

200 Day Hill Road Suite 200 Windsor, CT 06095 (860) 298-0541 (860) 298-0561 FAX

April 4, 2018

Ms. Karen Lumino US EPA, Region 1 Office of Site Remediation and Restoration CT Superfund Section 5 Post Office Square, Suite 100 Mailcode OSRR07-4 Boston, MA 02109

Subject: Solvents Recovery Service of New England Inc. Superfund Site Southington, Connecticut Annual State of Compliance Report #9

Dear Ms. Lumino:

Pursuant to Section 62.e of the Consent Decree (CD) for the Remedial Design/Remedial Action at the Solvents Recovery Service of New England, Inc. Superfund Site entered on March 26, 2009 by the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE), and in accordance with Section VIII.B of the Statement of Work (SOW) attached to the CD as Appendix B, enclosed please find Annual State of Compliance Report No. 9.

This report covers the period from October 30, 2016 through October 31, 2017, and is submitted on behalf of the Respondents to the CD.

Please contact me if you have any questions.

Sincerely,

RA Mayle

Bruce Thompson Project Coordinator

Enclosure

cc: Shannon Pociu, CTDEEP SRSNE Executive Committee

Solvents Recovery Service of New England, Inc. Superfund Site

Southington, CT

Annual State of Compliance Report # 9

October 31, 2016 through October 30, 2017

January 2018

Table of Contents	
A. Introduction	. 1
B. Background	. 2
C. Site Operational History	. 5
D. Regulatory Status	. 6
E. Selected Remedy	
F. Performance Standards	. 9
G. Summary of Activities Completed This Reporting Period1	0
H. Updated Schedule1	10
I. Hydraulic Containment & Treatment System Operations and Maintenance1	10
J. Institutional Controls / Access Agreements	13
K. Explanation of Significant Differences1	14
L. Construction, Operation and Maintenance Activities1	15
	17
N. Memorandum of Agreement (MOA) with Southington Water Department / Tow	'n
of Southington	17
O. Groundwater Monitoring Program1	17
Q. Costs Incurred this Reporting Period	21
R. References	22

Tables:

Table 1 - Summary of Activities Completed - October 30, 2008 through October 31, 2017

Table N-1 - Groundwater Monitoring Network and Sampling Events

Figures:

Figure 1 - Site Location

Figure 2 - Study Area

Figure 3A - Estimated Groundwater Plume and NAPL Areas – Overburden

Figure 3B - Estimated Groundwater Plume and NAPL Areas – Bedrock

Figure 4 - Remedial Activities Completed

Attachments:

Attachment 1 - Project Schedule

Attachment 2 - Hydraulic Containment and Treatment System, Annual Demonstration of Compliance Report No.8, October 31, 2016 through October 30, 2017 Attachment 3 - 2017 Groundwater Sampling and Monitored Natural Attenuation Report

A. Introduction

On October 30, 2008, the United States Environmental Protection Agency (USEPA) lodged a Consent Decree (CD) with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE). The CD was entered by the Court on March 26, 2009. The CD addresses Remedial Design/Remedial Action (RD/RA) activities for the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Appendix B to the CD is a Statement of Work (SOW) that defines the required RD/RA activities and deliverables.

Section VIII.B of the SOW requires the Settling Defendants to submit an Annual State of Compliance Report one year after lodging of the CD and annually thereafter, to USEPA for approval or modification, after reasonable opportunity for review and comment by Connecticut Department of Energy and Environmental Protection (CTDEEP). Section 62.e of the CD requires a demonstration of the amounts of the Rolling Oversight Cost Cap and the Available Balance. This *Annual State of Compliance Report #9* (report) has been prepared on behalf of the SRSNE Site Group, an unincorporated association of Settling Defendants to the CD, to address these CD and SOW requirements. This report documents Site activities during the period of October 31, 2016 through October 30, 2017 (the "reporting period").

As specified in SOW Section VIII.B, this report includes a comprehensive evaluation of all monitoring required by this SOW, including, but not limited to:

- compliance with the Performance Standards of the Hydraulic Containment and Treatment System and Severed Plume;
- Institutional Controls;
- construction, operation and maintenance;
- habitat restoration;
- hydraulic containment;
- the Memorandum of Agreement with Southington Water Department / Town of Southington; and
- groundwater monitoring program, including monitored natural attenuation.

Also required in the report is an assessment of the progress being made towards achieving the Performance Standards, as well as recommendations for changes to any monitoring program to address deficiencies identified during the evaluation. Proposals for reductions in monitoring, along with justifications, are provided as appropriate.

B. Background

The SRSNE Site is located on approximately 14 acres of land along Lazy Lane in Southington, Hartford County, Connecticut, approximately 15 miles southwest of the city of Hartford (Figure 1). The physical setting of the Site – including the regional geology, overburden geology, bedrock geology, hydrogeology, groundwater use and classification, drainage, and surface water use and classification – is summarized below. This information is also described in detail in prior report submittals, including the *Remedial Investigation Report* (Blasland, Bouck & Lee, Inc. [BBL] 1998) and the *Feasibility Study Report* (BBL and USEPA 2005), and the *Remedial Design Work Plan (RDWP)* (ARCADIS, November 2010).

The SRSNE Site includes portions of several properties/areas that are referred to within the RDWP consistent with terminology established in prior Site-related documents. These properties/areas include the former SRSNE Operations Area, the former Boston & Maine railroad right-of-way, the former Cianci Property, and the Town of Southington Well Field Property (Town Well Field Property). These areas are shown on Figure 2, and further described below:

- Former SRSNE Operations Area: The former SRSNE Operations Area comprises approximately 2.5 paved acres on a 3.7-acre lot South of Lazy Lane in the Quinnipiac River basin approximately 600 feet west of the Quinnipiac River channel. This is the area where SRSNE historically performed solvent recovery and related operations. The Operations Area is bordered on the east (downhill) by an abandoned railroad right-of-way and the former Cianci Property; to the north by commercial businesses; to the west (uphill) by private property; and to the south by private property, the Connecticut Light & Power (CL&P) electrical transmission line easement, and the Town Well Field Property.
- Railroad Right-of-Way: The railroad right-of-way is an approximately 50-foot wide corridor running north-south that separates the former Operations Area (to the west) from the former Cianci Property (to the east). The railroad was historically owned and operated by Boston & Maine, but is presently abandoned and the rails have been removed. CT DEP purchased the right-of-way in this area in support of extending the Farmington Canal Heritage Trail, a rails-to-trails greenway, from New Haven to the Massachusetts border (draft *Preliminary Reuse Assessment* [USEPA 2003]).
- Former Cianci Property: The former Cianci Property is a 10-acre parcel located immediately east of the Operations Area and railroad right-of-way. The Quinnipiac River borders the eastern edge of the former Cianci Property. Lazy Lane is to the north, and the Town Well Field Property borders the property to the south.
- **Town Well Field Property:** The Town Well Field Property consists of approximately 28 acres of undeveloped land south of the former Cianci Property and southeast of the Operations Area. The well field is bounded to the east by the Quinnipiac River

and to the south by the Quinnipiac River and Curtiss Street. The railroad right-of-way and the Delahunty Property border the western perimeter of the well field. The CL&P easement runs northwest-southeast through the northern portion of the Town Well Field Property.

Town Production Wells No. 4 and 6 are approximately 2,000 and 1,400 feet south of the SRSNE Property, respectively. The Quinnipiac River divides the area between Wells No. 4 and 6. Production Well No. 6 is accessible using dirt roads originating from Lazy Lane or Curtiss Street, while Well No. 4 is only accessible from Curtiss Street. Production Well No. 4 was installed in August 1965 and provided drinking water to the Town of Southington from July 1966 to December 1977. Production Well No. 6 was installed in April 1976 and was pumped from May through October 1978, May through July 1979, and March 1980. Both wells have been inactive since that time.

Within these areas, "the Site" includes areas where Site-related constituents have come to be present in soil (including wetland soil) and groundwater at concentrations exceeding SOW-specified cleanup levels. This includes observed and interpreted non-aqueous phase liquid- (NAPL-) containing areas, impacted soils in the Operations Area, railroad right-of-way, and Cianci Property, and areas of impacted groundwater in both the overburden and bedrock zones. These areas, shown on Figures 3A (overburden) and 3B (bedrock), are generally described as follows:

- **Overburden NAPL Area:** This is the area where NAPL has been observed or inferred to exist in overburden soils based on the findings of prior investigations. The estimated extent of the Overburden NAPL Area includes portions of the Operations Area, the railroad right-of-way, and a portion of the Cianci Property, as shown on Figure 3A. This area has been further delineated in the northwest corner of the former Operations Area as component of the pre-design investigations referenced in the RDWP.
- Overburden Groundwater Area: The Overburden Groundwater Area is the portion of the Site where dissolved volatile organic compounds (VOC) concentrations in the overburden aquifer exceed cleanup goals. While the overburden groundwater is typically considered in three zones (each approximately one-third of the saturated thickness), the composite extent of this area (based on *Feasibility Study Report* [BBL and USEPA 2005] data) is depicted on Figure 3A. The overburden groundwater VOC plume extends south to the Town Well Field Property. The extent of the overburden groundwater area, particularly to the east of the Quinnipiac River, is subject to further assessment and delineation as part of the investigations referenced in the RDWP.
- **Bedrock NAPL Area:** The Bedrock NAPL Area is the area where NAPL has been observed or is inferred to exist based on prior site investigations. This includes a

majority of the former SRSNE Operations Area and Cianci Property, as shown on Figure 3B.

- Bedrock Groundwater Area: This includes the portion of the Site where dissolved VOC concentrations in the bedrock aquifer exceed groundwater cleanup goals (based on *Feasibility Study Report* [BBL and USEPA 2005] data). The bedrock groundwater VOC plume extends south into the central portion of the Town Well Field Property, represented in figures 10 and 11 in Attachment 3 the *Draft 2017 MNA report* (ARCADIS, January 2018)
- Severed Plume: The portion of the affected groundwater zone that is outside the groundwater capture zone of the Non-Time-Critical Removal Action 1 (NTCRA 1) and NTCRA 2 extraction systems (described below), which contains Site-related constituents (primarily VOCs) above detectable levels is referred to as the severed plume. The approximate location and extent of the severed plume is shown on Figure 3A.

Other key Site features referenced include the Hydraulic Containment and Treatment System (HCTS). The HCTS consists of the on-site groundwater treatment system and the two groundwater extraction systems described as follows:

• NTCRA 1 Groundwater Extraction System: The NTCRA 1 groundwater extraction system ("NTCRA 1 system") is located within the NTCRA containment area on the Cianci Property east of the Operations Area (Figure 4). It originally consisted of a steel sheet pile wall through the overburden to the top of bedrock, and 12 overburden groundwater extraction wells (RW-1 through RW-12) west (formerly upgradient) of the sheet pile wall. Groundwater is extracted from the wells to maintain hydraulic gradient reversal across the sheet pile wall. This system was installed in 1995 pursuant to Administrative Order on Consent (AOC) I-94-1045, effective October 4, 1994. Pumping from the NTCRA 1 system was initiated in July 1995.

In December of 2009, *de maximis* submitted a letter to the Agencies summarizing changes to the NTCRA-1 Demonstration of Compliance Plan (DCP) as a result of the abandonment of monitoring well CPZ-9 (one of the ten NTCRA I compliance monitoring points) and decommission of recovery wells RW-5 and RW-6. Monitoring well abandonment activities at the site have been undertaken in accordance with Attachment N of the RDWP.

On October 31, 2016, *de maximis* submitted a memorandum to the Agencies requesting modifications of operations and monitoring of the NCTRA-1, these modifications include taking low yielding NCTRA-1 extraction wells out of service while still maintaining reversal of gradient and continuing to monitor water levels. This request was approved on March 2017.

NTCRA 2 Groundwater Extraction System: The NTCRA 2 groundwater extraction system ("NTCRA 2 system") consists of three overburden extraction wells (RW-13, RW-14 and RW-15) and one bedrock extraction well (RW-1R) just north of the CL&P easement (Figure 4). These wells were installed pursuant to AOC 1-97-1000, effective February 18, 1997, and began operating in 1999, 2007, 2014 and 2001, respectively. The supplemental Groundwater Recovery Well (RW-15) was installed in October 2014. The additional recovery well was installed to ensure that target flow (30 gpm) and the overburden target zone recovery in NCTRA 2 will continue to be maintained. This extraction well cluster is located in the Town Well Field Property north of the CL&P easement.

In 2017, the average combined NTCRA 1 and NTCRA 2 groundwater extraction systems pumping rate was 37.8 gallons per minute. The capture zones created by the NTCRA 1 and 2 groundwater extraction systems are shown on Figure 3A (overburden) and Figure 3B (bedrock). The operation of the combined NTCRA 1 and NTCRA 2 systems has successfully contained the overburden and bedrock VOC plumes, creating the severed plume within the Town Well Field Property. Approximately 19,970,000 gallons of groundwater were extracted, treated and discharged during this monitoring period.

On-site Groundwater Treatment System: The combined operations of the extraction systems and the treatment facility were previously referred to as the "NTCRA 1 and NTCRA 2 Groundwater Extraction and Treatment System" or "NTCRA 1/2 Groundwater System." Following entry of the CD, continued operation of the NTCRA 1/2 Groundwater System became part of the ROD-specified remedial approach for groundwater, and the system is now referred to as the HCTS (SOW Section V.A).

Groundwater extracted from the NTCRA 1 and 2 systems is treated on site with a process that was originally constructed as part of the NTCRA 1 system (Figure 4). The groundwater extracted by the NTCRA-1 and 2 containment systems is pumped directly to the groundwater treatment facility. The treatment system consists of the following unit processes: metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic contaminants. Treated water is discharged to the Quinnipiac River in accordance with the Revised Connecticut Department of Environmental Protection (CTDEP) Substantive Requirements for Discharge of Pre-Treated Groundwater issued 6 November 1995. Approximately 18,000 pounds of VOCs have been removed from the groundwater since system startup.

