	50.00 mL/min	N/A	14.05	12.31	3.338 mS/cm	11.90	3.39	6.98	22.02
10:32	77.53	50.00 mL/min	N/A	13.98	12.35	3.355 mS/cm	9.30	3.27	7.12	22.15
10:37	82.68	50.00 mL/min	N/A	13.93	12.35	3.348 mS/cm	9.80	3.26	6.90	22.29
10:43	88.83	50.00 mL/min	N/A	13.80	12.34	3.337 mS/cm	10.90	3.18	7.34	22.37

Sampling Personnel:

Michael Skowronek

Signature:

Milor

			Well Ca	asing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26	3" = 0.37	3-1/2":= 0.5	50 4" = 0.65	6"=1.47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbi	idity Units
DO	Dissolved oxyger	ı	min	Minutes		ORP	Oxidation reduction	potential
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minu	te	s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per c	entimeter	uS/cm	Microsiemens per ce	entimeter
gpm	Gallons per minu	te	mV	Millivolts				
			Mate	rial Code				
AG - Amber	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polyp	ropylene	T - Teflon	S - Silicone C) - Other

Purging Code

Project	SRSNE			Site Location	Southington, CT		
Project No.	B0054634.0000.019	000		Well ID	MW-1003DR	Sample ID	MW-1003DR-10152012
Sample Date	10/15/2012			Sampled By	Michael Skowrone	ek	
Sample Time	Begin 10:43	End	10:43	Recorded By	Michael Skowrone	ek	
Weather	Humid, Partly Cloud	у		Replicate No.	N/A		
Collected Sa	mple Condition	Color	clear	Odor	None	Appeara	nce NA

Parameter	Container	Number	Preservative
Alkalinity	PE 250 mL	1	None
Chloride, Nitrate/Nitrite, Sulfate	PE 500 mL	1	None
Dissolved Fe/Mn	PE 250 mL	1	HNO3
Dissolved Gases	CG 40 mL VOA	2	Trisodium phosphate
TOC	CG 40 mL VOA	2	H2SO4
Total Fe/Mn	PE 250 mL	1	HNO3
VOCs	AG 40 mL VOA	3	HCL
			· · · · · · · · · · · · · · · · · · ·

Comments MS/MSD sample collected.

Sampling Personnel:

Michael Skowronek

Signature:

Milor

			Well Ca	sing Volumes				
Gal./Ft.	1-1/4" = 0.06	1-1/2" = 0.09	2" = 0.16	2-1/2" = 0.26 3	8" = 0.37	3-1/2":= 0.50	0 4" = 0.65 6"=1.4	47
°C	Degrees Celsius		in	Inches		N/A	Not Applicable	
bmp	Below measuring	g point	mg/L	Milligrams per liter		NTUs	Nephelometric Turbidity Units	
DO	Dissolved oxyge	n	min	Minutes		ORP	Oxidation reduction potential	
DTW	Depth to water		mL	Milliliter		ppm	Parts per million	
ft	Feet		mL/min	Milliliters per minute		s.u.	Standard Units	
gal	Gallons		mS/cm	Millisiemens per centir	meter	uS/cm	Microsiemens per centimeter	
gpm	Gallons per minu	ite	mV	Millivolts				
			Mate	rial Code				
AG - Ambe	r Glass CG	- Clear Glass	PE - Polyethylene	PP - Polypropy	lene	T - Teflon	S - Silicone O - Other	
			Purgi	ing Code				Vers

ARCADIS

Appendix E

Equipment Calibration Logs

DATE: 2/6/12

INSTRUMENT IDENTIFICATION

Brand: YSI 👌	Model: 650 MWS/600XL	Serial Number: 8861 06 F1764 AU
Brand: NOLH	Model: 21000	Serial Number: 2448/01 K0643 4F
	01000	07242/06070601780

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.1. units) 4.00 3.96 4.00 7.00 7.02 7.00 10.00 9.95 9.99	$\begin{array}{c} 4.00 \\ 7.00 \\ 10.00 \\ \hline 9.32 \\ \hline 9.33 \\ \hline$	4.00 7.00 10.00
Turbidity (NTUs) 0 0. 2 0, 1 1 $1.05/1.01$ 10 $9, 98/4.99$	0 0.7 1 <u>0.95</u> 10 <u>9.92</u>	0 1 10
Conductivity $10 \ \mu$ S/cm $4.8 \ 9.9$ $10 \ m$ S/cm $9.8 \ 9.9$	10 μS/cm <u>4,53</u> 10 mS/cm <u>9,53</u>	10 μS/cm 10 mS/cm
Dissolved Oxygen (mg/L) Zero DO Solution 2.09	Zero DO Solution J. 10	Zero DO Solution
REDOX (mV) Zobell Solution) 251.1/249.8 Light's Solution) 446, 7	Chart 1 	Chart 1
emperature (°C)	1.	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 2/7/2012

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 650 MOS 600XL	
Brand: HOCH	Model: 21000	Serial Number;
10.70	21000	07292/060706017 80

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Readin	9 Standard Reading
$\begin{array}{c cccc} pH (S.1. units) \\ 4.00 & 4.00 \\ \hline 7.00 & 7.14 \\ \hline 7.00 & 7.14 \\ \hline 7.00 \\ 10.00 & 9, 79 \\ \hline 9, 79 \\ \hline 9, 9 \\ $	$\begin{array}{r} 4.00 \\ \hline \begin{array}{c} \hline P. \ 90 \\ \hline 0.00 \\ \hline 0.00 \\ \hline 9.94 \end{array}$	4.00 7.00 10.00
Turbidity (NTUs) 0 $\partial \cdot S$ 0.0 1 1.2 1.0 10 9.95 9.99	$\begin{array}{c} 0 \\ 1 \\ 10 \\ 9.8 \end{array}$	0 1 10
Conductivity 0 μS/cm 1 2.7/9.99 0 mS/cm 13.7/9.99	10 μS/cm <u>4.34</u> 10 mS/cm <u>9.34</u>	10 μS/cm 10 mS/cm
Dissolved Oxygen (mg/L) Zero DO Solution	Zero DO Solution	_ Zero DO Solution
REDOX (mV) Zobell Solution) 238.6/24 Light's Solution) 455.6	4.0 2.34.0 	Chart 1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument Descripti	ID 2448 ion YSI 600 XI						
	ted 2/2/2012						
Manufacturer YSI				State Certifie			
Model Number 600 XL				us Pass			
Serial Number/ I		F		Temp °	C 21		
Numb				TT	× 22		
	ion Massachuse	etts		Humidity ⁴	/0 23		
Departmo	ent				0.05		
		Calib	oration Specific	ations			
Gr	oup # 1			Range Acc %	0.0000		
Group I	Name PH			Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	РН	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
	oup#2			Range Acc %			
	Name Conducti	() · · · · · · · · · · · · · · · · · ·		Reading Acc %			
Stated	Accy Pct of Re	ading		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	oup# 3			Range Acc %	0.0000		
Group N	Name Redox (C	DRP)		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	oup # 4			Range Acc %	0.0000		
Group N	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
	oup#5						
	Name Disolved						
Test Performed: N/A	As Found	d Result:		As Left Resul	t:		

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2448 Description YSI 600 XL Calibrated 2/2/2012

Test Instruments	s Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
MA 1.413 CON. STANDARD 9187	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	9187	9/20/2012
MA ORP 3354	MA ORP SOLUTION 240 mV	Hanna	240 mV	3354	6/20/2016
MA PH10 2108566	MA PH10 SOLUTION	VWR	РН10	2108566	2/28/2013
MA PH4 2106053	MA PH4 SOLUTION	VWR	MA PH4	2106053	5/31/2013
MA PH7 2109104	MA PH7 SOLUTION	VWR	MA PH7	2109104	8/31/2013
MA ZERO D.O.	MA ZERO DO SODIUM SULFITE			44328	

Notes about this calibration

Zero DO check - 0.16

Calibration Result Calibration Successful Who Calibrated Darrell Gallivan

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	18476						
Description	MiniRae 3000						
Calibrated							
Manufacturer				State Certifie	d		
Model Number	PGM-7320			Statu	is Pass		
Serial Number/ Lot Number	592-906041			Temp °	C 20		
	Massachusetts			Humidity 9	/ 19		
Department	1 - Jan 19						
		Calibra	tion Specification	15	- 1.4		
Group	# 1			Range Acc %	0.0000		
Group Nan	ne Isobutylene		F	Reading Acc %			
Stated Acc	ey Pct of Read	ing		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.00	100.10	0.10%	Pass
est Instruments Used D	iring the Calib	oration			(As	Of Cal Entr	v Date)
				Serial Numb			ext Cal Date
est Standard ID Descript	ion	Manufacturer	Model Number	Lot Number	Last	Cal Date/ Ex	piration Da
4A 100 PPM MA 100	PPM ISO	American Gas	GP1102	0420FD11	Oper	ed Date	1/2015
SO 0420FD11		Group	011102	04201D11		0/	1/2015

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

	ment ID		m. 1.'.1'						
	librated	HACH 2100P	Turbidimeter						
	facturer	Contraction of the cardier			State Certifie				
	Number	The second second second second second second second second second second second second second second second se	-			us Pas			
Serial Number/ Lot 06070C017806 Number		6		Temp °	C 21.	.0			
Location Massachusetts				Humidity 9	% 19				
Department						, u 1)			
			Calibra	ation Specification	15				
	Groun	# 1	ound t		Range Acc %	0.000	00		
Group # 1 Group Name Turbidity				Reading Acc %					
		y Pct of Read	ing		Plus/Minus				
Nom In Val / In V	Val	In Type	Out Val	Out Type	Fnd As	Lft A	s Dev?	6 P	ass/Fail
0.10/0.10		NTU	0.10	NTU	0.10	0.10	0.00		Pass
20.00 / 20.00		NTU	20.00	NTU	20.00	20.00	0.00	%	Pass
100.00 / 100.00		NTU	100.00	NTU	100.00	100.0	0.00	%	Pass
800.00 / 800.00		NTU	800.00	NTU	800.00	800.0	0.00	%	Pass
Test Instruments	Used Du	ring the Calib	oration				(As Of Cal E	ntry l	Date)
Test Standard ID	Descripti	ion	<u>Manufacturer</u>	Model Number	<u>Serial Numt</u> Lot Number	<u>ber /</u>	Last Cal Date/ Opened Date	Next	Cal Date
MA 800NTU HACH 2100Q A1143	MA 800 2100Q A	NTU HACH A1143	НАСН				opened Date	5/31/	2012
MA 0.1NTU MA Turbidity Cal Standard 0.10 NTU		НАСН		a1061			3/31/	2012	
MA 100NTU HACH 2100Q A1138	MA 20 M 2100Q A	NTU HACH A1140	НАСН					5/31/	2012
MA 20 NTU IACH 2100Q A1140	MA 20 N 2100Q A	NTU HACH 1140	НАСН		A1140			5/31/	2012

Calibration Result Calibration Successful Who Calibrated Amy Adams

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 7292 Description HACH 2100P Turbidimeter Calibrated 2/3/2012

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

DATE: 4- 4-12

INSTRUMENT IDENTIFICATION

Brand: 451	Model: 600 XL-B-M	Serial Number: 0114 089341
Brand: Lamo Hr	Model:	Serial Number: ME-13249

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units))		
4.00	3.99	4.00	4.00 4.02
7.00	7.00	7.00	7.00 7.0Z
10.00	10.00	10.00	10.00 9.97
Turbidity (NT	Ūs)		
0	0.00	0	0 0.00
10	10.00	10	10 9.87
100			
Conductivity			5 m 1 m
1.413	10-00 insta	1.413	1 "02:413"
1000	778"		1007
Dissolved Ox	sygen (mg/L)		
Barametric Pre	essure Anny	Not Applicable	Not Applicable
in.H ₂ O*25.4=_	mmHg		
REDOX (mV)		Chart ¹	Chart ¹
(Zobel Solution	n) <u>zizi4</u>		
Temperature			
Lights 4	32.4	47017	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1

DATE: -----

INSTRUMENT IDENTIFICATION

Brand: YS I	Model: Gurnerson	Serial Number: Oilcopasa
Brand: Lamette	Model:	Serial Number: Nr E-13249

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)		
4.00 7.00 10.00	4.00 7.00 70.00	4.00 7.00 10.00	4.00 7.00 10.00
Turbidity (NT	rUs)		
0 10 100	000	0 10	0 0.00 10 <u>10 08</u>
Conductivity 1.413 १७०	y (μmhos/cm) チャケエス ギャケエス	1.413	*1:413- 100 100 -
	kygen (mg/L) c.cl / c.cs essuremmHg	Not Applicable	Not Applicable
The second second second second second second second second second second second second second second second s	ORP-240,mv V	Chart ¹	Chart ¹
(Zobel Solutio Temperature אונאל	(°C) 6.25	440.8	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

1

GARY H WILLIAMS

INSTRUMENT IDENTIFICATION

		600%	PONEDO 19091	Serial Number: 1/K160362	ĺ
Brand: YSE	Model:			Serial Number: 0][0034	

CALIBRATION RECORD

Morning	Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	<u>3,99</u> 7,00 10,00	4.00 7.00 10.00	4.00 <u>4.04</u> 7.00 <u>7.02</u> 10.00 <u>9.98</u>
Turbidity (NTU 0 1 10 Conductivity	5) _OL APTTO [APTTO]O	0 1 10	$\begin{array}{c} 0 &38 \\ 1 & 1.15 \\ 10 & 9.72 \end{array}$
10 μS/cm 10 mS/cm Dissolved Oxyg	0.010	10 µS/cm 10 mS/cm	10 μS/cm <u>+010</u> 10 mS/cm
Zero DO Solutio	n_ <u>0,04</u>	Zero DO Solution	Zero DO Solution 0,05
Zobell Solution) Light's Solution)		Chart ¹	Chart ¹ <u>2.34,0</u> 6
	<u>-+-#+₩-₩</u>		22.01

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

F

Chris Troubindge

DATE: 6/12/12

INSTRUMENT IDENTIFICATION

Brand: γ SI	Model: 650 MDS PINE: 18812 5	Serial Number: 11J100750
Brand: YS	Model: 600 XL PINE 10: 7302 5	Serial Number: 00 J0695 AA
Lamotle	2020 e MNE 10:006798	·

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00 Turbidity (NT	4,00 7.00 10.00	4.00 7.00 10.00	4.00 4.23 7.00 7.05 10.00 9.96
0 1 10 Conductivity	0 <u>1.00</u> <u>10.00</u>	0 1 10	0 <u>0</u> 1 <u>0.90</u> 10 <u>10.55</u>
10 μS/cm 10 mS/cm Dissolved Oxy	<u>Seato</u> 0.010	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm <u>0</u> .008
Zero DO Solutio	on <u>() () 8</u>	Zero DO Solution	Zero DO Solution
Zobell Solution	1) <u>23.7.5</u> 1) <u>442.8</u>	Chart 1	Chart 1 19
emperature (°	C) 19.82		457.5

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

.

DATE: 6/12/12___

INSTRUMENT IDENTIFICATION

Brand: YSI Brand: La Motte	Model: 6'30 MDS 600XL - 8-0	Serial Number: 09787 (Pine #) 0160130 (Pine # 2243) Serial Number: Act Wars
Lai bile	Model: 2020e	Serial Number: ME/4058 (Pine # 13871)

CALIBRATION RECORD

Morning Calibration		Afternoo	Afternoon Check		Check
Standard S	Calibration Successful	Standard	Reading		ard Reading
рН (S.I. units) 4.00 – 7.00 – 10.00 –	4.00 7.00 10.00	4.00 7.00 10.00		4.00 7.00 10.00	6.87
urbidity (NTUs) 0 1 10 Conductivity	<u>0.00</u> <u>0.98</u> 1.97	0 1 10		0 1 10	<u>-0.06</u> <u>0.52</u> 7,83
0 μS/cm 0 mS/cm	0.010	10 μS/cm 10 mS/cm		10 μS/c 10 mS/	cm cm7
issolved Oxygen ero DO Solution EDOX (mV)	(mg/L) <u>1.06</u> 2	Zero DO Solution		Zero DO Solution	0.02
obell Solution) 2 ight's Solution) 4 mperature (°C)	29.1	Chart 1		Chart ¹	<u>223,2</u> 447.1

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

۲

DATE: 6/13/12

INSTRUMENT IDENTIFICATION

Brand: YST Brand: La Motte	Model: 650 MDS 600 XL - B-0 Model: 2020e	Serial Number OIGOI30/Pine#2243 /Pine#09787)
		ME 14058 / Pine # 13871

CALIBRATION RECORD

Morning Calibra	ation	Afterno	on Check	Evening C	heck
Standard Suc	ibration cessful	Standard	Reading	Standard	
7.00 7. 10.00 <u>10</u>	-00 -00 -01	4.00 7.00 10.00		4.00 7.00 10.00	<u>3.90</u> 6.60 9. 46
Turbidity (NTUs) 0 0,1 1 0,1 10 0,0	00 98 01	0 1 10	0.56mp 0.40mp 9.96ml	0 1 10	<u>0,56</u> <u>0,40</u> 9.96
Conductivity 10 μS/cm 10 mS/cm Dissolved Oxygen (mg	010	10 μ S/cm 10 mS/cm		10 μS/cm 10 mS/cn	N
Zero DO Solution	<u>08</u> Ze	ero DO Solution		Zero DO Solution	0.33
(Zobell Solution) <u>23</u> (Light's Solution) <u>464</u>	7.6 .2	Chart 1		Chart ¹	<u>240,9</u> 459.6
Temperature (°C) <u>20,</u>					22:70

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 6/13/2

INSTRUMENT IDENTIFICATION

Brand: 751	Model: 650 MDS PINE: 18892 Serial Number: 117100750
Brand: YSI	Model: Sonde 600xc PINE: 7302 Serial Number: 0050695 AA
LeMotte	2020 e PINE; 010426 SN-ME-11693

CALIBRATION RECORD

Morning Calibratio	on Afternoon Check	Evening OL 1
Calibra Standard Succe	ation Evening Check	Evening Check Standard Reading
pH (S.I. units) 4.00 <u>4.00</u> 7.00 <u>7.01</u> 10.00 <u>10.00</u>	0 7.00 7.15	4.00 7.00 10.00
Turbidity (NTUs) 0 0.0 1 1.00 10 10.00	2 1 013	0 1 10
Conductivity 10 μS/cm 10 mS/cm		10 μS/cm 10 mS/cm
Dissolved Oxygen (mg/L Zero DO Solution 0.06		Zero DO Solution
REDOX (mV) Zobell Solution) <u>237.5</u> Light's Solution) <u>45</u>	Chart * 243.0 45 4.4	Chart 1
emperature (°C) <u>1</u> 0.38	23.02	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

CT

٦

DATE: 6/14/12

INSTRUMENT IDENTIFICATION

Brand: YST	Model: 600XL	Serial Number: 0160139 Pre# 2743
Brand: La Motte	<u>Model:</u> 2020e	Serial Number: 0160139 /Pire # 2243 Pire#09787 Serial Number: ME (10357) Pire#09787
		10267/0 1

CALIBRATION RECORD

Morning	g Calibration	Afternoor	n Check	Evening Check
Standard	Calibration Successful	Standard	Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	4.00 7.00 10.00	4.00 7.00 10.00		4.00 <u>4.20</u> 7.00 <u>7.08</u> 10.00 <u>10.10</u>
Turbidity (NT 0 1 10 Conductivity	Us) <u>0,00</u> <u>1,01</u> <u>9,94</u>	0 1 10		$\begin{array}{c} 0 & 0.04 \\ 1 & 1.25 \\ 10 & 0.60 \end{array}$
10 μS/cm 10 mS/cm	0.010	10 μS/cm 10 mS/cm		10 μS/cm 10 mS/cm
Dissolved Oxy Zero DO Soluti REDOX (mV)		Zero DO Solution		Zero DO Solution 0.30
Zobell Solution	1) <u>437.5</u>	Chart 1		Chart ¹ <u>234.9</u> <u>433.9</u>
Cemperature (°	PC) <u>19.20</u>			18.24

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 6/14/0____

INSTRUMENT IDENTIFICATION

đ

H

Brand: YSI	Model: 650 MDS PINE: 18892 Serial Number: 117100750
Brand: YSI	Model: Sunde 600XL PINE: 7302 Serial Number: 0000695 AA
LaMotte	2020e PINE: 010426 SN-ME-11695

CALIBRATION RECORD

Mornin	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units)			
4.00	4.00	4.00	4.00 4.05
7.00	7.00	7.00	
10.00	00.01	10.00	7.00 <u>7.08</u> 10.00 <u>10.11</u>
Turbidity (NT	Us)		
0 1 10	0.00	0 1 10	$\begin{array}{c} 0 & 0.14 \\ 1 & 1.30 \\ 10 & 9.56 \end{array}$
Conductivity			
10 μ S/c m 10 mS/cm	0,010	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm 0.008
Dissolved Ox	ygen (mg/L)		
Zero DO Solut		Zero DO Solution	Zero DO Solution
REDOX (mV)		Chart 1	
(Zobell Solution	n) <u>237,5</u>		Chart ¹
(Light's Solutio	n) 460.6		461.4
Temperature (°C) 19.23		17.95

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

DATE: 6/15/12

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 600 XL 650 MDS	Serial Number: 0160130 Pine #2243
Brand: Lancte	Manlati	Serial Number: 11E10367 / Pine #06798

CALIBRATION RECORD

Morning	Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 7.00 10.00	4.00 7.00 10.00	4.00 7.00 10.00	4.00 <u>4.10</u> 7.00 <u>7.09</u> 10.00 <u>9.96</u>
Turbidity (NTL 0 1 10	is) <u>6.00</u> <u>0.98</u> <u>10.10</u>	0 1 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Conductivity 10 μS/cm 10 mS/cm	0.010	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm
Dissolved Oxy Zero DO Solutic REDOX (mV)		Zero DO Solution	Zero DO Solution
(Zobell Solution) (Light's Solution	436.8	Chart ¹	Chart ¹ <u>Z40,9</u> <u>440.6</u>
Temperature (°(C) <u>19.69</u>		19.20

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

MP

j

DATE: 6/15/12____

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 650 MDS	PINE: 18892	Serial Number:	113100750
Brand: TSI	Model: Sonde 600×L			
Lamotte	2020e 11	NE: 010426	<u></u>	5N-ME-11695

CALIBRATION RECORD

Morning	g Calibration	Afternoon Check	Evening Check
Standard	Calibration Successful	standard Reading	Standard Reading
pH (S.I. units)			
4.00	4.00	4.00	4.00 4 12
7.00	7.00	7.00	7.00 7.06
10.00	(0,00	10.00	10.00 10.05
Turbidity (NT	Us)	<u> </u>	
0	0,00	0	0.80
1	1.00	1	0 0.80
10	000	10	1 <u>1.5</u> 10 <u>14.2</u>
Conductivity			
10 μS/cm	· · · · · · · · · · · · · · · · · · ·	10 µS/cm	10 0/
10 mS/cm	0.010	10 mS/cm	10 μS/cm 10 mS/cm <u>(), 0()6</u>
Dissolved Oxy	/gen (mg/L)		
ero DO Soluti	on <u>0.07</u>	Zero DO Solution	Zero DO Solution 0.09
REDOX (mV)		Chart 1	Chart 1
Zobell Solution	1) <u>287,7</u> (1	1	
Light's Solutior	n)		
emperature (°C) 19.36		
			19.88

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

CT

1

DATE: 6/15/12

INSTRUMENT IDENTIFICATION

Brand: 4 St 600 X	Model: 600 XL	Serial Number: 01 J00 34
Brand: Late te	Model: 20102	Pine 2229 Serial Number: ME 14058
		Pine: 13871

CALIBRATION RECORD

Morning Calibration	Afternoon Check	
	Alternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units) 4.00 3.16 4.00 7.00 7.50 7.00 10.00 9.64 9.93 Turbidity (NTUs)	4.00 7.00 10.00	4.00 <u>4.10</u> 7.00 <u>7.06</u> 10.00 <u>10.04</u>
0 (1.00 (2.0) 1 0.73 1.0 10	0 1 10	0 <u>0.04</u> 1 <u>1.02</u> 10 <u>10.00</u>
Conductivity 10 μS/cm 6 10 10 mS/cm 6 10	10 μS/cm 10 mS/cm	10 μS/cm 10 mS/cm <u>0, 01 i</u>
Dissolved Oxygen (mg/L) Zero DO Solution 2 - 0 5	Zero DO Solution	Zero DO Solution 0.09
REDOX (mV) (Zobell Solution) 2420/243.9 (Light's Solution)	Chart ¹	Chart ¹
Temperature (°C) 16.50		19.61

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer. _[

×.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument I							
	n YSI 600 XL						
Calibrate	d 6/7/2012						
Manufacture	er YSI			State Certified	1		
Model Numbe					s Pass		
Serial Number/ Lo				Temp °C	22		
Numbe					40		
Locatio	on Massachuset	tts		Humidity %	o 4V		
Departme	nt						
		Calibr	ation Specifica	ations			
Gro	up#i			Range Acc %	0.0000		
	ame PH			Reading Acc %	3.0000		
	Accy Pct of Re	ading		Plus/Minus	0.00		
	In Type	Out Val	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>
<u>Nom In Val / In Val</u>	PH	7.00	PH	7.00	7.00	0.00%	Pass
7.00 / 7.00 4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
4.00 / 4.00	PH	10.00	PH	10.00	10.00 -	0.00%	Pass
				Range Acc %	0.0000		
	oup # 2 Name Conducti	vity		Reading Acc %			
-	Accy Pct of Re			Plus/Minus	0.000		
	-	Out Val	Out <u>Type</u>	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>
<u>Nom In Val / In Val</u>	<u>In Type</u> ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
1.413 / 1.413		1,+15		Range Acc %	0.0000		
	oup#3			Reading Acc %			
•	Name Redox ((Plus/Minus			
Stated	Accy Pct of Re		0.455	Fnd As	Lft As	Dev%	Pass/Fai
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	<u>240.00</u>	240.00	0.00%	Pass
240.00 / 240.00	mv	240.00	mv				
Gr	oup # 4			Range Acc %	0.0000		
Group	Name Disolved	l Oxygen Span		Reading Acc %			
Stated	Accy Pct of R	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	<u>Out Type</u>	<u>Fnd As</u>	<u>Lft As</u>	<u>Dev%</u>	Pass/Fai
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
Gr	oup#5						
	Name Disolve	d Oxygen Zero		As Left Resu	14.		
Test Performed: N/	A As Four	nd Result:		As Left Resu			

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 7302 Description YSI 600 XL Calibrated 6/7/2012

Test Instruments Used During the Calibration					(As Of Cal Entry Date)
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
MA 1.413 CON. STANDARD 9187	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	9187	9/20/2012
MA ORP 3834	MA ORP SOLUTION 240 mV	Hanna	240 mV	3834	12/31/2016
MA PH10 2110150	MA PH10 SOLUTION	VWR	PH10	2110150	2/28/2013
MA PH4 2106498	MA PH4 SOLUTION	VWR	MA PH4	2106498	6/1/2013
MA PH7 2109104	MA PH7 SOLUTION	VWR	MA PH7	2109104	8/31/2013
MA ZERO D.O 201023821	MA ZERO D O SODIUM SULFITE			201023821	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine Environmental	Services, Inc.
---------------------------	----------------

Description	YSI 600 XL and 650 MDS display
Instrument ID	7302
Date Calibrated	6-6-12

<u>NJ Headquarter</u>	s 800-301-9663
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
YSI 600 XL sonde w/ 1 cable and case	\sim			
YSI 650 MDS Display				
Manual			14 14	
Quick reference card		_		· · · · · · · · · · · · · · · · · · ·
Stand (base, clamp, and rod)				
Probe Guard	_		·)	
Calibration cup w/sponge				
Flow cell				
 Cell adapter for older style cell (if applicable) 				: ;;
2 of each barb size (1/4, 3/8, 1/2)		/		7 <u></u>)
DO ₂ probe reconditioning kit				()
4 C batteries				
6-series Communications cable				
YSI Ecowatch Software	4			
Calibration kit, pH (4,7,10), conductivity, and ORP.				
NIST traceable calibration sheet	1			

Prepared by: QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7**46**3)

Pine Environmental Services, Inc.

Instrument II							
Description	n YSI 600 XL						
Calibrate	d 6 /4/201 2						
Manufacture	r YSI			State Certified			
Model Numbe				Status			
Serial Number/ Lo				Temp °C	22.00		
Numbe	r			TT	10		
	n Massachuset	ts		Humidity %	+0		
Departmen	it						
		Calibr	ation Specifica	tions			
Grou	up#1			Range Acc %			
Group N				Reading Acc %			
	Accy Pct of Rea	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out <u>Val</u>	<u>Out Type</u>	<u>Fnd As</u>	<u>Lft As</u>	<u>Dev%</u>	<u>Pass/Fail</u>
<u>Nom_in_vai / in_vai</u> 7.00 / 7.00	PH PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	РН	10.00	10.00	0.00%	Pass
	up# 2			Range Acc %			
	ame Conducti	vitv		Reading Acc %			
	Accy Pct of Re			Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fai</u>
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
				Range Acc %	0.0000		
Gro Crown N	up#3 ame Redox (C	IRP)		Reading Acc %	3.0000		
	Accy Pct of Re			Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out <u>Val</u>	<u>Out Type</u>	<u>Fnd As</u>	<u>Lft As</u>	Dev%	<u>Pass/Fai</u>
<u>Nom in var/ in var</u> 240.00 / 240.00	mv	240.00	mv	2 40.00	240.00	0.00%	Pass
	oup # 4			Range Acc %	0.0000		
Group N	Name Disolved	Oxygen Span		Reading Acc %	3.0000		
	Accy Pct of Re			Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	<u>Fnd As</u>	<u>Lft As</u>	<u>Dev%</u>	Pass/Fa
100.00 / 100.00	<u>11 1 9 90</u> %	100.00	%	100.00	100.00	0.00%	Pass
	oup# 5						
Group	Name Dissolve	d Oxygen Zero					
Test Performed: N/A		d Result:		As Left Resu	lt:		

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2229 Description YSI 600 XL Calibrated 6/4/2012

Test Instruments Used During the Calibration Se					(As Of Cal Entry I Next (C <u>al Date /</u>
Test Standard ID	Description	<u>Manufacturer</u>	<u>Model Number</u>	Lot Number	Last Cal Date/ Expir Opened Date	ation Date
MA 1.413 CON. STANDARD	MA 1.413 CONDUCTIVITY	Aurical	1.413	9187	<u> </u>	2012
9187 MA ORP 3834	SOLUTION MA ORP SOLUTION	Hanna	240 mV	3834	12/31	1/2016
MA PH10	240 mV MA PH10 SOLUTION	VWR	PH10	2108566	2/28/	2013
2108566 MA PH4	MA PH4 SOLUTION	VWR	MA PH4	2106498	6/1/2	013
2106498 MA PH7	MA PH7 SOLUTION	VWR	MA PH7	2109104	8/31/	/2013
2109104 MA ZERO D.O 201023821	MA ZERO DO SODIUM SULFITE			201023821		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine Environmental	Services, Inc.
--------------------	----------------

Description	YSI 600 XL and 650 MDS display
Instrument ID	2229
Date Calibrated	6/4/12

<u>NJ Headquarter</u>	s 800-301-9663
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
YSI 600 XL sonde w/ 25 , cable and case				
YSI 650 MDS Display	_			
Manual	_			
Quick reference card	\sim			
Stand (base, clamp, and rod)				
Probe Guard				
Calibration cup w/sponge				
Flow cell				
• Cell adapter for older style cell (if applicable)				
2 of each barb size (1/4, 3/8, 1/2)	-			
DO ₂ probe reconditioning kit				
4 C batteries				
6-series Communications cable	<u> </u>			
YSI Ecowatch Software				
Calibration kit, pH (4,7,10), conductivity, and ORP.				
NIST traceable calibration sheet				

Prepared by:

QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument]	ID 2243						
Descripti	on YSI 600 X	L					
Calibrat	ed 6/5/2012						
Manufactur	er YSI	-		State Certifi	ed		
Model Numb	er 600 XL			Stat	us Pass		
Serial Number/ L	ot 01G0130A	C		Temp ^c	PC 22		
Numb							
	on Massachus	etts		Humidity	% 46		
Departme	ent						
		Calib	oration Specific	ations			
Gro	oup#1			Range Acc %	0.0000		
Group N	ame PH			Reading Acc %	3.0000		
Stated	Accy Pct of R	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	РН	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	РН	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	РН	10.00	10.00	0.00%	Pass
Gro	oup#2			Range Acc %	0.0000		
Group N	ame Conduct	ivity		Reading Acc %	3.0000		
Stated A	Accy Pct of Re	eading		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fai
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	up#3			Range Acc %	0.0000		
Group N	ame Redox ((ORP)		Reading Acc %			
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	up# 4	W N		Range Acc %	0.0000		
Group N	ame Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated A	Accy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
Gro	up#5						
	ame Disolved	Oxygen Zero					
Test Performed: N/A	As Foun	d Result:		As Left Resul	t:		

Pine Environmental Services, Inc., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 2243 Description YSI 600 XL Calibrated 6/5/2012

Test Instruments	(As Of Cal Entry Date)				
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
MA 1.413 CON. STANDARD 9187	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	9187	9/20/2012
MA ORP 3834	MA ORP SOLUTION 240 mV	Hanna	240 mV	3834	12/31/2016
MA PH10 2110150	MA PH10 SOLUTION	VWR	PH10	2110150	2/28/2013
MA PH4 2106498	MA PH4 SOLUTION	VWR	MA PH4	2106498	6/1/2013
MA PH7 2109104	MA PH7 SOLUTION	VWR	MA PH7	2109104	8/31/2013
MA ZERO D.O 201023821	MA ZERO DO SODIUM SULFITE			201023821	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Description	YSI 600 XL and 650 MDS display
Instrument ID	2243
Date Calibrated	6-5-12

Pine Environmental Services, Inc.