C. Site Operational History

The SRSNE facility began operations in Southington in 1955 (ATSDR 1992). From approximately 1955 until the facility's closure in 1991, spent solvents were received from customers and distilled to remove impurities, and the recovered solvents were

returned to the customer or sold to others for reuse. Based on a partial record of materials processed at the SRSNE facility (excluding pre-1967 operations files, which were destroyed in a fire), SRSNE handled in excess of 41 million gallons of waste solvents, fuels, paints, etc. Additional details regarding the operational history are provided in the *Remedial Investigation Report* (BBL 1998).

D. Regulatory Status

The SRSNE Site was added to the National Priorities List (NPL) on September 8, 1983. Since that time USEPA and the State of Connecticut have implemented a variety of enforcement, regulatory and response actions, culminating with the issuance of the Proposed Plan and Record of Decision (ROD) in September 2005. After issuing the ROD, the USEPA and SRSNE Site Group negotiated the terms of the CD.

Key regulatory milestones in the recent history of the Site, based on lists included on USEPA's project website (USEPA 2009) and in the fact sheet USEPA developed in support of the 2005 Proposed Plan (USEPA 2005b), are as follows:

Regulatory Milestone	Year
USEPA adds the Site to the NPL; SRSNE signs a consent decree with USEPA to install a groundwater recovery system and store/manage hazardous waste on site.	1983
USEPA and the State of Connecticut take enforcement action to require cleanup of the facility operations and the property.	1983-1988
USEPA initiates the Remedial Investigation for the Site, conducting three phases of investigation that are presented in a four-volume report (HNUS 1994).	1990
SRSNE operations cease.	1991
USEPA conducts a Time-Critical Removal Action to remove contaminated soils from the railroad grade drainage ditch and to remove some chemicals stored at the property to an off-site location.	1992
USEPA and the SRSNE Group enter into an Administrative Order on Consent (AOC) for Removal Action to construct and operate a pump and treat system to contain the principally contaminated overburden groundwater (the NTCRA 1 work). Other work conducted under this AOC included the construction of a mitigation wetland in the northeast corner of the Cianci Property, implementation of a full-scale phytoremediation study within the NTCRA 1 sheet pile wall, and extension of public water to three buildings adjacent to the Site.	1994
USEPA issues an Action Memorandum for a second NTCRA (NTCRA 2) to hydraulically contain VOC-impacted bedrock groundwater down gradient of the NTCRA 1 system.	1995
USEPA and the SRSNE Site Group enter into a second AOC for Removal Action and Remedial Investigation/Feasibility Study (RI/FS) to expand the groundwater containment system and complete site investigations. Work under this AOC resulted in the completion of the Site RI/FS, implementation of NTCRA 2, and the decontamination, demolition and removal of the remaining buildings and tanks from the Operations Area.	1996
SRSNE Site Group operates groundwater controls in the overburden and bedrock aquifers,	1996 - 2004

completes remedial investigations, and conducts feasibility studies. USEPA issues the Proposed Plan in June and holds two public meetings; the public	
comment period runs from June through August.	2005
USEPA issues the ROD for the Site, which describes the final remedy.	2005
SRSNE Site Group continues operation of the NTCRA 1 and 2 hydraulic containment and treatment systems	2005-2008
USEPA and SRSNE Site Group sign CD to implement the RD/RA activities.	2008
	2008 -
SRSNE Site Group continues operation of HCTS	present
Court enters CD; Remedial Design work initiated.	2009
Annual Report #1	2009
1 st Five Year Review Report	2010
USEPA issues Remedial Design Work Plan Approval	2010
USEPA issues approval of PIPP 100% Design and RAWP	2010
Initiated Pre-ISTR Preparation Plan Construction Activities	2010
EPA, CTDEEP and SRSNE Site Group hold open house for public at Site	2010
Annual Report #2	2010
ISTR Conceptual Design Approval	2011
Approval of ISTR 100% Wellfield Design	2011
Annual Report #3	2011
Institutional Control Plan revisions based on March 2012 comments and May 2012 meeting	2012
Approval of the use of Hydro sleeve for interim sampling	2012
Approval for low flow screen length	2012
Completed delineation of extent of groundwater contamination	2012
Completed Pre-ISTR Preparation Plan Construction Activities	2012
Annual Report #4	2012
Initiated ISTR construction	2013
EPA, CTDEEP and SRSNE Site Group hold open house for public at Site	2013
Annual Report #5	2013
Approval of the 100% design ISTR Work Plan	2014
Issuance of final Memorandum of Agreement	2014
Submittal of the Supplemental Containment Action Plan	2014
ISTR initiated	2014
Approval of Technical Work Plan for NTCRA supplemental Recovery Well (RW-15)	2014
Installation of RW-15	2014
Annual Report #6	2015
ISTR completed	2015
Approval of ISTR Completion/Remedial Action Completion Report	2015
Revised Conceptual Site Model (CSM)	2015
2 nd Five Year Review Report	2015
Annual Report #7	2016
Draft RCRA CAP 100% RD and RAWP report	2016
RCRA CAP 100% RD and RAWP report	2016
Approval of RCRA CAP 100 RD and RAWP Report	2016

Commence RCRA Cap Construction	2016
Complete RCRA Cap Construction	2017
Draft RCRA Cap Construction Completion Report	2017

E. Selected Remedy

The overall purpose of RD/RA activities is to design and implement the selected remedial approach for the Site. The selected remedy, developed by combining components of different alternatives for source control and management of migration to obtain a comprehensive approach for Site remediation, was described in the ROD. Key elements are summarized as follows:

- Treat waste oil and solvents where present as NAPL in the subsurface in the overburden aquifer (i.e., the Overburden NAPL Area) using in-situ thermal treatment. Completed 2015 as described in the *In-Situ Thermal Remediation Construction Completion Report (de maximis,* September 2015)
- Following in-situ thermal treatment, cap the former SRSNE Operations Area. The cap will be low-permeability and multi-layered and is to be designed, constructed, and maintained to meet the requirements of Resource Conservation and Recovery Act (RCRA) Subtitle C. As described in the "*Re-use of Excavated Material from Railroad Right of Way for ISTR Area Fill*" memorandum (*de maximis, inc.*, April 29, 2010), soils excavated from the Rail Road Right of Way will be incorporated as fill material in the Thermal Treatment Zone (TTZ). Excavation of soil in a specific portion of the former railroad right-of-way to a depth of 4 feet followed by backfill to match surrounding grade –will meet the direct exposure criteria (DEC) and pollutant mobility criteria (PMC) requirements of the Connecticut Remediation Standard Regulations with the understanding that an Activity and Use Limitation (ELUR) would subsequently be established for this area. Completed 2017 as described in the *DRAFT RCRA Subtitle C Cap Construction Completion Report (GEI, October 2017)*
- Excavate soils exceeding cleanup levels from certain discrete portions of the former Cianci Property. The estimated limits of soil removal on the former Cianci Property (five discrete excavation areas) are shown on Figure G-1 of the *Post-Excavation Confirmatory Sampling Plan* (Attachment G to the RDWP); these limits were subject to modification based on additional sampling proposed as part of remedial design. Provided that concentrations of polychlorinated biphenyls (PCBs) did not warrant off-site disposal, soils excavated from the former Cianci Property (and from other areas excavated outside the cap limits as part of other RD/RA activities) may be relocated to the former SRSNE Operations Area for placement beneath the cap.

- Capture and treat (on site) groundwater in both the overburden and bedrock aquifers that exceeds applicable federal drinking water standards and risk-based levels. This will be achieved through continued operation, maintenance, and modification (as needed) of the HCTS.
- Monitored natural attenuation of the groundwater plume outside the capture zones (i.e., the severed plume, shown on Figure 3A of the RDWP) that exceeds cleanup levels.
- Monitor natural degradation of constituents in the groundwater plume inside the capture zones and within the Bedrock NAPL Area (shown on Figure 3B of the RDWP).
- Implement institutional controls (i.e., Environmental Land Use Restrictions) to minimize the potential for human exposure to Site-related constituents in the subsurface soils and to prohibit activities that might affect the performance or integrity of the cap.
- Monitor groundwater and maintain the cap over the long term.

F. Performance Standards

Section IV of the SOW establishes Performance Standards for the various affected media at the SRSNE Site. It also establishes Performance Standards for other aspects of the RD/RA, including subsurface NAPL in the overburden and bedrock aquifers, performance of the multi-layer cap, hydraulic containment and treatment, the severed plume, habitat restoration, environmental monitoring, and institutional controls. These non-media-specific Performance Standards are summarized and addressed (to the extent applicable at this point in the RD/RA process) in the various task-specific work plans summarized in the RDWP.

Performance Standards for soil, wetland soil, and groundwater have been reviewed and compared to the current applicable USEPA and CTDEP standards and guidance. Based on this review, it was concluded that none of the USEPA or CTDEP criteria for Site-related constituent have been revised since the ROD was issued. However, the CTDEP has published a lower detection limit for 1,2,4-trichlorobenzene in water (0.5 micrograms per liter [ug/L] rather than the prior value of 2 ug/L). Because the detection limit is the cleanup level for groundwater (discussed below), this modification is noted on the copy of Table L-1 from the ROD that is provided as Appendix 1 to the RDWP. No other modifications were warranted to Tables L-1 or L-2 of the ROD to reflect current published guidance and standards.

The RD/RA SOW requires a soil investigation be conducted after implementation of in situ thermal treatment to re-assess the size of the area to be capped. That sampling needs to determine the background concentrations of 2,3,7,8-tetrachlorodibenzo-pdioxin,or "2,3,7,8-TCDD", calculated as "toxic equivalents" or (TEQ), which are the

sum of seventeen 2,3,7,8-substitute dioxin and furan congeners multiplied by their respective Toxic Equivalency Factors. In Table L-2 of the ROD, EPA and CTDEEP agreed that the cleanup level for 2,3,7,8-TCDD TEQ ("dioxin") would be "the lower of the EPA policy for residential sites (0.001mg/kg) and the background concentration which will be determined based on future field study, or another concentration consistent with the CT RSRs, but not lower than background."

Background dioxin sampling was performed in 2010, and results found very low background levels. This suggested use of a risk-based clean up level, rather than trying to meet background. Accordingly, a draft "white paper" proposing an alternative dioxin clean up level was submitted to the Agencies on September 16, 2014, EPA provided comments and a revised memo with response to comments was submitted on December 30, 2014The "white paper" proposed 50 part per trillion (ppt) soil clean up level that is consistent with EPA's residential soil standard, and was also derived using the CTDEEP RSR process to determine direct exposure and leaching based criteria. EPA approved the proposed dioxin soil cleanup level of 50 ppt on March 30, 2015. However, the 50ppt dioxin clean up level did not satisfy CTDEEP RSR criteria. An alternative risk based recreational cleanup soil level of 34 ppt was calculated and proposed to CTDEEP on February 5, 2016. This proposed cleanup level was approved on March 11, 2016. Additional soil delineation was performed and approximately 1,110 cubic yards of soil, along the railroad grade at the south end of the site was placed under the cap.

G. Summary of Activities Completed This Reporting Period

A summary of activities completed during this reporting period is provided within the attached Table 1.

H. Updated Schedule

An updated project schedule is included as Attachment 1 to this report.

I. Hydraulic Containment & Treatment System Operations and Maintenance

The HCTS achieved compliance during this reporting period with the Demonstration of Compliance Requirements (see Attachment B to the SOW). Details of the operation are provided as Attachment 2 to this report.

The HCTS includes 10 groundwater extraction wells within the NTCRA 1 Containment Area and four downgradient groundwater extraction wells that were originally installed, operated and monitored as part of NTCRA 2. In combination, the NTCRA 1- and NTCRA 2-area extraction wells are all components of the HCTS. For clarity, they are still referred to as NTCRA 1 and NTCRA 2 extraction wells to differentiate the extraction locations and operational histories.

The NTCRA 1 containment system was installed and began operating in 1995. The system includes an approximately 700-foot-long sheet pile wall that extends through the

overburden to the top of bedrock, and overburden groundwater extraction wells just west of the sheet pile wall. The purpose for the NTCRA 1 system was to physically and hydraulically control the highest concentrations of dissolved VOCs in overburden groundwater migrating downgradient from the former SRSNE Operations Area. The original NTCRA 1 system had twelve overburden extraction wells. Two wells (RW-5 and RW-6) were abandoned in 2011 during preparation for thermal treatment system construction. Additionally, five low yielding wells (RW-1, 4, 8, 9 and, 10) were approved to be taken out of service by EPA in March 2017.

The NTCRA 1 hydraulic containment system now consists of 5 wells (RW-2, 3, 7, 11, and 12). Groundwater extraction rates from the NTCRA 1 wells since 1995 have typically been in the range of 5 to 15 gallons per minute (gpm), combined. Groundwater pumped from the wells is treated using metals pre-treatment, ultraviolet oxidation, and carbon polish, and then discharged to the Quinnipiac River. In addition to hydraulically controlling overburden groundwater, the NTCRA 1 overburden extraction wells produce a hydraulic response in the shallow bedrock, indicating that the overburden and shallow bedrock are hydraulically connected in this area.

The NTCRA 2 system was installed to hydraulically control bedrock groundwater downgradient of the interpreted NAPL zones in overburden and bedrock. A pumping test of well RW-13 during the FS indicated that this overburden well – which is screened from the middle overburden to the top of bedrock – has a significant hydraulic influence in the shallow bedrock and even the deep bedrock. Because the overburden and bedrock are hydraulically connected in the Town Well Field Property, and the natural groundwater flow direction is upward from bedrock to overburden in that area, the NTCRA 2 system hydraulically controls overburden and bedrock groundwater. A summary of the NTCRA 2 extraction wells is as follows:

- RW-13 began operation in July 1999 it extracts groundwater from the middle and deep overburden with a screened interval from 35 to 75 feet bgs, and typically operates between 10 and 25 gpm.
- RW-14 began operation in October 2007 it extracts groundwater from the middle and deep overburden with a screened interval from 31 to 71 feet bgs, and typically operates between 10 and 25 gpm.
- RW-1R began operation in September 2001 it extracts groundwater from the shallow and deep bedrock with an open-bedrock interval from 82 to 271 feet bgs. In spite of its long open interval, well RW-1R has historically produced approximately 0.1 gpm or less.
- RW-15 was began operation in October 2014 it also extracts groundwater from the middle and deep overburden, between 30 and 72 feet bgs, and typically operates between 20 and 30 gpm

The addition of well RW-15 provided additional pumping capacity and is expected to allow two of the three overburden NTCRA 2 extraction wells to operate continuously, even when the third well is undergoing maintenance. Groundwater pumped from the NTCRA 2 wells is also treated at the UV-OX treatment system that was constructed as part of NTCRA 1. With the exception of sporadic power outages and system maintenance, the HCTS operates nearly continuously. Weston Solutions, which operates the system, estimates that the HCTS operates over 99% of the time. The average combined pumping rates in 2016 were approximately 31.6 gpm from the NTCRA 2 extraction wells.