<u>NJ Headquarter</u>	s 800-301-9663
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
YSI 600 XL sonde w/ Z' cable and case	_			
YSI 650 MDS Display			· · · · · · · · · · · · · · · · · · ·	
Manual	<u> </u>			
Quick reference card				<u>.</u>
Stand (base, clamp, and rod)				
Probe Guard				
Calibration cup w/sponge				
Flow cell				
• Cell adapter for older style cell (if applicable)	_/			· · · · · · · · ·
2 of each barb size (1/4, 3/8, 1/2)				
DO ₂ probe reconditioning kit			<u></u>	
4 C batteries				
6-series Communications cable	1			
YSI Ecowatch Software				
Calibration kit, pH (4,7,10), conductivity, and ORP.				
NIST traceable calibration sheet	1			

Prepared by:

QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru	ment ID 6798						
Des	cription LaMotte 2020	E					
Ca	librated 6/8/2012						
	facturer LaMotte			State Certific	ed		
	Number 2020E			Stat	us Pass		
	ber/ Lot ME 10367			Temp °	C 23		
	Number .ocation Massachusetts			TT	D/ 47		
	artment			Humidity ⁶	%04/		
		<u>Calibra</u>	tion Specification	<u>18</u>			
	Group # 1			Range Acc %	0.0000		
	oup Name Turbidity		I	Reading Acc %	3.0000		
St	tated Accy Pct of Readi	ing		Plus/Minus	0.00		
<u>Nom In Val / In V</u>	<u>/al In Type</u>	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.00 / 1.00	NTU	1.00	NTU	1.00	1.00	0.00%	Pass
10.00 / 10.00	NTU	10.00	NTU	10.00	10.00	0.00%	Pass
Test Instruments	Used During the Calib	ration	,		(As (Of Cal Entr	v Date)
<u>Test Standard ID</u>	Description	Manufacturer	<u>Model Number</u>	<u>Serial Numl</u> Lot Number	<u>ber /</u> <u>r Last (</u>	Ne	ext Cal Date / piration Date
MA I NTU TURBIDITY	MA 1 NTU Turbidity	GFS	8577	C252523	Open		30/2013
MA 10 NTU TURBIDITY	MA 10 NTU Turbidity Solution	GFS	8578	C149164		1/3	31/2013
MA AUTOCAL 0.0 NTU C2512354	MA AUTOCAL 0.0 NTU C251235	GFS		C251234		3/3	30/2013

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine	Enviro	nmental	Services,	Inc.
------	--------	---------	-----------	------

Description	LaMotte 2020e
Instrument ID	6798
Date Calibrated	6-8-12

<u>NJ Headquarter</u>	<u>s 800-301-9663</u>
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
LaMotte 2020e w/ hard case				·
Manual	~			
Lint-free lens papers (KimWipes)		-	8	
0 NTU vial w/ tube positioning ring				
1 NTU vial w/ tube positioning ring				
10 NTU vial w/ tube positioning ring				
(2) sample vials w/ tube positioning rings				
Plastic water sample bottle with spout				
(1) Extra 9V battery				
NIST traceable calibration sheet	_			5
Optional Items				
Extra sample vials				

Prepared by:

QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

 Instrume	nt ID 13871						
Descri	ption LaMotte 2020E						
	rated 6/8/2012						
				State Certified			
	cturer LaMotte				s Pass		
	mber 2020E			Temp °C	23		
	r/ Lot ME 14058 unber				(10		
	cation Massachusetts			Humidity %	o 40		
Depar							
		Calibrat	ion Specification	<u>ns</u>			
				Range Acc %	0.0000		
_	Group # 1		3	Reading Acc %	3.0000		
Gro	up Name Turbidity	NG		Plus/Minus	0.00		
	nted Accy Pct of Readin		Out Type	Fnd As	<u>Lft As</u>	<u>Dev%</u>	<u>Pass/Fail</u>
<u>Nom In Val / In V</u>		<u>Out Val</u>	<u>out type</u> ntu	1.00	1.00	0.00%	Pass
1.00 / 1.00	NTU	1.00	NTU	10.00	10.00	0.00%	Pass
10.00 / 10.00	NTU	10.00	MIC				
					(A	s Of Cal En	<u>try Date)</u>
Test Instruments	Used During the Calib	<u>ration</u>		Serial Num	ber /	1	Vext Cal Date /
		<u>Manufacturer</u>	Model Number		r La	ast Cal Date/]	Expiration Date
<u>Test Standard ID</u>	<u>Description</u>	Manufactures	<u></u>		<u>0</u>	pened Date	4/30/2013
MA I NTU	MA 1 NTU Turbidity	GFS	8577	C252523			
TURBIDITY				C149164			1/31/2013
MA 10 NTU	MA 10 NTU Turbidity	GFS	8578	0147104			
TURBIDITY	Solution			C251234			3/30/2013
MA AUTOCAL	MA AUTOCAL 0.0	GFS					
0.0 NTU	NTU C251235						
C2512354							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Motify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

LaMotte 2020e	
13871	

Pine Environmental Services, Inc.

800-301-9663
VA 866-801-PINE
FL 877-259-PINE
PA 866-750-PINE
TN 877-355-7907
CA 888-620-PINE
Canada
ON 866-688-0388
BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
LaMotte 2020e w/ hard case	· · · · · · · · · · · · · · · · · · ·			
Manual	(
Lint-free lens papers (KimWipes)	·			
0 NTU vial w/ tube positioning ring				
1 NTU vial w/ tube positioning ring	/			
10 NTU vial w/ tube positioning ring				
(2) sample vials w/ tube positioning rings				
Plastic water sample bottle with spout				
(1) Extra 9V battery				
NIST traceable calibration sheet			· · · · · · · · · · · · · · · · · · ·	
Optional Items Extra sample vials 0	/			

Prepared by: QC checked by: Date:

Description

Instrument ID

Date Calibrated

6-6-12

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instru	ment ID 10426						
Des	cription LaMotte 2020	Е					
Ca	librated 6/8/2012						
	facturer LaMotte			State Certifie	ed		
	Number 2020E			Stati	us Pass		
	ber/Lot me11693			Temp °	C 233		
	Number location Massachusetts			TT 1 11. (
	artment			Humidity 9	%040		
		<u>Calibra</u>	tion Specification	ns			
	Group # 1			Range Acc %	0.0000		
Gr	oup Name Turbidity		I	Reading Acc %			
Si	tated Accy Pct of Read	ing		Plus/Minus	0.00		
<u>Nom In Val / In V</u>	al <u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
1.00 / 1.00	NTU	1.00	NTU	1.00	1.00	0.00%	Pass
10.00 / 10.00	NTU	10.00	NTU	10.00	10.00	0.00%	Pass
Test Instruments	Used During the Calib	ration			(4-0		n Dete)
<u>1 est misti unients</u>	<u>oscu During the Cano</u>	<u>nation</u>		Serial Numl		<u>Of Cal Entr</u>	
<u>Test Standard ID</u>	Description	<u>Manufacturer</u>	<u>Model Number</u>	Lot Number	Last C	Cal Date/ Ex	<u>xt Cal Date /</u> piration Date
MA 1 NTU TURBIDITY	MA 1 NTU Turbidity	GFS	8577	C252523	open		30/2013
MA 10 NTU TURBIDITY	MA 10 NTU Turbidity Solution	GFS	8578	C149164		1/3	31/2013
MA AUTOCAL 0.0 NTU C2512354	MA AUTOCAL 0.0 NTU C251235	GFS		C251234		3/3	80/2013

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Description	LaMotte 2020e
Instrument ID	10426
Date Calibrated	6-8-12

Pine Environmental Services, Inc.

NJ Headquarter	rs 800-301-9663
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
LaMotte 2020e w/ hard case			() 	
Manual				
Lint-free lens papers (KimWipes)				
0 NTU vial w/ tube positioning ring				
1 NTU vial w/ tube positioning ring				
10 NTU vial w/ tube positioning ring				
(2) sample vials w/ tube positioning rings	(//
Plastic water sample bottle with spout		_		
(1) Extra 9V battery				
NIST traceable calibration sheet				
Ontional Itama				
Optional Items Extra sample vials _O_				

Prepared by: QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 12734				
Descript	ion MIniRae 300	0			
Calibra	ted 6/7/2012				
	rer Rae Systems			State Certifie	d _
	ber MiniRAE 300	00		Statu	is Pass
Serial Number/				Temp °C	C 22
	ion Massachusett	S		Humidity %	6 40
Departm	ent				
		Calibra	tion Specification	<u>ns</u>	
Group	oup # 1 Name Isobutylene Accy Pct of Read		I	Range Acc % Reading Acc % Plus/Minus	3.0000
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	<u>Out Type</u>		Lft As Dev% Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.10	99.80 -0.20% Pass
Test Instruments Used During the Calibration (As Of Cal Entry Date)					
Test Standard ID Dese	cription	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Numb</u> Lot Number	
MA 100 PPM MA ISO 0125FE12	100 PPM ISO	American Gas Group	GP11012	0125FE12	2/1/2016

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine Environmental Services, Inc.

Description	RAE Systems MiniRAE 3000
Instrument ID	
Date Calibrated	

NJ Headquarters	<u>s 800-301-9663</u>
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 w/eV lamp and carry case	<u>e</u>		··	
Protective rubber boot	0			
Manual				
Quick reference card				
Probe tip	Ø			
Charger/ adapter, or charger and cradle	0			· · · · · · · · · · · · · · · · · · ·
(2) Hydrophobic filters			5 	
Alkaline battery adapter				
(4) AA Alkaline batteries				
NIST traceable calibration sheet				
Optional Items				
100 ppm isobutylene calibration gas				
Gas regulator	4			
Tedlar bag				
Datalogging software	0			
Communications cable	\bigcirc			

Prepared by: QC checked by: Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	16446						
Description	MiniRae 3000						
Calibrated	6/7/2012						
Manufacturer			<u>-</u>	State Certific	ed		
Model Number				Stat	us Pass		
Serial Number/ Lot	592-903790			Temp °	C 22		
Number							
	Massachusetts			Humidity ⁴	% 40		
Department							
	# 1 ne Isobutylene cy Pct of Readi <u>In Type</u>		<u>tion Specification</u> F Out Type	1 <u>5</u> Range Acc % Reading Acc % Plus/Minus Fnd As	3.0000 0.00	Dect	Dece (Fig. 1
100.00 / 100.00	PPM	<u>100.00</u>	PPM	<u>100.00</u>	<u>Lft As</u> 99.70	<u>Dev%</u> -0.30%	Pass/Fail Pass
Test Instruments Used DrTest Standard IDDescriptMA 100 PPMMA 100ISO 0125FE12		Manufacturer American Gas Group	<u>Model Number</u> GP11012	Serial Numl Lot Number 0125FE12	ber /	<u>al Date/ Ex</u> d Date	y Date) <u>xt Cal Date /</u> piration Date 1/2016

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine Environmental Services, Inc.

Description	RAE Systems MiniRAE 3000
Instrument ID	
Date Calibrated	

NJ Headquarter	s 800-301-9663
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	Canada
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 w/eV lamp and carry case	d			
Protective rubber boot	ø			()
Manual				
Quick reference card				(1997)
Probe tip	6			3
Charger/ adapter, or charger and cradle	ø		·	2 <u></u> 2
(2) Hydrophobic filters				
Alkaline battery adapter				<u> </u>
(4) AA Alkaline batteries				2 5
NIST traceable calibration sheet	Ó			s
Optional Items				
100 ppm isobutylene calibration gas				
Gas regulator		· · · ·		· · · · · · · · · · · · · · · · · · ·
Fedlar bag		/	-	
Datalogging software	Ø			
Communications cable	0			

Prepared by: QC checked by: Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	15961						
Description	MiniRae 3000						
Calibrated	6/7/2012						
Manufacturer		·····		State Certifi	ed		<u>_</u>
Model Number				Stat	us Pass		
Serial Number/ Lot	592-903385			Temp °	C 22		
Number							
	Massachusetts			Humidity ⁴	% 40		
Department							
		Calibra	tion Specification	ns	. –		
Group				Range Acc %			
	ne Isobutylene		I	Reading Acc %			
	cy Pct of Readi	ng		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Qut Val</u>	<u>Out Type</u>	<u>Fnd As</u>	<u>Lft As</u>	Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.10	100.20	0.20%	Pass
Test Instruments Used During the Calibration (As Of Cal Entry Date)							
Test Standard ID Descript	tion	<u>Manufacturer</u>	Model Number	<u>Serial Number</u> Lot Number	Last	<u>Ne</u> <u>Cal Date/ Ex</u> ed Date	ext Cal Date / piration Date
MA 100 PPM MA 100 ISO 0125FE12	PPM ISO	American Gas Group	GP11012	0125FE12	<u>~pen</u>		1/2016

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Description	RAE Systems MiniRAE 3000
Instrument ID	
Date Calibrated	

Pine Environmental Services, Inc.

NJ Headquarte	<u>rs 800-301-9663</u>
GA 800-842-1088	VA 866-801-PINE
OH 877-326-PINE	FL 877-259-PINE
ME 888-779-PINE	PA 866-750-PINE
MA 800-519-PINE	TN 877-355-7907
NY 877-903-PINE	CA 888-620-PINE
NC 866-646-PINE	IL 855-888-PINE
TX 866-981-PINE	ON 866-688-0388
CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 w/eV lamp and carry case	Ø			
Protective rubber boot	ø			
Manual				
Quick reference card				
Probe tip	đ			
Charger/ adapter, or charger and cradle	6	/		
(2) Hydrophobic filters				
Alkaline battery adapter				
(4) AA Alkaline batteries				
NIST traceable calibration sheet	0			
Optional Items				
100 ppm isobutylene calibration gas				
Gas regulator				
Tedlar bag				
Datalogging software	0			
Communications cable				

Prepared by:

QC checked by:

Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	18405							
Description	MiniRae 3000							
Calibrated	6/7/2012			65				
Manufacturer		· <u>· · · · ·</u>		State Certified				
Model Number				Status	Pass			
Serial Number/ Lot	592-906021			Temp °C	22			
Number								
	Massachusetts			Humidity %	40			
Department								
	9# 1 ne Isobutylene cy Pct of Readi <u>In Type</u> PPM		tion Specification F <u>Out Type</u> PPM	Range Acc % 0 Reading Acc % 3 Plus/Minus 0 Fnd As 1	3.0000).00	<u>Pass/Fail</u> Pass		
Test Instruments Used D	Test Instruments Used During the Calibration (As Of Cal Entry Date)							
Test Standard ID Descript	tion	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number</u> Lot Number	Last Cal Date/ Exp	<u>t Cal Date /</u> iration Date		
MA 100 PPM MA 100 ISO 0125FE12) PPM ISO	American Gas Group	GP11012	0125FE12	Opened Date 2/1/	2016		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT PACKING LIST

Pine Environmental Services, Inc.

		NJ Headquarter	rs 800-301-9663
		GA 800-842-1088	VA 866-801-PINE
Description	RAE Systems MiniRAE 3000	OH 877-326-PINE	FL 877-259-PINE
		ME 888-779-PINE	PA 866-750-PINE
Instrument ID		MA 800-519-PINE	TN 877-355-7907
		NY 877-903-PINE	CA 888-620-PINE
Date Calibrated		NC 866-646-PINE	Canada
	· · · · · · · · · · · · · · · · · · ·	TX 866-981-PINE	ON 866-688-0388
		CO 866-960-PINE	BC 877-678-8383

Standard Items	Prepared	QC check	Received by customer	Returned to Pine
MiniRAE 3000 w/eV lamp and carry case	3			
Protective rubber boot	0			s
Manual				··
Quick reference card				
Probe tip	2			
Charger/ adapter, or charger and cradle	0			
(2) Hydrophobic filters				
Alkaline battery adapter				
(4) AA Alkaline batteries				(
NIST traceable calibration sheet	0			
Optional Items		,		
100 ppm isobutylene calibration gas				
Gas regulator				
Tedlar bag				-
Datalogging software	6			
Communications cable	0	5		

Prepared by: QC checked by: Date:

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hours of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

YSI & Turbidity Meter Calibration Log DATE: 8/27/12-

INSTRUMENT IDENTIFICATION

[<u>2N</u>		
Brand:	Vr. Magna.	L BALL		_			
11	YSI BOOMAS	Model:	GSOMBS				
Brand:			-		Serial Number:	6488	
	Lamothe	Model:	600 XL			6-120	łł
<u> [</u>	of the sec	moder.	Jass		Social N	OLHOSAZ	11
			2020e		Serial Number:	· · · · · · · · · · · · · · · · · · ·	11
						13906	lf
						01010	ii ii

CALIBRATION RECORD

		STITUM REC	<u>UxD</u>
Morning	Calibration		
1		Afternoon Check	Evening of
Stand -	Calibration		Evening Check
Standard	Successful	Standard Reading	
		Standard Reading	Standard D "
pH (S.I. units)			Standard Reading
4.00 4.0	04/4.00	100 700	
7.00 7.0	2017 00	4.00 3.95	1.00
10.00 4.9	6 10.00	7.00 7.02	4.00
5 T 1	6 10.00	10.00 10.05	7.00
Turbidity (NTU	s)		10.00
0 10	.05/0.03		
1 (ا)		0 0.08	
10	10.99	1	0
10.8	6 9.93	10 10.05	1
onductivity			10
0 μS/cm 15/	10		
0 mS/cm 15	- 10	10 μS/cm	
	10	10 mS/cm 12	10 μS/cm
ssolved Oxyge	20 (mail)		10 mS/cm
	5 64 11		
ero DO Solution	<u>1.16</u> 2	Zero DO Solution	
DOX (mV)		$\frac{200}{2.00}$	Zero DO Solution
hell Solution	122 /	Chart 1	
bell Solution)	155.6/235.	219.0	Chart '
ht's Solution)	458.4	Aca	
		468.8	
nperature (°C)_	21.79	24	
		26.06	
The same			

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 3678						
Descript	ion YSI 600 X	L					
Calibra	ted 8/23/2012						
Manufactu				State Certifi	ed		
Model Num				Stat	us Pass		
Serial Number/ I		G		Temp ^c	PC 23		
Num) Locati	oer ion Massachus	ott-		TT • 1 , , ,	B/ 40		
Departme		eus		Humidity '	% 49		
		Calil	pration Specific	ations			
	oup#1			Range Acc %	0.0000		
-	Name PH			Reading Acc %			
Stated	Accy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	<u>Pass</u> /Fail
7.00 / 7.00	PH	7.00	РН	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
	oup#2			Range Acc %	0.0000		
-	Name Conduct	•		Reading Acc %	3.0000		
Stated	Accy Pct of Re	eading		Plus/Minus	0.000		
<u>Nom In Val / In Vai</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	oup#3			Range Acc %	0.0000		
_	Name Redox (C			Reading Acc %	3.0000		
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	<u>Fnd As</u>	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
	oup # 4	1.12		Range Acc %	0.0000		
Group N	Name Disolved	Oxygen Span		Reading Acc %			
Stated .	Accy Pct of Re	ading		Plus/Minus			
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
	oup # 5						
Group N	lame Disolved						
Test Performed: N/A	As Foun	d Result:		As Left Result	:		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 3678 Description YSI 600 XL Calibrated 8/23/2012

Test Instruments	s Used During the Calib		(As Of Cal Entry Date)		
Test Standard ID	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date
MA 1.413 CON. STANDARD 9187	MA 1.413 CONDUCTIVITY SOLUTION	Aurical	1.413	9187	<u>Opened Date</u> 9/20/2012
MA COND 1413 2AG540	MA COND 1413	Pine Environmental Services, Inc.	1413	2AG540	7/1/2013
MA ORP 3717	MA ORP SOLUTION 240 mV	Hanna	240 mV	3717	12/31/2016
MA PH10 2110150	MA PH10 SOLUTION	VWR	PH10	2110150	2/28/2013
MA PH7 2109104	MA PH7 SOLUTION	VWR	MA PH7	2109104	8/31/2013
MA ZERO D.O 201023821	MA ZERO DO SODIUM SULFITE			201023821	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc.

92 North Main St, Building 20 Windsor, NJ 08561 Toll-free: (800) 301-9663

Pine Environmental Services, Inc.

Insteine		12000					-	
	ment ID		_					
		LaMotte 2020						
Ca	librated	8/23/2012 11:	55:17AM					
		LaMotte			State Certific	ed		
	Number					us Pass		
Serial Num		ME-14060			Temp °	C 26.8		
	Number				-			
		New Jersey			Humidity 9	% 51		
Dep	artment							
			Calibra	tion Specification	ns			
	Group	# 1			Range Acc %	0.0000		
Gr	oup Nam	e Turbidity		J	Reading Acc %			
St	tated Acc	y Pct of Readi	ng		Plus/Minus			
<u>Nom In Vai / In V</u>	<u>/al</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	Pass/Fail
1.00 / 1.00		NTU	1.00	NTU	1.00	1.00	0.00%	Pass
10.00 / 10.00	· · · · ·	NTU	10.00	NTU	10.00	10.00	0.00%	Pass
Test Instruments	Used Du	uring the Calib	ration			(As (of Cal Enti	Tr Data)
	000020		<u>14000</u>		Serial Numb			
<u>Test Standard ID</u>	Descript	ion	<u>Manufacturer</u>	<u>Model Number</u>	Lot Number	Last C	Cal Date/ Ex	ext Cal Date / xpiration Date
NJ TURB 1 NTU C252523	1 NTU 1 STAND		GFS	8577 INTU	C252523	<u>Opene</u> 5/23/2	ed Date 2012 4/.	30/2013
NTU C252525 NJ TURB 10 NTU C252524		TURBIDITY	GFS	8578 10 NTU	C252524	5/23/2	2012 4/.	30/2013
			Senso	or Information				
<u>Sensor Type</u>		Manu	facturer	<u>Seria</u>	<u>l Number</u>		<u>Date In</u>	stalled

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated William Bass

Pine Environmental Services, Inc.

92 North Main St, Building 20 Windsor, NJ 08561 Toll-free: (800) 301-9663

Pine Environmental Services, Inc.

Instrument ID 13906 Description LaMotte 2020E Calibrated 8/23/2012 11:55:17AM

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc. Instrument ID 6782 Description MiniRae 2000 Calibrated 8/23/2012 Manufacturer Rae Systems Model Number PGM7600 State Certified Serial Number/ Lot 110013491 Status Pass Number Temp °C 24 Location Massachusetts Department Humidity % 43 **Calibration Specifications** Group # 1 Group Name Isobutylene Range Acc % 0.0000 Stated Accy Pct of Reading Reading Acc % 3.0000 <u>Nom In Val / In Val</u> Plus/Minus 0.00 In Type <u>Out Val</u> 100.00 / 100.00 Out Type PPM Fnd As Lft As 100.00 <u>Dev%</u> PPM Pass/Fail 100.00 99.60 -0.40% Test Instruments Used During the Calibration Pass Test Standard ID Description (As Of Cal Entry Date) <u>Manufacturer</u> Serial Number / Model Number Next Cal Date / Lot Number Last Cal Date/ Expiration Date MA 100 PPM MA 100 PPM ISO American Gas ISO 0420FD11 **Opened Date** GP1102 0420FD11 Group 6/1/2015 Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs. Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

YSI & Turbidity Meter Calibration Log

DATE 10/15/12

INSTRUMENT IDENTIFICATION

Brand: YSI	Model 600 XL	Serial Number
Brand Lathothe 2020e	Model 2020e	7302 Serial Number
		18853

CALIBRATION RECORD

Morning Calibration	Afternoon Check	Evening Check
Calibration Standard Successful	Standard Reading	Standard Reading
pH (S.I. units)		
400 3.99 4.00	400 3.47 - 4.00	4.00
7.00 7.00 7.00	7.00 7.08 - 7.00	7 00
10.00 9.98 10.00	10.00 4.95 - 10.00	10.00
Turbidity (NTUs)		
0 ,70.98 0.99	0 0.03 - 0.01	0
1 90.01 0.00	1 toz -1.00	u
10 1.98 10.01	10 7.95-10.01	10
Conductivity		
10 µS/cm	10 µS/cm 9.97	10 µS/cm
10 mS/cm 7.18	10 mS/cm 9.97	10 mS/cm
Dissolved Oxygen (mg/L)		
Zero DO Solution 1.03	Zero DO Solution 1.15	Zero DO Solution
REDOX (mV)	Chart 1	Chart '
Zobell Solution) 244.1 - 146.0	243.8 - 2460	Criat
Light's Solution) 451.5	449.3	
Cemperature (°C)	12.35	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument	ID 7302						
Description	on YSI 600 XI						
Calibrat	ed 10/11/2012						
Manufactur	er YSI			State Certifie	d		
Model Numb	er 600 XL			Statu	is Pass		
Serial Number/ L	the second second second	6. N		Temp °	C 20		
Numb							
Departme	on Massachuse	tts		Humidity 9	/0 44		
Departine	ar				_		
		Calib	ration Specific	ations			
Gro	oup # 1			Range Acc %	0.0000		
	Name PH			Reading Acc %			
Stated	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.00	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.00	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.00	10.00	0.00%	Pass
	oup# 2			Range Acc %			
	Name Conducti			Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.413	1.413	0.00%	Pass
Gro	oup# 3			Range Acc %	0.0000		
Group N	Name Redox (C	ORP)		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
Gro	oup# 4			Range Acc %	0.0000		
Group N	ame Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated .	Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.00 / 100.00	%	100.00	%	100.00	100.00	0.00%	Pass
	oup# 5						
	ame Disolved						
Test Performed: N/A	As Foun	d Result:		As Left Resul	t:		

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 7302 Description YSI 600 XL Calibrated 10/11/2012

Test Instruments Used During the Calibration					(As Of Cal E	intry Date)
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	Last Cal Date	Next Cal Date / Expiration Dat
MA 0 D.O. SOLUTION	MA 0 D.O. Solution	EMD		201023821	9/23/2012	9/23/2020
MA COND 1413 2AG540	MA COND 1413	Pine Environmental Services, Inc.	1413	2AG540		7/1/2013
MA ORP 4031 MA PH 10 2AH029	MA ORP Lot 4031 MA pH 10 2AH029	Hanna Pine Environmental Services, Inc.		4031 2AH029	9/10/2012 9/24/2012	2/1/2017
MA PH 4	MA pH 4 2AE088	Pine Environmental Services, Inc.		2AE088	8/21/2012	5/1/2014
MA PH7 LOT 2AF604	MA pH7 Lot 2AF604	Pine Environmental Services, Inc.		2AF604	8/24/2012	6/1/2014

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Sheila Blouin

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

Pine Environmental Services, Inc.

24 Tower Office Park Woburn, MA 01801 Toll-free: (800) 519-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	1319						
Description	MiniRae 2000						
Calibrated							
Manufacturer	Rae Systems			State Certifie			
Model Number	PGM7600				s Pas	S	
Serial Number/ Lot	110-002658			Temp °	C 22		
Number							
Location	Massachusetts			Humidity %	6 36		
Department				_	_		
		Calibra	tion Specificatio	ns			
Group	0# 1			Range Acc %	0.000	0	
	ne Isobutylene			Reading Acc %			
	cy Pct of Read			Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft A	s Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.00	99.70	-0.30%	Pass
						(As Of Cal Entr	v Date)
Test Instruments Used D	ouring the Cam	bration		Control Name			xt Cal Date
Test Standard ID Descrip	tion	Manufacturer	Model Number	Serial Numl Lot Number		Last Cal Date/ Ex	
rest standard ID Descrip	/10/1	manufacturer	into del l'unificel			Opened Date	
MA 100 PPM MA 10 ISO 0425FF11	00 PPM ISO	American Gas Group	GP11012	0425FF11		10	/1/2013

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Kalyan Iek

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 3 31 OCTOBER 2011 THROUGH 30 OCTOBER 2012

SOLVENTS RECOVERY SERVICE OF NEW ENGLAND, INC. SUPERFUND SITE SOUTHINGTON, CONNECTICUT

TABLE OF CONTENTS

1.0	INTK	RODUCTION	.1
1.1	NT	TCRA-1 BACKGROUND	1
1.2	NT	TRCA-2 BACKGROUND	2
1.3	GF	ROUNDWATER TREATMENT SYSTEM	2
1.4	RF	EPORT ORGANIZATION	3
2.0	DATA	TA ACQUISITION AND RESULTS	.4
2.1	NT	TCRA-1 CONTAINMENT SYSTEM MONITORING	4
2.	.1.1	RGT-1 RESULTS	
2.	.1.2	RGT-2 RESULTS	
2.2	NT	TCRA-2 CONTAINMENT SYSTEM MONITORING	7
2.	.2.1	CT-1 RESULTS	7
2.	.2.2	CT-2 RESULTS	8
2.3	TR	REATMENT SYSTEM MONITORING	10
2.	.3.1	HCTS INFLUENT AND EFFLUENT FLOW DATA	11
2.	.3.2	HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA	11
3.0		Iraulic Containment and Treatment System (HCTS)	
	Ope	erations and Maintenance Summary	12
3.1	OP	PERATIONS AND MAINTENANCE SUMMARY	12
3.2	FU	UTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS	14

Tables

Hydraulic Head Measurements End of Month Gauging
Influent and Effluent HCTS Flow Data Summary
Analytical Results – Process Influent
Analytical Results – Process Effluent
Weekly NTCRA-1 Compliance Piezometer Pair Summary

Figures

Figure 1A Overburden Hydraulic Head Contours – November 2011 Figure 1B Shallow Bedrock Hydraulic Head Contours - November 2011 Figure 1C Deep Bedrock Hydraulic Head Contours – November 2011 Figure 2A Overburden Hydraulic Head Contours – December 2011 Figure 2B Shallow Bedrock Hydraulic Head Contours - December 2011 Figure 2C Deep Bedrock Hydraulic Head Contours - December 2011 Figure 3A Overburden Hydraulic Head Contours - January 2012 Figure 3B Shallow Bedrock Hydraulic Head Contours – January 2012 Figure 3C Deep Bedrock Hydraulic Head Contours - January 2012 Figure 4A Overburden Hydraulic Head Contours – February 2012 Figure 4B Shallow Bedrock Hydraulic Head Contours – February 2012 Figure 4C Deep Bedrock Hydraulic Head Contours - February 2012 Figure 5A Overburden Hydraulic Head Contours – March 2012 Figure 5B Shallow Bedrock Hydraulic Head Contours – March 2012 Figure 5C Deep Bedrock Hydraulic Head Contours - March 2012 Figure 6A Overburden Hydraulic Head Contours - April 2012 Figure 6B Shallow Bedrock Hydraulic Head Contours – April 2012 Figure 6C Deep Bedrock Hydraulic Head Contours - April 2012 Figure 7A Overburden Hydraulic Head Contours - May 2012 Figure 7B Shallow Bedrock Hydraulic Head Contours - May 2012 Figure 7C Deep Bedrock Hydraulic Head Contours – May 2012 Figure 8A Overburden Hydraulic Head Contours - June 2012 Figure 8B Shallow Bedrock Hydraulic Head Contours – June 2012 Figure 8C Deep Bedrock Hydraulic Head Contours - June 2012 Figure 9A Overburden Hydraulic Head Contours – July 2012 Figure 9B Shallow Bedrock Hydraulic Head Contours – July 2012 Figure 9C Deep Bedrock Hydraulic Head Contours – July 2012 Figure 10A Overburden Hydraulic Head Contours - August 2012 Figure 10B Shallow Bedrock Hydraulic Head Contours – August 2012 Figure 10C Deep Bedrock Hydraulic Head Contours – August 2012 Figure 11A Overburden Hydraulic Head Contours - September 2012 Figure 11B Shallow Bedrock Hydraulic Head Contours – September 2012 Deep Bedrock Hydraulic Head Contours - September 2012 Figure 11C Figure 12A Overburden Hydraulic Head Contours - October 2012 Figure 12B Shallow Bedrock Hydraulic Head Contours - October 2012 Figure 12C Deep Bedrock Hydraulic Head Contours – October 2012 Figure 13 Hydrographs of CPZ-5 and CPZ-6 – 31 Oct. 2011 through 30 Oct. 2012 Figure 14A Hydrographs of PZR-2R and MW-704R – 31 Oct. 2011 through 30 Oct. 2012 Figure 14B Hydrographs of PZR-2DR and MW-704DR – 31 Oct. 2011 through 30 Oct. 2012

1.0 INTRODUCTION

This Demonstration of Compliance Report (DCR) was prepared by Weston Solutions, Inc. (WESTON) on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site PRP Group. The DCR documents the effectiveness of the Non-Time-Critical Removal Action No. 1 and 2 (NTCRA-1 and NTCRA-2) hydraulic containment and treatment system at the SRSNE Site in Southington, Connecticut, based on data collected during the period of 31 October 2011 through 30 October 2012. The data presented in this DCR were obtained in accordance with the United States Environmental Protection Agency (USEPA) approved Demonstration of Compliance Plans (DCP) for NTCRA-1 and NTCRA-2 (BBL, June 1995 and November 1999), respectively. The data acquisition schedule, reporting and evaluation requirements for this and future DCRs were described in these DCPs.