Map views and cross-sections to demonstrate hydraulic containment in accordance with EPA guidance from January 2008 entitled A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems (EPA/600/R-08/003) are provided in Figures 7 through 11 of the 2014 - Groundwater Sampling and Monitored Natural Attenuation Report (ARCADIS, 2014). These figures depict groundwater elevation contours measured on June 9, 2014), and generalized overburden and bedrock capture zone boundaries for the NTCRA 2 extraction wells, which are now part of the HCTS. The estimated capture zone boundaries are based on a combination of measured water level data, historical and recent groundwater modeling results and stagnation point calculations presented in the FS Report (BBL and USEPA, May 2005; Appendix A), and updated VOC concentration data at select monitoring wells (collected in June 2014). Groundwater flow directions based on the June 2014 data are consistent with previously derived groundwater flow directions. The figures indicate that groundwater in all five hydro stratigraphic units converges in the vicinity of the Quinnipiac River, and zones of potentiometric depression were observed in the vicinity of the hydraulic containment and treatment system (HCTS) extraction wells.

Concentrations of dissolved VOCs extracted by the NTCRA 1 system, and consequently its mass removal rate, have declined from 1995 to the present. The overall decrease indicates source zone attenuation due to continued dissolution of NAPL, degradation in the dissolved phase and the completion of in-situ thermal remediation. Concentrations of VOCs pumped by the NTCRA 2 wells have also declined steadily in recent years.

VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC]) are generally contained within the previously estimated containment boundary of the hydraulic containment and treatment system (HCTS).

The SOW calls for "optimizing" the groundwater treatment system once groundwater conditions stabilize after in-situ thermal treatment. Temperatures and concentrations are currently being monitored and data indicates a decline in groundwater VOC concentration within the NTCRA 1 area due to ISTR. Conditions are expected to stabilize in 2018.

A review of the current influent data concluded that concentrations are below that required for discharge to the Publically Owned Treatment Works (POTW) under a CTDEEP General Permit. The Town of Southington to reviewed the influent data and conditionally agreed to allowed connect to the POTW as an industrial customer.

A formal request for this change was submitted to the Agencies on October 30, 2015. Concern was expressed by CTDEEP regarding 1,4-dioxin levels in the discharge, for which the state had not established a surface water standard. As a condition of granting the discharge permit the CTDEEP required four rounds of 1.4-dioxin sampling at the treatment system effluent, at the influent, midpoint and discharge of the POTW and in the Quinnipiac River at the POTW discharge. Four rounds were collected and the data was submitted to CTDEEP on February 8, 2016 and CTDEEP agreed with the connection on February 22, 2016. However, on March 6, 2016 additional concerns were raised about the possible presence of per-fluorinated compounds in the SRSNE discharge. CTDEEP requested analysis of per-fluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) and there precursor compounds. Samples were collected at the NTCRA 1 & 2 influents in April 2016 and results confirmed the presence on PFOA/PFOS compounds. Further discussions with the agencies prompted a round of sampling at the POTW, in the Quinnipiac River, and of the SRSNE influent and effluent. These results were submitted to the Agencies on April 17, 2016. On September 12, 2016 CTDEEP decided that at that point in time they did not have enough information regarding PFAS to allow the change from onsite treatment to the connection of the POTW.

Additional samples were collected from the NTCRA 2 effluent, the POTW, and the Quinnipiac River. On May 1, 2017, a letter was submitted to the CT DEEP requesting reconsideration of our request to the POTW. The letter included additional PFAS information and presented PFAS sampling data and analysis of the additional samples taken. Results indicated that the NTCRA 2 effluent, POTW influent, and Quinnipiac River PFAS concentrations are similar to low, with the higher concentration in the POTW influent. A copy of the final form agreement between the Town of Southington and the Group which includes a section that recognizes that the CTDEEP may in the future regulate the discharge of 1,4-dioxane, perfluorinateds, and/or other "emerging contaminants" to surface water, and requires us to perform necessary monitoring and gives Southington the authority to terminate discharge to the sewer if necessary. CTDEEP is currently considering the request.

J. Institutional Controls / Access Agreements

Institutional controls in the form of deed restrictions are already in place on the Operations Area and Cianci Properties that prohibit all uses except for those associated with environmental response actions, as further described in CD paragraph 26. No additional institution controls were implemented during this reporting period. In 2010, the SRSNE Site Group took control of the Voting Trusts that control the Operations Area Property and the Cianci Property, respectively, which allows the implementation of additional institutional controls on those properties when appropriate. Additional

institutional controls will be implemented pursuant to the Institutional Control Plan that has been developed as required by SOW Section V.B.7. The Institutional Control Plan was revised and resubmitted in May 2013 to address comments received in December 2011 and May 2012 meeting. The revised plan includes the use of groundwater modeling to evaluate properties where future pumping may cause migration of the plume. The properties included in this "buffer zone" will be controlled with an ordinance through the local Health Department, a process that has been used by the Town of Southington in recent years. A conference call between representatives of EPA, CTDEEP, CT AG and the SRSNE Site Group on July 18, 2013 was held to discuss the IC Plan. On August 10, 2015 a meeting was held with the CT AG and CTDEEP to determine path forward with the IC Plan. In October 2015, CTDEEP requested the IC plan be revised to include the updated Environmental Land Use Restrictions that was revised in 2014 and a revised plan has been submitted. A meeting was held with the Agencies on November 2, 2015 to discuss final comments on the IC Plan and the IC Plan will be completed once final comments are received from CTDEEP.

On August 8, 2017 comments were receive on the draft IC plan and there was conference call to discuss the comments and the revision approach on August 30, 2017. It is expected that the IC Plan will be finalized an implementation will commence in 2018.

K. Explanation of Significant Differences

EPA provided a Public Notice in August 2016, for the proposed publication of an Explanation of Significant Differences (ESD). Pursuant to Section 117(c) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 42 U.S.C. § 9617(c), and the National Contingency Plan, 40 C.F.R. § 300.435(c)(2)(i), if EPA determines that the remedial action to be undertaken at a site differs significantly from the Record of Decision (ROD) for that site, EPA shall publish an ESD and the reasons such changes are being made. According to 40 C.F.R. § 300.435(c)(2)(i), and EPA guidance (OSWER Directive 9200.1-23-P, July 1999), an ESD, rather than a ROD amendment, is appropriate where the adjustments being made to the ROD are significant but do not fundamentally alter the remedy with respect to scope, performance or cost.

The ESD will describe three minor modifications to the formal cleanup plan presented in the 2005 ROD. These changes are:

 A smaller engineered cap area- the original cap design included the former SRSNE operations area and along a section of the railroad grade. During PIPP construction the soils along the railroad grade to be capped were excavated and placed in the in the former operations area. The excavated area was backfilled with clean soil. As a result the final footprint of the area to be capped is smaller than originally designed.

- Soil dioxin cleanup level-EPA approved a risk based dioxin cleanup level of 50ppt. This level was based on sampling performed at the site from 2010 through 2016. This level is lower than what was considered for the 2005 ROD and consistent with policies and requirements of the EPA.
- Modification of Hydraulic Containment System-EPA agrees that concentrations of contaminants in the Site groundwater are low enough that onsite treatment is no longer required. EPA has approved the request to change from onsite treatment to discharge to the Southington Water Pollution Control Authority provided all requirements of the Connecticut Discharge of Groundwater Remediation Wastewater to a Sanitary Sewer are met, and CT DEEP issues the permit.

EPA has determined that the changes to the ROD provided in this ESD are significant but do not fundamentally alter the overall remedy for the Solvents Recovery Service of New England Superfund (SRSNE) Site with respect to scope, performance or cost and therefore will be properly issued. This ESD was issued on November 21, 2016.

L. Construction, Operation and Maintenance Activities

HCTS operations and maintenance are discussed above in Section I. In situ thermal remediation was performed between May 2014 and March 2015, removing an estimated 210,000 kilograms (kg) of NAPL mass. During operation, ISTR operational parameters were monitored to assess operational performance and treatment progress. This included soil temperature, sub-surface vacuum levels, VOC mass extracted and extraction rate, vapor stream flammability, energy usage, and caustic usage. In addition to monitoring the ISTR operational performance, soil and groundwater sampling were also performed to assess the treatment progress. Groundwater samples were collected from seven monitoring wells (ISTR-1 through -7) located within the thermal treatment area. Samples were collected before heating commenced, and monthly during ISTR. Sampling included "progress" soil sampling performed by TerraTherm to confirm treatment progress and to help evaluate when each treatment Phase was ready for the final confirmation sampling. In total, 60 confirmation soil samples were collected from 28 locations within the Phase I area, and 83 confirmation soil samples were collected from 32 locations within the Phase II area (including supplemental samples collected by TerraTherm after initial samples from certain areas did not achieve Interim NAPL Cleanup Levels). These data were used to support shutdown in the Phase I and Phase II areas, and the associated data were used to demonstration of Attainment of INCL's. Additional details can be found in the In-Situ Thermal Remediation Construction Completion Report (de maximis, September 2015)

Post-thermal treatment groundwater monitoring events have been conducted in three times per year since the completion of ISTR in February 2015 for select monitoring wells in the NTCRA 1 area. During these events groundwater samples and temperatures were collected. Initial results from these the monitoring events indicate generally decreasing COC concentrations and moderately to strongly reducing

conditions in groundwater in the NTCRA 1 area. Samples and temperatures will continue to be collected and evaluated on a triannual basis until temperatures return to the pre-thermal levels, which is expected to occur in 2018.

The RCRA Cap 100% Design and the RCRA Cap Remedial Action Work Plan (RAWP) was approved on October 18, 2016. Implementation of the work included in the plan commenced in November 2016 and was completed in September 2017. A ribbon cutting ceremony celebrating this milestone completion was held on September 21, 2017. The Draft RCRA Subtitle C Cap Construction Completion Report was submitted in October 2017. Work completed during construction is summarized below:

- Site preparation activities such as brush and tree clearing, installation of erosion control measures, relocation of perimeter fencing, establishment of construction support facilities, removal of abandoned utilities, and drainage system modifications.
- Modifications to the NTCRA 1 sheet pile wall to allow for future subsurface groundwater flow beyond the wall once capture of the groundwater is no longer needed in this area. The modifications include a permeable trench and collection piping along the upgradient side of the wall, pipe penetrations through the wall, valves to open or close the sheet pile penetrations, permeable trenches along the downgradient side of the sheet pile wall, extensions atop wells and Hydraulic Containment and Treatment System (HCTS) components to accommodate grade changes, vertical riser pipes at each of the three NTCRA 1 penetrations through the sheet pile wall for future remedial additives, and placement of fill to help maintain the water table below ground surface under the modified conditions.
- Installation of a piping from NTCRA treatment building to the sanitary sewer located on Lazy Lane. The piping was installed to allow for future connection to the POTW if approved, no physical connection has been made.
- Excavation of various soils located outside of the planned cap limits, consolidation of those soils beneath the cap, and backfill of the excavation areas. Soils excavated from outside the cap limits included the five Cianci property excavation areas identified in the ROD (as modified based on delineation sampling), dioxin-impacted surficial soils exceeding cleanup goals, and soil/debris piles associated with prior remedial construction phases. A borrow pit was also excavated adjacent to the Quinnipiac River floodplain to offset lost floodplain storage capacity associated with the NTCRA 1 fill area, and to provide a portion of the fill for the NTCRA 1 fill area.

- Construction of a new drainage channel extending southeast from the culverted swale crossing at the south end of the RCRA cap to a pre-existing drainage swale leading to the Quinnipiac River within the power line easement. This swale was necessitated by the need to manage storm water from the southern half of cap area.
- Construction of a RCRA cap within the former SRSNE Operations Area.
- Construction of a rails-to-trails path extending from Lazy Lane to Curtiss Street, extending north and south outside the limits of the RCRA cap, with a section constructed directly over the RCRA cap.
- Site mitigation, restoration, and stabilization activities. This included measures to address wetland areas impacted by the RCRA cap and NTCRA 1 modifications, restoration of ecological habitats (to the extent possible) upon completion of the work, provision of temporary erosion and sedimentation controls to stabilize post-construction conditions, and post-restoration monitoring to ensure performance standards are met.

M. Habitat Restoration

Habitat restoration activities that were conducted during this reporting period are summarized in section L above and detailed in section 3.3.6 of the RCRA Subtitle C Cap Construction Completion Report (GEI, October 2017).

N. Memorandum of Agreement (MOA) with Southington Water Department / Town of Southington

A draft MOA was prepared during the Annual Report #1 reporting period as required by SOW Section V.B.3. This draft MOA was submitted for EPA review on September 16, 2009 and resubmitted based upon EPA comments on June 23, 2010. EPA provided further comments on the MOA on October 28, 2011. The revised MOA was provided for further EPA review on November 15, 2011. EPA issued the final MOA on September 15, 2014. Execution of the MOA triggered finalization and submittal of the Supplementary Containment Action Plan (SCAP). The SCAP sets forth the process the Group would undertake to enhance containment of groundwater in the event SWD restarts pumping from the Town Well Field Property. The revised SCAP was submitted on October 13, 2014, and approved by EPA on November 7, 2014.

O. Groundwater Monitoring Program

A comprehensive groundwater monitoring program was scoped in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS, 2010). A summary of the planned sampling frequency is provided in the attached Table N-1 from the RDWP. The first comprehensive groundwater sampling event occurred during May/June 2010 which supported the first Five-Year Review, submitted in 2010. This sampling event provided data for the draft 1st Monitored Natural Attenuation Report which was submitted in September 2010.

The second comprehensive groundwater sampling event was performed in June 2014 and included sampling of groundwater at 129 monitoring wells for analysis of volatile organic compounds (VOCs), 1,4-dioxane, target analyte list (TAL) metals, and/or MNA parameters in support of the USEPA's Five-Year Review. In support of the 2nd Five Year Review a revised Conceptual Site Model (CSM) was presented in April 2015. The updated CSM included an overview of site history and physical setting, remedial actions, hydrogeology, lateral and vertical groundwater plume extent, groundwater quality trends, mass removal, and progress toward groundwater remedial goals. The 2nd Five Year Review was issued by EPA on September 24, 2015.

Figures 2 through 6 of the draft 2017 Groundwater Sampling and Monitored Natural Attenuation Report (MNA) show the locations of former Interim Monitoring and Sampling (IMS) wells that were used to monitor the VOC plume between the completion of the RI and the issuance of the ROD. These wells have the most complete data sets and concentration trends at these wells are presented in Figures 13 through 17 of the Draft 2017 MNA Report). Middle overburden well MW-03 (Figure 14-Draft 2017 MNA Report) and shallow bedrock well MW-127C (Figure 16-Draft 2017 MNA Report) are the only monitoring wells south of the Connecticut Light & Power (CL&P) easement that contained VOC concentrations above the Interim Cleanup Levels (ICLs) before the start-up of the NTCRA 2 system, but they declined to below the ICLs following NTCRA 2 system start up. As shown on Figures 13 through 17 of the Draft 2017 MNA Report, the VOC concentration trends at the former IMS wells south of the CL&P Easement are generally declining or have too many samples with no detected VOCs to support trend analysis.

In accordance with *Monitoring Well Network Evaluation and Groundwater Monitoring Program,* the 2017 annual groundwater sampling event was performed in June 2017 and included sampling of groundwater at 37 monitoring wells. The 2016Groundwater Sampling and Monitored Natural Attenuation Report (Attachment 3) summarizes the 2017 groundwater sampling events and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits. Sampling results are discussed below:

VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC], i.e., drinking water standards) are contained within the previously estimated capture zone boundary of the hydraulic containment and treatment system (HCTS). None of the wells within the severed plume (i.e., wells with historical COC concentrations above Action Levels downgradient of the HCTS capture zone boundary) had COC concentrations above Action Levels during the 2014 through 2017 groundwater monitoring events.

Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 4.13 micrograms per liter (ug/L) and 2.16 ug/L, respectively, in the June 2017 sample. Both concentrations are below the Action Level of 5.0 ug/L and continue to decline. PCE was first detected above the Action Level at this well in June 2013, while TCE was first detected above the Action Level in June 2012.

PCE and TCE were detected at deep bedrock monitoring well MW-1003DR at concentrations of 2.67 μ g/L and 30.4 μ g/L, respectively, in the June 2016 sample. The PCE concentration dropped below the Action Level of 5.0 μ g/L starting in June 2014, while the TCE concentration is above the Action Level of 5.0 μ g/L (and was previously above the Action Level in 2013, 2014 and 2015). PCE and TCE were first detected above the Action Level at this well in June 2013. Concentrations of both compounds have continued to decline relative to the 2013 results.

TCE was also detected at monitoring well MW-1002R at a concentration of 10.1 μ g/L above the Action Level of 5 μ g/L. The only detection of TCE above Action Levels at this well occurred in June 2015.

As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 ug/L) and 2012 (approximately 26,400 ug/L). This well is located within the bedrock NAPL zone initially delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998), and more recently refined (based on additional data from the RD/RA activities) in the *Groundwater Conceptual Site Model Update* (ARCADIS, 2015). This well is also located within the HCTS capture zone. The total VOC concentration in June 2017 was significantly lower (4,573 ug/L) than in June 2012, though concentrations remain elevated above most pre-June 2012 values. VOC concentrations at this well will continue to be monitored as part of future sampling events.

Three post-thermal treatment monitoring events occurred during this reporting period, conducted in November 2016, March 2017, and July 2017, in accordance with SOW Sections IV.B.5.d and e. Note that three of the ten "N" wells (TW-08A, TW-08B, and TW-08D) were abandoned in March 2017, shortly after the March 2017 sampling event. Results indicate that total VOC concentrations have decreased by one-to-three orders of magnitude at six of the seven remaining "N" wells (relative to the initial comprehensive sampling event conducted in 2010). Significant rebound in total VOC concentrations was observed in groundwater at MWL-304 in July 2017 relative to previous sampling events (Appendix C). This increase in total VOC concentration at MWL-304 is driven primarily by increases in cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) concentrations. Increases in cDCE and VC concentrations indicate increased reductive dechlorination of higher chlorinated VOCs including PCE and TCE.

Results from Bio-Trap[®] sampling with QuantArray-Chlor analyses at three Non-Time-Critical Removal Action (NTCRA) 1 locations, ISTR-1, ISTR-5, and TW-08D, and QuantArray-Petro analyses at one NTCRA 1 location, ISTR-5, demonstrate increased diversity in the microbial population relative to pre-treatment conditions (Appendix D). These results indicate that anaerobic biodegradation processes dominate in the thermal treatment area, especially for chlorinated volatile organic compounds (CVOCs). However, results also indicate a strong potential for aerobic co-metabolism of CVOCs and aerobic metabolism of petroleum hydrocarbons if oxidation-reduction conditions become more favorable for these processes in the future. In addition, a Bio-Trap[®] sampler was deployed at 1 monitoring well (CPA-7R) for analysis of 1,4-dioxane and tetrahydrofuran (THF) biodegradation potential. The assessment of 1,4-dioxane biodegradation potential at monitoring well CPZ-7R indicates the potential for multiple biodegradation mechanisms in this area of the site. Because groundwater conditions are generally reducing to strongly reducing, it is likely that aerobic biodegradation is limited. However, it is possible that even small amounts of dissolved oxygen stimulate processes that may include the metabolism and/or co-metabolism of 1,4-dioxane.

The 2017 MNA Report (Attachment 3) fulfills the requirement set forth in Section VII.A.2 of the SOW and the reporting approach outlined in the MNA Plan presented as Attachment L to the RDWP (ARCADIS, 2009) and presents results of an ongoing evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluations (presented in the 2010 through 2016 MNA Reports), this evaluation considers groundwater monitoring results from the June 2017 annual groundwater monitoring event for VOCs and TAL metals at a subset of monitoring wells and presents: an evaluation of current concentration trends for total VOCs in groundwater at select monitoring locations; an evaluation of post-thermal treatment data at the "N" wells; estimates of bulk attenuation rates for total VOCs in groundwater; and HCTS COC mass extraction rates with time.

Results of these evaluations indicated:

Detected concentrations of VOCs above Action Levels are contained within the estimated capture zone boundary of the HCTS.

Groundwater total VOC concentrations are generally declining with time throughout the Site groundwater COC plume.

Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the *Feasibility Study* (FS) (BBL and USEPA 2005).

Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates from the early 2000s to 2013, with a decline in COC mass extraction rates observed starting in 2014.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

On July 21, 2017, a memorandum proposing changes to the current long term groundwater monitoring program outlined in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; ARCADIS 2010), was submitted to the agencies. The memorandum summarized groundwater quality improvements since completion of the Remedial Investigation with particular focus on significant concentration declines since completion of In-situ Thermal Treatment. The changes were proposed in an effort to improve monitoring efficiency.

Proposed changes included:

- Reducing sampling frequency at select wells and number of wells sampled;
- Reducing frequency of analysis for MNA and other chemical parameters;
- Discontinuing sampling for metals until VOCs approach the Action Levels;
- And decommissioning (abandoning) select monitoring wells that are no longer needed to delineate the plume and/or are spatially redundant.

The current program includes comprehensive rounds of 125 wells every 5 years to support five-year year reviews, with routine annual sampling of 26 wells. The proposed changes would result in comprehensive round of 104 wells every 10 years and annual sampling of 19 wells.

The proposal was presented and discussed with the Agencies in September 2017 and comments and a request for a summary was requested in October 2017.

Q. Costs Incurred this Reporting Period

Paragraph 62 of the CD sets forth "Additional Provisions Regarding Settling Defendants' Payments of U.S. Oversight Costs and State Oversight Costs." Pursuant to this paragraph, an interest bearing "Oversight Costs Payment Subaccount" of the Remedial Trust Account was established on April 27, 2009, in the amount of \$5,700,000.

In May 2016, EPA approved a permanent funding level of \$1,000,000 for the future oversight cost sub-account, transfer of the remainder of the account to the RD/RA Trust, and that future oversight costs would be paid from the RD/RA Trust.

Costs incurred this reporting period were: \$3,259,594. Total costs through the end of this reporting period were: \$30,575,476.

R. References

BBL. 1998. Remedial Investigation Report. June 1998.

BBL. 2005. Interim Monitoring and Sampling Report No. 13. January 6, 2005.

BBL and USEPA. 2005. *Feasibility Study Report*. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, Connecticut. May 2005.

Halliburton NUS (HNUS) Environmental Corporation. 1994. Final Remedial Investigation Report: Remedial Investigation/Feasibility Study, SRSNE Site, Southington, Connecticut. May 1994.

Hubert, J.F., Reed, A.A., Dowdall, W.L., and Gilchrist, M.J. 1978. Guide to the Mesozoic Redbeds of Central Connecticut. State Geological and Natural History Survey of Connecticut, Department of Environmental Protection. Guidebook No. 4.

La Sala, Jr. A. M. 1961. Surficial Geology of the Southington Quadrangle, Connecticut. United States Geological Survey Map GQ-146.

Mazzaferro, D.L. 1975. Contour Map of the Bedrock Surface, Southington Quadrangle, Connecticut. United States Geological Survey (USGS) Map MF-660A.

Rogers, J. 1985. Bedrock Geological Map of Connecticut. Connecticut Geological and Natural History Survey in Cooperation with the U.S. Geological Survey.

Southington Water Department. Town of Southington Water Works Map. January 1997.

United States District Court for the District of Connecticut. 2008. Consent Decree Regarding Solvents Recovery Service of New England, Inc. Superfund Site. August 29, 2008.

USEPA. 1986. *Superfund Remedial Design and Remedial Action Guidance*, OSWER Directive 9355.0-4A. June 1986.

USEPA. 1989. Inspection Report: Solvents Recovery Service of New England. February 1-2, 1989.

USEPA. 1995a. *Remedial Design/Remedial Action Handbook.* OSWER Directive 9355.0-04B. June 1995.

USEPA. 1995b. *Guidance for Scoping the Remedial Design.* OSWER Directive 9355.0-43. March 1995.

USEPA. 1998. Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites. OSWER Directive 9200.4-26. April 1998.

USEPA. 2003. Draft Preliminary Reuse Assessment. September 2003.

USEPA. 2005a. Record of Decision Summary, Solvents Recovery Service of New England, Inc. (SRSNE) Site, Southington, Connecticut. September 2005.

USEPA. 2005b. Solvents Recovery Service of New England, Inc. Superfund Site, Southington, CT. Proposed Plan Fact Sheet, May 2005. Available at: http://www.epa.gov/region01/superfund/sites/srs/229296.pdf.

USEPA. 2009. USEPA's project website for the Solvents Recovery Service of New England, Inc. Superfund Site. Accessed February 24, 2009. http://www.epa.gov/region01/superfund/sites/srs.

ARCADIS, 2009. Draft Project Operations Plans for the Solvents Recovery Service of New England, Inc. Superfund Site. April 2009.

GEI Consultants, Inc., 2017. Draft RCRA Subtitle C Cap Construction Completion Report. October 2017.

Acronyms and abbreviations used in this Annual Report and associated attachments:

ALEP AOC AQC ARARS ATSDR B&M BACT BBL bgs BTEX BTU °C CA CBYD cc cDCE CD	1,1-dichloroethene 1,1,1-trichloroethane 2,3,7,8-tetrachlorodibenzo-p-dioxin Action Level Exceedance Plan Administrative Order on Consent Air Quality Control System Applicable or Relevant and Appropriate Requirements Agency for Toxic Substance and Disease Registry Boston & Maine Best Available Control Technology Blasland, Bouck & Lee, Inc. below ground surface Benzene, Toluene, Ethylbenzene and Xylenes British Thermal Unit degrees Celsius chloroethane Call Before You Dig cubic centimeter cis-1,2-dichloroethene Consent Decree Consent Decree
CEMS	Continuous Emissions Monitoring System
CERCLA	Comprehensive Environmental Response, Compensation and Liability
CERCLIS	Act Comprehensive Environmental Response, Compensation and Liability Information System
CH4	methane
CL&P	Connecticut Light & Power
CO2	carbon dioxide
COCs	Constituents of Concern
CT	carbon tetrachloride
CTDEP	Connecticut Department of Environmental Protection
CTDPH	Connecticut Department of Public Health
CVOCs	Chlorinated Volatile Organic Compounds
CWA	Clean Water Act
DCE	dichloroethene
DCM	dichloromethane
DCP	Demonstration of Compliance Plan
ddms	<i>de maximis</i> Data Management Solutions
DHC	Dehalococcoides
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DQA	Data Quality Assessment
DQOS	Data Quality Objectives

DRE DRO EISB ELUR ESD °F Fe(OH)₃ f _∞ FS FSP	Destruction/Removal Efficiency Diesel Range Organics Enhanced In-Situ Bioremediation Environmental Land Use Restriction Explanation of Significant Differences degrees Fahrenheit ferrous hydroxide fraction of solid organic carbon in soil Feasibility Study Field Sampling Plan
PMC	Pollutant Mobility Criteria applicable to designated Class "GA" groundwater areas
GAC GCTEOS	granular activated carbon Groundwater Containment and Treatment Evaluation and Optimization Study
gpm GRO	gallons per minute Gasoline Range Organics
GWPC	Groundwater Protection Criteria
GWTF	Groundwater Treatment Facility
H H ₂	Henry's Law Constant hydrogen
H ₂ O	water
H ₂ S	hydrogen sulfide
HAP	hazardous air pollutant
HCI	hydrochloric acid
HCTS	Hydraulic Containment and Treatment System
HDPE	High-Density Polyethylene
HLVs	Hazard Limiting Values
HZ	Heated Zone
ID	inner diameter
IFT	interfacial tension
IMS IQAT	Interim Monitoring and Sampling
IRIS	Independent Quality Assurance Team Integrated Risk Information System
ISTD	In-Situ Thermal Desorption
ISTR	In-Situ Thermal Remediation
J&E	Johnson & Ettinger
K _d	soil-water partition coefficient
kg	kilogram
K _{oc}	chemical-specific organic carbon partition coefficient
LAER	Lowest Achievable Emission Rate
lbs LNAPL	pounds light pap aguagus phase liguid
MAROS	light non-aqueous phase liquid Monitoring and Remediation Optimization System
MASC	Maximum Allowable Stack Concentration
MCLs	Maximum Contaminant Levels