This is the fourth annual DCR to be issued after lodging of the consent decree and submitted in accordance with the Remedial Design/Remedial Action (RD/RA) Statement of Work (SOW). This DCR follows 60 previously submitted DCRs prepared initially on a quarterly basis and changed to annual submissions in 2003.

1.1 NTCRA-1 BACKGROUND

The NTCRA-1 hydraulic containment system is installed in the containment area (Figure 1A), which was defined in the NTCRA-1 SOW. The containment system originally included an array of 12 overburden groundwater extraction wells (RW-1 through RW-12) and a downgradient barrier (steel sheet piling) that hydraulically and physically contains overburden groundwater entering the containment area from the SRSNE operations area.

The pre-design investigation results and the designs of the hydraulic barrier wall, extraction wells and treatment system are described in detail in the NTCRA-1 100% Groundwater Containment and Treatment System Design Report (100% Design Report, BBL, January 1994). The NTCRA-1 system was constructed between February and July 1995 and brought online in accordance with the USEPA-approved schedule on 19 July 1995.

The NTCRA-1 hydraulic containment and monitoring network remained as originally constructed until November 2009 when select recovery wells, monitoring wells and piezometers were abandoned in accordance with the Monitoring Well Network Evaluation, included as Attachment N to the Remedial Design Work Plan (Arcadis, April 2009). EPA was notified that the abandoned wells and piezometers would be removed from the NTCRA-1 monitoring program and DCP on 1 November 2009 (WESTON, December 2009). The second annual DCR (31 October 2009 to 30 October 2010) summarizes the recovery wells, monitoring wells and piezometers abandoned under this program and the rationale for abandonment of each well. As indicated in the second annual DCR, all monitoring wells and piezometers were abandoned in November and December 2009,

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - NO. 4 31 October 2011 to 30 October 2012

with exception to former recovery wells RW-5 and RW-6. These wells were permanently taken out of service in November 2009, but not abandoned until December 2010.

As a result of the recovery well abandonment activities discussed above, the NTCRA-1 containment system now consists of ten overburden groundwater extraction wells (RW-1 through RW-4, and RW-7 through RW-12).

1.2 NTRCA-2 BACKGROUND

The NTCRA-2 hydraulic containment system is installed south of the NTCRA-1 containment area (Figure 1A), as defined in the NTCRA-2 SOW. The NTCRA-2 containment area encompasses the majority of the northern portion of the Town of Southington well field property and includes the shallow and deep bedrock, extending to a depth of 100 feet below the top of bedrock in the northern portion of this property (Figure 1A). Further upgradient (north), the NTCRA-2 containment area extends over 170 feet below the top of bedrock and over 200 feet below ground surface (BBL, November 1999).

The NTCRA-2 hydraulic containment system initially included two groundwater extraction wells (RW-13 and RW-1R) that, in combination with the NTCRA-1 containment system, contain bedrock groundwater migrating from the SRSNE operations area (Figure 1A). The design of the overburden and bedrock extraction wells RW-13 and RW-1R, respectively, are described in the NTCRA-2 100% Design Report (BBL, November 1999). Overburden recovery well RW-13 has been on-line since 14 July 1999 and bedrock recovery well RW-1R has been operating since 5 September 2001.

A third groundwater extraction well (RW-14) was added to the NTCRA-2 well field (Figure 1A) to further enhance long-term hydraulic containment of the overburden and bedrock groundwater in the NTCRA-2 well field. The design of the additional overburden extraction well is described in the RW-14 Completion Report (WESTON, November 2007). This overburden recovery well has been operating since 24 September 2007.

1.3 GROUNDWATER TREATMENT SYSTEM

The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility (Figure 1A). The treatment system consists of the following unit processes: influent equalization, metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - No. 4 31 October 2011 to 30 October 2012

1.4 REPORT ORGANIZATION

Section 2 of this report summarizes the acquisition and evaluation of field data used to verify the effectiveness of the hydraulic containment and treatment system and Section 3 provides an overview of operations and maintenance activities conducted at the site during this O&M period.

2.0 DATA ACQUISITION AND RESULTS

The data required to demonstrate the effectiveness of the hydraulic containment and treatment system were obtained in the form of hydraulic head measurements from wells and piezometers installed in the area of the containment system, flow measurements from the extraction well array, treatment system flow rates and analytical results.

2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-1 containment system is verified through two reversal of gradient tests that determine whether groundwater flow is controlled by the system. These tests are demonstrated by comparing hydraulic head measurements at several monitoring locations. The specific wells and piezometers used for these comparisons are discussed in Sections 2.1.1 and 2.1.2. The gradient tests are:

Reversal of Gradient Test No. 1 (RGT-1): Confirms that overburden groundwater east and downgradient of the operations area is flowing in the direction of the groundwater extraction wells.

Reversal of Gradient Test No. 2 (RGT-2): Confirms that overburden groundwater flow is reversed and maintained in the direction of the groundwater extraction wells within the area enclosed by the hydraulic divide installed adjacent to the hydraulic containment system. RGT-2 is more crucial to a demonstration of compliance as it requires that overburden groundwater elevations within the barrier are at least 0.3 feet lower than those outside the wall in NTCRA-1.

2.1.1 RGT-1 RESULTS

To confirm that overburden groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the groundwater extraction wells, hydraulic head measurements were collected at the following overburden wells/piezometers located in the vicinity of the groundwater containment system:

- Extraction Wells RW-1 through RW-4 and RW-7 through RW-12;
- Monitoring Wells MW-415, MWL-304, MWL-305, MWL-307, and MWL-308

Overburden groundwater elevations were also measured at the following wells to assess the hydraulic response in the area between the hydraulic barrier wall and the Quinnipiac River:

• MWL-302, MWL-306, MWL-309, MWL-311, and TW-7A.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - No. 4 31 October 2011 to 30 October 2012

Monthly overburden hydraulic head data measured at the specified wells and compliance monitoring points from 31 October 2011 through 30 October 2012 are presented in Table 1. The resulting groundwater contour maps are presented as Figures 1A through 12A. The contours indicate the horizontal hydraulic gradient between the SRSNE operations area and the extraction wells was eastward toward the extraction wells, fulfilling RGT-1.

The vertical hydraulic gradient between the overburden and bedrock in the vicinity of the hydraulic containment system is also evaluated to confirm satisfactory recovery well operation. Groundwater elevations were compared between bedrock well (MW-416) and the adjacent overburden well (MWL-307) on the same dates. This comparison indicates that the vertical component of the hydraulic gradient between the bedrock and the overburden was generally downward from the overburden to the bedrock within the containment area.

Hydraulic head data is also compared at overburden compliance piezometers CPZ-1, CPZ-3, CPZ-5, CPZ-7 and CPZ-9 and adjacent bedrock piezometers CPZ-1R, CPZ-3R, CPZ-5R, CPZ-7R and CPZ-9R. Monitoring indicates that the gradient was generally upward from the bedrock to the overburden in the vicinity of the pumping wells and the hydraulic barrier wall throughout the period covered by this DCR.

2.1.2 RGT-2 RESULTS

To confirm that groundwater flow is reversed and maintained in the direction of the groundwater extraction wells, hydraulic head measurements were collected weekly at eight fully penetrating overburden compliance piezometers (CPZ-1 2A, 3, 4A, 5, 6, 7 and 8). Compliance piezometers (CPZ-9 and 10) were removed from RGT-2 because CPZ-9 was abandoned in December 2009. As stated in the DCP, the hydraulic gradient is considered reversed and inward across the hydraulic barrier wall when the hydraulic head data measured at each compliance piezometer located inside the hydraulic barrier wall (CPZ-1, CPZ-3, CPZ-5 and CPZ-7) is at least 0.3 foot lower than the head measured at the corresponding compliance piezometer located outside the hydraulic barrier wall (CPZ-2A, CPZ-6 and CPZ-8, respectively).

Based on weekly hydraulic head measurements, the required 0.3 feet head differential was achieved in all four pairs (CPZ-1/CPZ-2A, CPZ-3/CPZ-4A, CPZ-5/CPZ-6 and CPZ-7/CPZ-8) for thirty two (32) of the fifty three (53) weeks during the monitoring period. Compliance piezometer pairs CPZ-5/CPZ-6 and CPZ-7/CPZ-8 met the 0.3 feet head differential during the entire monitoring period. Compliance piezometer pair, CPZ-1/CPZ-2A did not achieve the required 0.3 foot differential on 21 weekly gauging rounds and compliance piezometer pair CPZ-3/CPZ-4A did not achieve the required 0.3-foot differential on 13 weekly gauging rounds. Table 5 provides a summary of which weeks the required head differential was not maintained in one or both of these pairs. The cause of the loss of hydraulic gradient reversal at these two compliance pairs is believed to be a result of excessively dry site conditions due to low precipitation and a substantial localized elevation decrease in the overburden water table outside of the sheet pile wall.

In response to the decreasing and eventual loss of hydraulic gradient reversal during the summer of 2012, extraction well pumps RW-7 and RW-12 (located in close proximity to CPZ-1 and CPZ-3 respectively) were lowered to the lowest practical operating level within the recovery wells, but this adjustment was not effective in maintaining hydraulic gradient reversal. When this similar condition was previously encountered during the summer and fall of 2010, all NTCRA-1 recovery wells were redeveloped and both RW-7&12 were redeveloped a second time but no improvement in hydraulic gradient reversal was observed. This year redevelopment was undertaken in October 2012 at recovery wells RW-2 and RW-12. Again no improvement was realized in hydraulic gradient reversal.

To verify the continuity of gradient reversal, daily hydraulic head measurements are also recorded via a data logger at compliance piezometers CPZ-5 and CPZ-6.

Measurements collected in eight hour intervals (three times/day) as recorded by a data logger installed at compliance piezometers CPZ-5 and CPZ-6 also demonstrated compliance for the entire period covered in this report, with exception to three events of non-compliance encompassing a total of six days. A hydrograph of the data logger measurements from compliance pair CPZ-5 and CPZ-6 is presented as Figure 13 for the monitoring period. Figure 13 is missing data between 11 and 30 September. This data is not available because, the interconnecting signal cable between the data logger and trolls required temporary removal in order to allow construction of the new drainage pipe being constructed under the Pre-Insitu Thermal Remediation (Pre-ISTR) construction. During this period the NTCRA-1 extraction system operated normally.

A summary of NTCRA-1 non-compliance occurrences experienced between 31 October 2011 and 30 October 2012 is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-1 – Non-Compliance Summary – 31 October 2011 to 30 October 2012					
Date	Cause	Corrective Actions			
8 December 2011	Loss of compliance occurred as a result of shutting down both the NTCRA-1&2 extraction systems in response to severe flooding at the NTCRA-2 area.	Compliance was restored following the rain/flood event and restarting of the recovery wells. No corrective action was required.			
16-17 October 2012	Recovery Well RW-2 was out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities			
28 to 30 October 2012	In response to severe weather forecasts as the result of Hurricane Sandy, the NTCRA-1 & 2 extraction systems as well as the Treatment system were intentionally shut down for both employee and site safety concerns.	No corrective action was warranted. This was a scheduled shutdown due to severe weather.			

2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-2 hydraulic containment system is verified through two containment tests that compare hydraulic head measurements in NTCRA-2. The specific locations used for hydraulic head comparisons are presented in Sections 2.2.1 and 2.2.2. The containment tests are:

Containment Test Part 1 (CT-1): Confirms that within the NTCRA-2 containment area, bedrock groundwater east and downgradient of the operations area, is flowing in the direction of the hydraulic containment system.

Containment Test Part 2 (CT-2): Confirms that bedrock groundwater flow downgradient of the NTCRA-2 extraction system within the containment area is reversed and maintained in the direction of the hydraulic containment system.

2.2.1 CT-1 RESULTS

To confirm that VOC-impacted bedrock groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the extraction wells, hydraulic head

measurements were obtained at the following pairs of wells/piezometers located upgradient of the hydraulic containment system:

- Shallow bedrock MW-704R and MW-121A; and
- Deep Bedrock MW-704DR and MW-705DR.

The hydraulic gradient is considered to be towards the extraction wells when the hydraulic head measured at the shallow (MW-704R) and deep (MW-704DR) bedrock monitoring wells located adjacent to extraction wells RW-13, RW-1R and RW-14 is lower than hydraulic head measurements at wells MW-121A and MW-705DR, respectively.

Monthly rounds of hydraulic head data measurements collected from 31 October 2011 to 30 October 2012 are presented in Table 1. The resulting contour maps for shallow bedrock and deep bedrock monitoring wells and piezometers are presented as contours on Figures 1B through 12B and Figures 1C through 12C, respectively. The contours indicate that groundwater flow in the shallow and deep bedrock is inward toward the NTCRA-2 extraction wells, fulfilling Containment Test Requirement No.1 with exception to the deep bedrock in October 2012 (Figure 12C), when extraction well RW-1R is off line so this well could be drilled deeper in order to try to increase its capacity and capture effectiveness.

2.2.2 CT-2 RESULTS

To confirm that bedrock groundwater flow downgradient of the extraction system within the containment area is reversed and maintained in the direction of the extraction wells, hydraulic head measurements were obtained at the following locations:

- Shallow bedrock MW-704R, MW-204A, PZR-2R, and PZR-4R; and
- Deep Bedrock MW-704DR, PZR-2DR, and PZR-4DR.

The hydraulic gradient is considered reversed and inward toward the containment area when the hydraulic head measured at the shallow and deep bedrock monitoring wells MW-704R and MW-704DR, which are located adjacent to extraction wells RW-13, RW-1R and RW-14, is lower than the hydraulic head measurements at the remaining shallow and deep bedrock monitoring wells and piezometers listed above. Measurements taken at these locations are presented in Table 1 and as groundwater contours in Figures 1B through 12B and 1C through 12C.

To verify the continuity of gradient reversal, daily hydraulic head measurements are recorded via a data logger at the following locations:

- Shallow bedrock MW-704R and PZR-2R; and
- Deep Bedrock MW-704DR and PZR-2DR.

ANNUAL DEMONSTRATION OF COMPLIANCE REPORT - No. 4 31 October 2011 to 30 October 2012

Daily hydraulic head measurements recorded via data loggers installed in NTCRA-2 compliance pairs MW-704R and PZR-2R (shallow bedrock) and MW-704DR and PZR-2DR (deep bedrock) indicated that the NTCRA-2 containment system met CT-2 for the monitoring period, with the exception to three periods of non-compliance outlined herein encompassing a total of nine (9) days.

Hydrographs of the data logger measurements obtained for shallow and deep bedrock compliance points between 31 October 2011 and 30 October 2012 are included as Figures 14A and 14B, respectively.

A summary of NTCRA-2 non-compliance occurrences experienced during the monitoring period is presented below, along with an explanation of the cause and corrective measures taken to correct the problem.

NTCRA-2 – Non-Compliance Summary – 31 October 2011 to 30 October 2012				
Date	Cause	Corrective Actions		
8 December 2011	Loss of compliance occurred as a result of excessive heavy rains, which caused NTCRA-2 recovery well flooding. Because of the severe flooding, the NTCRA-2 recovery wells were shut down until flood conditions subsided.	Compliance was restored following the rain/flood event and restarting of the NTCRA-2 recovery wells. No corrective action was required.		
7-8 June 2012	Recovery Wells RW-13 and 14 were out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities		
11-20 September 2012	The NTCRA-2 extraction system had to be shut down in order to construct the new drainage culvert, which crossed the NTCRA-2 forcemain.	No corrective action was warranted. This period of non-compliance was required in order to construct the new culvert.		
8-15 October 2012	Recovery Wells RW-13 and 14 were out of service for redevelopment as part of planned recovery well maintenance.	No corrective action was warranted. This period of non-compliance was expected during recovery well redevelopment (maintenance) activities		
23-24 October 2012	Recovery Wells RW-13 and 14 were out of service in order for WESTON to replace the Vault at RW- 13.	No corrective action was warranted. This period of non-compliance was required in order to upgrade the vault for RW-13.		
28-30 October 2012	In response to severe weather forecasts as the result of Hurricane Sandy, the NTCRA-1 & 2 extraction systems as well as the Treatment system were intentionally shut down for both employee and site safety concerns	No corrective action was warranted. This was a scheduled shutdown due to severe weather.		

2.3 TREATMENT SYSTEM MONITORING

HCTS influent and effluent flow measurements and laboratory analytical data are obtained during the monitoring period. These flow and analytical data are presented and discussed in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 HCTS INFLUENT AND EFFLUENT FLOW DATA

The influent and effluent flow rates of the groundwater treatment system were each recorded continuously using an in-line totalizing flow meter and strip chart recorder. The NTCRA-1 and NTCRA-2 recovery wells ran continuously throughout the monitoring period, with the exception of minor shutdowns during maintenance, individual recovery well failures or HCTS alarm shutdowns. During the monitoring period, NTCRA-2 recovery wells RW-13&14 were redeveloped on three occasions (December 2011, June and October 2012) to maintain drawdown and groundwater hydraulic control during the monitoring period. In addition NTCRA-1 recovery wells (RW-2 and RW-12) were redeveloped in October 2012.

Approximately 16,059,000 gallons of groundwater were extracted, treated and discharged during the monitoring period. Refer to Table 2 for a summary of influent and effluent flow rates and totals. Throughout the period covered in this report, the system treated and discharged an average of 30.6 gallons per minute.

2.3.2 HCTS INFLUENT AND EFFLUENT ANALYTICAL DATA

Samples of groundwater treatment system influent and effluent were collected twice per month and analyzed for metals, VOCs, alcohols and total suspended solids. For the process effluent, the first round each month was also analyzed for total PCBs. Once every quarter, additional effluent samples were collected and tested for dioxins/furans. Analytical results from the influent and effluent sampling are summarized in Tables 3 and 4, respectively. In Table 4, the effluent sampling results are compared with the discharge limits established by the CTDEP in the Substantive Requirements for Discharge, dated 6 November 1995. As shown in Table 4, the treatment system effluent water quality was below discharge limits for the monitoring period.

In addition to the analyses discussed previously, effluent samples were collected and submitted for acute and chronic toxicity analysis in January, April, July and October 2011. The submitted effluent samples passed the acute and chronic toxicity test for both Daphnia Pulex and fathead minnows.

Process influent and effluent sampling for 1,4 dioxane was monitored quarterly during the monitoring period to collect additional data concerning this compound. Currently no discharge limit exists for 1,4-dioxane. Quarterly sample results for the year are presented below.

SRSNE - 1,4-Dioxane Sampling Summary						
Date	DateInfluent (ppb)Effluent (ppb)					
3-Jan-12	<5	<5				
2-Apr-12	45	<5				
2-Jul-12	46.0	15.0				
1-Oct-12	29.0	<5				

3.0 Hydraulic Containment and Treatment System (HCTS) Operations and Maintenance Summary

The HCTS operations and maintenance (O&M) summary is divided into two sections. Section 3.1 highlights the major O&M related activities performed between 31 October 2011 and 30 October 2012. Section 3.2 discusses O&M issues that are on-going or anticipated during the future activities at the site.

3.1 OPERATIONS AND MAINTENANCE SUMMARY

The following briefly describes highlighted HCTS operations and maintenance activities or capital improvements conducted during the reporting period.

- 1. December 2011- NTCRA-2 Recovery Well RW-13 and RW-14 Redevelopment: Recovery Wells, RW-13 and RW-14 were redeveloped to improve hydraulic performance of the recovery well and maintain NTCRA-2 hydraulic gradient reversal objectives.
- 2. **December 2011 Filter Press Room Lighting:** All filter press room lights and ballasts were replaced to restore lighting in this area to normal.
- 3. **December 2011 Clarifier Feed Tank pH Meter:** The pH meter could not pass calibration. Replacement of the Salt Bridge did not correct the problem. The entire probe was replaced with a shelf spare probe and the pH Meter operation was restored to normal. A new probe was procured to maintain a spare probe in inventory.
- 4. **January 2012 UV System Process Adjustment:** On 9 January the number of operating lamps was reduced from 2 lamps to 1 lamp. The hydrogen peroxide residual in the UV effluent was adjusted to 15 mg/L. This process adjustment maintained acceptable treatment system performance during the remainder of the monitoring period.
- 5. **April 2012 SCADA System Improvements:** The SCADA system had been remotely accessed by PC Anywhere since it was initially installed. However remote access was been becoming less reliable using this outdated technology and is more vulnerable to unauthorized attack. To allow for improved remote access and protection, WESTON installed DSL to the computer and security and now this

computer is a node within the WESTON network. Now remote access has been reestablished to this computer by WESTON operations personnel.

- 6. **June 2012 NTCRA-2 Recovery Well Redevelopment:** NTCRA-2 recovery wells RW-13 and RW-14 were redeveloped on 7-8 June and 11-12 June 2012 respectively. Redevelopment was warranted to maintain hydraulic gradient reversal objectives. While the recovery well for RW-13 was out of the well, the electrical motor lead was inspected and found to be damaged. The lead was replaced using a shelf spare lead.
- 7. June 2012 Recovery Well RW-2 Pump Control Panel Improvements: To improve the reliability of the controls and eliminate excessive equipment failure and alarms for NTCRA-1 Recovery Well RW-2, the existing level control probes were replaced with a new level control transducer. No operational problems have occurred since this upgrade for the remainder of the operating period.
- 8. **July 2012 Flocculation Tank Mixer Repair:** The flocculation tank mixer stopped operating. In order to restore operation the motor brushes were replaced in the mixer motor.
- 9. September 2012 Monitoring Well Damage and Subsequent Repair Update: A brush clearing Subcontractor inadvertently damaged two existing monitoring wells (MW-704R and CPZ-10) at the site in September 2012. WESTON's attempt to repair MW-704R only caused further damage to this recovery well and it was determined that this monitoring point required to be replaced. On 23 and 24 October WESTON replaced this recovery well to restore this monitoring point. CPZ-10 will likely not require replacement and is scheduled to be repaired in November 2012.
- 10. **October 2012 NTCRA-2 Recovery Well Redevelopment:** Recovery Wells, RW-13 and RW-14 were redeveloped for a third event during the monitoring period to improve hydraulic performance of the recovery wells and maintain NTCRA-2 hydraulic gradient reversal objectives. For this redevelopment event Carbon Dioxide (CO₂) redevelopment techniques were employed rather than normal chemical redevelopment to see if improved longer term operation could be realized. The CO₂ redevelopment work was completed for both wells, however the CO₂ redevelopment caused settlement in the area around the wells. Settlement at RW-13 was more severe and caused both the vault and discharge forcemain to settle, which subsequently required repair. Based on the observed settlement during CO₂ redevelopment, this technology will no longer be utilized for these wells even though the effectiveness appears to be improved.
- 11. **October 2012– RW-13 Vault Replacement:** As previously discussed, the CO₂ injection at RW-13 caused the vault and discharge forcemain to settle. WESTON removed the existing vault, relocated the forcemain and replaced the vault. As part of the Vault upgrade a larger vault was installed to allow for improvements to the existing piping configuration. WESTON added independent flow control (manual throttling valves) for both RW-1R, and RW-13, independent flow monitoring from each recovery well and the addition of individual sample ports so the water quality for each well could be individually verified.

- 12. October 2012– NTCRA-1 Recovery Well (RW-2 and RW-12) Redevelopment: Both RW-2 and RW-12 were redeveloped to improve hydraulic performance of the recovery well and improve NTCRA-1 hydraulic gradient reversal objectives.
- 13. October 2012– NTCRA-2 Recovery Well (RW-1R): Deep bedrock well, RW-1R was temporarily taken out of on 17 October 2012 in order to perform well surveys and drill the well deeper and increase its yield and plume capture effectiveness. This work is on-going and will likely be completed in November 2012.
- 14. **Ultraviolet Oxidation System:** The following summarizes the major maintenance performed on the UV Equipment during the monitoring period:
 - Five (5) UV lamps were replaced during the reporting period. All lamps were removed or replaced due to failure, excessive amperage draw or excessive hours.
 - Three (3) quartz tubes were replaced because of failure during the monitoring period.

During the monitoring period no additional UV reactor circuits failed. At the end of this monitoring period, UV-1 has 8 of 12 functional reactor circuits. UV- 2 has 7 of 12 functional circuits out of 12.

3.2 FUTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS

WESTON will continue to evaluate the overall HCTS and make recommendations for process improvements or modifications in the coming year. These recommendations will be summarized in the Monthly Operations and Maintenance HCTS report submissions. At this time, there are no major action items or modifications planned.

Measuring Location		28-Nov-11		27-D	ec-11	31-J	31-Jan-12		28-Feb-12		
Location	Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation		
CPZ-1	159.64	6.28	153.36	6.31	153.33	6.29	153.35	6.61	153.03		
CPZ-1R	161.12	0.00	161.12	0.00	161.12	0.00	161.12	2.03	159.09		
CPZ-2	158.64	4.60	154.04	4.40	154.24	5.07	153.57	5.96	152.68		
CPZ-2A	158.82	4.44	154.38	4.18	154.64	4.93	153.89	5.32	153.50		
CPZ-2R	160.97	0.00	160.97	0.10	160.87	0.41	160.56	1.31	159.66		
CPZ-3	159.21	9.89	149.32	9.67	149.54	10.18	149.03	9.69	149.52		
CPZ-3R CPZ-4	160.70 158.80	5.40 7.30	155.30 151.50	4.87 7.21	155.83 151.59	5.62 7.45	155.08 151.35	6.61 8.49	154.09 150.31		
CPZ-4	159.44	8.00	151.44	7.96	151.48	8.27	151.35	9.01	150.31		
CPZ-4R	158.76	5.01	153.75	4.88	153.88	5.47	153.29	6.32	152.44		
CPZ-5	158.68	15.27	143.41	14.91	143.77	13.13	145.55	11.99	146.69		
CPZ-5R	158.30	9.48	148.82	9.38	148.92	8.63	149.67	8.58	149.72		
CPZ-6	154.48	3.62	150.86	3.65	150.83	3.60	150.88	4.18	150.30		
CPZ-6A	158.05	6.90	151.15	6.99	151.06	6.82	151.23	7.44	150.61		
CPZ-6R	154.39	4.65	149.74	4.70	149.69	4.66	149.73	5.43	148.96		
CPZ-7	159.40	6.68	152.72	6.20	153.20	6.11	153.29	6.22	153.18		
CPZ-7R	158.58	0.51	158.07	0.40	158.18	1.02	157.56	2.01	156.57		
CPZ-8 CPZ-8R	160.11 160.62	5.57 6.23	154.54 154.39	5.66 6.28	154.45 154.34	5.63 6.30	154.48 154.32	5.93 6.84	154.18 153.78		
CPZ-8R CPZ-10	161.03	3.60	154.39	3.62	154.34	3.65	154.32	3.90	153.78		
CPZ-10	162.94	1.82	161.12	1.80	161.14	2.08	160.86	3.90	159.83		
MW-121A	152.96	4.16	148.80	4.58	148.38	4.66	148.30	5.18	147.78		
MW-125A	157.87	1.15	156.72	2.61	155.26	2.38	155.49	2.99	154.88		
MW-125C	156.30	6.02	150.28	6.00	150.30	5.80	150.50	6.38	149.92		
MW-204A	150.78	2.66	148.12	3.07	147.71	3.09	147.69	3.40	147.38		
MW-415	160.75	4.81	155.94	4.53	156.22	4.81	155.94	5.16	155.59		
MW-416	159.98	6.99	152.99	6.71	153.27	6.62	153.36	7.11	152.87		
MW-704D	153.43	5.65	147.78	6.21	147.22	6.13	147.30	6.35	147.08		
MW-704M	152.34	4.85	147.49	5.41	146.93	5.31	147.03	5.52	146.82		
MW-704R	151.52	4.63	146.89	5.70	145.82	5.71	145.81	5.87	145.65		
MW-704DR	152.84	33.60	119.24	33.31	119.53	33.79	119.05	32.31	120.53		
MW-705DR MWL-302	160.99	3.01 5.19	157.98	2.81 6.30	158.18	3.36 6.35	157.63	4.18	156.81		
MWL-302	161.60 159.90	5.19 6.74	156.41 153.16	6.59	155.30 153.31	6.76	155.25 153.14	6.38 7.22	155.22 152.68		
MWL-304	159.01	4.44	153.16	4.27	153.31	3.78	155.23	4.29	152.00		
MWL-306	155.39	3.73	151.66	3.97	151.42	3.12	152.27	4.12	151.27		
MWL-307	159.14	3.49	155.65	3.28	155.86	3.51	155.63	3.79	155.35		
MWL-308	158.63	3.09	155.54	2.91	155.72	2.99	155.64	3.30	155.33		
MWL-309	155.20	3.21	151.99	3.50	151.70	3.11	152.09	3.51	151.69		
MWL-311	157.33	5.61	151.72	5.69	151.64	5.77	151.56	6.38	150.95		
P-5A	157.61	7.97	149.64	8.01	149.60	7.70	149.91	8.08	149.53		
P-5B	158.39	4.59	153.80	4.98	153.41	4.57	153.82	5.17	153.22		
P-6 PZR-2R	153.78	3.80	149.98	3.91	149.87	3.86	149.92	4.60	149.18		
PZR-2R PZR-2DR	153.78 154.67	5.78 6.78	148.00 147.89	4.96 6.98	148.82 147.69	6.03 6.99	147.75 147.68	6.40 7.41	147.38 147.26		
PZR-4R	153.72	5.25	147.09	5.37	147.09	5.51	147.00	5.92	147.20		
PZR-4R	152.73	0.00	140.47	0.00	140.35	0.00	152.73	1.10	147.60		
RW-1	157.61	15.07	142.54	14.86	142.75	15.36	142.25	15.62	141.99		
RW-2	156.49	16.52	139.97	15.81	140.68	15.52	140.97	15.94	140.55		
RW-3	157.35	16.06	141.29	16.70	140.65	17.07	140.28	17.13	140.22		
RW-4	158.21	15.12	143.09	15.96	142.25	15.11	143.10	14.40	143.81		
RW-7	157.09	18.34	138.75	16.04	141.05	17.30	139.79	17.09	140.00		
RW-8	156.95	18.32	138.63	17.90	139.05	18.30	138.65	18.03	138.92		
RW-9	156.72	18.96	137.76	17.84	138.88	17.94	138.78	17.94	138.78		
RW-10 RW-11	156.13	18.30	137.83	18.03	138.10	17.27	138.86	18.52	137.61		
RW-11 RW-12	157.82 158.36	17.31 19.66	140.51 138.70	17.26 16.55	140.56 141.81	17.03 17.17	140.79 141.19	14.96 16.90	142.86 141.46		
RW-12	149.36	44.75	104.61	43.40	141.81		98.22	47.83			
RW-13 RW-14	149.36	44.75 30.93	104.61	43.40	105.96	51.14 32.26	98.22	47.83	101.53 118.90		
RW-1R	149.77	30.93	120.76	32.06	124.29	32.20	116.87	31.96	117.81		
W-7A	158.72	5.61	153.11	5.71	153.01	5.61	153.11	6.17	152.55		
/W-702DR	181.38	12.58	168.80	13.82	167.56	14.26	167.12	17.72	163.66		
P-8A	181.26	12.40	168.86	13.95	167.31	14.40	166.86	17.81	163.45		
MW-707D	156.09	8.30	147.79	8.42	147.67	8.45	147.64	8.60	147.49		
/W-707R	156.01	7.99	148.02	8.19	147.82	8.20	147.81	8.79	147.22		
/W-707DR	156.80	8.89	147.91	9.05	147.75	9.12	147.68	9.59	147.21		
PZ-02D	154.14	6.19	147.95	6.33	147.81	6.35	147.79	6.73	147.41		
PZ-O2M	154.77	6.71	148.06	6.85	147.92	6.89	147.88	7.31	147.46		
MW-3	153.79	6.09	147.70	6.18	147.61	6.24	147.55	6.68	147.11		
/W-708R //W-708DR	224.95	74.01	150.94	73.25	151.70	74.20	150.75	74.10	150.85		
PZ-906DR	224.19 155.85	74.49 1.87	149.70 153.98	74.20 5.22	149.99 150.63	74.18 3.80	150.01 152.05	74.88 3.28	149.31 152.57		

Measuring	Location	29-Mar-12		25-A	pr-12	29-May-12		27-J	27-Jun-12		
Location	Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation		
CPZ-1	159.64	7.11	152.53	7.24	152.40	7.38	152.26	7.79	151.85		
CPZ-1R	161.12	2.61	158.51	2.86	158.26	2.58	158.54	3.16	157.96		
CPZ-2	158.64	6.44	152.20	6.22	152.42	6.61	152.03	6.77	151.87		
CPZ-2A	158.82	5.83	152.99	6.08	152.74	6.26	152.56	6.61	152.21		
CPZ-2R	160.97	2.48	158.49	2.80	158.17	2.45	158.52	3.07	157.90		
CPZ-3 CPZ-3R	159.21 160.70	10.66 6.72	148.55 153.98	10.02 6.80	149.19 153.90	9.99 6.88	149.22 153.82	10.80 7.31	148.41 153.39		
CPZ-3K	158.80	9.15	149.65	7.83	150.97	9.30	149.50	9.43	149.37		
CPZ-4A	159.44	9.38	150.06	9.00	150.44	9.64	149.80	9.76	149.68		
CPZ-4R	158.76	6.53	152.23	6.80	151.96	6.75	152.01	7.07	151.69		
CPZ-5	158.68	11.56	147.12	12.10	146.58	13.90	144.78	13.80	144.88		
CPZ-5R	158.30	8.48	149.82	9.04	149.26	9.71	148.59	9.91	148.39		
CPZ-6	154.48	4.30	150.18	3.91	150.57	4.60	149.88	4.14	150.34		
CPZ-6A	158.05	7.51	150.54	7.23	150.82	7.81	150.24	7.60	150.45		
CPZ-6R	154.39	5.63	148.76	5.04	149.35	5.98	148.41	5.93	148.46		
CPZ-7	159.40	6.80	152.60	6.49	152.91	7.06	152.34	6.61	152.79		
CPZ-7R	158.58	2.15	156.43	2.22	156.36	2.33	156.25	2.40	156.18		
CPZ-8 CPZ-8R	160.11 160.62	6.13 7.04	153.98 153.58	5.67 6.80	154.44 153.82	6.04 7.23	154.07 153.39	5.58 6.97	154.53 153.65		
CPZ-8R	161.03	4.04	153.58	3.68	153.82	4.00	153.39	3.72	153.65		
CPZ-10	162.94	3.33	159.61	3.32	159.62	3.50	159.44	3.48	159.46		
WW-121A	152.96	5.40	147.56	4.95	148.01	5.62	147.34	5.55	147.41		
MW-125A	157.87	3.31	154.56	2.91	154.96	2.99	154.88	2.95	154.92		
MW-125C	156.30	6.30	150.00	6.16	150.14	6.70	149.60	6.50	149.80		
MW-204A	150.78	3.69	147.09	3.15	147.63	4.07	146.71	3.79	146.99		
/W-415	160.75	5.52	155.23	5.18	155.57	5.63	155.12	5.41	155.34		
VW-416	159.98	7.09	152.89	7.05	152.93	7.33	152.65	7.67	152.31		
/W-704D	153.43	6.58	146.85	5.96	147.47	6.85	146.58	6.80	146.63		
MW-704M	152.34	5.81	146.53	5.21	147.13	6.24	146.10	6.11	146.23		
/W-704R	151.52	5.82	145.70	5.20	146.32	6.44	145.08	5.93	145.59		
MW-704DR	152.84	32.56	120.28	32.48	120.36	32.81	120.03	32.08	120.76		
MW-705DR	160.99	4.25	156.74 155.00	4.61 6.25	156.38	4.48	156.51 155.19	4.63	156.36 155.54		
MWL-302 MWL-304	161.60 159.90	6.60 7.52	155.00	7.08	155.35 152.82	6.41 7.59	155.19	6.06 7.28	155.54		
MWL-305	159.01	4.49	154.52	4.22	154.79	4.81	154.20	4.39	154.62		
MWL-306	155.39	5.40	149.99	4.66	150.73	4.41	150.98	4.60	150.79		
MWL-307	159.14	4.21	154.93	3.89	155.25	5.38	153.76	4.04	155.10		
MWL-308	158.63	3.47	155.16	3.03	155.60	3.67	154.96	3.49	155.14		
MWL-309	155.20	4.32	150.88	3.08	152.12	4.08	151.12	3.42	151.78		
MWL-311	157.33	7.31	150.02	5.51	151.82	7.20	150.13	6.84	150.49		
P-5A	157.61	7.95	149.66	7.91	149.70	8.49	149.12	8.59	149.02		
P-5B	158.39	5.98	152.41	4.70	153.69	5.73	152.66	4.68	153.71		
P-6	153.78	4.82	148.96	4.33	149.45	5.09	148.69	4.95	148.83		
PZR-2R	153.78	6.71 7.78	147.07 146.89	6.13 7.16	147.65 147.51	6.29 7.99	147.49 146.68	6.70 7.78	147.08 146.89		
PZR-2DR PZR-4R	154.67 153.72	6.30	140.09	5.87	147.85	6.60	140.00	6.37	140.09		
PZR-4R	152.73	1.26	151.47	1.51	151.22	1.40	151.33	1.70	151.03		
RW-1	157.61	14.82	142.79	17.02	140.59	15.22	142.39	16.32	141.29		
RW-2	156.49	15.40	141.09	15.61	140.88	16.70	139.79	16.95	139.54		
RW-3	157.35	16.05	141.30	16.40	140.95	16.10	141.25	17.09	140.26		
RW-4	158.21	14.30	143.91	15.12	143.09	15.46	142.75	14.71	143.50		
RW-7	157.09	17.26	139.83	15.80	141.29	16.90	140.19	17.48	139.61		
RW-8	156.95	16.93	140.02	16.96	139.99	18.02	138.93	16.55	140.40		
RW-9	156.72	17.20	139.52	18.18	138.54	17.42	139.30	15.98	140.74		
RW-10	156.13	18.13	138.00	17.90	138.23	18.60	137.53	17.24	138.89		
RW-11	157.82	15.88	141.94 141.90	16.30 17.26	141.52 141.10	17.12 16.70	140.70 141.66	17.29 15.92	140.53 142.44		
RW-12	158.36	16.46									
RW-13 RW-14	149.36	45.75 32.85	103.61 118.86	43.51 31.73	105.85 119.98	54.15 30.33	95.21 121.38	44.49 29.20	104.87 122.51		
RW-14 RW-1R	151.71 149.77	32.85	118.86	31.73	119.98	30.33	121.38	29.20 31.60	122.51		
W-7A	158.72	6.18	152.54	5.70	153.02	6.22	152.50	5.90	152.82		
MW-702DR	181.38	17.93	163.45	18.11	163.27	18.03	163.35	18.60	162.78		
P-8A	181.26	18.04	163.22	17.90	163.36	18.06	163.20	18.61	162.65		
MW-707D	156.09	9.11	146.98	8.58	147.51	9.31	146.78	8.99	147.10		
/W-707R	156.01	8.92	147.09	8.31	147.70	9.12	146.89	8.92	147.09		
MW-707DR	156.80	9.91	146.89	9.39	147.41	10.11	146.69	9.87	146.93		
PZ-02D	154.14	7.13	147.01	6.41	147.73	7.28	146.86	7.00	147.14		
PZ-O2M	154.77	7.60	147.17	6.93	147.84	7.82	146.95	7.52	147.25		
MW-3	153.79	6.90	146.89	6.31	147.48	7.09	146.70	6.79	147.00		
MW-708R	224.95	74.21	150.74	74.13	150.82	75.20	149.75	74.12	150.83		
/W-708DR PZ-906DR	224.19 155.85	75.02 4.55	149.17 151.30	74.90 3.79	149.29 152.06	75.65 3.18	148.54 152.67	74.70 2.91	149.49 152.94		

Measuring	Location	31-J	31-Jul-12		29-Aug-12		25-Sep-12		28-Oct-12	
Location	Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
CPZ-1	159.64	8.89	150.75	9.23	150.41	9.61	150.03	8.69	150.95	
CPZ-1R	161.12	5.13	155.99	6.52	154.60	7.18	153.94	5.58	155.54	
CPZ-2	158.64	8.29	150.35	9.20	149.44	9.41	149.23	7.90	150.74	
CPZ-2A	158.82	8.21	150.61	9.13	149.69	9.40	149.42	7.63	151.19	
CPZ-2R	160.97	5.07	155.90	6.48	154.49	7.08	153.89	5.43	155.54	
CPZ-3 CPZ-3R	159.21 160.70	11.44 8.45	147.77 152.25	11.03 9.08	148.18 151.62	10.41 9.22	148.80 151.48	9.04 8.04	150.17 152.66	
CPZ-3R	158.80	11.02	147.78	12.13	146.67	9.22	146.41	10.68	148.12	
CPZ-4A	159.44	11.02	148.36	11.92	147.52	12.03	147.41	10.00	148.74	
CPZ-4R	158.76	8.38	150.38	9.08	149.68	9.21	149.55	8.04	150.72	
CPZ-5	158.68	13.37	145.31	13.38	145.30	13.80	144.88	12.60	146.08	
CPZ-5R	158.30	10.01	148.29	11.02	147.28	10.89	147.41	9.89	148.41	
CPZ-6	154.48	5.60	148.88	6.28	148.20	5.88	148.60	4.80	149.68	
CPZ-6A	158.05	8.56	149.49	9.12	148.93	9.09	148.96	8.22	149.83	
CPZ-6R	154.39	6.92	147.47	7.54	146.85	7.51	146.88	6.80	147.59	
CPZ-7	159.40	7.38	152.02	7.95	151.45	7.58	151.82	7.58	151.82	
CPZ-7R	158.58	3.51	155.07	4.36	154.22	4.61	153.97	4.00	154.58	
CPZ-8	160.11	6.20	153.91	6.68	153.43	7.33	152.78	6.42	153.69	
CPZ-8R CPZ-10	160.62 161.03	7.67 4.21	152.95 156.82	8.28 4.90	152.34 156.13	8.68 Damaged	151.94 NA	7.76 Damaged	152.86 NA	
CPZ-10 CPZ-10R	161.03	4.21 4.88	156.82	4.90 5.96	156.13	Damaged 6.52	NA 156.42	Damaged 5.28	NA 157.66	
MW-121A	152.94	4.88	158.06	5.96	145.88	6.96	136.42	5.28	157.66	
MW-121A	152.96	3.64	154.23	4.20	153.67	4.33	153.54	3.40	154.47	
MW-125C	156.30	7.40	148.90	8.01	148.29	8.02	148.28	7.31	148.99	
WW-204A	150.78	4.63	146.15	5.20	145.58	5.12	145.66	4.99	145.79	
WW-415	160.75	6.28	154.47	6.71	154.04	6.80	153.95	6.55	154.20	
WW-416	159.98	8.31	151.67	8.71	151.27	8.35	151.63	8.11	151.87	
/W-704D	153.43	5.03	145.95	5.55	145.43	5.48	145.50	5.65	145.33	
/W-704M	152.34	6.81	145.53	7.39	144.95	7.31	145.03	7.61	144.73	
MW-704R	151.52	6.92	144.60	7.42	144.10	Damaged	NA	8.70	144.53	
WW-704DR	152.84	33.41	119.43	33.61	119.23	33.62	119.22	6.80	146.04	
WW-705DR	160.99	5.60	155.39	6.25	154.74	6.68	154.31	5.82	155.17	
MWL-302	161.60	6.60	155.00	6.92	154.68	8.68	152.92	7.69	153.91	
MWL-304	159.90	5.92	153.98	8.55	151.35	5.73	154.17	8.80	151.10	
MWL-305	159.01	5.04	153.97	5.62	153.39	5.85	153.16	5.52	153.49	
MWL-306	155.39	7.60	147.79	8.07	147.32	7.23	148.16	5.11	150.28	
MWL-307	159.14	5.01	154.13	5.54	153.60	5.62	153.52	5.21	153.93	
MWL-308	158.63	4.10	154.53	4.61	154.02	4.61	154.02	4.29	154.34	
MWL-309	155.20	8.81	146.39	13.02	142.18	6.60	148.60	3.82	151.38	
MWL-311	157.33	9.32 9.42	148.01 148.19	10.60 9.96	146.73	10.67 9.91	146.66 147.70	7.75	149.58	
P-5A P-5B	157.61 158.39	9.42 6.31	148.19	9.96	147.65 151.76	6.30	147.70	9.23 5.40	148.38 152.99	
Р-5В Р-6	153.78	6.02	147.76	6.62	147.16	6.69	147.09	6.01	152.99	
PZR-2R	153.78	7.58	146.20	8.18	145.60	8.11	145.67	7.48	146.30	
PZR-2DR	154.67	8.59	146.08	9.24	145.43	9.12	145.55	8.75	145.92	
PZR-4R	153.72	7.42	146.30	8.05	145.67	6.01	147.71	7.38	146.34	
PZR-4DR	152.73	2.97	149.76	3.59	149.14	3.70	149.03	2.71	150.02	
RW-1	157.61	15.12	142.49	17.94	139.67	16.51	141.10	15.94	141.67	
RW-2	156.49	16.96	139.53	18.01	138.48	17.26	139.23	17.26	139.23	
RW-3	157.35	17.21	140.14	17.77	139.58	17.03	140.32	16.12	141.23	
RW-4	158.21	15.30	142.91	17.14	141.07	16.88	141.33	15.80	142.41	
RW-7	157.09	17.26	139.83	17.27	139.82	18.27	138.82	17.27	139.82	
RW-8	156.95	18.20	138.75	18.60	138.35	18.11	138.84	17.90	139.05	
RW-9	156.72	17.54	139.18	18.18	138.54	17.86	138.86	17.86	138.86	
RW-10	156.13	18.11	138.02	17.94	138.19	17.93	138.20	18.09	138.04	
RW-11	157.82	17.23 17.84	140.59 140.52	17.09 19.21	140.73 139.15	18.01 19.79	139.81	17.31 18.80	140.51 139.56	
RW-12	158.36						138.57			
RW-13	149.36	51.44	97.92	49.65	99.71	46.39	102.97	52.03	99.61	
RW-14 RW-1R	151.71 149.77	31.95 30.99	119.76 118.78	31.43 32.16	120.28 117.61	27.40 33.02	124.31 116.75	27.28 5.10	124.43 144.67	
TW-7A	149.77	6.71	152.01	7.21	151.51	7.39	151.33	5.10 6.61	152.11	
MW-702DR	181.38	21.31	160.07	22.64	158.74	23.32	158.06	23.26	152.11	
P-8A	181.26	21.31	159.91	22.79	158.47	23.35	157.91	23.30	157.96	
WW-707D	156.09	9.65	146.44	10.26	145.83	10.20	145.89	9.72	146.37	
WW-707R	156.01	9.73	146.28	10.32	145.69	10.25	145.76	9.88	146.13	
WW-707DR	156.80	10.50	146.30	11.36	145.44	11.21	145.59	10.57	146.23	
PZ-02D	154.14	7.86	146.28	8.48	145.66	8.40	145.74	7.92	146.22	
PZ-O2M	154.77	8.36	146.41	9.01	145.76	8.92	145.85	8.43	146.34	
MW-3	153.79	7.47	146.32	8.09	145.70	8.00	145.79	7.40	146.39	
WW-708R	224.95	75.83	149.12	75.90	149.05	75.92	149.03	76.00	148.95	
MW-708DR	224.19	76.11	148.08	76.20	147.99	76.13	148.06	76.16	148.03	
PZ-906DR	155.85	2.64	153.21	2.45	153.40	2.41	153.44	2.21	153.64	

DRAFT

Influent and Effluent GWCT System Flow Data Summary

		ent Flow Summa A 1 and 2 Combi		NCTRA-1 Flow Summary ⁽²⁾	NCTR	A-2 Flow Summ	ary	Effluent Flow S and	Summary I 2 Combined)	(NTCRA 1
Date	Total Cumulative Flow (gallons)	Total Flow Since Previous	Avg. Rate Since Prev.	Avg. Rate Since Prev.	Total Cumulative	Total Flow Since Previous	Avg. Rate Since	Total Cumulative	Total Flow Since	Avg. Rate Since
	r iow (gallono)	(gallons)	(GPM)	(GPM)	Flow (gallons)	(gallons)	Prev.	Flow (gallons)	Previous (gallons)	Prev. (GPM)
10/31/2011	216,393,000	1,544,000	34.6	6.6	99,839,460	1,248,300	28.0	228,389,000	1,791,000	40.1
11/30/2011	217,755,000	1,362,000	31.5	6.0	100,940,860	1,101,400	25.5	229,994,000	1,605,000	37.2
12/30/2011	219,185,000	1,430,000	33.1	4.4	102,178,860	1,238,000	28.7	231,728,000	1,734,000	40.1
1/31/2012	220,677,000	1,492,000	32.4	-0.2	103,681,360	1,502,500	32.6	233,543,000	1,815,000	39.4
2/28/2012	221,785,000	1,108,000	27.5	-1.0	104,828,460	1,147,100	28.4	234,912,000	1,369,000	34.0
3/30/2012	222,871,000	1,086,000	24.3	-0.1	105,919,460	1,091,000	24.4	236,264,000	1,352,000	30.3
4/29/2012	223,792,000	921,000	21.3	-1.8	106,919,860	1,000,400	23.2	237,416,000	1,152,000	26.7
5/31/2012	224,755,000	963,000	20.9	-2.8	108,010,660	1,090,800	23.7	238,645,000	1,229,000	26.7
6/29/2012	225,734,000	979,000	23.4	-3.8	109,147,360	1,136,700	27.2	239,910,000	1,265,000	30.3
7/31/2012	226,764,000	1,030,000	22.4	-4.1	110,364,260	1,216,900	26.4	241,258,000	1,348,000	29.3
8/31/2012	227,911,000	1,147,000	25.7	2.3	111,408,260	1,044,000	23.4	242,441,000	1,183,000	26.5
9/29/2012	228,618,000	707,000	16.9	3.8	111,958,460	550,200	13.2	243,273,000	832,000	19.9
10/30/2012	229,765,000	1,147,000	25.7	3.1	112,965,160	1,006,700	22.6	244,448,000	1,175,000	26.3
Yearly Averages (1)			25.4	0.5			25.0			30.6
Cumulative Totals:	229,765,000	13,372,000			112,965,160	13,125,700		244,448,000	16,059,000	

Notes:

1: The average yearly flows are calculated by dividing the total cumulative annual flow by the duration in minutes.

2: The NTCRA-2 Flow Meter is reading higher than actual causing the calculated NTCRA-1 flow to be lower than actual.

31 October 2011 through 30 October 2012

Page 1 of 1

November 2011

DRAFT

SRSNE HCTS - Influent Results

	Sample	e Dates
Parameter/ Concentration (mg/L)	11/3/2011	11/17/2011
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mq/L)	(ma/L)
Trichloroethene (mg/L)	0.01	<0.01
Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	<0.01 <0.01 2.48 0.67 0.46 0.51	<0.01 1.82 0.35
Toluene (mg/L)	2.48	1.82
Ethylbenzene (mg/L)	0.67	0.35
Xylenes, Total (mg/L)	0.46	0.36
vinyi chionde (mg/L)	0.51	0.38
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	-0 E0	<0.50
1.2-Dichloroethene ^[1] (ma/l.)	1.32	1.33
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	<0.01	0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.04	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0 <5.0	<5.0 <5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	5.48	4.25
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01 8.63
Iron, Total (mg/L)	6.31	
Lead, Total (mg/L)	<0.005	< 0.005
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

December 2011

DRAFT

SRSNE HCTS - Influent Results

	Sample Dates			
Parameter/ Concentration (mg/L)	12/2/2011	12/16/2011		
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	<0.01 <0.01	<0.01		
Tetrachloroethene (mg/L)	<0.01	<0.01 <0.01 2.33		
Toluono (mg/l)	1.41 0.37 0.24	2.33		
Ethylbenzene (mg/L)	0.37	0.67 0.49		
Xylenes, Total (mg/L)	0.24	0.49		
		0.64		
Vinyl chloride (mg/L) 1,1-Dichloroethene (mg/L)	<0.01	<0.01		
Tetrahydrofuran (mg/L)	< 0.50	<0.50		
1.2-Dichloroethene ^[1] (mg/L)		1.14		
1,2-Dichloroethane (mg/L)	<0.01	<0.01		
1,1,1-Trichloroethane (mg/L)	0.02	0.07		
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01		
Methylene chloride (mg/L)	0.04	<0.01		
Styrene (mg/L)	<0.01	<0.01		
Alcohols				
Ethanol (mg/L)	<5.0	<5.0		
Methanol (mg/L)	<5.0	<5.0		
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0		
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0		
Ketones				
Acetone (mg/L)	<0.50	<0.50		
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50		
4-Methyl-2-pentanone (Methyl	<0.50	<0.50		
Isobutyl Ketone) (ma/L)	<0.50	<0.50		
Total VOCs ^[2]	3.01	5.34		
B. INORGANIC PARAMETERS				
Metals				
Copper, Total (mg/L)	<0.01 6.58	0.01		
Iron, Total (mg/L)	6.58	11.7		
Lead, Total (mg/L)	< 0.005	<0.005		
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05		
Zinc, Total (mg/L)	<0.05	<0.05		

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

January 2012

DRAFT

SRSNE HCTS - Influent Results

	Sample	e Dates
Parameter/ Concentration (mg/L)	1/3/2012	1/18/2012
A. ORGANIC PARAMETERS		
Valatila Organia Compounda	(mg/L)	(mg/L)
Trichloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01 0.71	<0.01 1.48 0.45 0.27
Toluene (mg/L)	0.71	1.48
Loluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	0.19 0.14	0.45
Xylenes, Total (mg/L)	0.14	0.27
Vinyl chloride (mg/L)	0.17	0.24
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dicbloroethene ^[1] (ma/L)	0.35	0.55
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	<0.01	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.02	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		•
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutvl Ketone) (ma/L)		
Total VOCs ^[2]	1.58	3.01
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	2.08	7.6
Lead, Total (mg/L) Nickel, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

February 2012

SRSNE HCTS - Influent Results

	Sample Dates				
Parameter/ Concentration (mg/L)	2/3/2012	2/16/2012			
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mq/L)	(ma/L)			
Trichloroethene (ma/L)	<0.01	<0.01			
Tetrachloroethene (mg/L) Toluene (mg/L)	<0.01 <0.01 0.29	<0.01			
Toluene (mg/L)	0.29	<0.01 2.18			
IEthvlbenzene (mg/L)	0.05 0.03	0.65			
Xylenes, Total (mg/L)	0.03	0.40			
Vinyl chloride (mg/L)	0.07	0.32			
1,1-Dichloroethene (mg/L)	<0.01	<0.01			
Tetrahydrofuran (mg/L)	-0 E0	<0.50			
1.2-Dichloroethene ^[1] (ma/L)	0.16	0.97			
1,2-Dichloroethane (mg/L)	<0.01	<0.01			
1,1,1-Trichloroethane (mg/L)	<0.01	0.04			
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01			
Methylene chloride (mg/L)	<0.01	0.03			
Styrene (mg/L)	<0.01	<0.01			
Alcohols					
Ethanol (mg/L)	<5.0	<5.0			
Methanol (mg/L)	<5.0	<5.0			
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0			
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0			
Ketones					
Acetone (mg/L)	<0.50	<0.50			
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50			
4-Methyl-2-pentanone (Methyl	<0.50	<0.50			
Isobutyl Ketone) (ma/L)	<0.50	<0.50			
Total VOCs ^[2]	0.60	4.59			
B. INORGANIC PARAMETERS					
Metals					
Copper, Total (mg/L)	<0.01	<0.01			
Iron, Total (mg/L)	6.24	4.93			
Lead, Total (mg/L)	<0.005	<0.005			
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05			
Zinc, Total (mg/L)	<0.05	<0.05			

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

March 2012

DRAFT

SRSNE HCTS - Influent Results

	Sample Dates				
Parameter/ Concentration (mg/L)	3/2/2012	3/16/2012			
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mg/L)	(mg/L)			
Trichloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L)	<0.01	< 0.01			
Tetrachloroethene (mg/L)	<0.01 <0.01 3.66	<0.01			
Toluene (mg/L)	3.66	<0.01 1.9			
Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	0.66 0.54	0.54 0.23			
Xylenes, Total (mg/L)	0.54	0.23			
Vinyl chloride (mg/L)	0.65	0.36			
1,1-Dichloroethene (mg/L)	0.01	0.01			
Tetrahydrofuran (mg/L)	< 0.50	<0.50			
1.2-Dichloroethene ^[1] (ma/L)	1.84	1.17			
1,2-Dichloroethane (mg/L)	<0.01	<0.01			
1,1,1-Trichloroethane (mg/L)	0.04	0.03			
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01			
Methylene chloride (mg/L)	0.04	0.05			
Styrene (mg/L)	<0.01	<0.01			
Alcohols					
Ethanol (mg/L)	<5.0	<5.0			
Methanol (mg/L)	<5.0	<5.0			
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0			
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0			
Ketones					
Acetone (mg/L)	<0.50	<0.50			
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50			
4-Methyl-2-pentanone (Methyl	<0.50	<0.50			
Isobutyl Ketone) (ma/L)	<0.50	<0.50			
Total VOCs ^[2]	7.44	4.29			
B. INORGANIC PARAMETERS					
Metals					
Copper, Total (mg/L)	<0.01 12.6	<0.01			
Iron, Total (mg/L)		7.31			
Lead, Total (mg/L)	<0.005	<0.005			
Lead, Total (mg/L) Nickel, Total (mg/L)	< 0.05	<0.05			
Zinc, Total (mg/L)	<0.05	<0.05			

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

April 2012

DRAFT

SRSNE HCTS - Influent Results

	Sample	e Dates
Parameter/ Concentration (mg/L)	4/2/2012	4/13/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
T_{risk}	<0.01	<0.01
Tetrachloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	<0.01 3.54 0.79 0.70 0.79	<0.01 0.74 0.16 0.12
Toluene (mg/L)	3.54	0.74
Ethylbenzene (mg/L)	0.79	0.16
Xylenes, Total (mg/L)	0.70	0.12
VINYI Chloride (mg/L)	0.79	0.20
1,1-Dichloroethene (mg/L)	0.02	<0.01
Tetrahydrofuran (mg/L)	< 0.50	<0.50
1 2-Dichloroethene ^[1] (mg/L)	2.58	0.51
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.04	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.05	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		-
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.00
Total VOCs ^[2]	8.51	1.75
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L) Lead, Total (mg/L)	9.54	3.78
Lead, Total (mg/L)	<0.005	<0.005
Nickel, I otal (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

May 2012

DRAFT

SRSNE HCTS - Influent Results

	Sample	e Dates
Parameter/ Concentration (mg/L)	5/4/2012	5/18/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mq/L)	(mg/L)
T_{rich}	<0.01	<0.01
Tetrachloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	<0.01 0.48 0.09 0.06	<0.01
Toluene (mg/L)	0.48	0.89 0.27 0.19
Ethylbenzene (mg/L)	0.09	0.27
Xylenes, Total (mg/L)	0.06	0.19
VINYI Chioride (mg/L)	0.13	0.52
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1 2-Dichloroethene ^[1] (mg/L)		0.53
1,2-Dichloroethane (mg/L)	< 0.01	<0.01
1,1,1-Trichloroethane (mg/L)	< 0.01	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	<0.01	0.05
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0:50	<0.50
Total VOCs ^[2]	1.01	2.47
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	0.01	<0.01
Iron, Total (mg/L) Lead, Total (mg/L)	3	2.4
Lead, Total (mg/L)	< 0.005	<0.005
Nickel, I otal (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

June 2012

DRAFT

SRSNE HCTS - Influent Results

Beremeter/Concentration (m = ")	Sample	e Dates
Parameter/ Concentration (mg/L)	6/1/2012	6/15/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mq/L)	(ma/L)
Trichloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01 <0.01 1.91	<0.01
Toluene (mg/L)	1.91	<0.01 0.31
Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	0.64	0.10
Xylenes, Total (mg/L)	0.64 0.42	0.08
Vinyl chloride (mg/L)	0.74	0.09
1,1-Dichloroethene (mg/L)	0.02	<0.01
Tetrahydrofuran (mg/L)	-0 E0	<0.50
1.2-Dicbloroethene ^[1] (ma/L)	1.22	0.19
1,2-Dichloroethane (mg/L)	< 0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.05	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.17	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (ma/L)	<0.50	<0.50
Total VOCs ^[2]	5.17	0.77
B. INORGANIC PARAMETERS		
Metals		-
Copper, Total (mg/L)	<0.01 0.96	<0.01
Iron, Total (mg/L)	0.96	6.21
Lead, Total (mg/L)	< 0.005	<0.005
Lead, Total (mg/L) Nickel, Total (mg/L)	< 0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

July 2012

DRAFT

SRSNE HCTS - Influent Results

Perometer/ Concentration (mg/l)	Sample	e Dates
Parameter/ Concentration (mg/L)	7/2/2012	7/17/2012
A. ORGANIC PARAMETERS		
Valatila Organia Compounda	(mg/L)	(mg/L)
Trichloroethene (mg/L) Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L)	<0.01 0.56	<0.01 1.33 0.37 0.29
Toluene (mg/L)	0.56	1.33
Loluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	0.16 0.13	0.37
Xylenes, Total (mg/L)	0.13	0.29
Vinyl chloride (mg/L)	0.09	0.19
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichlornethene ^[1] (ma/L)		0.83
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.01	0.03
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	<0.01	0.03
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		-
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutvl Ketone) (ma/L)	<0:50	<0.50
Total VOCs ^[2]	1.25	3.07
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	7.61	9.66
Lead, Total (mg/L)	<0.005	<0.005
Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

August 2012

DRAFT

SRSNE HCTS - Influent Results

Peromotor/ Concentration (mg/l)	Sample	e Dates
Parameter/ Concentration (mg/L)	8/2/2012	8/14/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(<i>m</i> g/L)	(mg/L)
Trichloroethene (mg/L)	<0.01	< 0.01
Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	<0.01 <0.01 3.27 0.49 0.44	<0.01 1.30 0.35 0.30 0.30
Toluene (mg/L)	3.27	1.30
Ethylbenzene (mg/L)	0.49	0.35
Xylenes, Total (mg/L)	0.44	0.30
Vinyi chioride (mg/L)	0.27	0.26
1,1-Dichloroethene (mg/L)	<0.01	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichlornethene ^[1] (ma/L)	1.01	0.81
1,2-Dichloroethane (mg/L)	< 0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.03	0.02
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	<0.01	<0.01
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		-
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutvl Ketone) (ma/L)	<0.00	<0.00
Total VOCs ^[2]	5.51	3.04
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01 13.2	<0.01
Iron, Total (mg/L)	13.2	4.14
Lead, Total (mg/L)	< 0.005	<0.005
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