MCLG mg/kg mg/L MIBK mL MNA MOA N ₂ NA NAPL ng/L NH ₄ ⁺ NOAA NO ₂ ⁻ NO ₃ NSR NTCRA O ₂ O&M OD OH ⁻ OIS OMM OD OH ⁻ OIS OMM OD OH ⁻ OIS OMM OD OH ⁻ OIS OMM OD OH ⁻ OIS OMM OD OH ⁻ OIS OMM ONOGU ORP OSHA OSWER PAHS PCBS PCDDS PCDFS PCE PCR PEL PFD PID PID PID PID PID PID PID PID PID PI	Maximum Contaminant Level Goal milligrams per kilogram milligrams per liter 4-methyl-2-pentanone (methyl isobutyl ketone) milliliter Monitored Natural Attenuation Memorandum of Agreement nitrogen Natural Attenuation non-aqueous phase liquid nanograms per liter ammonia National Oceanic and Atmospheric Administration nitrite nitrate New Source Review Non-Time-Critical Removal Action oxygen Operations and Maintenance outer diameter hydroxyl radical On-Site Interceptor System Operation, Maintenance and Monitoring Observed NAPL in the Overburden Groundwater Unit oxidation-reduction potential Occupational Safety and Health Administration Office of Solid Waste and Emergency Response polycyclic aromatic hydrocarbons polychlorinated biphenyls polychlorinated dibenzofurans tetrachloroethylene Polymerase Chain Reaction Permissible Exposure Limit process flow diagram photoionization detector Pre-ISTR Preparation Plan Programmable Logic Controller Project Operations Plan parts per billion
PIPP PLC POP	Pre-ISTR Preparation Plan Programmable Logic Controller Project Operations Plan
PVC QAPP	polyvinyl chloride Quality Assurance Project Plan

R ² RAOs RAWP RCRA RDWP RD/RA Redox RDEC RH RI ROD RSRs SAP SCAP SCAP SCAP SCAP SCAP SOV SPLP SRSNE SOV SPLP SRSNE SSO SVOCS SWD SWPC TAL TCE TCH TCLP TEFS TEQ TEX TSCA TTZ ug/L USEPA	correlation coefficient Response Action Objectives Remedial Action Work Plan Resource Conservation and Recovery Act Remedial Design Work Plan Remedial Design/Remedial Action Reduction-Oxidation Residential Direct Exposure Criteria Relative Humidity Remedial Investigation Record of Decision Remediation Standard Regulations Sampling and Analysis Plan Supplemental Containment Action Plan Site Conceptual Model sulfate Standard Operating Procedure Statement of Work Synthetic Precipitation Leaching Procedure Solvents Recovery Service of New England, Inc. Site Safety Officer semi-volatile organic compounds Southington Water Department Surface Water Protection Criteria Target Analyte List trichloroethylene thermal conduction heating Toxicity Characteristic Leaching Procedure Toxic Equivalency Factors Toxic Equivalence Quotient Toluene, Ethylbenzene and Xylenes Toxic Substances Control Act thermal treatment zone micrograms per liter United States Environmental Protection Agency
SO4 ²⁻	sulfate
SOP	Standard Operating Procedure
SOW	Statement of Work
SPLP	Synthetic Precipitation Leaching Procedure
SRSNE	Solvents Recovery Service of New England, Inc.
SSO	Site Safety Officer
SVOCS	semi-volatile organic compounds
SWD	Southington Water Department
SWPC	Surface Water Protection Criteria
TAL	Target Analyte List
TCE	trichloroethylene
TCH	thermal conduction heating
TCLP	Toxicity Characteristic Leaching Procedure
TEFS	Toxic Equivalency Factors
TEQ	Toxic Equivalence Quotient
TEX	Toluene, Ethylbenzene and Xylenes
TSCA	Toxic Substances Control Act
TTZ	thermal treatment zone
ug/L	micrograms per liter
UV	ultraviolet
VC	vinyl chloride
VI	Vapor Intrusion
VOC	volatile organic compound
WHO	World Health Organization

Tables

Table 1

Summary of Activities Completed October 30, 2008-October 31, 2017

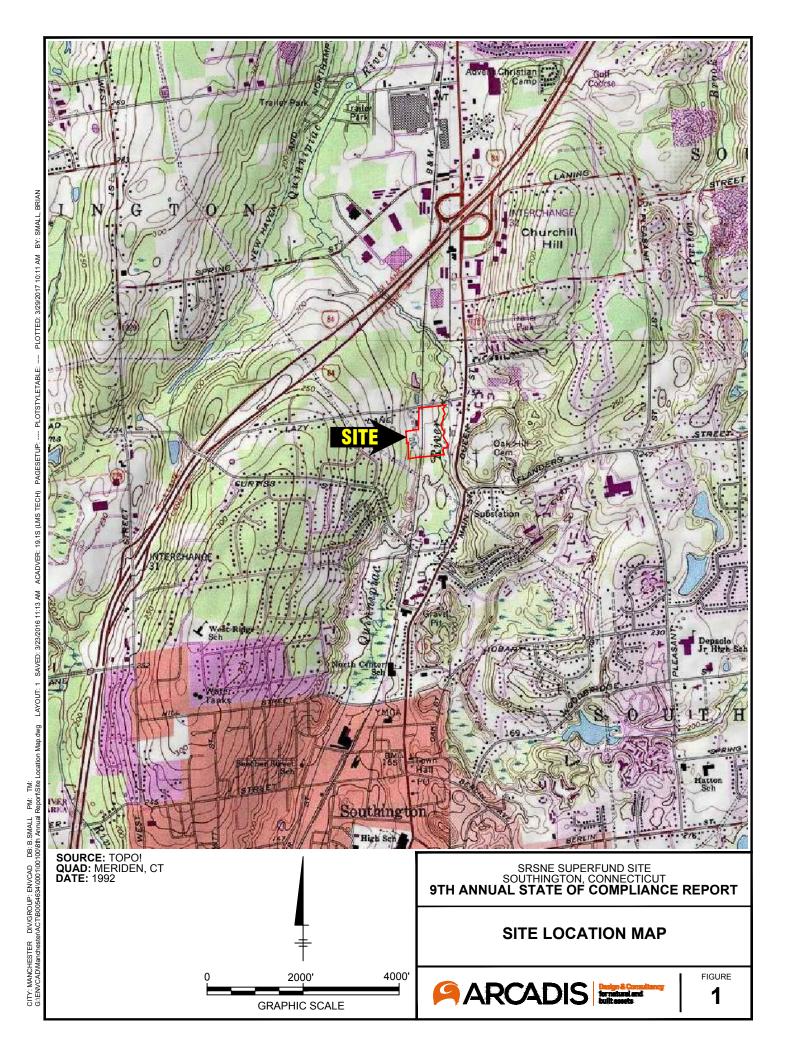
TABLE 1.0 Summary of Activities Completed	
October 31, 2010 through October 30, 2017	

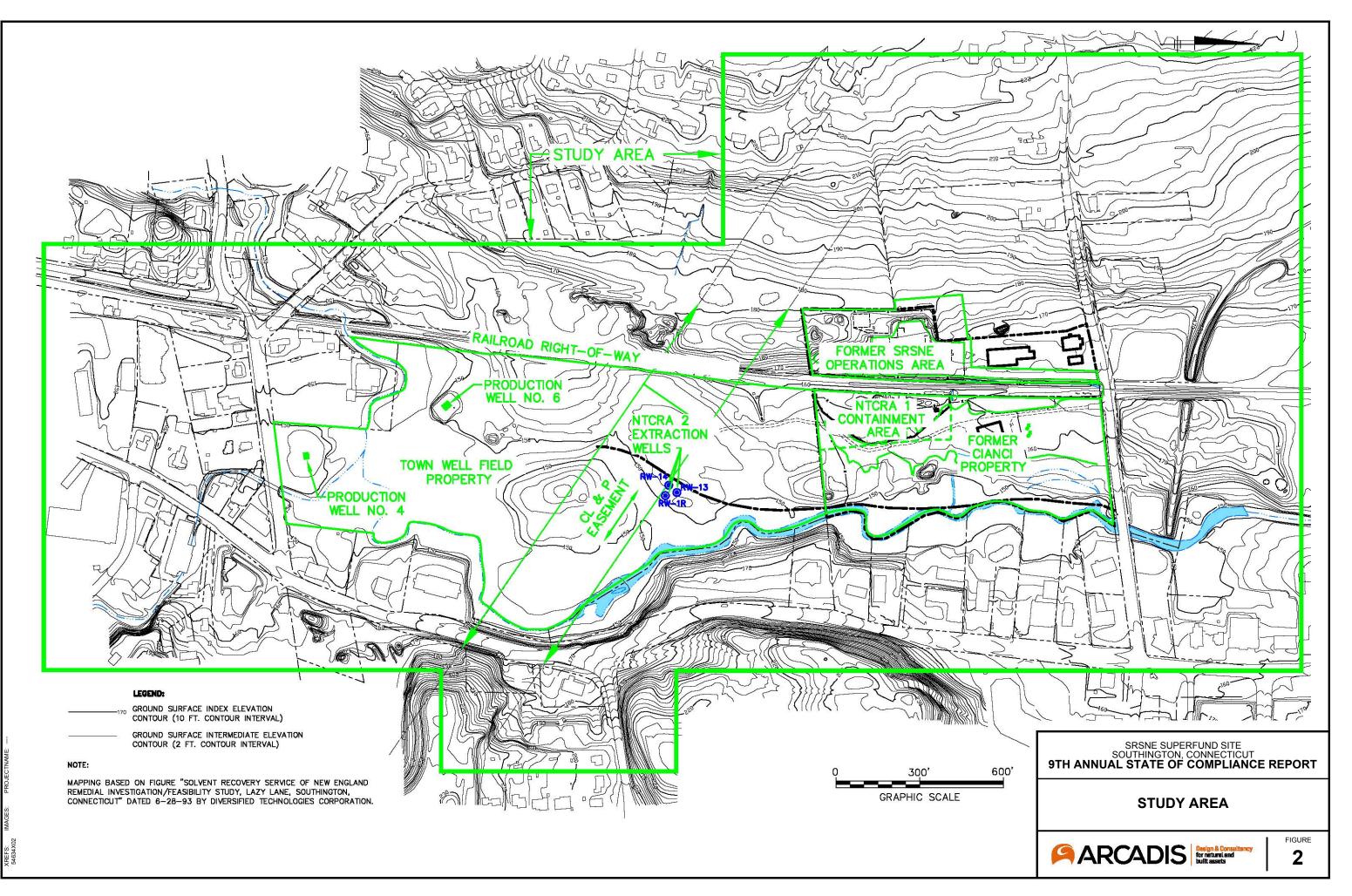
Document Name / Activity	Author(s)	Date Submitted	Date Approved	Туре
Final RDWP and POP	ARCADIS	11/19/2010	pending	Deliverable under SOW
Response to Comments on ISTR Conceptual Design	TerraTherm	12/3/2010	7/7/2011	Deliverable under SOW
Annual State of Compliance Report #2	de maximis	12/20/2010	pending	Deliverable under SOW
PIPP Winter Stabilization Plan	de maximis	12/30/2010	pending	Deliverable under SOW
Vapor Intrusion Technical Memorandum	EPA	10/27/2010	1/19/2011	Conditional Approval
Data Comparison - Groundwater Sampling Techniques	ARCADIS	1/4/2011	N/A	Technical Memorandum
Updates to Existing MODFLOW Groundwater Flow Model	ARCADIS	1/5/2011	N/A	Technical Memorandum
Data Comparison - Groundwater Sampling Techniques	ARCADIS	2/10/2011	N/A	Technical Memorandum
Draft Institutional Controls Plan	de maximis/ARCADIS	2/18/2011	pending	Deliverable under SOW
Comments on Response to Comments on ISTR Conceptual Design	EPA	3/2/2011	7/7/2011	EPA comments
PIPP Sheetpile Wall Extension Design	ARCADIS	3/21/2011	4/22/2011	Deliverable under SOW
Data Comparison - HydraSleeve vs. Low-Flow Groundwater Sampling Techniques	ARCADIS	3/22/2011	N/A	Technical Memorandum
Response to Comments on Response to Comments on ISTR Conceptual Design	TerraTherm	4/6/2011	7/7/2011	Deliverable under SOW
Bedrock Outcrop Study	ARCADIS	4/20/2011	N/A	Technical Memorandum
Supplementary Vapor Intrusion Technical Memorandum	ARCADIS	6/6/2011	pending	Deliverable under SOW
Bedrock Modeling Memorandum	ARCADIS	6/6/2011	N/A	Technical Memorandum
Comments on Vapor Intrusion Technical Memorandum	EPA	6/15/2011	pending	EPA comments
ISTR Conceptual Design Approval	EPA	7/7/2011	7/7/2011	Approval
Technical Memorandum - Proposed Use of Hydrasleeve Sampling	ARCADIS	7/8/2011	7/8/2011	Technical Memorandum
Approval of ISTR 100% Wellfield Design	EPA	9/23/2011	9/23/2011	EPA Approval
Comments on Draft Memorandum of Agreement with Town and Southington Water Department	EPA	10/28/2011	pending	EPA comments
Annual State of Compliance Report #3	de maximis	1/12/2012	pending	Deliverable under SOW
Screen Volume Purge vs lowflow groundwater metholds	de maximis	5/11/2011	5/21/2012	Approval
Submittal for the use of hydrosleeve during interim sampling events	de maximis	1/4/2011	6/12/2012	Approval
Annual State of Compliance Report #4	de maximis	1/3/2013	pending	Deliverable under SOW
	ARCADIS	4/3/2013	N/A	Technical Repot
PIPP Completion Report				
Revised Institutional Controls Plan	de maximis / ARCADIS	5/21/2013	pending	Deliverable under SOW
Revised Draft ISTR work plan and POP	TerraTherm	7/8/2013	pending	Deliverable under SOW
Comments on revised Draft ISTR Work Plan and POP	EPACTDEEP	9/30/2013	N/A	EPA /CTDEEP comments
Response to EPA and CTDEEP comments on revised DRAFT ISTR Work Plan and POP	de maximis	10/26/2013	pending	Deliverable under SOW
Annual State of Compliance Report #5	de maximis	3/3/2013	pending	Deliverable under SOW
Annual State of Compliance Report #6	de maximis	3/4/2014	pending	Deliverable under SOW
Approval of In Situ Thermal Remediation Final (100%) Design	de maximis	7/10/2014	4/18/2014	Deliverable under SOW
Revised Supplemental Containment Action Plan	de maximis	10/13/2014	11/5/2014	Deliverable under SOW
Draft In-Situ Thermal Remediation Construction Completion Report	de maximis	4/6/2015	N/A	Deliverable under SOW
Comments on Draft In-Situ Thermal	EPA/CTDEEP	9/10/2015	N/A	EPA /CTDEEP comments
Remediation Construction Completion Report	de maximis	4/29/2015	pending	Deliverable under SOW
		6/30/2015		Jenveraure under SUW
Draft Soil Sampling Plan – SIP Delineation and Additional Dioxin Characterization	de maximis/ARCADIS		N/A	
Final Soil Sampling Plan – SIP Delineation and Additional Dioxin Characterization	de maximis	8/24/2015	8/24/2015	
Final In-Situ Thermal Remediation Construction Completion Report	de maximis	9/18/2015	9/22/2015	Deliverable under SOW
2nd Five Year Review	EPA	9/24/2015	9/24/2015	
Treatment System Optimization Request	de maximis	10/30/2015	pending	
Annual State of Compliance Report #7	de maximis	3/20/2016	pending	Deliverable under SOW
RCRA CAP 100% RD and RAWP report	de maximis/ARCADIS	3/31/2016	N/A	Deliverable under SOW
Comments on RCRA CAP 100% RD and RAWP report	EPA	4/20/2016		EPA Comments
Final RCRA CAP 100% RD and RAWP Report	de maximis/ARCADIS	9/28/2016	10/19/2016	Deliverable under SOW
Explantaion of Significant Differences	EPA	8/4/2016	11/21/2016	EPA issue under ROD
NTCRA 1 Groundwater Modification Request	de maximis	10/31/2016	3/13/2017	EPA Approval
Annual State of Compliance Report #8	de maximis	4/5/2017	pending	Deliverable under SOW
RCRA Subtitle C Cap Construction				
Completion Report	de maximis/GEI	10/27/2017	pending	Deliverable under SOW