September 2012

DRAFT

SRSNE HCTS - Influent Results

Devenue tor (Concentration (m=/!))	Sample Dates	
Parameter/ Concentration (mg/L)	9/7/2012	9/21/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mq/L)	(mg/L)
Trichloroethene (mg/L)	<pre><0.01 <0.01 2.72 0.85 0.72 </pre>	0.001
Tetrachloroethene (mg/L)	<0.01	<0.001
	2.72	0.043
Ethylbenzene (mg/L)	0.85	0.011
Xylenes, Total (mg/L)	0.72	0.011
	0.58	0.011
1,1-Dichloroethene (mg/L)	0.01	<0.001
Tetrahydrofuran (mg/L)	-0 50	<0.050
1.2-Dichloroethene ^[1] (ma/L)		0.015
1,2-Dichloroethane (mg/L)	<0.01	<0.001
1,1,1-Trichloroethane (mg/L)	0.04	<0.001
1,1,2-Trichloroethane (mg/L)	<0.01	<0.001
Methylene chloride (mg/L)	0.07	<0.001
Styrene (mg/L)	<0.01	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.050
4-Methyl-2-pentanone (Methyl	<0.50	<0.050
Isobutyl Ketone) (ma/L)	<0.50	<0.050
Total VOCs ^[2]	6.31	0.09
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<u><0.01</u> 14.1	<0.01
Iron, Total (mg/L)	14.1	<0.01 5.87
Lead, Total (mg/L)	<0.005	<0.005
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

October 2012

DRAFT

SRSNE HCTS - Influent Results

Devemptor/Concentration (mm/l)	Sample Dates	
Parameter/ Concentration (mg/L)	10/1/2012	10/17/2012
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mq/L)	(ma/L)
Trichloroethene (mg/L)	<0.01	<0.01
Tetrachloroethene (mg/L) Toluene (mg/L) Ethylbenzene (mg/L) Xylenes, Total (mg/L)	<0.01 <0.01 3.40 0.98 0.81	<0.01
Toluene (mg/L)	3.40	<0.01 0.57
Ethylbenzene (mg/L)	0.98	0.18
Xylenes, Total (mg/L)	0.81	0.11
[vinyi chionde (mg/L)	1.04	0.04
1,1-Dichloroethene (mg/L)	0.02	<0.01
Tetrahydrofuran (mg/L)	<0.50	<0.50
1.2-Dichloroethene ^[1] (ma/l.)		0.33
1,2-Dichloroethane (mg/L)	<0.01	<0.01
1,1,1-Trichloroethane (mg/L)	0.02	<0.01
1,1,2-Trichloroethane (mg/L)	<0.01	<0.01
Methylene chloride (mg/L)	0.09	0.06
Styrene (mg/L)	<0.01	<0.01
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (mg/L)	<0.50	<0.50
Total VOCs ^[2]	7.61	1.29
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	6.88	4.54
Lead, Total (mg/L)	<0.005	<0.005
Iron, Total (mg/L) Lead, Total (mg/L) Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

November 2011

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates	
	Requirement Discharge Limits	11/3/2011	11/17/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	0.002
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichlornethene ^[1] (ma/L)	5,000	0.183	0.161
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	0.009
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.002	0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.185	0.173
B. INORGANIC PARAMETERS			
Netals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/dax) ^[3]	15.8 g/day	<0.01 mg/l or <2.02 g/day	<0.01 mg/l or <2.02 g/day
Iron, Total (mg/l)	5.0	<0.05	0.1
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.01 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <10.12 g/dav	<0.05 mg/l or <10.12 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	0.2	<0.2
Total PCBs (µg/L)	NL	<1	NS
oH (s.u.)	6.0 - 9.0 s.u.	7.13	6.57
oH (s.u.) Total Suspended Solids (mg/L)	<u>0.0 - 9.0 5.0</u> . <u>30</u>	<1	<u>0.57</u> <1
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)		NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

December 2011

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates	
	Requirement Discharge Limits	12/2/2011	12/16/2011
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	0.002	0.005
Ethylbenzene (mg/L)	1.000	<0.001	0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.139	0.160
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.011	0.020
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.003	0.004
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<u><5.0</u>
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)	2:0		
Total VOCs ^[2]		0.155	0.19
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper_Total (n/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.19 g/day	<0.01 mg/l or< 2.19 g/day
Iron, Total (mg/l)	5.0	0.1	0.3
Lead, Total (q/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.09 g/day	<0.005 mg/l or <1.09 g/day
Nickel, Total (mg/l)	0.5		<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <10.94 g/day	<0.05 mg/l or <10.94 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	0.2
Total PCBs (µg/L)	NL	<1	NS.
pH (s.u.)	6.0 - 9.0 s.u.	6.6	6.66
Total Suspended Solids (mg/L)	<u>0.0 - 9.0 3.0.</u> 30	<1	2
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)		NS	NS
NOTES			no

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

January 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample	Sample Dates	
	Requirement Discharge Limits	1/3/2012	1/18/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	<0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
<u>1.2-Dichloroethene^[1] (ma/l.)</u>	5.000	0.213	0.240	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.012 <0.001	0.009	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.002	<0.001	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones				
Acetone (mg/L)	35.0	<0.050	<0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050	
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.030	
Total VOCs ^[2]		0.227	0.249	
B. INORGANIC PARAMETERS				
Netals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper. Total (g/dax) ^[3]	15.8 q/day	<0.01 mg/l or <2.15 g/day	<0.01 mg/l or <2.15 g/day	
Iron, Total (mg/l)	5.0	0.10	0.10	
Lead, Total (q/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.07 g/day	<0.005 mg/l or <1.07 g/day	
Nickel, Total (mg/l)	0.5	<0.05	~0.05	
Zinc, Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <10.73 g/day	<0.05 mg/l or <10.73 g/da	
OTHER			10100g,: 01 1101 0 g, 00	
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (µg/L)		<1	NS	
oH (s.u.)	6.0 - 9.0 s.u.	6.69	6.68	
Total Suspended Solids (mg/L)	0.0 - 9.0 S.u. 30	0.03 A	0.00 2	
Dioxins (pg/L)	NL SU	4 125	2 NS	
Furans (pg/L)		<51	NS	
	INL	NU	NO NO	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

February 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates	
	Requirement Discharge Limits	2/3/2012	2/16/2012
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001 <0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L) 1 1 Dichlorocthono (mg/L)	4.500	<0.001	<0.001
	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichlomethene ^[1] (ma/L)	5.000	0.261	0.381
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.013	0.018
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	0.008	0.006
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<50	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.282	0.405
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Conner, Total (ŋ/day) ^[3]	15.8 g/day	<0.01 mg/l or 1.85 g/day	<0.01 mg/l or <1.85 g/day
Iron, Total (mg/l)	5.0	0.11	0.08
Lead, Total (q/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.93 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.25 g/day	<0.05 mg/l or <9.25 g/day
OTHER	TO.5 gruay	<0.00 mg/101 <9.20 g/uay	
UTHER Hydrogen Peroxide (mg/L)	10	-0.2	<0.2
	1.0	<0.2	
		<1	NS 6.80
pH (s.u.) Total Supported Solida (mg/L)	6.0 - 9.0 s.u.	6.90	6.89
Total Suspended Solids (mg/L)	30	1 NS	3 NS
Dioxins (pg/L)	NL	NS NO	
Furans (pg/L)	NL	NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

March 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates	
	Requirement Discharge Limits	3/2/2012	3/16/2012
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	<u>(mg/L)</u>
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	0.004
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	< 0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	<0.050 0.341	0.433
1,2-Dichloroethane (mg/L)	0.250	< 0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.016 <0.001 0.008	0.022
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001 0.005
Methylene chloride (mg/L)	15.000	0.008	0.005
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0 <5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.365	0.464
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper. Total (g/dax) ^[3]	15.8 q/day	<0.01 mg/l or <1.65 g/day	<0.01 mg/l or 1.65 g/day
Iron, Total (mg/l)	5.0	0.16	1.6
Lead, Total (ɑ/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.83 g/day	<0.005 mg/l or <0.83 g/day
Nickel, Total (mg/l)	0.5	<0.05	< 0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <8.25 g/day	<0.05 mg/l or <8.25 g/day
OTHER	TO:O grady	30.00 mg/101 30.20 g/day	
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (µg/L)		~1	NS
pH (s.u.)		<1 6.78	6.59
Total Suspended Solids (mg/L)	<u>6.0 - 9.0 s.u.</u>	<u> </u>	0.59 1
Diovine (ng/L)	30	<1 NS	NS
Dioxins (pg/L)	NL	NS	
Furans (pg/L)	NL	6ri	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates	
	Requirement Discharge Limits	4/2/2012	4/13/2012
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001 <0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	0.006
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichlornethene ^[1] (ma/L)	5.000	0.480	0.324
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	0.011	0.017
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	0.002
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0 <5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0 <5.0	<5.0
Ketones			•
Acetone (mg/L)	35.0	<0.050 <0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]	•	0.491	0.35
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
იიი <u>e</u> rΤიtal.(ირძაა) ^[3]	15.8 g/day	<0.01 mg/l or <1.45 g/day	<0.01 mg/l or <1.45 g/day
Iron, Total (mg/l)	5.0	0.11	0.24
Lead, Total (ɑ/day) ^[3]	3.2 g/day		<0.005 mg/l or <0.73 g/day
Nickel, Total (mg/l)	0.5	< 0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <7.27 g/day	<0.05 mg/l or <7.27 g/day
OTHER	Toto grady		
Hydrogen Peroxide (mg/L)	1.0	0.2	<0.2
Total PCBs (µg/L)		<u>~1</u>	NS
pH (s.u.)		<1 6.50	6.59
Total Suspended Solids (mg/L)	<u>6.0 - 9.0 s.u.</u> 30		1
Dioxins (pg/L)		4 <36	NS
	NL		NS
Furans (pg/L)	NL	<51	INS INS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

	Substantive	-	Sample Dates	
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	5/4/2012	5/18/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001 <0.001	<0.001 <0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Foluene (mg/L)	4.000	<0.001	0.008	
Ethylbenzene (mg/L)	1.000	<0.001	0.002	
(ylenes, Total (mg/L)	0.500	<0.001	<0.001	
/inyl chloride (mg/L)	4.500	<0.001	<0.001	
,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Fetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
. 2-Dichloroethene ^[1] (ma/L)	5.000	0.283	0.190	
,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
,1,1-Trichloroethane (mg/L)	4.000	0.015	0.015	
,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.002	0.020	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0 <5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones				
Acetone (mg/L) 2-Butanone (Methyl Ethyl Ketone) (mg/L)	35.0	<0.050 <0.050	<0.050 <0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
I-Methyl-2-pentanone (Methyl	2.0			
sobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.300	0.235	
3. INORGANIC PARAMETERS				
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper, Total (g/day) ^[3]	15.8 q/day	<0.01 mg/l or <1.45 g/day	<0.01 mg/l or <1.45 g/day	
ron, Total (mg/l)	5.0	0.60	0.13	
_ead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.73 g/day	<0.005 mg/l or <0.73 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <7.27 g/day	<0.05 mg/l or <7.27 g/day	
OTHER		;;;;		
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (µg/L)	NL	<1	NS	
bH (s.u.)	6.0 - 9.0 s.u.	7.17	7.21	
Fotal Suspended Solids (mg/L)	30			
Dioxins (pg/L)	NL	8 NS	<1 NS	
		NS	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates		
	Requirement Discharge Limits	6/1/2012	6/15/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001 <0.001	0.010 0.002	
Ethylbenzene (mg/L)	1.000	<0.001	0.002	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	< 0.050	~0.050	
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.186	0.192	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.017	0.017	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.124	0.004	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0 <5.0 <5.0	<5.0 <5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones			•	
Acetone (ma/L)	35.0	<0.050 <0.050	<0.050 <0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl				
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]	•	0.327	0.225	
B. INORGANIC PARAMETERS				
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper. Total (g/dax) ^[3]	15.8 q/day	<0.01 mg/l or <1.65 g/day	<0.01 mg/l or 1.65 g/day	
Iron, Total (mg/l)	5.0	0.14	0.09	
Lead, Total (ɑ/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.83 g/day	<0.005 mg/l or <0.83 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc. Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <8.26 g/day	<0.05 mg/l or <8.26 g/day	
OTHER				
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (µg/L)	NL		<0.2 NS	
oH (s.u.)		<1 7.01	7.14	
Total Suspended Solids (mg/L)	<u>6.0 - 9.0 s.u.</u> 30	7.01 <1	/.14	
Dioxins (pg/L)	30 NL	NS	<1 NS	
Dioxins (pg/L) Furans (pg/L)		NS NS		
-urans (pg/L)	NL	ing.	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates		
	Requirement Discharge Limits	7/2/2012	7/17/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001 <0.001	<0.001 <0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	0.006	
Ethylbenzene (mg/L)	1.000	<0.001	0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	< 0.050	
1.2-Dichlornethene ^[1] (ma/L)	5.000	0.165	0.239	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.018 <0.001	0.022 <0.001	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	<0.001	0.003	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0 <5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones			·	
Acetone (mg/L) 2-Butanone (Methyl Ethyl Ketone) (mg/L)	35.0	<0.050 <0.050	<0.050 <0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl				
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.183	0.271	
B. INORGANIC PARAMETERS				
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper, Total (g/day) ^[3]	15.8 q/day	<0.01 mg/l or <1.59 g/day	<0.01 mg/l or <1.59 g/day	
Iron, Total (mg/l)	5.0	0.11	0.10	
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.8 g/day	<0.005 mg/l or <0.8 g/day	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc, Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <7.97 g/day	<0.05 mg/l or <7.97 g/day	
OTHER		;,, uuy		
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (µg/L)	NL	<1	NS	
pH (s.u.)		6.94	6.93	
Total Suspended Solids (mg/L)	<u>6.0 - 9.0 s.u.</u> 30	<1	0.85 2	
Dioxins (pg/L)		<36	2 NS	
Furans (pg/L)	NL NL	<u><</u> 51	NS	
ruians (py/l)	NL	16>	ονι Ο	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

August 2012

DRAFT

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L) Requirement Discharge Limits 8/2/2012 8/14/2012 A ORGANIC PARAMETERS Volatile Organic Compounds (richloroethene (mg/L) 0.973 <0.001 <0.001 Terrachicorethene (mg/L) 0.973 <0.001 <0.001 Furtachicorethene (mg/L) 0.106 <0.001 <0.001 Strybenzene (mg/L) 0.000 <0.001 <0.001 Strybenzene (mg/L) 0.500 <0.001 <0.001 Juny chloride (mg/L) 0.252 <0.001 <0.001 Juny chloride (mg/L) 0.250 <0.001 <0.001 Juny chloride (mg/L) 0.500 <0.001 <0.001 Juny chloride (mg/L) 10.00 <5.0 <5.0 Juny chloride	Parameter/ Concentration (mg/L)	Substantive	Sample Dates		
Volatile Organic Compounds (ma/L) (ma/L) (ma/L) Fichloroethene (mg/L) 0.973 <0.001 <0.001 Fichloroethene (mg/L) 0.106 <0.001 <0.001 Fichloroethene (mg/L) 0.106 <0.001 <0.001 Filtylbenzene (mg/L) 0.000 <0.001 <0.001 Sylenes, Total (mg/L) 0.500 <0.001 <0.001 Invi choide (mg/L) 0.500 <0.001 <0.001 I, 1-Dichloroethene (mg/L) 0.500 <0.001 <0.001 I, 2-Dichloroethane (mg/L) 0.500 <0.050 <0.050 I, 1-Trichloroethane (mg/L) 0.250 <0.001 <0.001 I, 1-Trichloroethane (mg/L) 0.250 <0.001 <0.001 I, 1-Trichloroethane (mg/L) 0.250 <0.001 <0.001 I, 1-Trichloroethane (mg/L) 0.500 <0.001 <0.001 I, 1-Trichloroethane (mg/L) 0.500 <0.001 <0.001 I, 1-Trichloroethane (mg/L) 0.500 <0.001 <0.001 Verene (mg/L) 0.500 <th>Requirement</th> <th>8/2/2012</th> <th>8/14/2012</th>		Requirement	8/2/2012	8/14/2012	
Irichlorgethene (mg/L) 0.973 <0.001 :0.001 ietrachlorgethene (mg/L) 0.106 <0.001	A. ORGANIC PARAMETERS				
Fetrachiorosthene (mg/L) 0.106 <0.001 <0.001 Ciluene (mg/L) 4.000 <0.001			(mg/L)	(mg/L)	
Foluence (mg/L) 4.000 <0.001 0.003 Ehvilbenzene (mg/L) 1,000 <0.001				<0.001	
Ethylbenzene (mg/L) 1.000 <0.001 <0.001 Vigenes, Total (mg/L) 0.500 <0.001			<0.001		
(ylenes, Total (mg/L) 0.500 <0.001			<0.001	0.003	
liny choride (mg/L) 4.500 <0.001			<0.001	<0.001	
(.1-Dichloroethene (mg/L) 0.058 <0.001 <0.050 Fetrahydrofuran (mg/L) 0.500 <0.050	Xylenes, Total (mg/L)		<0.001	<0.001	
(1-Dichloroethene (mg/L) 0.058 <0.001	Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1.2.Dicblornethane!!! (mq/L) 5.000 0.251 0.292 1.2.Dicblornethane (mg/L) 0.250 <0.001		0.058		<0.001	
1.2-Dichloroethane (mg/L) 0.250 <0.001		0.500			
1,1.1-Trichloroethane (mg/L) 4,000 0.016 0.018 1,1.2-Trichloroethane (mg/L) 0,250 <0.001	<u>1.2-Dichlornethene^[1] (ma/L)</u>	5.000	0.251	0.292	
1.1.2-Trichloroethane (mg/L) 0.250 <0.001	1,2-Dichloroethane (mg/L)	0.250		<0.001	
Methylene chloride (mg/L) 15.000 <0.001 0.003 Bryene (mg/L) 0.500 <0.001	1,1,1-Trichloroethane (mg/L)	4.000	0.016	0.018	
Shyrene (mg/L) 0.500 <0.001 <0.001 Alcohols		0.250			
Alcohols Constraint Ethanol (mg/L) 20.0 <5.0					
Ethanol (mg/L) 20.0 <5.0 <5.0 Wethanol (mg/L) 10.0 <5.0	Styrene (mg/L)	0.500	<0.001	<0.001	
Methanol (mg/L) 10.0 <5.0 <5.0 2-Butanol (sec-Butanol) (mg/L) 30.0 <5.0	Alcohols				
Methanol (mg/L) 10.0 <5.0 <5.0 2-Butanol (sec-Butanol) (mg/L) 30.0 <5.0	Ethanol (mg/L)	20.0	<5.0	<5.0	
Propanol (Isopropanol) (mg/L) 10.0 <5.0 <5.0 Acetone (mg/L) 35.0 <0.050	Methanol (mg/L)	10.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L) 10.0 <5.0 <5.0 Ketones	2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
Acetone (mg/L) 35.0 <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) 10.0 <0.050	2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
2-Butanone (Methyl Ethyl Ketone) (mg/L) 10.0 <0.050 <0.050 4-Methyl-2-pentanone (Methyl sobutyl Ketone) (mg/L) 2.0 <0.050	Ketones				
H-Methyl-2-pentanone (Methyl sobutyl Ketone) (mg/L) 2.0 <0.050 <0.050 Total VOCs ^[2] 0.267 0.316 B. INORGANIC PARAMETERS (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Vetals (mg/L) or (g/day) Conner. Total (n/dax) ^[3] 15.8.g/day <0.01 mg/l or <1.44 g/day <0.01 mg/l or <1.44 g/day <0.01 mg/l or <1.44 g/day Conner. Total (mg/l) 5.0 0.12 0.14 Lead, Total (mg/l) 3.2 g/day <0.05 mg/l or <0.72 g/day <0.05 mg/l or <0.72 g/day <0.05 mg/l or <7.22 g/day Vickel, Total (mg/l) 0.5 <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day Vickel, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day OTHER <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day Hydrogen Peroxide (mg/L) 1.0 <0.02 mg/l or <0.2 <0.2 <0.2	Acetone (mg/L)		<0.050	<0.050	
Sobutyl Ketone) (mg/L) 2.0 <0.050 <0.050 Total VOCs ^[2] 0.267 0.316 B. INORGANIC PARAMETERS (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Conner. Total (n(day) ^[3] 15.8 g/day <0.01 mg/l or <1.44 g/day <0.01 mg/l or <1.44 g/day Conner. Total (mg/l) 5.0 0.12 0.14 Lead, Total (mg/l) 3.2 g/day <0.005 mg/l or <0.72 g/day <0.005 mg/l or <0.72 g/day Vickel, Total (mg/l) 0.5 <0.05 <0.05 <0.05 Line Total (mg/l) 0.5 <0.05 <0.05 <0.05 Vickel, Total (mg/l) 0.5 <0.05 <0.05 <0.05 Zinc, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day OTHER <1 NS NS Hydrogen Peroxide (mg/L) NL <1 NS NS NS NS NS Ot		10.0	<0.050	<0.050	
sobutyl Ketone) (mg/L) 0.267 0.316 Fotal VOCs ^[2] 0.267 0.316 B. INORGANIC PARAMETERS (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Vetals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Concer. Total (n/dav) ^[3] 15.8 q/day <0.01 mg/l or <1.44 q/day <0.01 mg/l or <1.44 q/day ead, Total (mg/l) 5.0 0.12 0.14 ead, Total (mg/l) 0.5 <0.05 mg/l or <0.72 g/day <0.005 mg/l or <0.72 g/day Nickel, Total (mg/l) 0.5 <0.05 <0.05 <0.05 Zinc. Total (q/day) ^[3] 40.3 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day OTHER	4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050	
S. INORGANIC PARAMETERS Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Concer. Total. (n/dav) ^[3] 15.8 g/day <0.01 mg/l or <1.44 g/day	lsobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Concer. Total. (n/dav) ^[3] 15.8 g/day <0.01 mg/l or <1.44 g/day	Total VOCs ^[2]		0.267	0.316	
Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Concer. Total. (n/dav) ^[3] 15.8 g/day <0.01 mg/l or <1.44 g/day	B. INORGANIC PARAMETERS				
Conner. Total (n/dav) ^[3] 15.8 g/day <0.01 mg/l or <1.44 g/day <0.01 mg/l or <1.44 g/day ron, Total (mg/l) 5.0 0.12 0.14 eed, Total (g/day) ^[3] 3.2 g/day <0.005 mg/l or <0.72 g/day	Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
ron, lotal (mg/l) 5.0 0.12 0.14 _ead, Total (q/day) ^[3] 3.2 g/day <0.005 mg/l or <0.72 g/day	Copper, Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <1.44 g/day	<0.01 mg/l or <1.44 g/day	
Lead, Total (q/day) ^[3] 3.2 g/day <0.005 mg/l or <0.72 g/day <0.005 mg/l or <0.72 g/day Nickel, Total (mg/l) 0.5 <0.05	ron, Total (mg/l)	5.0	0.12	0.14	
Vickel, Total (mg/l) 0.5 <0.05 <0.05 Zinc, Total (q/day) ^[3] 40.3 g/day <0.05 mg/l or <7.22 g/day		3.2 g/day	<0.005 mg/l or <0.72 g/day	<0.005 mg/l or <0.72 g/day	
Zinc, Total (q/day) ^[3] 40.3 g/day <0.05 mg/l or <7.22 g/day <0.05 mg/l or <7.22 g/day OTHER	Nickel, Total (mg/l)	0.5	<0.05		
OTHER Image: square squar				<0.05 mg/l or <7.22 g/day	
Hydrogen Peroxide (mg/L) 1.0 <0.2 <0.2 Fotal PCBs (µg/L) NL <1		1010 grady			
NL <1 NS H (s.u.) 6.0 - 9.0 s.u. 6.92 7.07 Fotal Suspended Solids (mg/L) 30 <1		10	<0.2	<0.2	
bH (s.u.) 6.0 - 9.0 s.u. 6.92 7.07 Fotal Suspended Solids (mg/L) 30 <1					
Suspended Solids (mg/L) 30 <1 3 Dioxins (pg/L) NL NS NS			6 02	7.07	
			NS	NS	
	Furans (pg/L)		NS	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

September 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates		
	Requirement Discharge Limits	9/7/2012	9/21/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	<0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.209	0.145	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.014 <0.001	0.012	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	<0.001	0.002	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols				
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones				
Acetone (mg/L)	35.0	<0.050	<0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050	
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.223	0.159	
B. INORGANIC PARAMETERS				
Netals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper. Total (g/dax) ^[3]	15.8 q/day	<0.01 mg/l or <1.09 g/day	<0.01 mg/l or <1.09 g/day	
Iron, Total (mg/l)	5.0	0.15	<0.05	
Lead, Total (q/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.54 g/day	<0.005 mg/l or <0.54 g/da	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc, Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <5.43 g/day	<0.05 mg/l or <5.43 g/day	
OTHER				
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (μg/L)	NL	<0. <u>-</u> <1	NS	
oH (s.u.)	6.0 - 9.0 s.u.	6.85	6.87	
Total Suspended Solids (mg/L)	30	3	<u> </u>	
Dioxins (pg/L)	NL	3 NS	<1 NS	
Furans (pg/L)	NL	NS	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

flow NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

October 2012

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L)	Substantive	Sample Dates		
	Requirement Discharge Limits	10/1/2012	10/17/2012	
A. ORGANIC PARAMETERS				
Volatile Organic Compounds	(mg/L)	(<u>m</u> g/L)	<u>(mg/L)</u>	
Trichloroethene (mg/L)	0.973	<0.001	<0.001	
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001	
Toluene (mg/L)	4.000	<0.001	<0.001	
Ethylbenzene (mg/L)	1.000	<0.001	<0.001	
Xylenes, Total (mg/L)	0.500	<0.001	<0.001	
Vinyl chloride (mg/L)	4.500	<0.001	<0.001	
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001	
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050	
<u>1.2-Dichloraethene^[1] (ma/l.)</u>	5.000	0.123	0.105	
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001	
1,1,1-Trichloroethane (mg/L)	4.000	0.008 <0.001	0.005	
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001	
Methylene chloride (mg/L)	15.000	0.001	0.002	
Styrene (mg/L)	0.500	<0.001	<0.001	
Alcohols			-	
Ethanol (mg/L)	20.0	<5.0	<5.0	
Methanol (mg/L)	10.0	<5.0	<5.0	
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0	
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0	
Ketones			-	
Acetone (mg/L)	35.0	<0.050	<0.050	
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050	
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050	
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050	
Total VOCs ^[2]		0.132	0.112	
B. INORGANIC PARAMETERS				
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)	
Copper. Total. (n/dax) ^[3]	15.8 q/day	<0.01 mg/l or <1.43 g/day	<0.01 mg/l or <1.43 g/day	
ron, Total (mg/l)	5.0	0.12	0.09	
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.72 g/day	<0.005 mg/l or <0.72 g/da	
Nickel, Total (mg/l)	0.5	<0.05	<0.05	
Zinc, Total (g/dav) ^[3]	40.3 g/day	<0.05 mg/l or <7.17 g/day	<0.05 mg/l or <7.17 g/day	
OTHER			,	
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2	
Total PCBs (μg/L)	NL	<0. <u>-</u> <1	NS	
oH (s.u.)	6.0 - 9.0 s.u.	6.87	7.11	
Total Suspended Solids (mg/L)	30	<1	<1	
Dioxins (pg/L)	NL	<1 923	<1 NS	
Furans (pg/L)	NL	<51	NS	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent

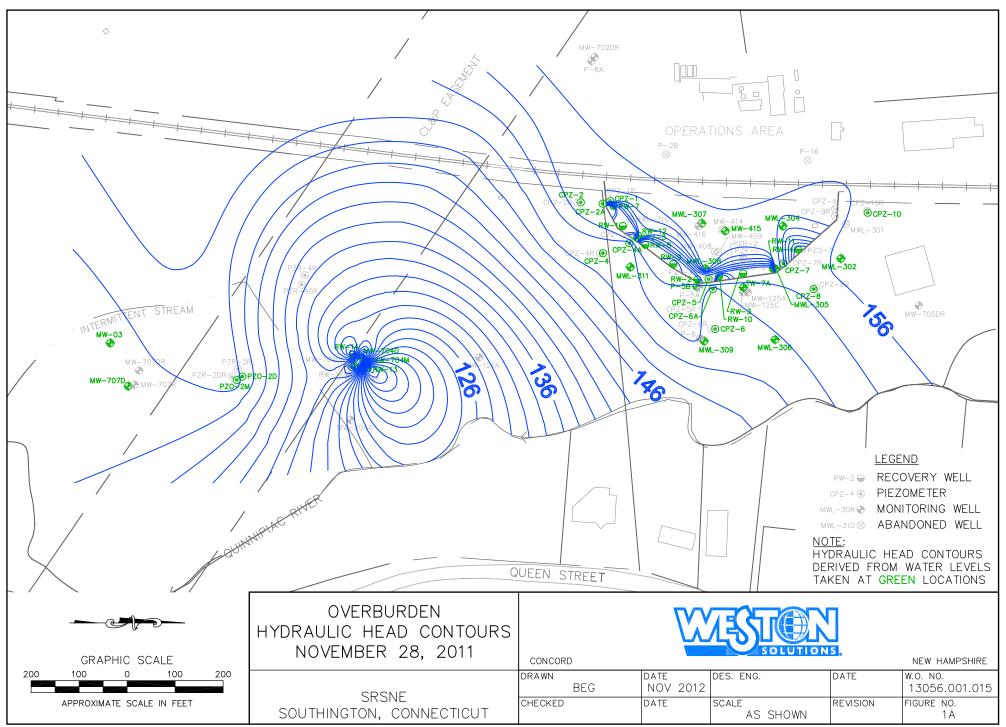
flow NL = no limit specified.

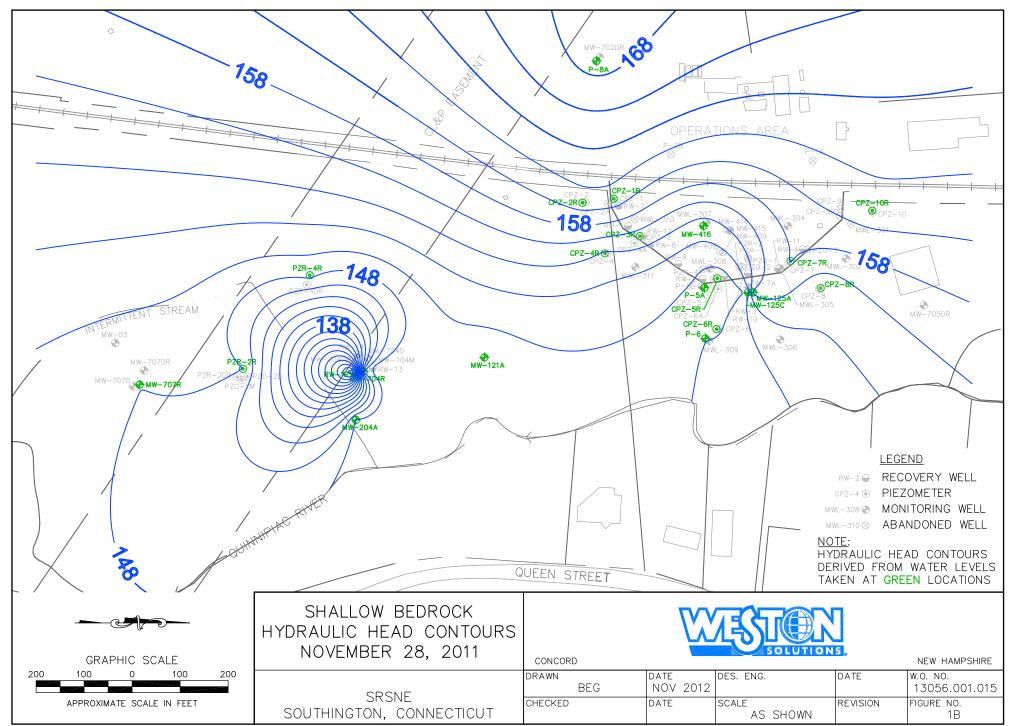
NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

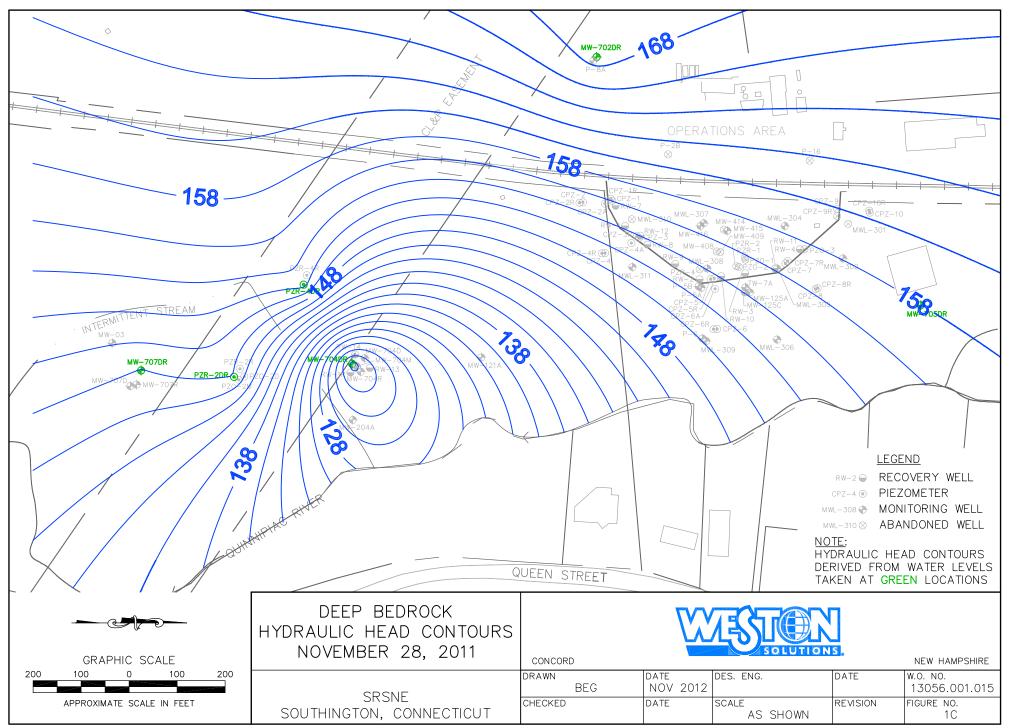
pg/L = picograms per liter

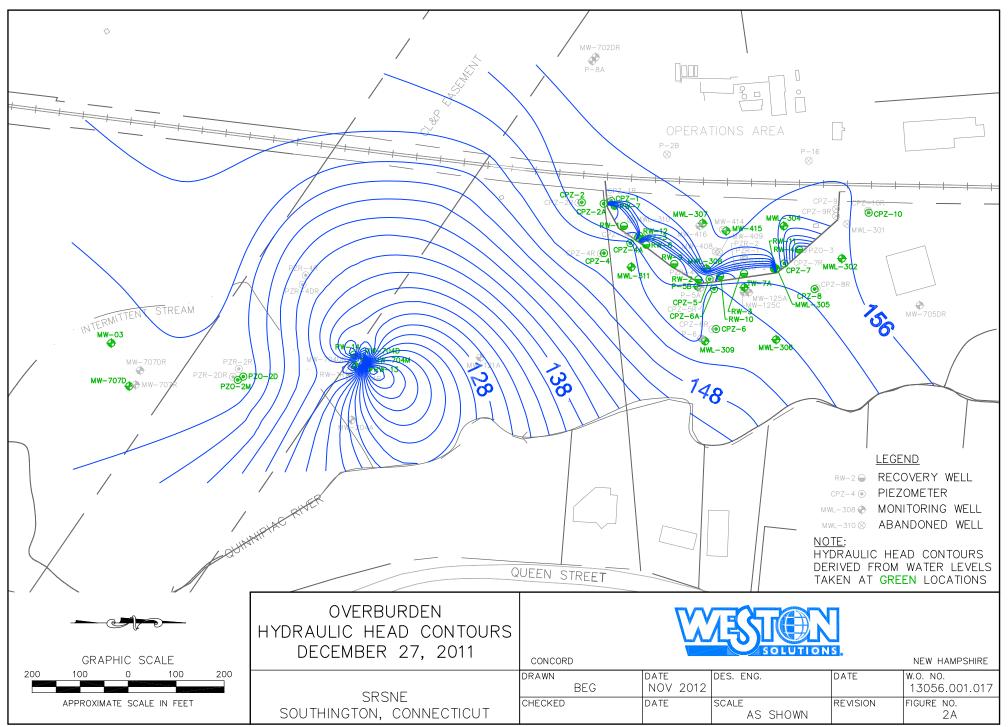

g/day = grams per day

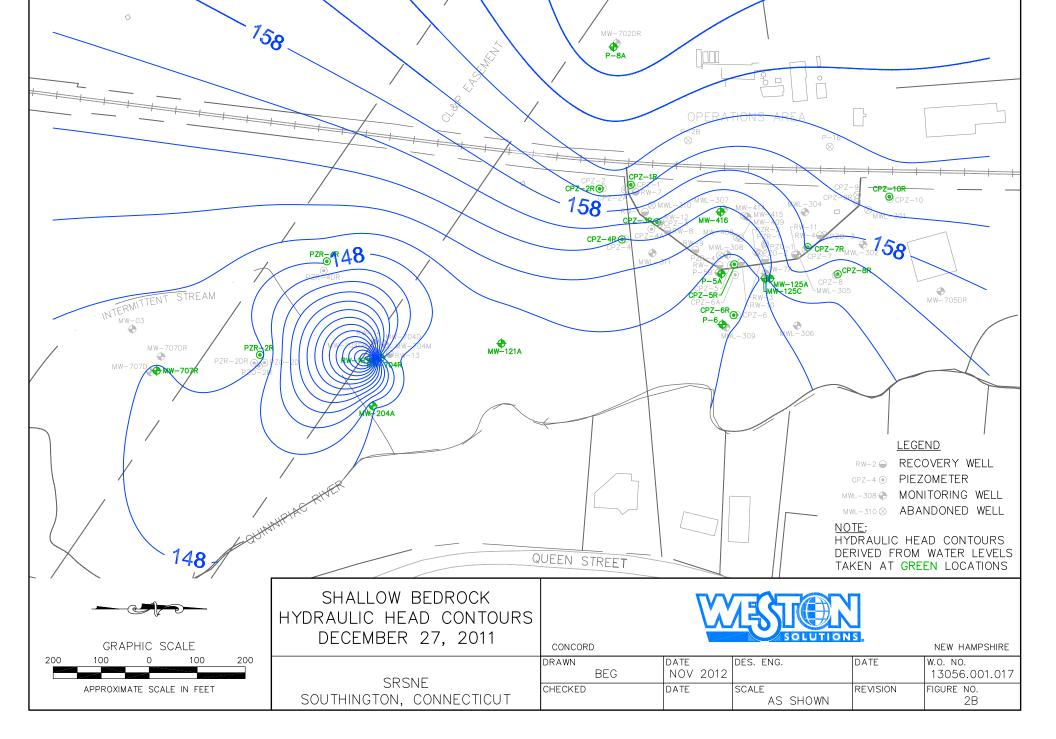


Weekly NTCRA-1 Compliance Piezometer Pair Summary

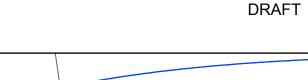
Date	CP7-1/CP7-2A	CPZ-3/CPZ-4A	CP7-5/CP7-6	CP7-7/CP7 -
02-Nov-11	1.99	1.98	7.31	2.50
02-Nov-11	1.99	1.90	6.54	1.55
15-Nov-11	1.14	1.80	6.87	1.60
21-Nov-11	1.14			1.63
		<u> </u>	6.45	
28-Nov-11	1.02		7.45	1.82
09-Dec-11	2.01	2.69	7.85	2.00
12-Dec-11	1.79	2.34	7.60	1.48
22-Dec-11	1.65	2.33	7.73	1.62
27-Dec-11	1.31	1.94	7.06	1.25
02-Jan-12	1.03	1.86	6.61	1.25
09-Jan-12	0.86	1.52	6.40	1.42
18-Jan-12	0.60	1.48	6.35	1.73
24-Jan-12	0.38	1.50	6.92	1.35
31-Jan-12	0.54	2.14	5.33	1.19
08-Feb-12	0.36	1.71	5.17	1.92
14-Feb-12	0.37	1.46	4.57	1.86
21-Feb-12	0.34	0.80	4.71	1.85
28-Feb-12	0.47	0.91	3.61	1.00
08-Mar-12	0.40	1.55	4.22	1.77
13-Mar-12	0.31	1.51	4.37	1.57
19-Mar-12	0.41	1.04	4.04	1.63
29-Mar-12	0.46	1.51	3.06	1.38
03-Apr-12	0.34	1.29	11.57	2.26
11-Apr-12	0.35	0.80	2.65	1.69
19-Apr-12	0.37	0.75	2.53	1.60
25-Apr-12	0.34	1.25	3.99	1.53
01-May-12	0.32	1.13	8.12	1.69
07-May-12	0.38	0.79	7.04	2.01
16-May-12	0.35	0.97	8.30	1.90
22-May-12	0.33	0.90	8.35	2.07
29-May-12	0.30	0.58	5.10	1.73
04-Jun-12	0.08	1.36	8.70	2.16
15-Jun-12	-0.21	0.74	3.28	1.67
19-Jun-12	-0.21	1.07	3.86	1.50
27-Jun-12		1.07	5.46	1.74
	0.36	1.20		
04-Jul-12	0.26		4.83	1.94
11-Jul-12	0.11	0.91	3.41	1.87
17-Jul-12	0.08	0.68	3.84	1.87
24-Jul-12	0.05	0.63	4.72	1.95
31-Jul-12	-0.14	0.59	3.57	1.89
07-Aug-12	-0.21	0.16	3.89	1.93
14-Aug-12	-0.43	-0.09	3.30	2.38
21-Aug-12	-0.59	-0.46	3.29	2.12
29-Aug-12	-0.72	-0.66	2.90	1.98
04-Sep-12	-0.71	-0.88	3.28	2.02
10-Sep-12	-0.52	-1.31	3.59	2.04
21-Sep-12	-0.76	-1.28	3.70	1.15
25-Sep-12	-0.61	-1.39	3.72	0.96
01-Oct-12	-0.02	-1.29	3.51	1.39
08-Oct-12	-0.09	-1.17	3.93	1.37
15-Oct-12	0.05	-0.48	3.98	1.43
25-Oct-12	-0.72	-0.76	4.13	1.42
28-Oct-12	0.24	-1.43	3.60	1.87


M:\Design\DWG\SRSNE\Nov 28 2011\overburden.dwg, Layout1, 11/9/2012 10:03:02 AM, girardeb, 1:1

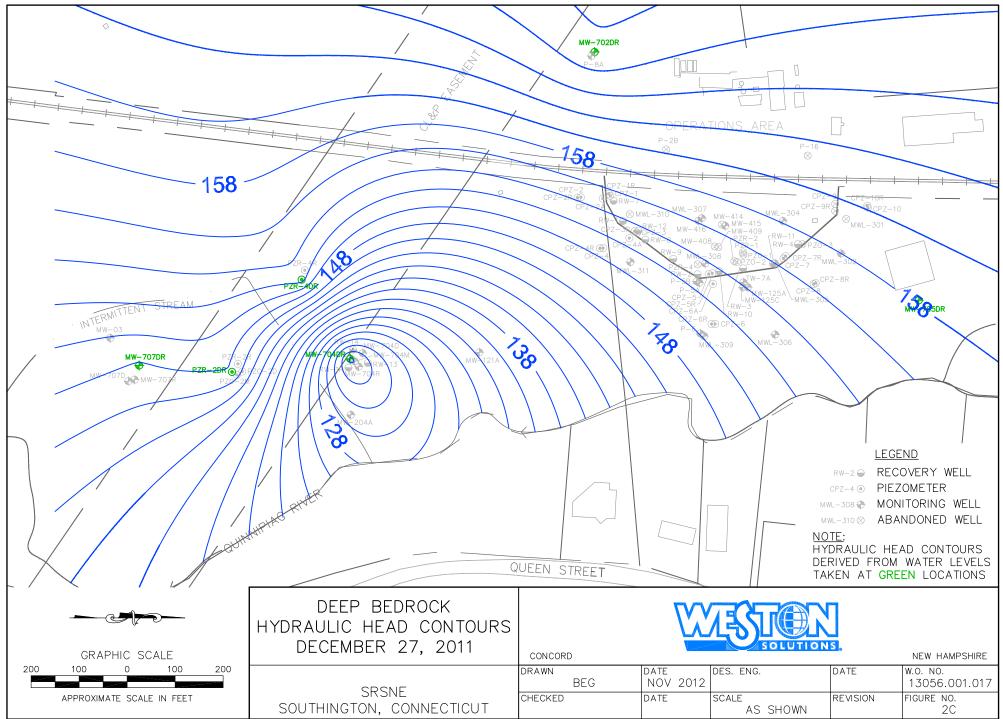


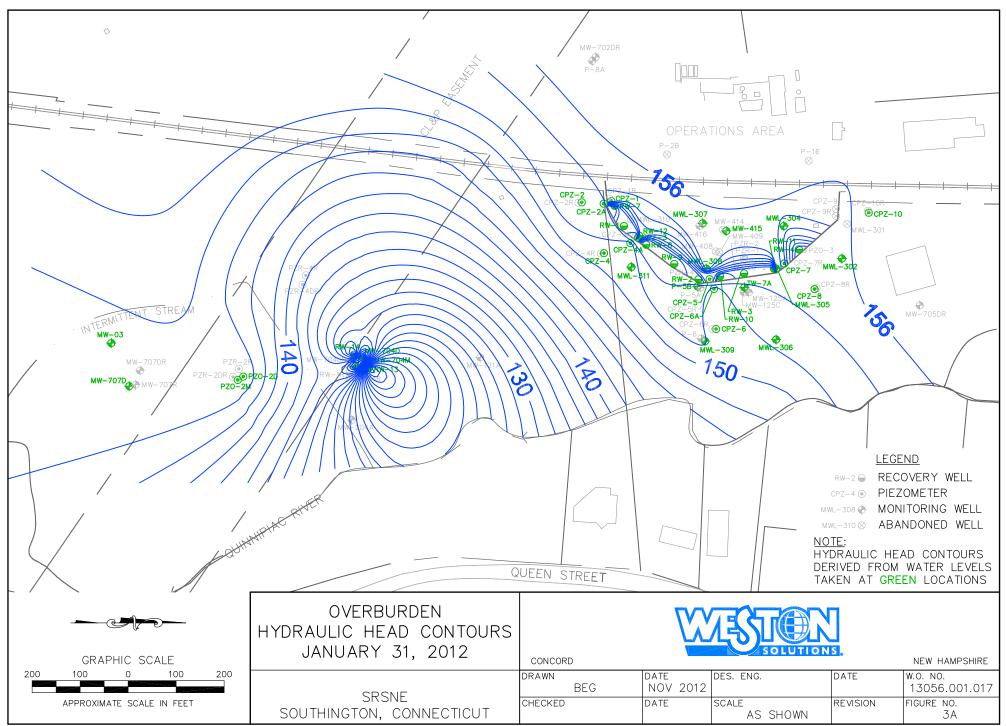

M:\Design\DWG\SRSNE\Nov 28 2011\shallow bedrock.dwg, Layout1, 11/9/2012 10:04:16 AM, girardeb, 1:1

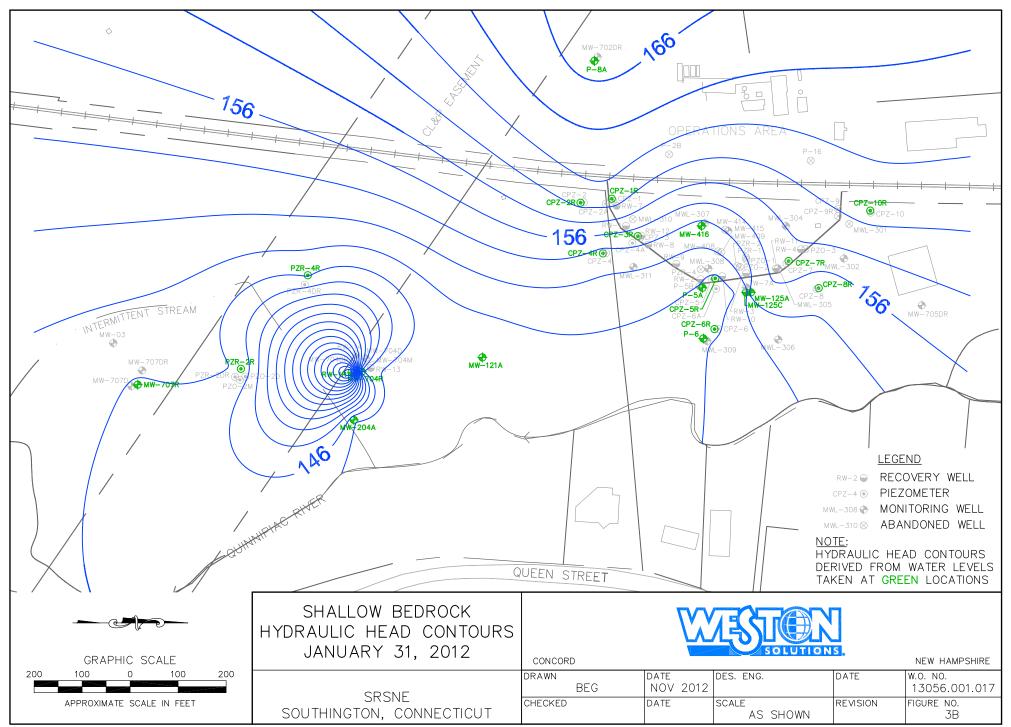
M:\Design\DWG\SRSNE\Nov 28 2011\deep bedrock.dwg, Layout1, 11/9/2012 10:05:37 AM, girardeb, 1:1



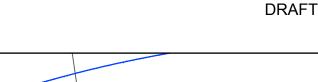
M:\Design\DWG\SRSNE\Dec 27 2011\overburden.dwg, Layout1, 11/9/2012 10:09:30 AM, girardeb, 1:1



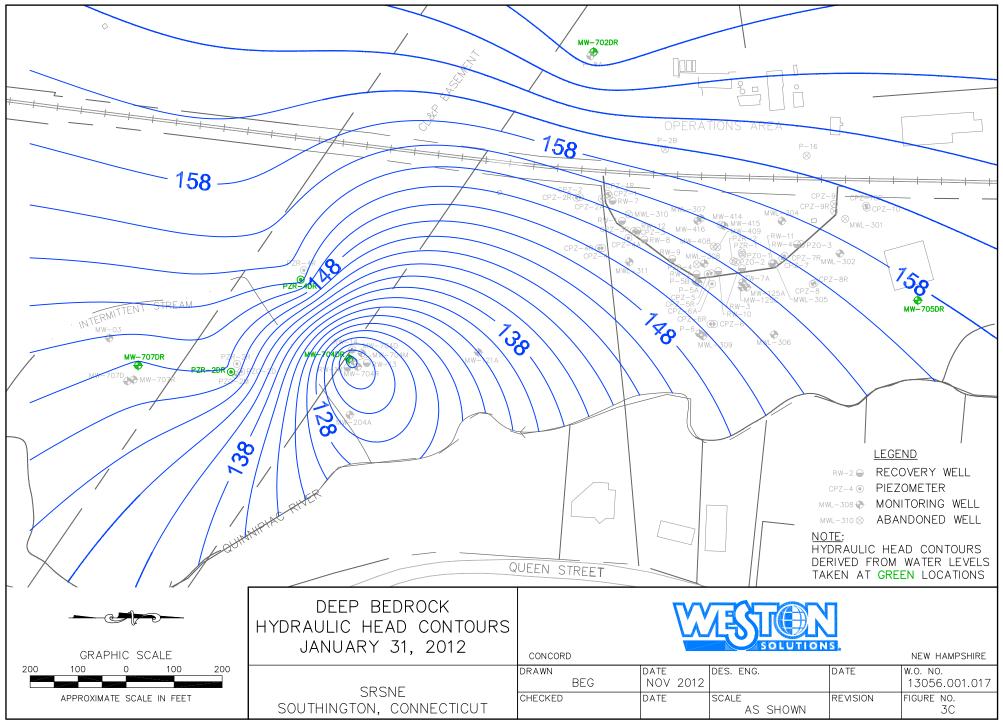

M:\Design\DWG\SRSNE\Dec 27 2011\shallow bedrock.dwg, Layout1, 11/9/2012 10:28:33 AM, girardeb, 1:1

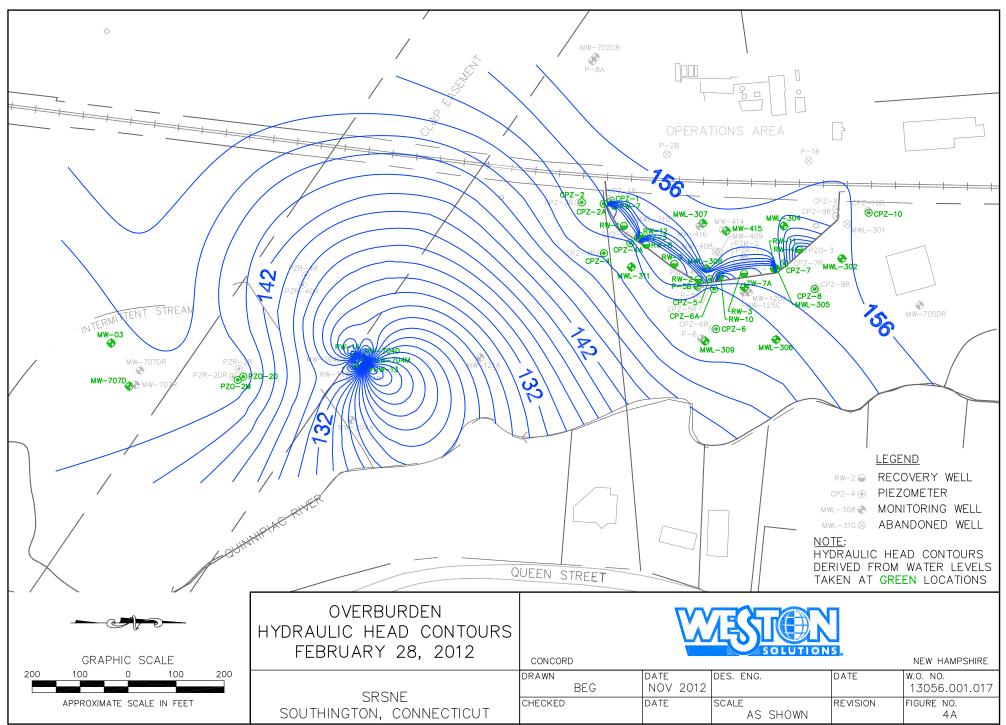


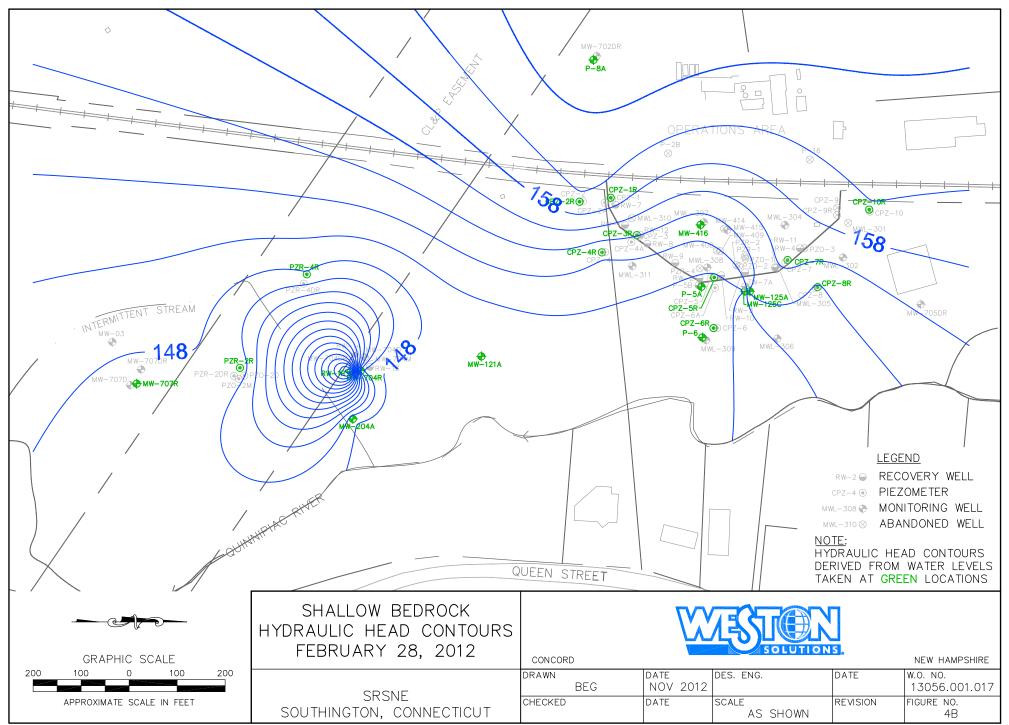
M:\Design\DWG\SRSNE\Dec 27 2011\deep bedrock.dwg, Layout1, 11/9/2012 10:30:44 AM, girardeb, 1:1



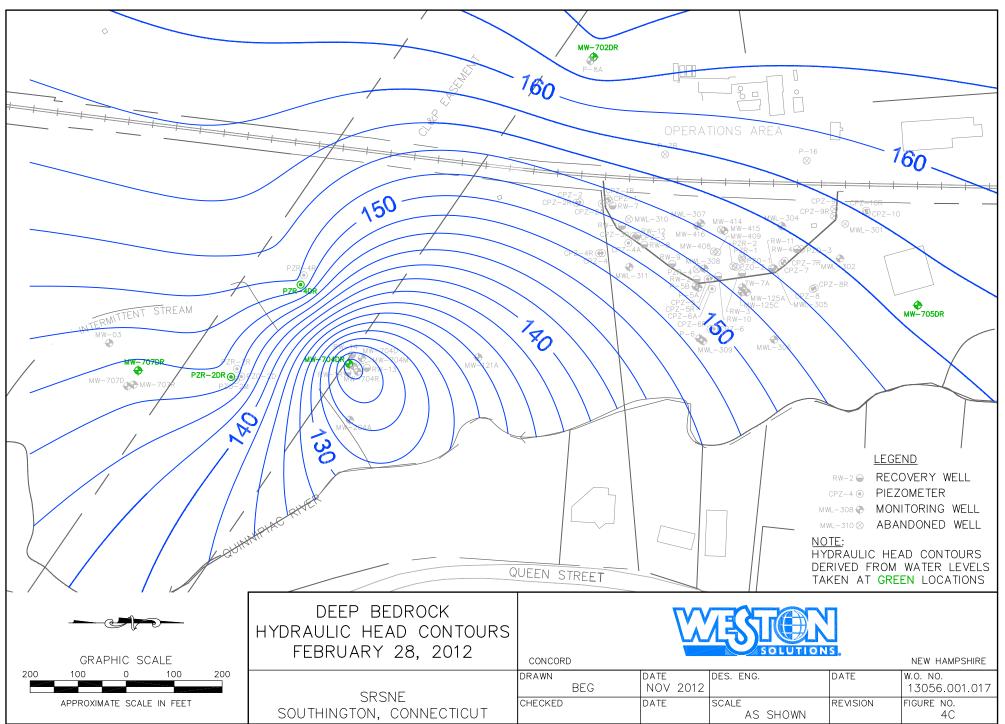
M:\Design\DWG\SRSNE\Jan 31 2012\overburden.dwg, Layout1, 11/9/2012 11:06:12 AM, girardeb, 1:1

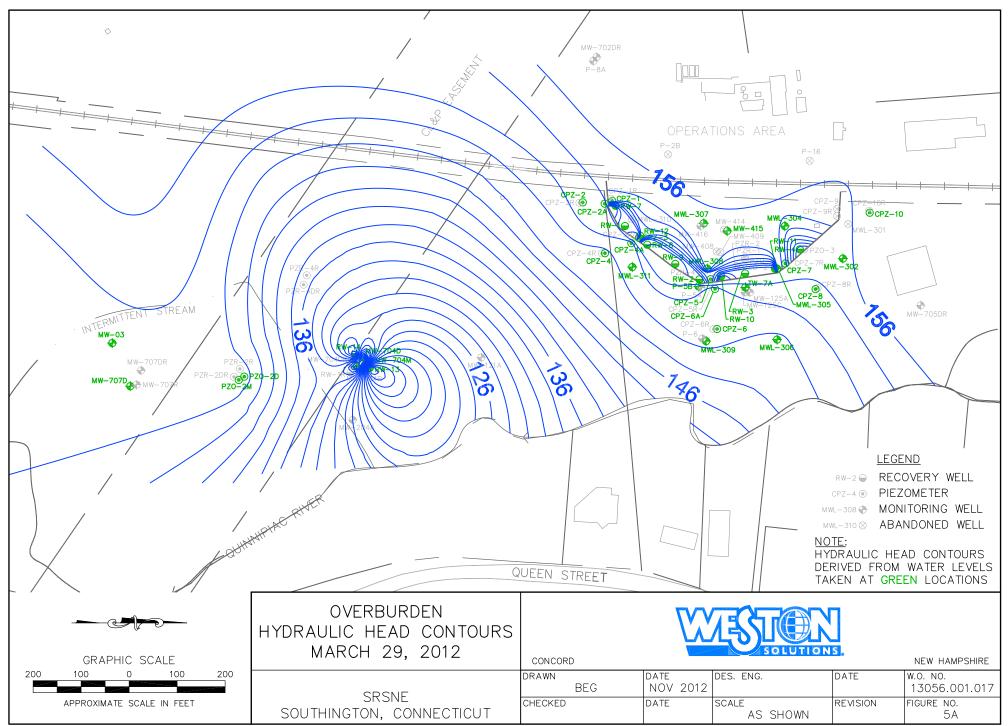


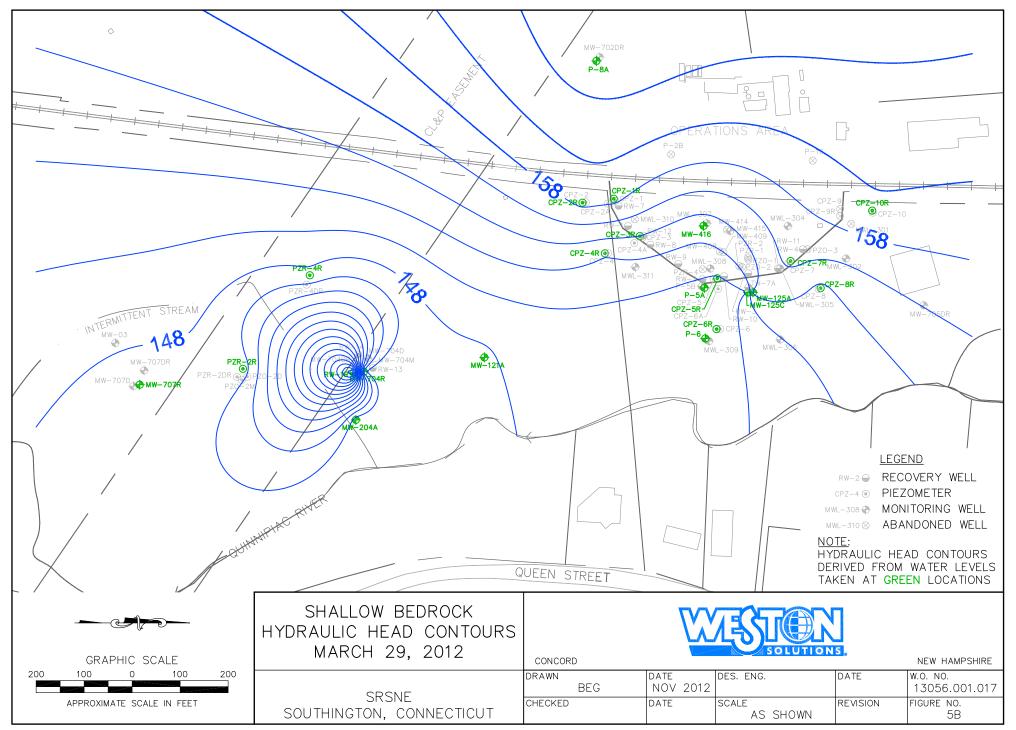

M:\Design\DWG\SRSNE\Jan 31 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:08:44 AM, girardeb, 1:1