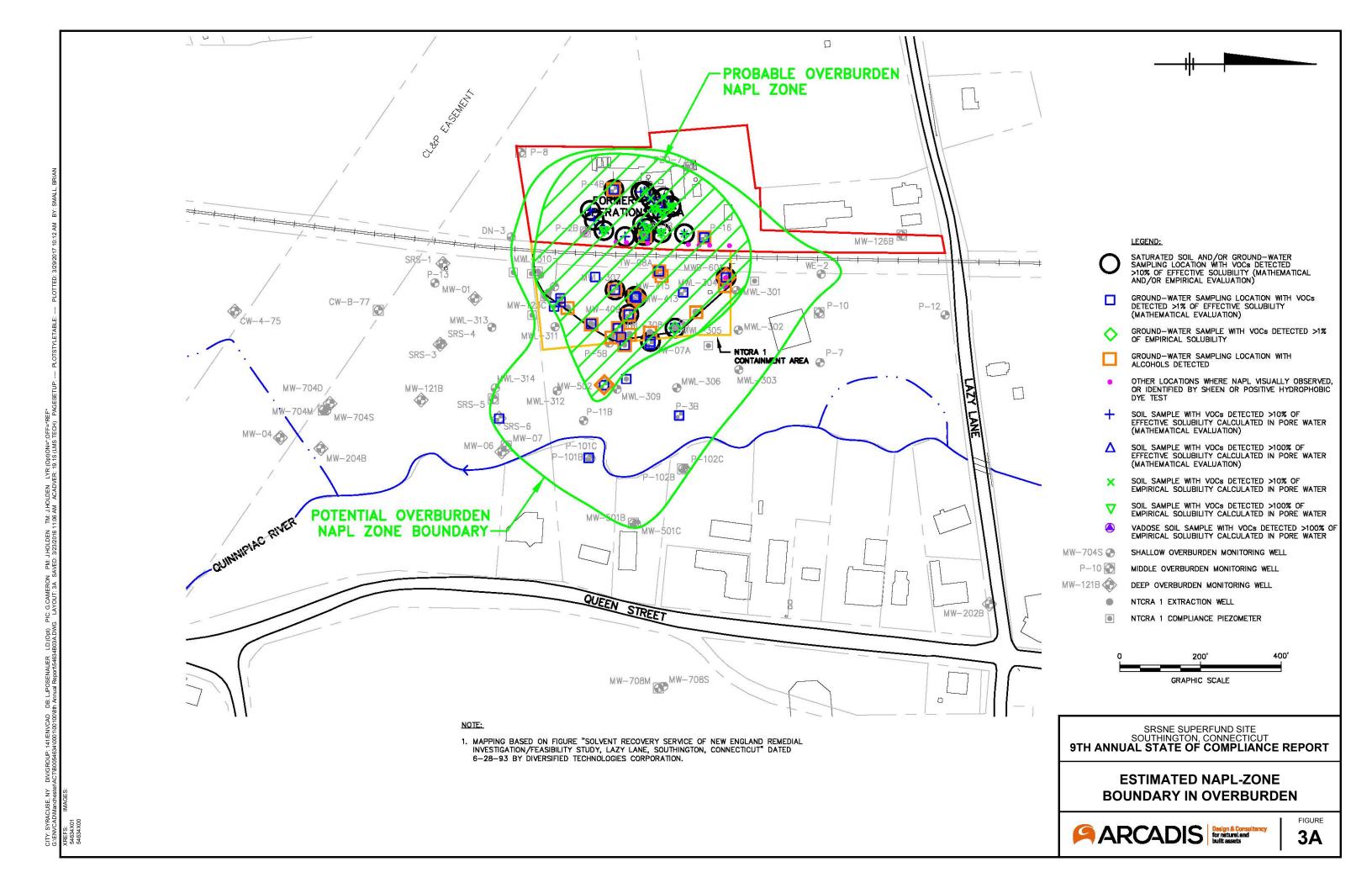
Table 2

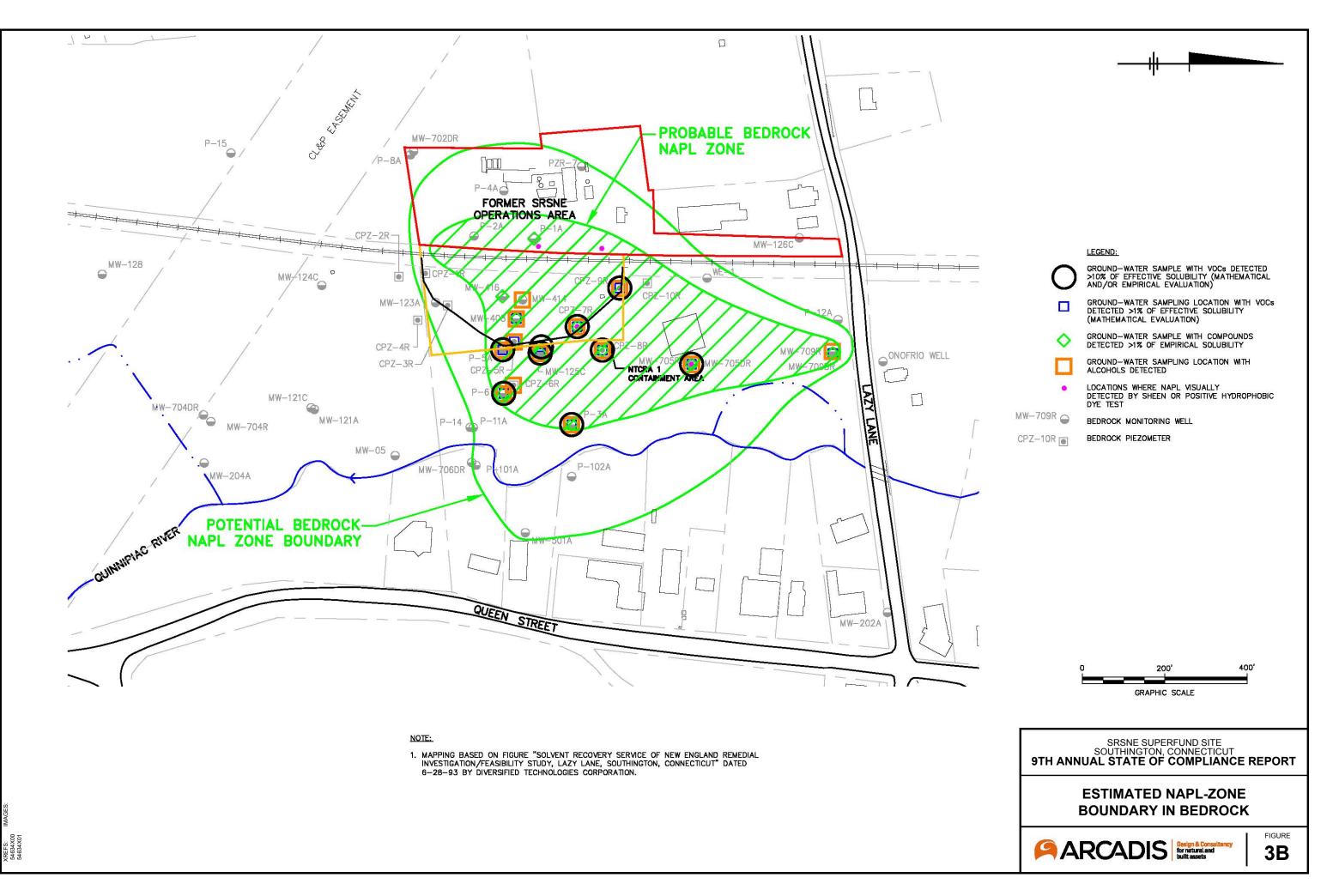
N-1

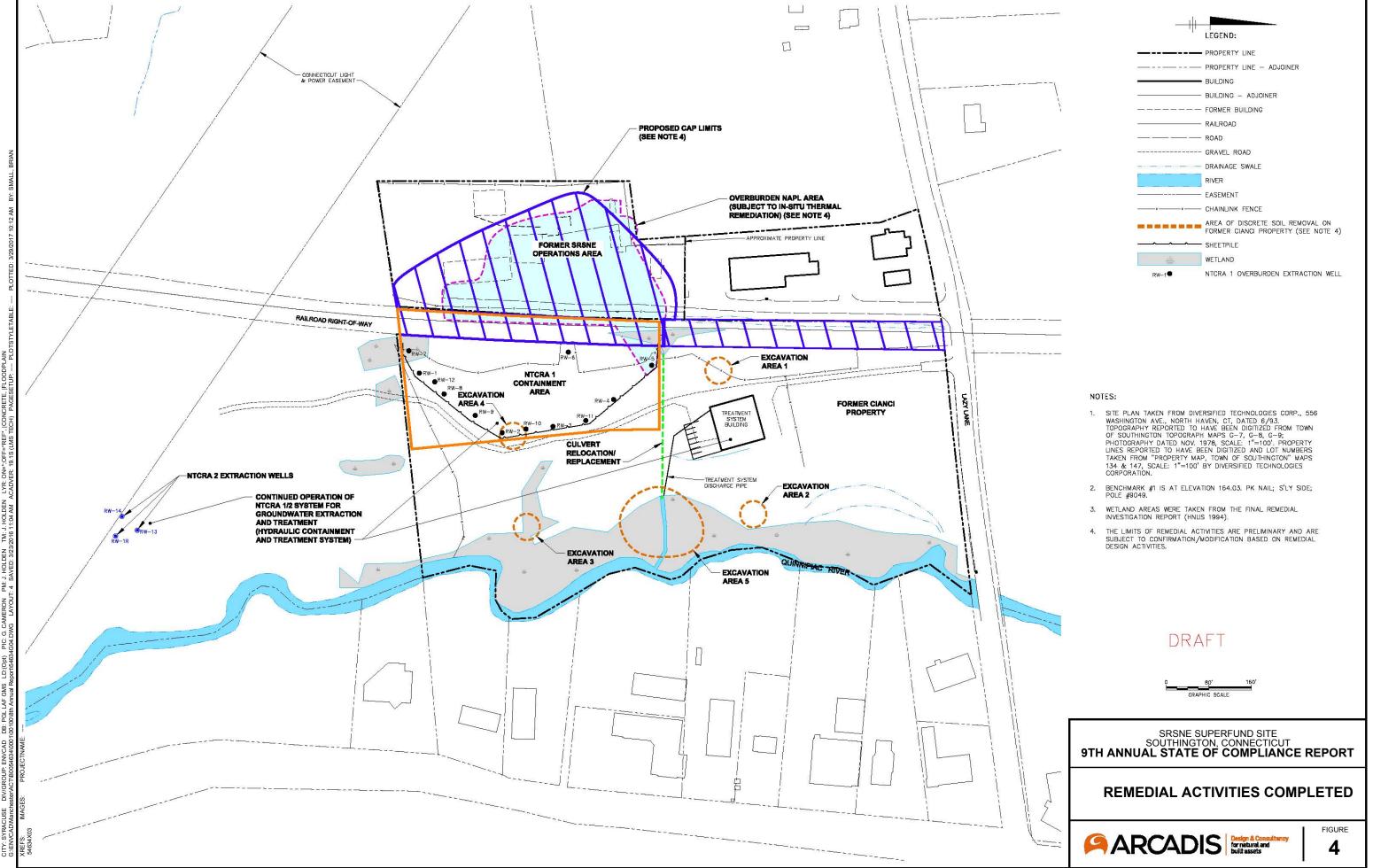
Groundwater Monitoring Network and Sampling Events


Table N-1.Groundwater Monitoring Network and Sampling EventsSRSNE Superfund Site, Southington, CT