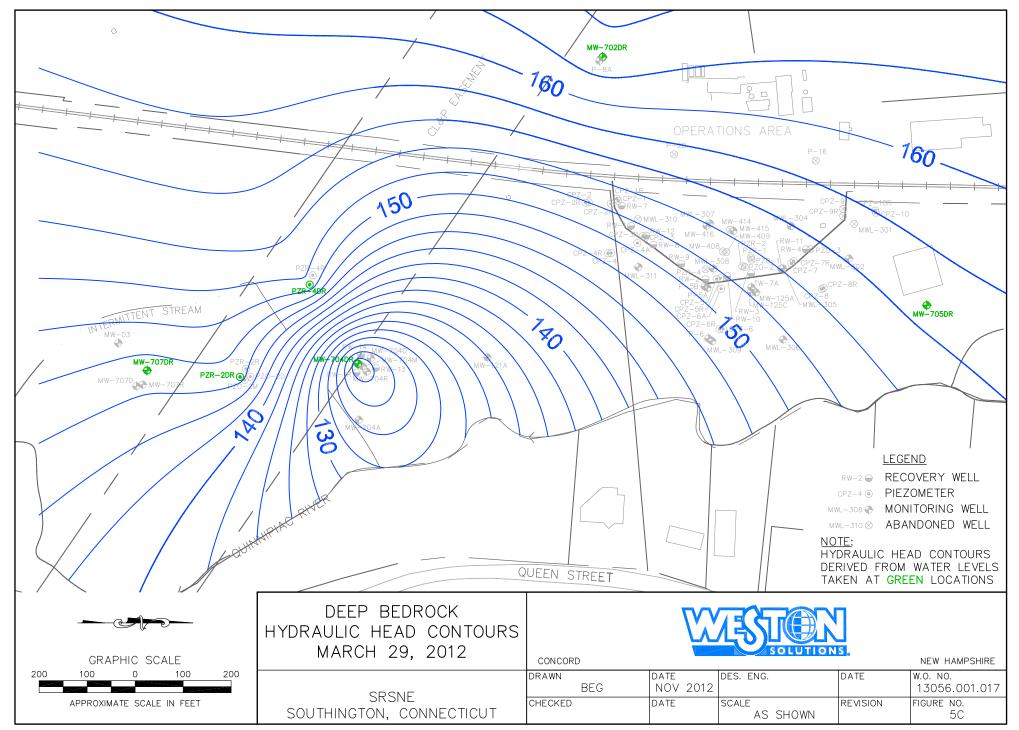
M:\Design\DWG\SRSNE\Jan 31 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:12:38 AM, girardeb, 1:1


M:\Design\DWG\SRSNE\Feb 28 2012\overburden.dwg, Layout1, 11/9/2012 11:14:45 AM, girardeb, 1:1

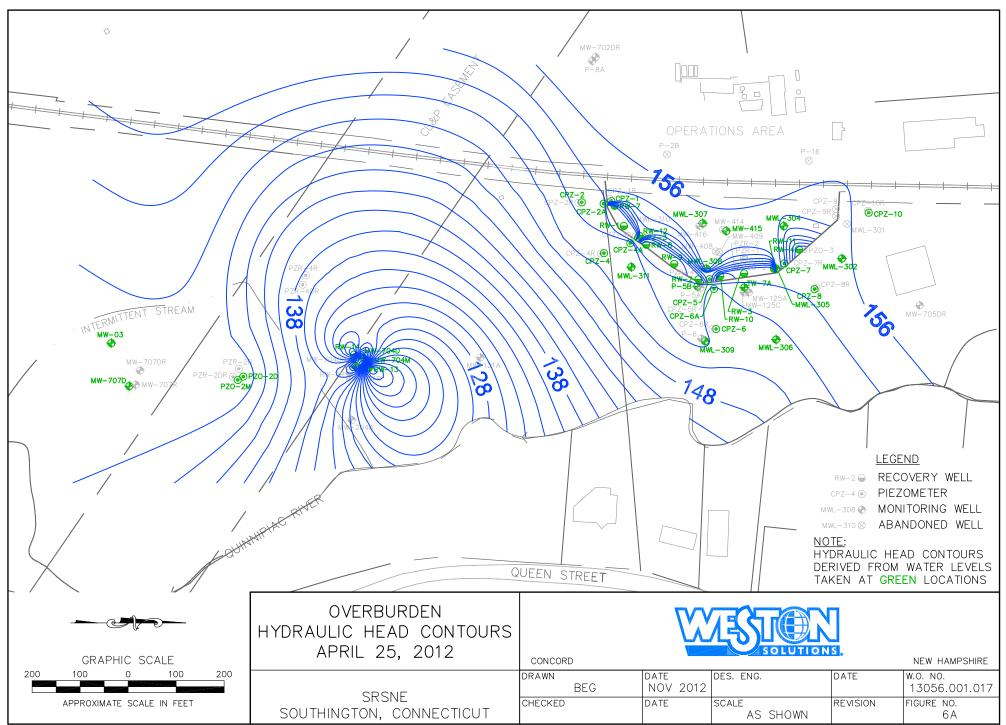


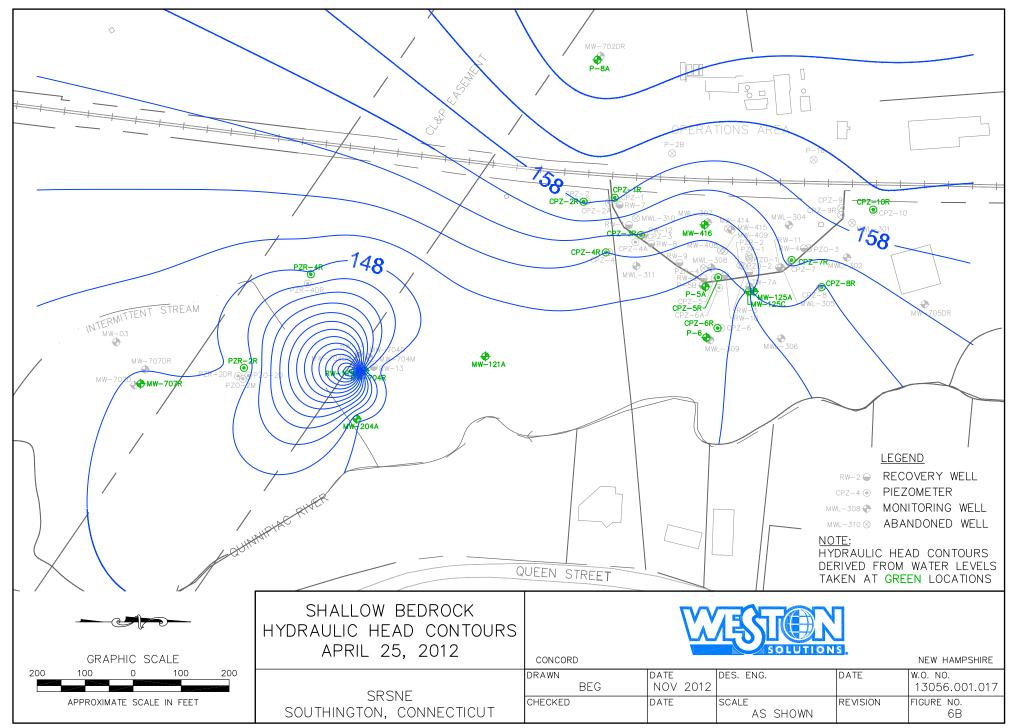

M:\Design\DWG\SRSNE\Feb 28 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:15:39 AM, girardeb, 1:1

M:\Design\DWG\SRSNE\Feb 28 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:16:38 AM, girardeb, 1:1

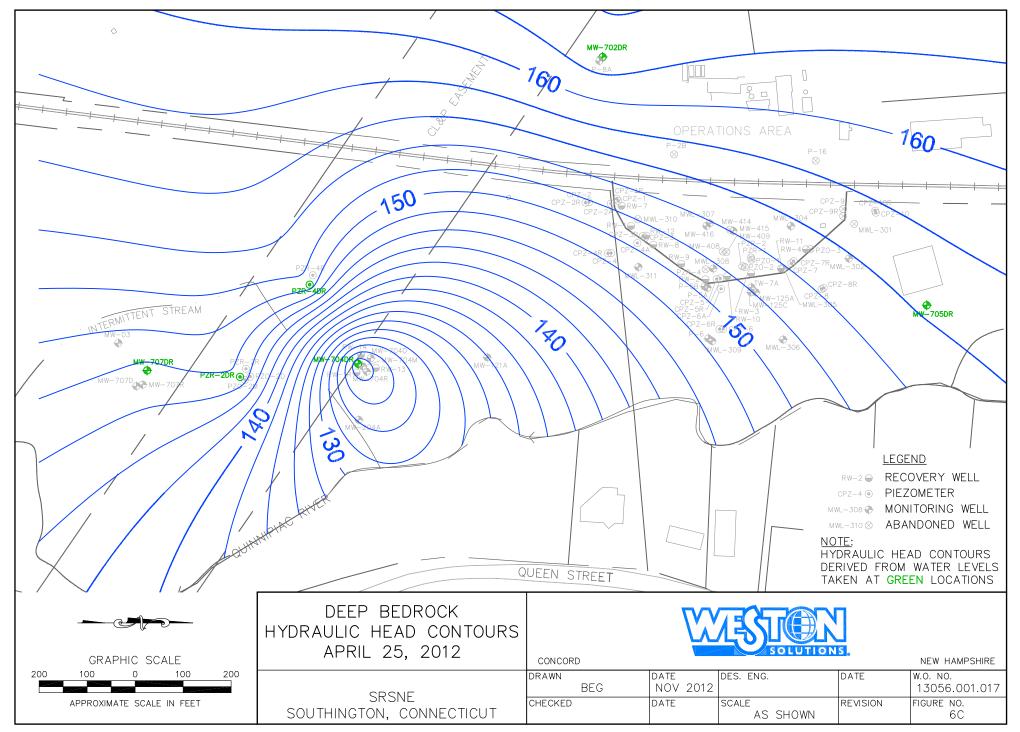


M:\Design\DWG\SRSNE\Mar 29 2012\overburden.dwg, Layout1, 11/9/2012 11:19:09 AM, girardeb, 1:1




M:\Design\DWG\SRSNE\Mar 29 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:20:23 AM, girardeb, 1:1

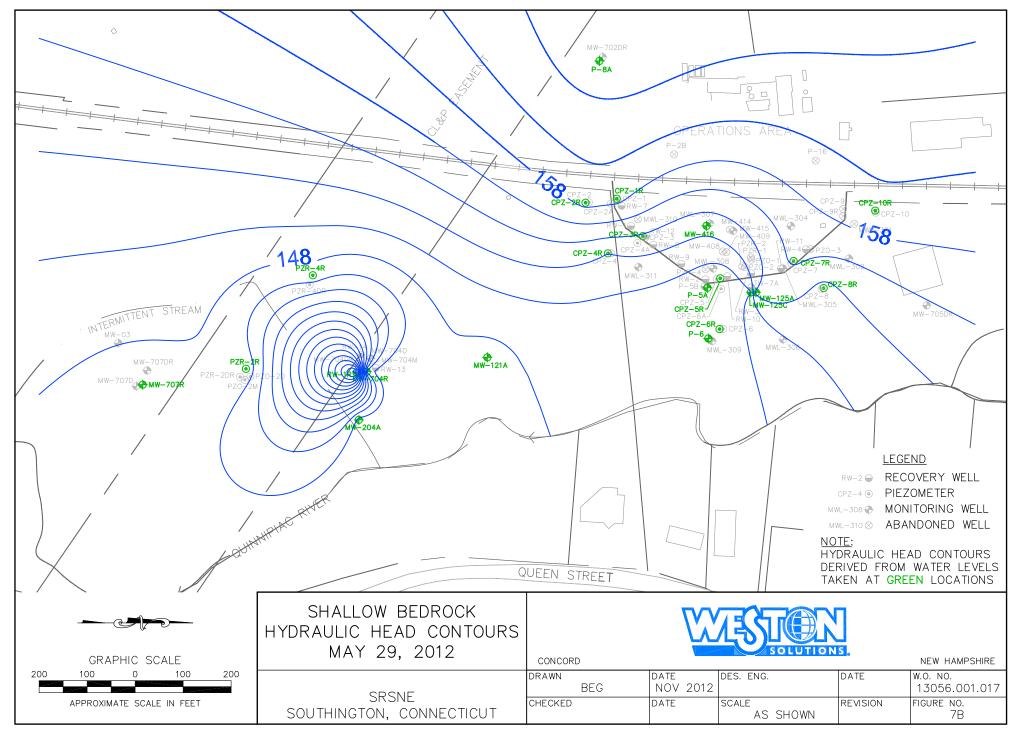
M:\Design\DWG\SRSNE\Mar 29 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:21:10 AM, girardeb, 1:1


M:\Design\DWG\SRSNE\Apr 25 2012\overburden.dwg, Layout1, 11/9/2012 11:37:50 AM, girardeb, 1:1

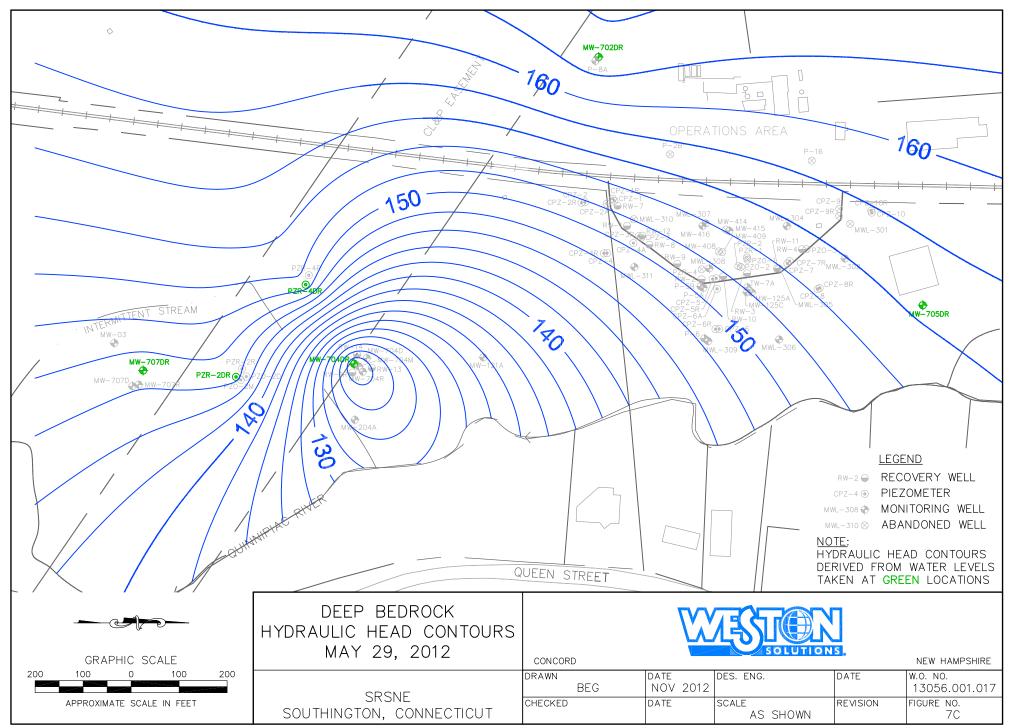
M:\Design\DWG\SRSNE\Apr 25 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:39:03 AM, girardeb, 1:1

DRAFT

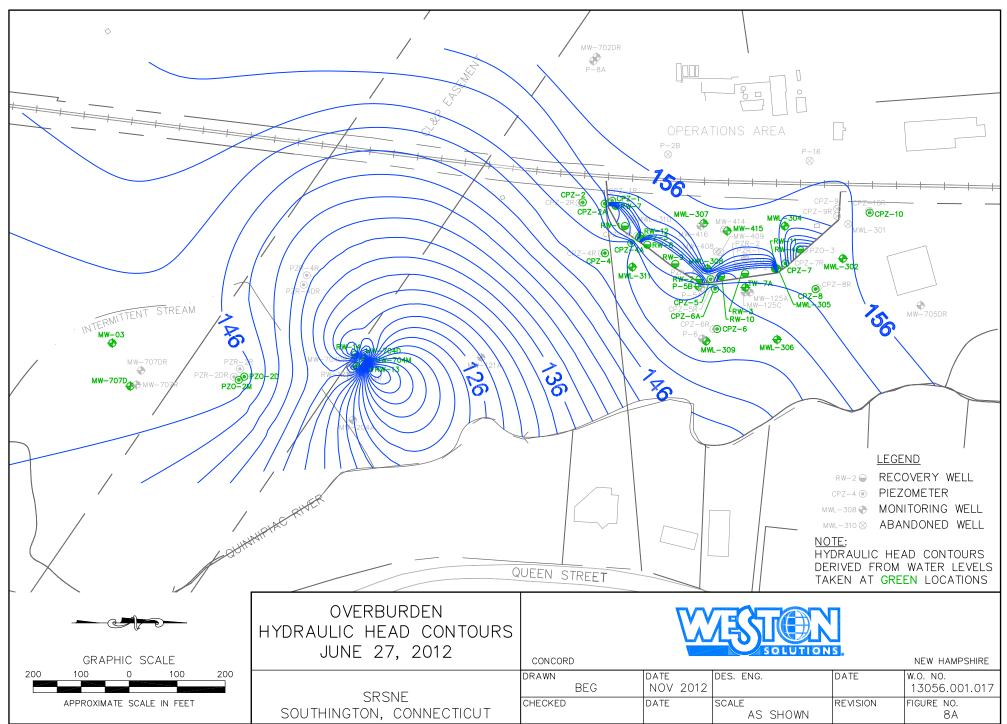


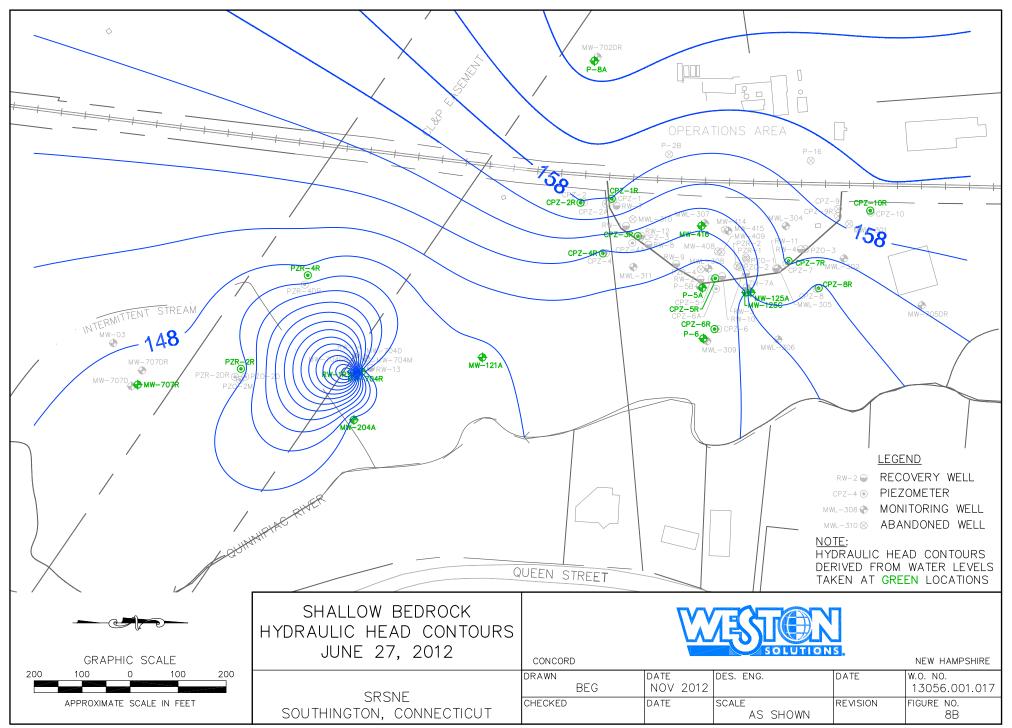

M:\Design\DWG\SRSNE\Apr 25 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:40:02 AM, girardeb, 1:1

DRAFT


M:\Design\DWG\SRSNE\May 29 2012\overburden.dwg, Layout1, 11/9/2012 11:51:50 AM, girardeb, 1:1

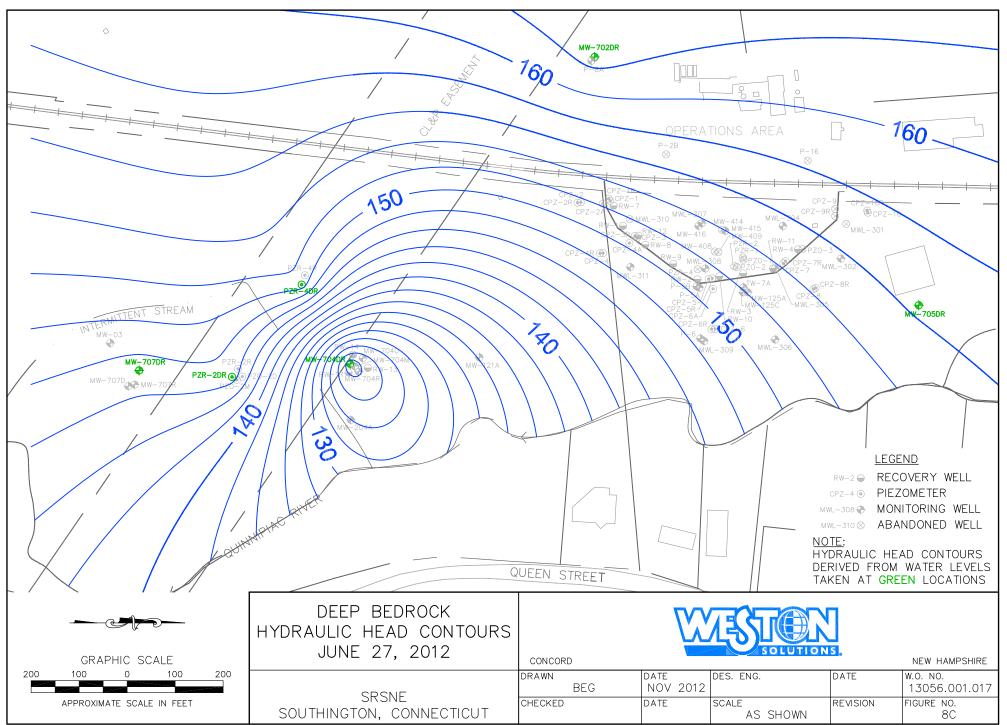
M:\Design\DWG\SRSNE\May 29 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:52:55 AM, girardeb, 1:1


DRAFT

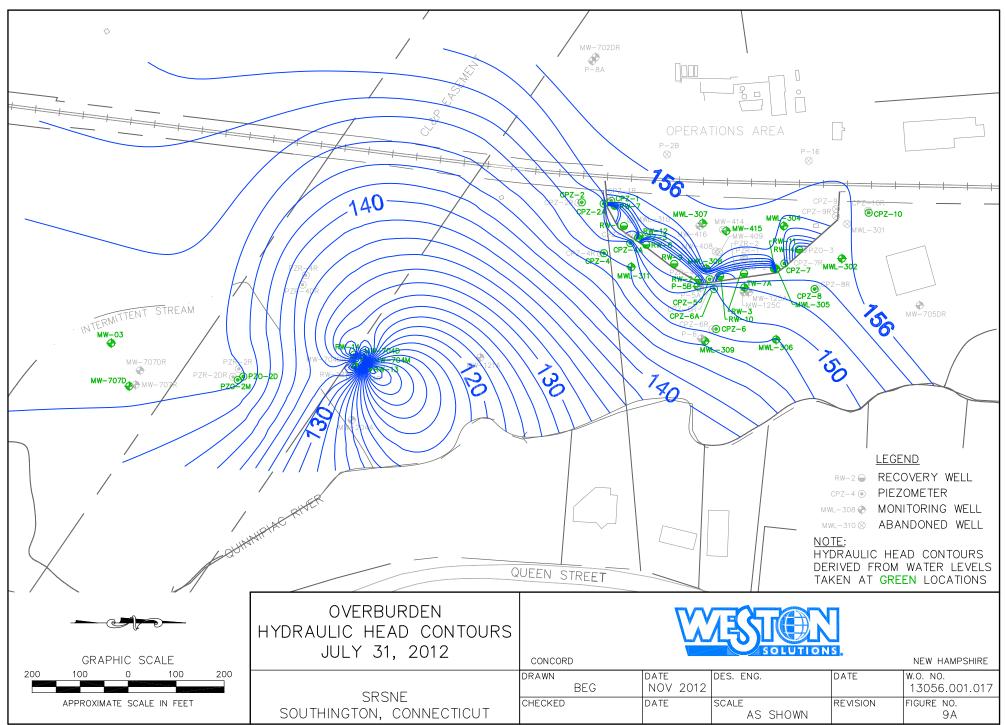


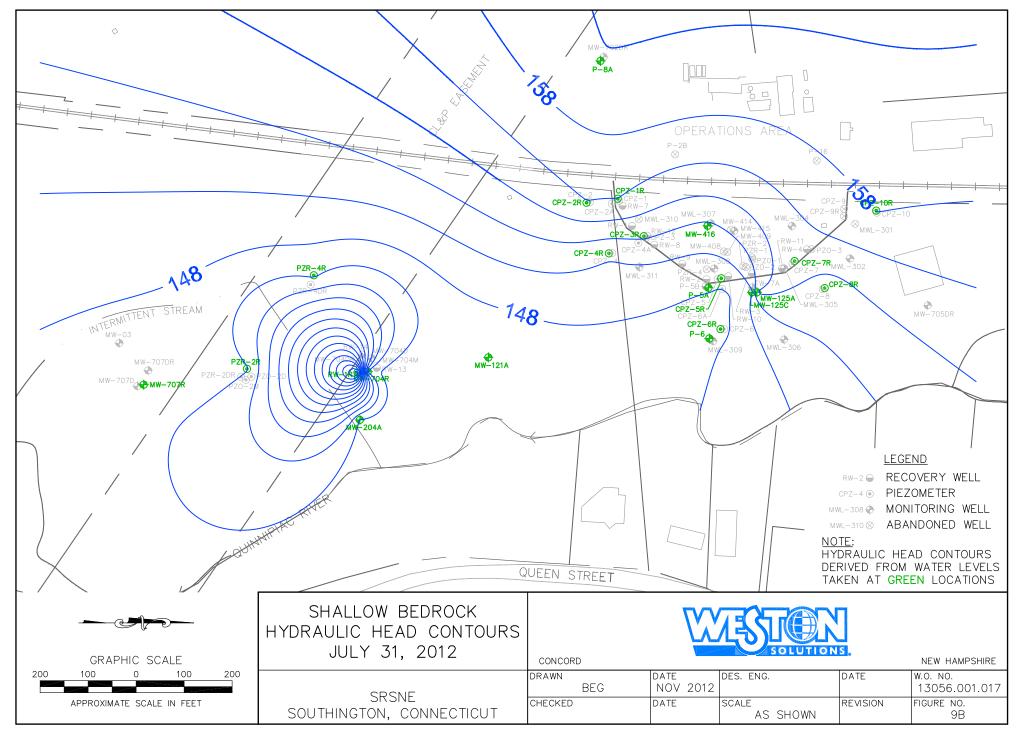
M:\Design\DWG\SRSNE\May 29 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:54:15 AM, girardeb, 1:1

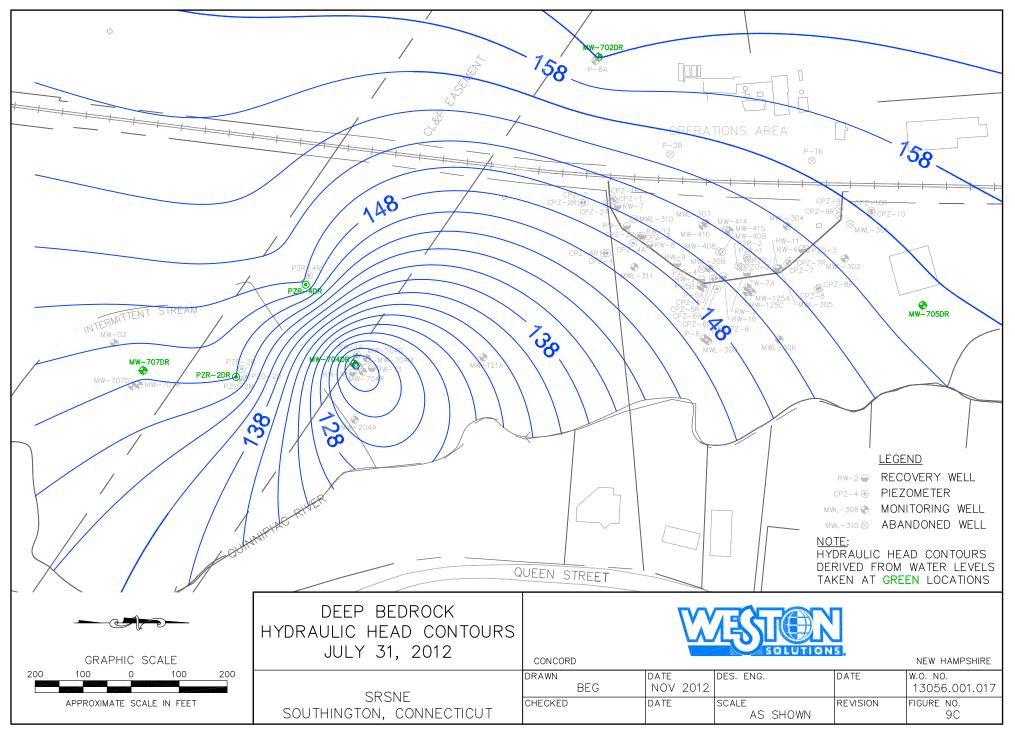
M:\Design\DWG\SRSNE\June 27 2012\overburden.dwg, Layout1, 11/9/2012 11:56:13 AM, girardeb, 1:1

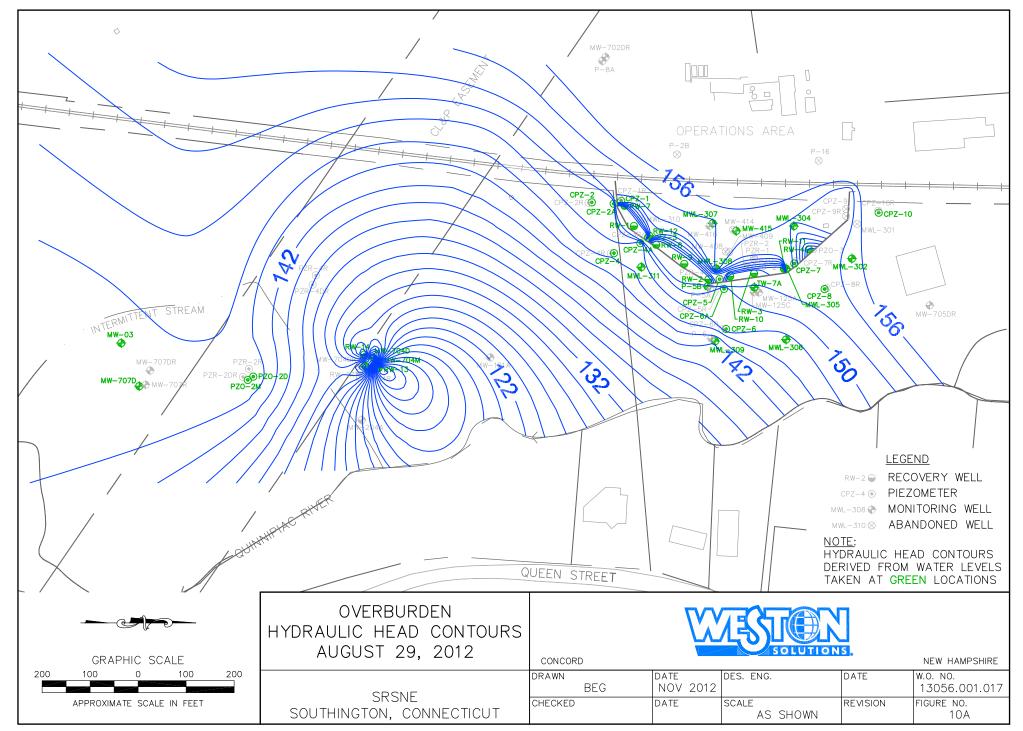


M:\Design\DWG\SRSNE\June 27 2012\shallow bedrock.dwg, Layout1, 11/9/2012 11:57:55 AM, girardeb, 1:1