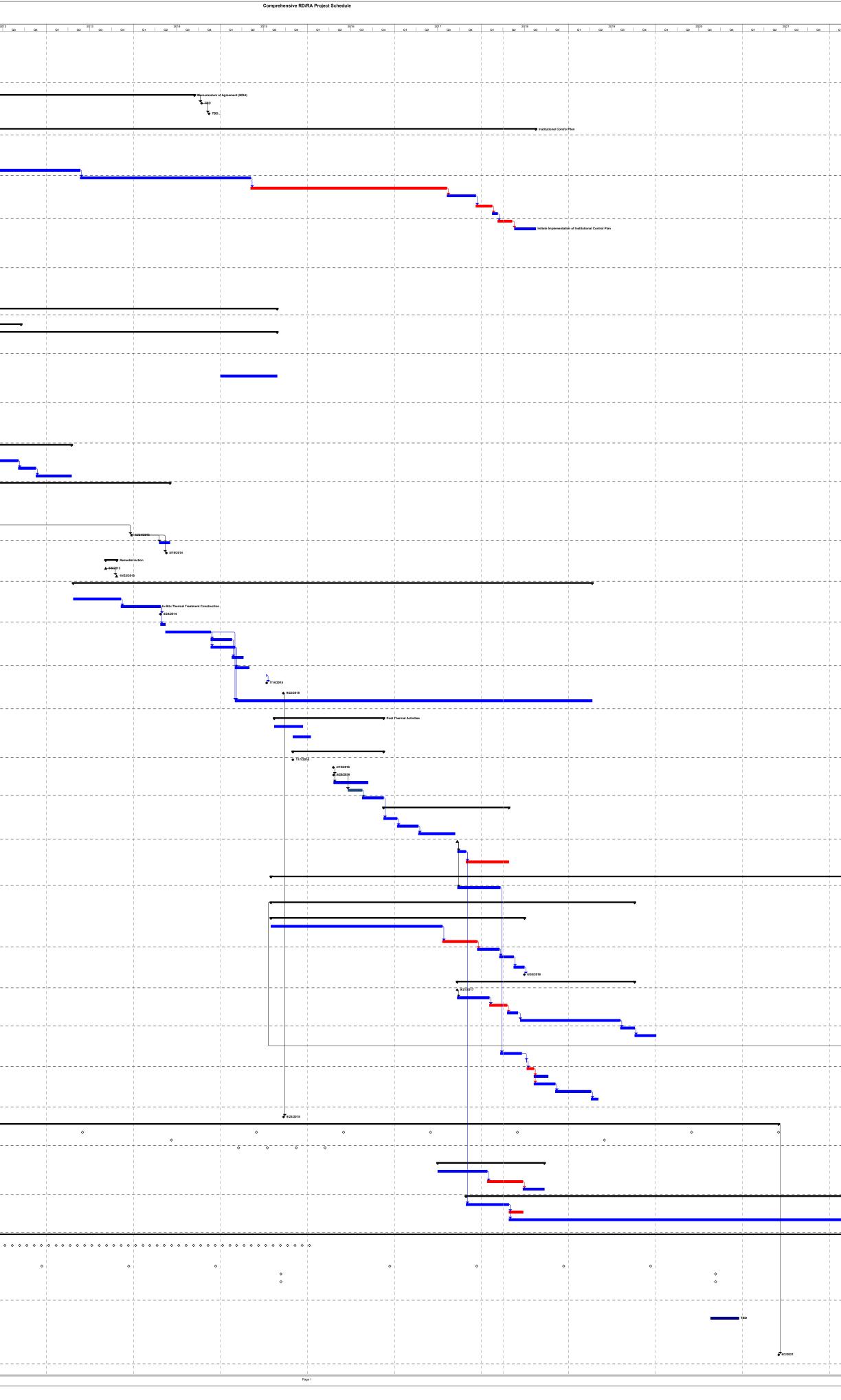

Well Group	# Wells	Sampling Period	Sampling Frequency	Analytical Parameters
"C" wells "R" wells "N" wells "M" wells "B" wells	83 30 10 5 3	first comprehensive event	1 event	VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters VOCs, alcohols, 1,4-dioxane, TAL metals, PAHs, PCBs, MNA parameters TAL metals, MNA parameters (background) TAL metals (background)
"C" wells "R" wells "N" wells "M" wells "B" wells	83 30 10 5 3	subsequent comprehensive events	every 5 years	VOCs, 1,4-dioxane, TAL metals VOCs, 1,4-dioxane, TAL metals, MNA parameters VOCs, 1,4-dioxane, TAL metals, MNA parameters TAL metals, MNA parameters TAL metals
"R" wells	30	after first comprehensive event	annual biennial	VOCs MNA parameters
"M" wells	5	after first comprehensive event	annual biennial	TAL metals (background) MNA parameters (background)
"B" wells	3	after first comprehensive event	annual	TAL metals (background)
"N" wells - overburden	8	before thermal treatment during thermal treatment after thermal, before equilibrium	biennial annual 3x / year	VOCs, MNA parameters VOCs, MNA parameters VOCs, MNA parameters
		after equilibrium	annual biennial	VOCs MNA parameters
		before thermal treatment during thermal treatment	annual annual	VOCs, MNA parameters VOCs, MNA parameters
"N" wells - bedrock	2	after thermal, before equilibrium	3x / year	VOCs, MNA parameters
		after equilibrium	annual biennial	VOCs MNA parameters
"W" wells	35	all comprehensive events	every 5 years	Water levels only - during all comprehensive events


Notes:


biennial = once every two years
 VOCs = Volatile Organic Compounds
 TAL = Target Analyte List
 PAHs = Polycyclic Aromatic Hydrocarbons
 PCBs = Polychlorinated Biphenyls
 MNA = Monitored Natural Attenuation


Figures

	LEGEND:
	PROPERTY LINE
	PROPERTY LINE - ADJOINER
<u>.</u>	BUILDING
	BUILDING - ADJOINER
	FORMER BUILDING
	RAILROAD
· · · · · · · · · · · · · · · · · · ·	ROAD
	GRAVEL ROAD
	DRAINAGE SWALE
	RIVER
	EASEMENT
<u> </u>	CHAINLINK FENCE
	AREA OF DISCRETE SOIL REMOVAL ON FORMER CIANCI PROPERTY (SEE NOTE 4)
	SHEETPILE
	WETLAND
R₩-1●	NTCRA 1 OVERBURDEN EXTRACTION WELL


Attachments

Attachment 1

Project Schedule

VINANCE		<u> </u>												
V V <th></th> <th>de maximis, inc.</th> <th></th>		de maximis, inc.												
			Trigger	Time Frame	SOW Sections			ecessors Notes/Status	07 Q3 Q4	01 02 03 04	Q1 Q2 Q3 Q4	01 02 03 04	01 02 03 04	Q1 Q2 2012
a A	1							1		◆-10/34/			1	
a Second	3								- 1	-	♥ Initial Remedial Steps Phase		1	
Note	4	Contractor/Project Coordinator						4			1	 	,	
Processor	6	Memorandum of Agreement (MOA)		Within 180 days of Entry of CD					t 		↓ ↓	 	r I	
2 A. Martine Mar	11	Implementation of Supplemental Containment	Upon notification by EPA, and consistent with the terms of the						- 1			 	 	
a A <td< th=""><th>12</th><th>Institutional Control Plan</th><th>Completion of Vapor Intrusion Stud</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ı ı 1</th><th></th><th> </th></td<>	12	Institutional Control Plan	Completion of Vapor Intrusion Stud									ı ı 1		
2 A. C. C. S.	14	Submit Institutional Control Plan	Completion of Vapor Intrusion Stud	dy Within 30 days of completion of Vapor Intr	ru	Sat 2/19/11 Sat 2/19/11	1 day	13					€ 2/19/2011	
a A	16	Control Plan IC Meeting				Tue 5/29/12 Tue 5/29/12	1 day							1
I Maria	18							16 5/21/13 submittal		·		· · · · · · · · · · · · · · · · · · ·	·	+
	19 20		Agency comments; revised regulations; changed condition	18				18 comments received 8/8/17 19						
	21 22							21 3/9 submittal of possible final					1	
Image: state stat	23 24	Initiate Implementation of Institutional Control		Within ten (10) days of receipt of EPA's approval or modification of the INSTITUTIONAL CONTROL PLAN	V.B.8				P					
Image: product of the second of the secon	25 26	Design Initiation Phase				Tue 12/23/08 Tue 4/21/09	120 days?	5			Design Initiation Phase	 	 	
Image: Section of the section of t				autorization to proceed						•			,	
P P <th>50</th> <th>(POP) Agency Review and Comment on Accelerated</th> <th>EPA approval or RD Contractor.</th> <th>within 120 days or EPA approval.</th> <th>V.C.2</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>5/19/2009</th> <th></th> <th></th> <th></th>	50	(POP) Agency Review and Comment on Accelerated	EPA approval or RD Contractor.	within 120 days or EPA approval.	V.C.2					•	5/19/2009			
V Mathematical And	51	Agency Review and Comment on Remedial				Sat 8/29/09 Sat 8/29/09	1 day?				8/29/2009		1	
V Not with with with with with with with wit	53 54	-						50				· · ·		<u> </u>
Image: section of the section of th	62	Vapor Intrusion Study			V.C.1.k	Mon 2/1/10 Wed 8/26/15	2033 days?					•		
Normal	64	USEPA Review and Approval	6 Monthe Entland			Wed 10/27/10 Wed 1/19/11	85 days	63 EPA approved 1/19/11				·	_J	 +
V V <th>65 66</th> <th></th> <th>Event</th> <th>9</th> <th></th> <th></th> <th></th> <th>2011</th> <th></th> <th></th> <th>. – – – I I</th> <th></th> <th></th> <th>. – – I I</th>	65 66		Event	9				2011			. – – – I I			. – – I I
Note	67 68			Within 90 days of notice by EPA.	V.E.1							-	1	
V Note:	69	NAPL Delineation Investigation Report			V.E.41		-	rpt submitted 11/19/09				' ' '		 +
v Note:	70 71 72	USEPA Review and Conditional Approval				Thu 4/29/10 Thu 8/26/10	120 days	70 71 response submitted 9/15/10				- -	(
2 Mathematical and a state of a	73 74	Final "For Construction" Drawings	Submittal of 100% Design.		V.E.2			estimated date	-		 	◆ 10/4/2010 ▲	1	
2 Printing Prining Prining	75 76						-					+		<u>+</u>
V Virtual Virtua Virtual Virtual Virtual Virtua Virtual Virtual Virtual	77 78	Complete PIPP Work				Tue 9/4/12 Fri 11/16/12	74 days	77					<u>*</u>	
Image: state in the s	79 80		EPA approval or modification of RE Work Plan.	D Within 120 days of EPA approval that necessary pre-design studies to be described in the RD Work Plan are comprise	V.D.1			78 kpt submitted April 2013			, 	, +		<u>+</u>
	81	"75%" Design Package (including ISTR-related		Compter2.			260 days	Initial design submittal to EPA July 2011	Ą		 	♦ 11/1/201	0	
Image: Section of the sectio	82	RDWP studies) Technical Information Meeting				Fri 11/11/11 Fri 11/11/11		estimated date S+30 days Upload Revised Design			 			
Image: Section of the sectio	84 85	Review/Comment USEPA Review, Comments, Responses				Tue 12/24/13 Fri 4/18/14	116 days	12/23/13 83 approved 4/18/14			 - 	· · · · · · · · · · · · · · · · · · ·		
Image: Marting and the second of th	86	Technical Information Meeting		e FWillin 120 daws -f		Mon 5/19/14 Mon 5/19/14	1 day? 84F5						1	
	87 88 89	Pre-construction Conference(s)	EPA approval or modification of Fir	nal Within 30 days of notice by EPA.	VI.C	Fri 9/6/13 Fri 9/6/13	1 day				 		1	
V Mathematical Society	90 91	ISTR	EPA approval or modification of	FirWithin 60 days of notice by EPA.	VI.E	Tue 4/23/13 Wed 4/10/19	2179 days?					+		+
Normal And Antipe Ant	92 93	Wellfield Installation In-Situ Thermal Treatment Construction				Tue 4/23/13 Fri 11/8/13 Sat 11/9/13 Wed 4/23/14	200 days 166 days	92					1	
2 And and any and any	94 95		Within 60 days of notice by Settling Defendants.	9	VI.G	Thu 4/24/14 Wed 5/14/14	21 days	93			 - 	' ' T		¦ +
Note Note Note Note Note Note Note Note Note	96 97	Implementation of Thermal Treatment Soil Sampling and Data Evaluation				Fri 11/21/14 Tue 2/17/15	89 days	96 2 phases, plus multiple round	1 19 -					
V V	98 99	System (if required)		Documented request for shutdown and rationale	N/A		-		-		 		1	
	100	Final Construction Inspection				Mon 7/13/15 Mon 7/13/15	1 day?	98				+		+
> Notating (Notating (Nota	102 103	Submit Construction Completion Report (Draft and Final)	Draft within 30 days of Final Construction Inspection.	Within 30 Days	VI.H			101 submitted 9/18/15					1	
Important Impor	104		ISTR shutdown	initial estimate 2 yrs; revised based on data				96,98 <mark>equilibrium not clear; temps staying high</mark>						; +
No. 2010	106		After In-Situ Thermal to re-assess the size of the area to be canced		V.C.i			SIP summary memo Dec'15			 		1	
Image: state in the state i	108		After In-Situ Thermal to determine		V.C.j	Sun 11/1/15 Thu 1/14/16	75 days	Included with design package	e		 	1 1 1	l I	
Image: Second	109 110					Sun 11/1/15 Thu 3/31/16	152 days				 			
v v <th>112</th> <th>Agency Review/Comments</th> <th></th> <th></th> <th></th> <th>Wed 4/20/16 Sat 6/18/16</th> <th>60 days</th> <th>111</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	112	Agency Review/Comments				Wed 4/20/16 Sat 6/18/16	60 days	111						
	114	Contractor Procurement				Sun 6/19/16 Wed 8/17/16	60 days	112						, , , ,
Image: Sector	116	Pre-Mobilization Soil & RCRA C Cap Construction (incl Cianci				Wed 11/16/16 Wed 4/25/18	526 days						1	
Distant Distant <t< th=""><th>118</th><th>Winter Shutdown</th><th></th><th></th><th></th><th>Thu 1/12/17 Mon 4/10/17</th><th>89 days</th><th>117</th><th></th><th></th><th></th><th> </th><th>l I</th><th></th></t<>	118	Winter Shutdown				Thu 1/12/17 Mon 4/10/17	89 days	117					l I	
Note:	120	Final Construction Inspection	Settling Defendants conclude construction complete.	Within 60 days of notice by Settling Defendants.	VI.G	Thu 9/21/17 Thu 9/21/17	1 day	9/21/17 site meeting				*	, 	 +
30 Alternative Alternati	121 122	Report							B 1				1	,
Description Desc	123 124										 		1	
Vertication Vert	125	GCTEOS						August 2017, but discussed				T		T
Image: Note: Section (Section (Sec	126		need to upgrade system due to parts limitations; possible need address in cap design	As ulrected by the EPA, or proposed by to the Settling Defendants, no less frequently than every 10 years	V.C.6									1
	127	Proposal, POTW sampling, permit					-	8/1/15 start, 10/30/15 sewer discharge proposal; December 2015 POTW					1	
Image: Second	129 130	New DEEP General Permit Language				Thu 12/14/17 Fri 3/16/18	93 days	128				, +		
Image: stand	131 132	Gen'l Permit							-				1	
0 0	133 134	Commence sewer discharge PlumeStop and ZVI Pilot Study				Thu 9/21/17 Sat 10/5/19	745 days					, , , , , ,		, , , , ,
Vertual status Vertual	136	Draft Pilot Study Work Plan	25			Thu 9/21/17 Fri 2/2/18	135 days	135 2/2/18 PSWP draft to agencie	es i				 	
Withy Syndown Mond Not	137 138 139	Revise and Finalize				Thu 4/19/18 Sat 6/2/18	45 days	137					1	
minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimum minimu	139 140 141	Pilot Study Completion Report GCTEOS (to reflect Initial Optimization Study				Wed 8/7/19 Sat 10/5/19	60 days	139			 ! !	<u>+</u>		
Image: Second	142 143	results) Additional Optimization Study(ies) (TBD)			V.C.6	Tue 7/29/25 Tue 11/25/25	120 days26SS+3	finalized once determination is made about PS/ZVI 3650 days	-				1	
Min <th>144 145</th> <th>Technical Information Meeting Agency Review/Comments</th> <th></th> <th></th> <th></th> <th>Mon 7/9/18 Mon 7/9/18 Tue 7/10/18 Wed 8/8/18</th> <th>1 day? 143F5 30 days</th> <th>S+20 days</th> <th></th> <th></th> <th> </th> <th>, + +</th> <th></th> <th> +</th>	144 145	Technical Information Meeting Agency Review/Comments				Mon 7/9/18 Mon 7/9/18 Tue 7/10/18 Wed 8/8/18	1 day? 143F5 30 days	S+20 days			 	, + +		 +
9 Append App	146 147	Address Comments and Finalize Design Contractor Procurement				Thu 8/9/18 Tue 11/6/18	90 days	145					1	
Vert Vert <	148 149	Prepare/ Submit Construction Completion										, , , ,	,	
Mail	150 151 152		EPA approval or modification of Co	ons Immediately upon notice by EPA.				103						
With Singer With Singer Spatial Productions With With With With With With With With	152 153 163	Annual Groundwater Sampling Event			vii.B	Wed 6/1/11 Tue 6/1/21	3654 days		-		 		J	\$
 10 1000000000000000000000000000000000000	167	Sampling "N" Wells during Equilibrium Period (events outside equi period coincide										+		+
Marcole Algonation and algonation of the temp grane and algonation of temp grane and algonalgonating algonation of temp grane and algonation of	175 176	Proposed Changes to GWMP						est start date; latest draft to agencies 1/24/18					1	
9 0	177 178	Develop written plan to reflect new program				Sun 6/24/18 Fri 9/21/18	90 days	176						'
10 Implementant and update as needed Implementant update as needed Implementantetee Implementant update	179 180	Draft OM&M Plan				Sat 10/28/17 Wed 4/25/18	180 days							
101 Compliance Reporting Number Vergress Reports Number Ver	181 182 183							180					1	
27 Annual Stato of Compliance Reports One And Nucleating of Langende	184		Lodaina of the CP	On the 10th day following to 1.1										
24 Five Year Review Reports Network Reports Net	ıdö	monthly Progress Reports	couging of the CD.	on one roth day following lodging and monthly thereafter until approval of final Construction Compl Rpt.	VIILA	1 de 2/10/09 Tue 11/14/17	3∠ou days				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v v o o o o o o
I valuation(s) (part of S-year roviews) magneting of market and model and setting of market and model an	282 294	Five Year Review Reports	Five Years after the date of the F	RecEvery Five years	VII.A.D	Wed 9/29/10 Thu 9/10/20	3635 days				 		1	♦
322 Interim Remedial Action Report EPA determination for Data point motion by EPA. Teaching system is operational and restance system is operational and restance system. VIII.C	298			er As part of the five-year reviews. In	VII.B.3	Wed 9/29/10 Thu 9/10/20	3635 days					♦	1	
303 Determination of Background Metals in Groundwater (TBD) Compliance from the interim Change Insert the stating of the monitoring of Compliance Report (TBD) Compliance Report (TBD) Compliance Report (TBD) Compliance du the descriptione Change Insert the stating of the monitoring of Compliance Report (TBD) Compliance Report	302	Interim Remedial Action Report	EPA determination that long-term	Within 90 days of notice by EPA.	VIII.C	Wed 11/26/25 Wed 11/26/25	1 day	124						
Mark Assessment Mark Ma	303	Groundwater (TBD)	Compliance with Interim Cleanup Levels for Groundwater.	No sooner than 365 days prior to submitta of Demonstration of Compliance Report.		Thu 8/20/20 Wed 12/16/20	119 days						, 1	
Note Name Name Name Name Name Name Name Not Name Name Name Name Name Name Name Name Name Name Name Name Name Name	304 305		Compliance with cleanup levels.	As demonstrated by Settling Defendants.		Sun 7/1/07 Sun 7/1/07 Sun 7/1/07	1 day? 1 day				 		1	
	306	Site Closure (TBD)				Wed 6/2/21 Wed 6/2/21	1 day?	152				 		
Ymt Date: Tue 4/3/18	307 Project: \$		Compliance with cleanup levels.	As demonstrated by Settling Defendants.	VIII.G	Sun 7/1/07 Sun 7/1/07	1 day?		7/1/2007					
	roject: S Print Dat	arcare: ouperfund Site e: Tue 4/3/18												