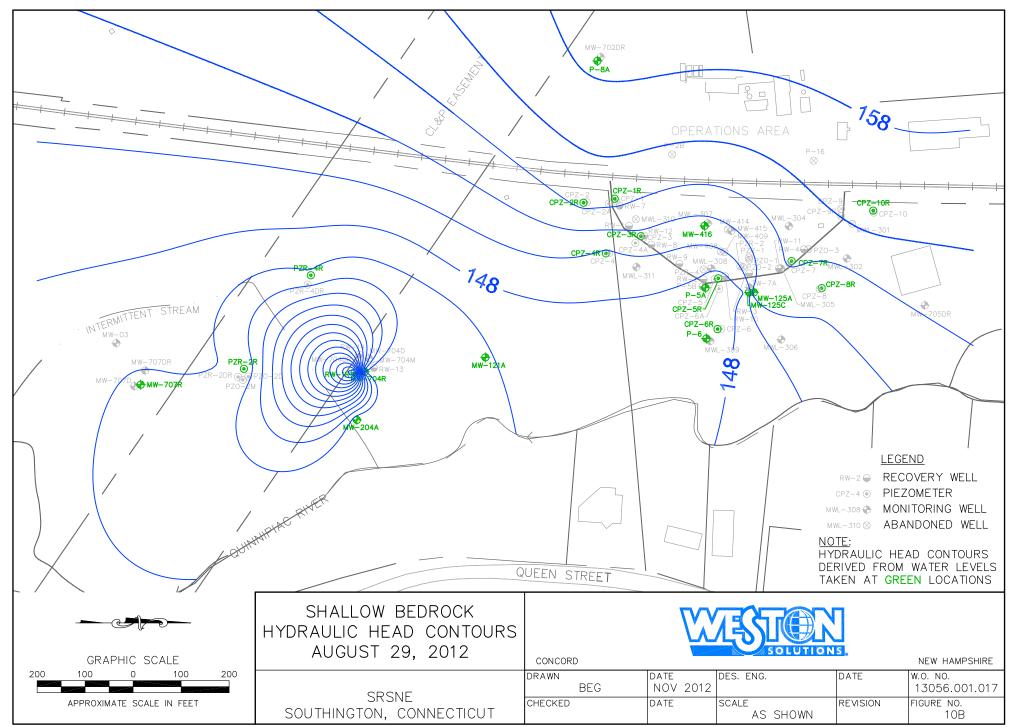


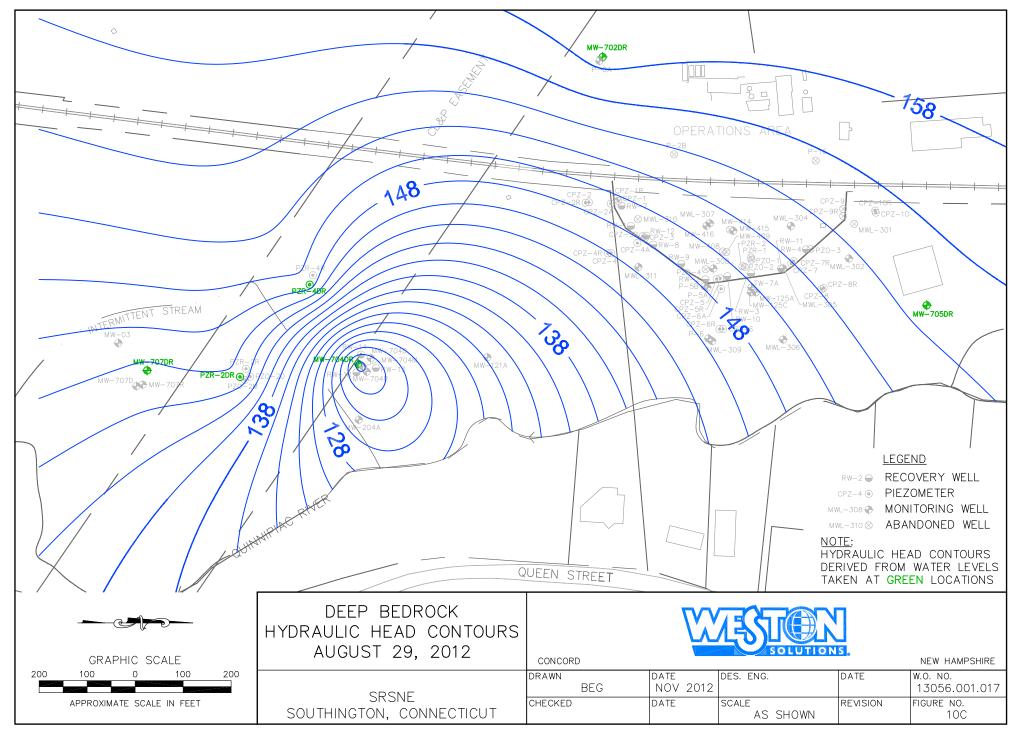

M:\Design\DWG\SRSNE\June 27 2012\deep bedrock.dwg, Layout1, 11/9/2012 11:58:35 AM, girardeb, 1:1


M:\Design\DWG\SRSNE\July 31 2012\overburden.dwg, Layout1, 11/9/2012 11:59:51 AM, girardeb, 1:1

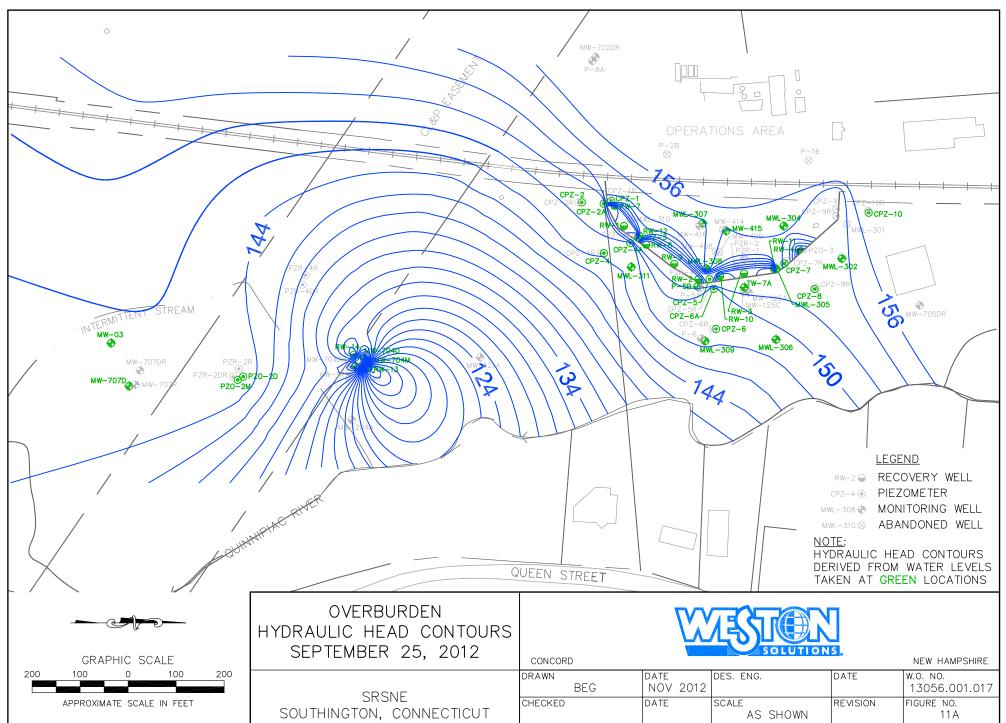


M:\Design\DWG\SRSNE\July 31 2012\shallow bedrock.dwg, Layout1, 11/9/2012 12:01:26 PM, girardeb, 1:1

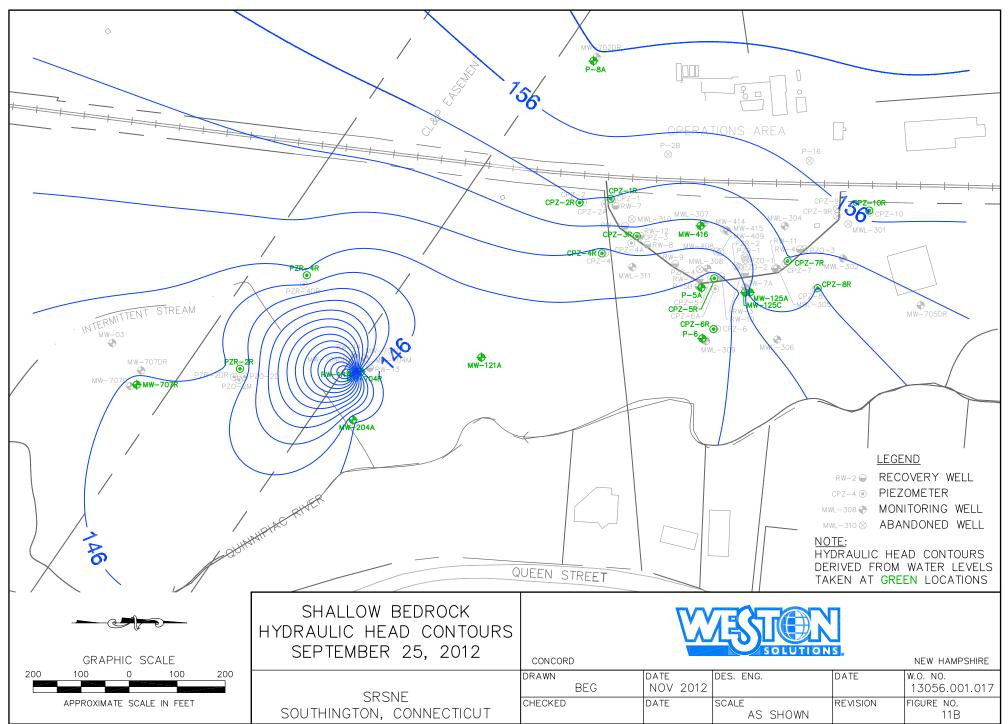

M:\Design\DWG\SRSNE\July 31 2012\deep bedrock.dwg, Layout1, 11/9/2012 12:08:38 PM, girardeb, 1:1


M:\Design\DWG\SRSNE\Aug 29 2012\overburden.dwg, Layout1, 11/9/2012 12:10:55 PM, girardeb, 1:1

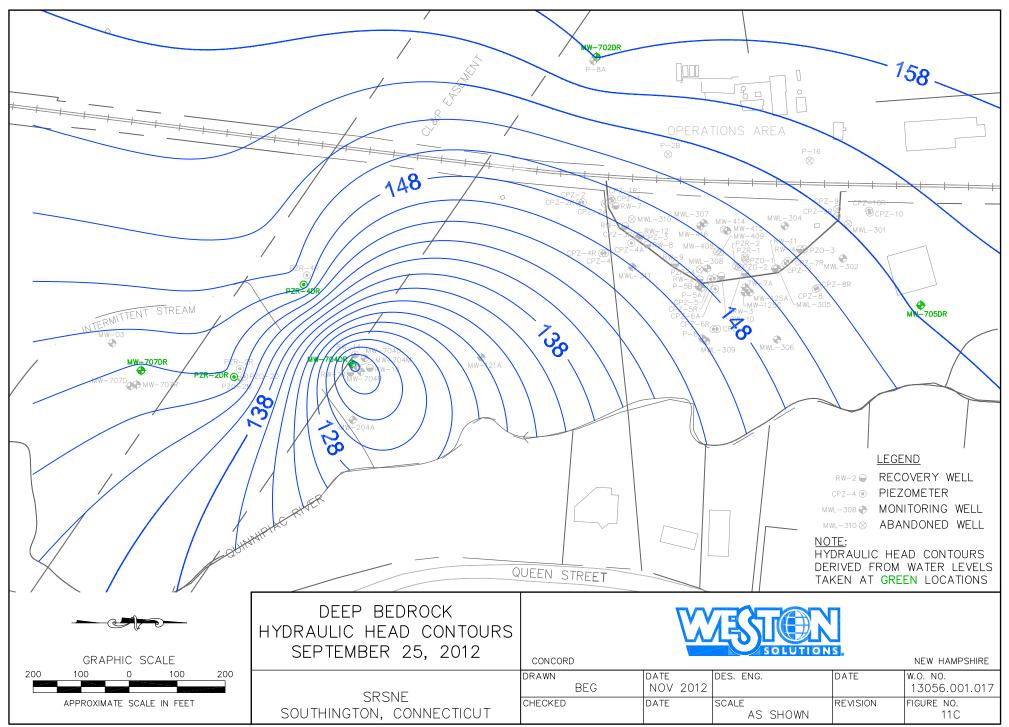
DRAFT

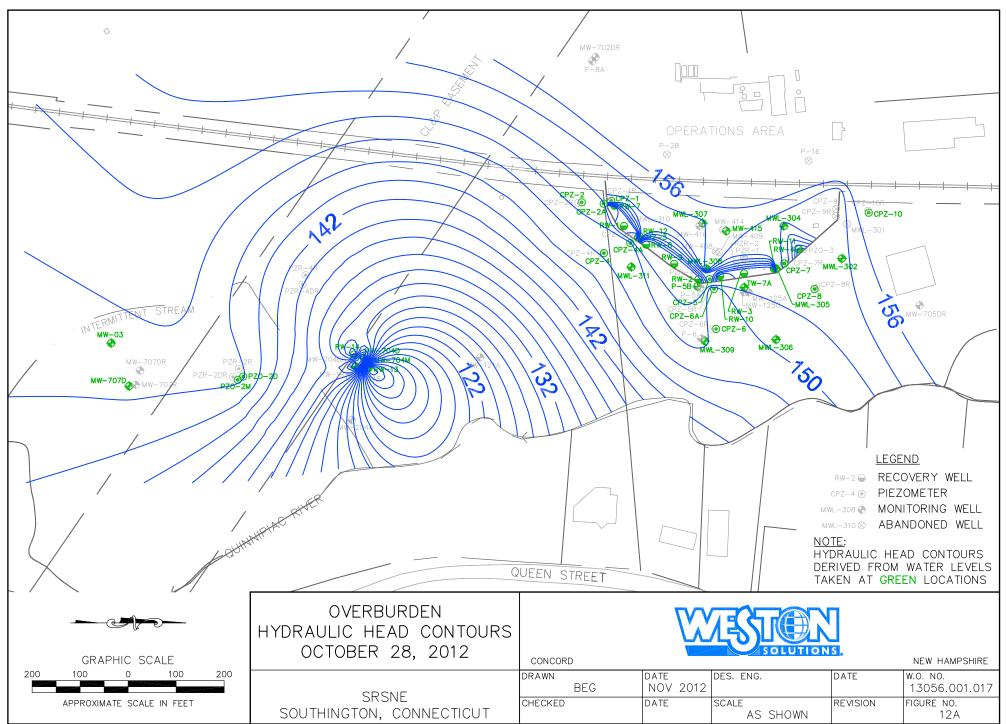

M:\Design\DWG\SRSNE\Aug 29 2012\shallow bedrock.dwg, Layout1, 11/9/2012 12:11:50 PM, girardeb, 1:1

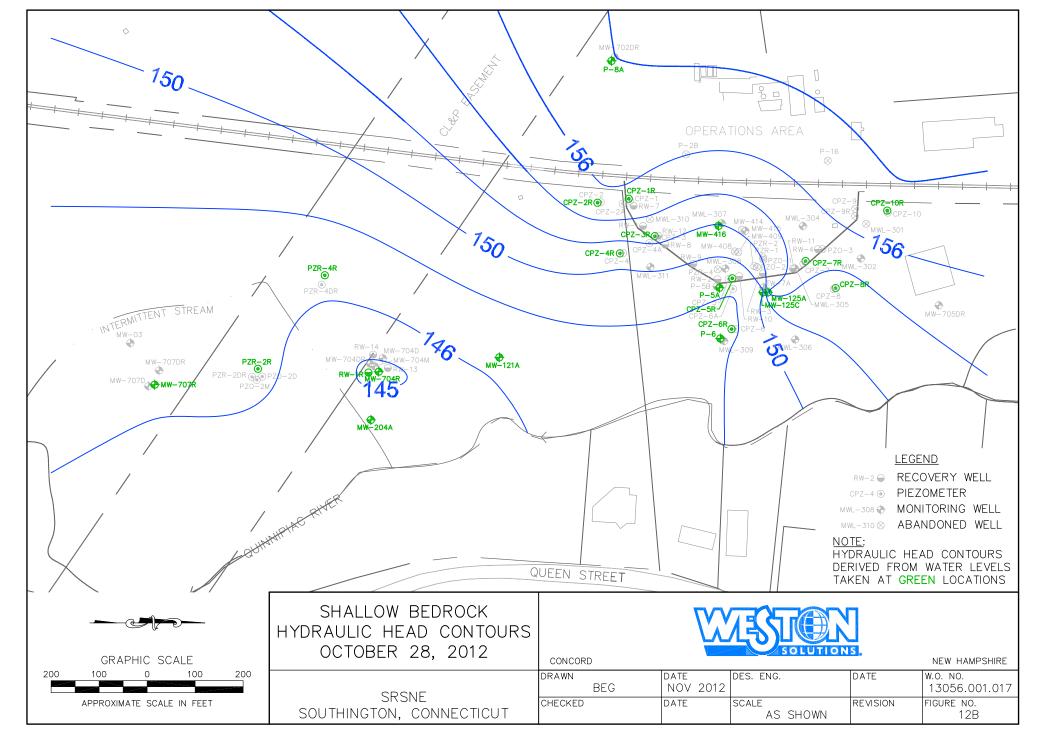
DRAFT


M:\Design\DWG\SRSNE\Aug 29 2012\deep bedrock.dwg, Layout1, 11/9/2012 12:12:28 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Sept 25 2012\overburden.dwg, Layout1, 11/9/2012 12:13:46 PM, girardeb, 1:1

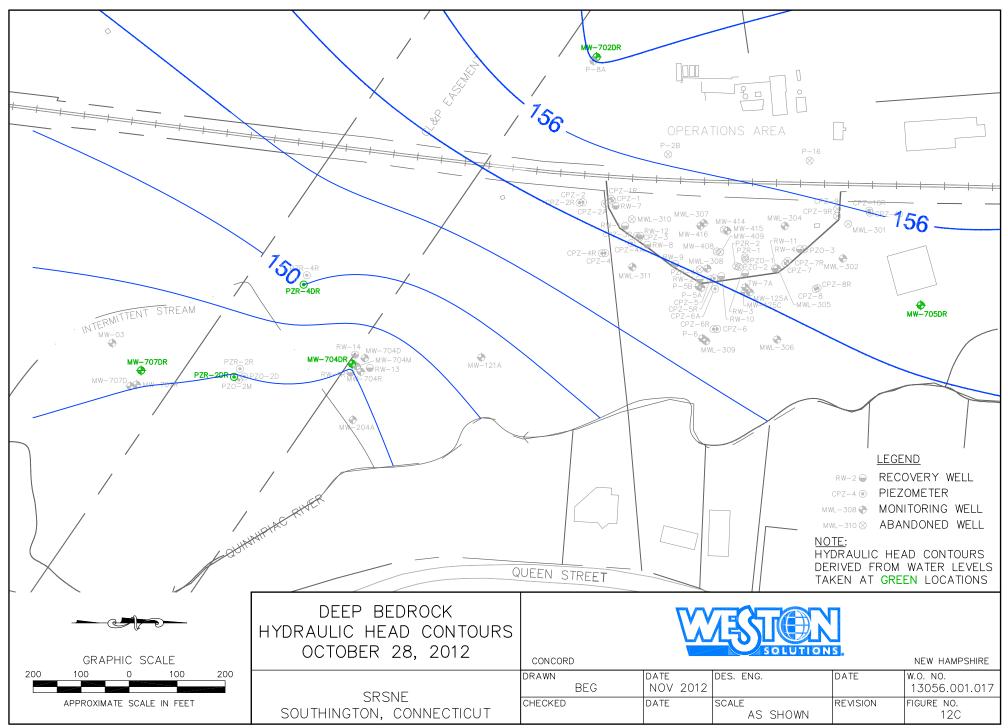



M:\Design\DWG\SRSNE\Sept 25 2012\shallow bedrock.dwg, Layout1, 11/9/2012 12:14:37 PM, girardeb, 1:1



M:\Design\DWG\SRSNE\Sept 25 2012\deep bedrock.dwg, Layout1, 11/9/2012 12:15:18 PM, girardeb, 1:1

M:\Design\DWG\SRSNE\Oct 28 2012\overburden.dwg, Layout1, 11/9/2012 12:16:19 PM, girardeb, 1:1



M:\Design\DWG\SRSNE\Oct 28 2012\shallow bedrock.dwg, Layout1, 11/12/2012 11:11:05 AM, GIRARDEB, 1:1

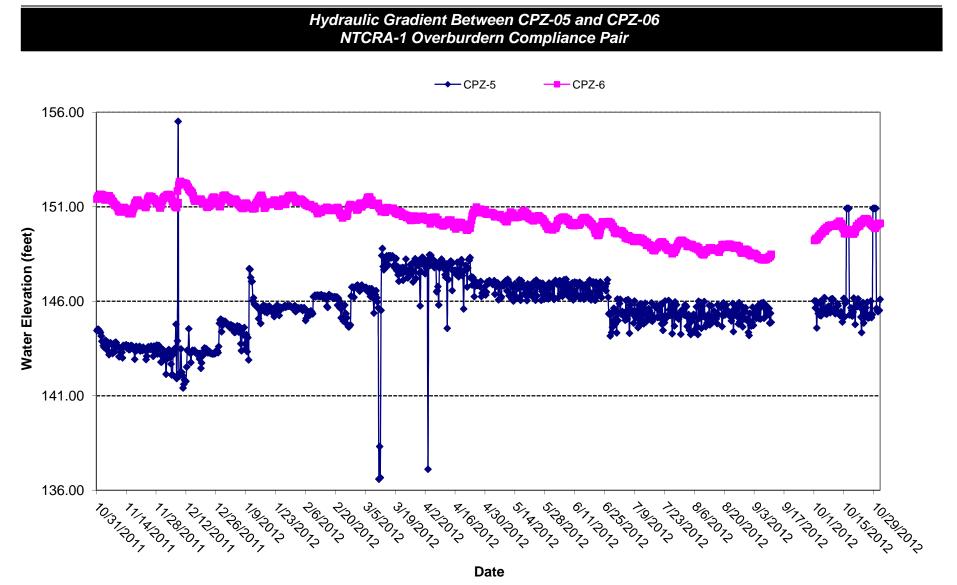

M:\Design\DWG\SRSNE\Oct 28 2012\deep bedrock.dwg, Layout1, 11/9/2012 12:17:33 PM, girardeb, 1:1

FIGURE 13

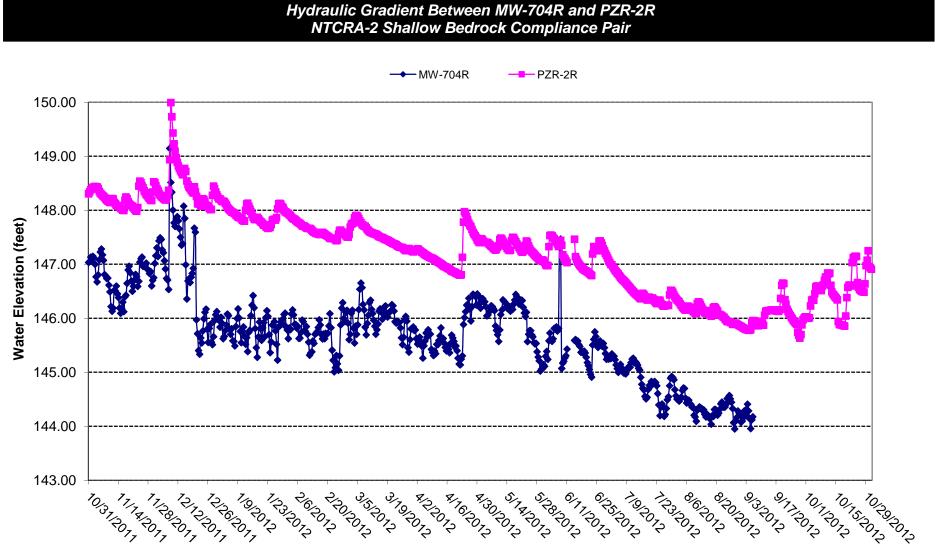

31 Oct. 2011 through 30 Oct. 2012

FIGURE 14A

31 Oct. 2011 through 30 Oct. 2012

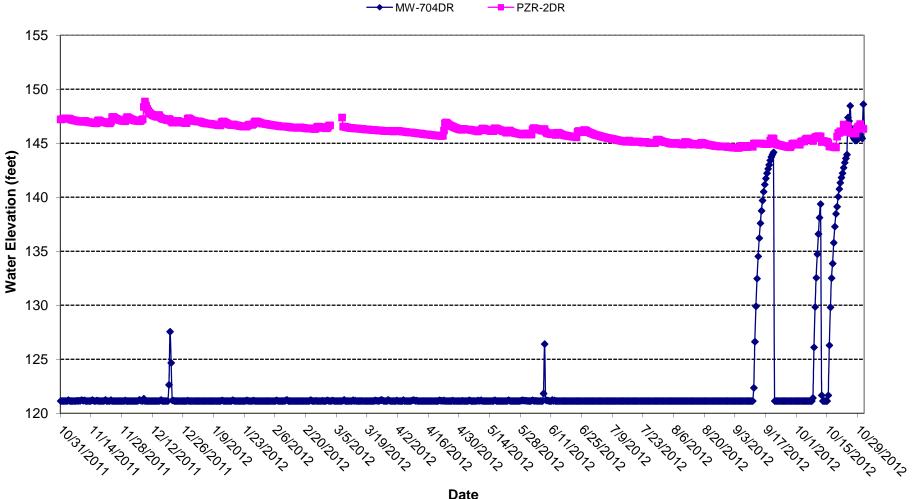

Date

FIGURE 14B

31 Oct. 2011 through 30 Oct. 2012

Date

de maximis, inc.						Ann	SRSNE RD/RA Project Schedule uual State of Compliance Report #2			
Deliverable/Activity RDRA Schedule	Trigger	Time Frame	Qtr 4	2017 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2	2018 Qtr 3 Qtr 4 Qtr 1	2019 Qtr 2 Qtr 3 Qtr 4	2020 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2021 Qtr 1 Qtr 2 Qtr 3 Qtr 4	2022 2023 Qir 1 Qir 2 Qir 3 Qir 4 Qir 1 Qir 2 Qir 3 Qir 4	2024 2025 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2
Lodging of the Consent Decree Entry of the CD					1		1			
Initial Remedial Steps Phase EPA Notification of Supervising Contractor/Project	A Approval of Contractors aging of the CD Sat	atisfied in the draft SOW.								
	tging of the CD No	otification/Selection of a Remedial Design ortification					·		÷	· * +
6 Memorandum of Agreement (MOA)	ry of the CD. We	ithin 180 days of Entry of CD		1 1	1		1		1 1 1	
10 Supplemental Containment Action Plan	A Approval of MOA We	ithin 30 days of signed MOA.				1	1			
11 Implementation of Supplemental Containment Uso Action Plan (TBD)	sistent with the terms of the morandum of Agreement	a specified by EPA.								
19 Design Initiation Phase	mpletion of Vapor Intrusion Study We	enin 30 days or companion or Vapor initia		;;			·		÷	· ÷
43 Agency Review and Comment on Accelerated Pre Design Studies						1	1			
44 Agency Review and Comment on Remedial Design Work Plan and POP					1	1	1			
45 Pre-Design Studies 64 Pre-ISTR Final Design Package (100 % Design) 27 EPA	A approval or modification of Conce We bmittal of 100% Design.	ithin 90 days of notice by EPA.								
rectified internation incerning	omittal of 100% Design.			1 I			I I			
Agency Review/Comment Agency Approval of Pre-ISTR Package (100%							1		1 I 1 I	
74 ISTR Conceptual Design Package (75% Design) With	A strengel or motification of RD Wit	this 12t days of EPA services that			1		1			
Pre-Design Activities Reports	rk Plan. ner dei cor	icessary pre-design studies to be iscribed in the RD Work Plan are molete								
80 Submit 75% Design Package				''			·		<u>-</u>	·
oi Technical Information Meeting 82 Agency Approval of 75% Design Package with Comments					1	1	1			
83 ISTR Final Design Package (100% Design)					I.	1	1			
Submit ISTR Final Draft Package (100% Design) Technical Information Meeting Anency Approval of ISTR Design Package (100%										· · · · · · · · · · · · · · · · · · ·
88 Agency Approval of ISTR Design Package (100% Design) with Comments 89 Pre-construction Conference(s)	A approval or modification of Final CWI	ithin 30 days of notice by EPA		1 1			1			
90 Pre-construction Conference(s) EPA 91 Accelerated ISTR Construction Activities EPA	A approval or modification of Final CWI A approval or modification of Final CWI	ithin 45 days of notice by EPA.			1					
Accelerated ISTR Construction Activities AT&T Fiber Optic Relocation Partial CP-2 (culvert relocation) Construction									r	·
Partial CP-2 (culvert relocation) Construction OAR-2 Surface Preparation for ISTR Work Thermal Infrastructure Installation (gas, sewer,							1			
power)	A approval or modification of Wi	Ithin 60 days of notice by EPA.			1	1	1			
Activities (ISTR and Soils)		leakly during construction		¦					¦	·
172 In-Situ Thermal Treatment Construction	hin 60 days of notice by Settling						1			
	hin 30 days of Final Construction Wit	ithin 30 Days					1			
175 Agency Approval of Completion Report	pector.					1	1			
176 Thermal Treatment 181 Post Thermal Activities									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
182 Soil Investigation After Soil	er In-Situ Thermal to re-assess the e of the area to be capped					i i				
	er In-Situ Thermal to determine ether (or not) a vapor control term is needed below the cap.			і і І			1		I I	
184 Final Soil & RCRA C Cap Conceptual Design	tem is needed below the cap.						1		1 I 1 I	
185 Final Soil & Multi Layer Cap Submit 75% Design							·		<u>-</u>	
Package 186 Technical Information Meeting							1			
187 Agency Approval of 75% Final Soil & Multi Layer Cap Design Package with Comments				1 I			1		I I	
Cap Design Package with Comments Final Soil & Multi Layer Cap 100% Design Submittal					1	1	1			
189 Technical Information Meeting							1			
190 Agency Approval of Final Soil & Multi Layer Cap 100% Design									+	++
191 Final Soil & Multi Layer Cap Construction										
192 Final Construction Inspection Set	ting Defendents conclude Wit struction complete. De	ithin 80 days of notice by Settling elendants.		1 I 1 I	1	1	1		1 I 1 I	
193 Groundwater Containment & Treatment Evaluation			TEOS		1	1	1		1 I 1 I	
& Optimization Study (GCTEOS	on completion of the in-situ As	a directed by the EPA, or proposed by the etting Defendents, no less frequently than ety 10 years					1			
196 Additional Optimization Study(s) (TBD)	email Treatment and capping Se reponents of the remedy even	atting Defendants, no less frequently than very 10 years								· • • •
	al construction inspection. Wi	Ithin 30 days of inspection.		1 I 1 I			1		1 I 1 I	
	A approval or modification of Import.			I I I I	I I		1		1 I 1 I	
213 Compliance Monitoring (CM)					1		- 		الم ا	
214 Annual Groundwater Sampling Event				۰ ۰			*			
226 Biennial Groundwater Sampling Event							·		÷	· + +
247 Five-Year Review Sampling Event				↓ 		1	1			
251 Sampling between Railroad Tracks and NTCRA 1 Sheet Pile Wall				<u> </u>	I	φ	1			
252 Pre ISTR Sampling										
258 ISTR Sampling							1			
261 Post ISTR Sampling (During Time to Achieve Equilibrium)									<u></u>	· ـ
266 Post ISTR Equilibrium Sampling			*	♦ ♦ ♦	<u>م</u>	۰ ۰	1			
277 Background Sampling Event (Metals Only)				↓ ◆ ↓						
283 Compliance Reporting							Compliance Reporting			
284 Monthly Progress Reports Lod	dging of the CD. On mo	n the 10th day following lodging and onthly thereafter.			I I		1			
369 Annual State of Compliance Reports Com	e Year After the Lodging of the An Insent Decree	nually					·		r	тттт
	e Years after the date of the Ev cord of Decision					1	۰ ۱			
385 Compliance Monitoring (CM) Work Plan Not Evaluation(s)	less frequently than once after plementation of the excavation d capping component, and g-term groundwater stainment and treatment system.	a part of the five-year reviews.					۰ ۱			
				I I I I	I I		1			
389 Interim Remedial Action Report EPA group transformed by the second s	A determination that long-term We undwater containment and atment system is operational and scientific and scientific and s	ithin 90 days of notice by EPA.								
	ctional. mpliance with Interim Cleanup No rels for Groundwater. of I						1			
Groundwater (TBD)				I I	1	1	1			
	mpliance with cleanup levels. As	a demonstrated by Settling Defendants.		 			، ا		r	· · · · · · · · · · · · · · · · · · ·
392 Risk Assessment										
393 Site Closure (TBD)						1	1		♦ 222023	
394 Summary of Cost Information (TBD) Con	mpliance with cleanup levels. As	a demonstrated by Settling Defendants.			I					
Project: SRSNE Superfund Site Date: January 15, 2009							Page 2			