						Figure 1
01 02 03 04	01 02 03 04	01 02 03 04	01 02 2025 03 04	01 02 03 04	01 02 03 04	01 02 20
			, 	, 		
				 		
			, , , , , , ,	, 		
			, ,	, 		
			Grc	 undwater Containment & Treatment Evaluation & Optimization 	in Study (GCTEOS)	
				, , , , , ,		
			► TBD			
						-
			Co	mpliance Reporting		
					SRSNE RDRA Schedule Comp	

Attachment 2

Hydraulic Containment and Treatment System, Annual Demonstration of Compliance Report No.8, October 31, 2016 through October 30, 2017

SRSNE Site Group

2017 GROUNDWATER SAMPLING AND MONITORED NATURAL ATTENUATION REPORT

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

December 2017

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Disclaimer: This document is a DRAFT document prepared by the Settling Defendants under a government Consent Decree. This document has not undergone formal review by the U.S. Environmental Protection Agency (EPA) and CT Department of Energy and Environmental Protection (DEEP). The opinions, findings, and conclusions, expressed are those of the author and not those of the EPA or the CT DEEP.

2017 GROUNDWATER SAMPLING AND MONITORED NATURAL ATTENUATION REPORT

Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Prepared for: SRSNE Site Group

Prepared by: Arcadis U.S., Inc. 160 Chapel Road Suite 201 Manchester Connecticut 06042-1625 Tel 860 645 1084 Fax 860 645 1090

Our Ref.: B0054634.0001.02200

Date: December 2017

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

CONTENTS

Ex	ecutive SummaryES-1
1	Introduction1
	1.1 Purpose1
	1.2 Scope1
	1.3 Document Organization
2	Annual Groundwater Sampling Event – 20174
	2.1 Scope of Work4
	2.2 Summary of Field Activities
	2.3 Results
	2.3.1 Groundwater Elevations5
	2.3.2 VOCs6
	2.3.3 SVOCs and PCBs7
	2.3.4 TAL Metals7
	2.3.5 MNA Parameters8
3	Post-Thermal Treatment Groundwater Sampling9
	3.1 Scope of Work9
	3.2 Summary of Field Activities9
	3.3 Results
4	Additional Sampling14
	4.1 Summary of Field Activities14
	4.2 Results
5	NA Background15
	5.1 Site Conceptual Model15
	5.2 Selection of MNA Remedy16
	5.3 Identified Data Gaps17
	5.4 Objectives of MNA Performance Monitoring17
	5.5 Performance Standards

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

		5.5.1	MNA-Related Performance Standards	18
		5.5.2	Demonstration of Compliance Report	18
6	MN	A Perf	ormance Monitoring	19
	6.1	Introd	luction	19
	6.2	Grour	ndwater Performance Monitoring Locations	19
	6.3	MNA	Monitoring Parameters	19
	6.4	Monit	oring Frequency	20
	6.5	MNA	Monitoring Objectives	20
	6.6	Data	Quality Objectives	21
7	MN	A Eval	uation	22
	7.1	Total	VOC Concentration Trends	22
		7.1.1	Trend Analysis	22
		7.1.2	Total VOC Attenuation Rate	24
	7.2	Estim	ate of COC Mass Flux in Groundwater	25
	7.3	Distril	bution of VOCs in NAPL and Groundwater	25
	7.4	Evalu	ation of Monitoring Objectives	26
		7.4.1	Evaluation of Changes in Environmental Conditions that May Reduce E of MNA	•
		7.4.2	Evaluation of Potentially Toxic and/or Mobile Transformation Products.	27
		7.4.3	Evaluation of Plume Stability	28
		7.4.4	Evaluation of No Unacceptable Impacts to Downgradient Receptors	28
		7.4.5	Evaluation of New Releases of COCs	28
		7.4.6	Evaluation of Institutional Controls	28
		7.4.7	COC Mass Flux / Mass Reduction	29
	7.5	Conti	ngency Measures	29
8	Sun	nmary		
9	Ref	erence	9S	

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

TABLES

- 1. VOCs Annual Groundwater Sample Results June 2017
- 2. Metals Annual Groundwater Sample Results June 2017
- 3. Post-Thermal Treatment Groundwater Sample Results VOCs
- 4. Post-Thermal Treatment Groundwater Sample Results MNA Parameters
- 5. Post-Thermal Treatment Groundwater Sample Results 1,4-Dioxane
- 6. Statistical Summary of Groundwater Total VOC Concentration Trends

FIGURES

- 1. Site Location Map
- 2. Groundwater Monitoring Locations Shallow Overburden
- 3. Groundwater Monitoring Locations Middle Overburden
- 4. Groundwater Monitoring Locations Deep Overburden
- 5. Groundwater Monitoring Locations Shallow Bedrock
- 6. Groundwater Monitoring Locations Deep Bedrock
- 7. VOC Exceedance Plume Shallow Overburden
- 8. VOC Exceedance Plume Middle Overburden
- 9. VOC Exceedance Plume Deep Overburden
- 10. VOC Exceedance Plume Shallow Bedrock
- 11. VOC Exceedance Plume Deep Bedrock
- 12. Thermal Treatment Area Monitoring Wells
- 13. Groundwater Total VOC Concentrations with Time Shallow Overburden
- 14. Groundwater Total VOC Concentrations with Time Middle Overburden
- 15. Groundwater Total VOC Concentrations with Time Deep Overburden
- 16. Groundwater Total VOC Concentrations with Time Shallow Bedrock
- 17. Groundwater Total VOC Concentrations with Time Deep Bedrock
- 18. Total Mass of VOCs Removed by NTCRA 1 and NTCRA 2 Groundwater Extraction Wells

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

APPENDICES

- A. Field Sampling Forms
- B. Equipment Calibration Logs
- C. Post-Thermal Treatment Trend Graphs
- D. 2017 Microbiological Survey Technical Memorandum Update

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

EXECUTIVE SUMMARY

This 2017 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) activities at the Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site in Southington, Connecticut (Site). Specifically, this report summarizes the 2017 groundwater sampling event performed in accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the Remedial Design Work Plan [RDWP]; Arcadis 2010b), and presents the results and interpretation of data collected in support of MNA as a remedy for groundwater that contains Site-related constituents of concern (COCs) at concentrations above risk levels or regulatory limits. Monitored natural attenuation is a component of the overall remedial strategy for Site groundwater as described in the United States Environmental Protection Agency's (USEPA's) 2005 Record of Decision (ROD) for the Site.

In accordance with the Work Plan, the 2017 annual groundwater sampling event was performed in June 2017 and included sampling of groundwater at 37 monitoring wells for analysis of volatile organic compounds (VOCs) or target analyte list (TAL) metals, as indicated in the Work Plan. These wells were also sampled for the full suite of potential site-related constituents in 2014 as part of the second "comprehensive" event in support of the 2015 Second Five Year Review (USEPA 2015).

The June 2017 results indicate that:

- VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC], i.e., drinking water standards) are contained within the estimated capture zone boundary of the hydraulic containment and treatment system (HCTS). None of the wells within the severed plume (i.e., wells with historical COC concentrations above Action Levels downgradient of the HCTS capture zone boundary) had COC concentrations above Action Levels during the 2014 through 2017 groundwater monitoring events.
- Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 4.13 micrograms per liter (ug/L) and 2.16 ug/L, respectively, in the June 2017 sample. Both concentrations are below the Action Level of 5.0 ug/L and continue to decline. PCE was first detected above the Action Level at this well in June 2013, while TCE was first detected above the Action Level in June 2012.
- PCE and TCE were detected at deep bedrock monitoring well MW-1003DR at concentrations of 2.67 ug/L and 30.4 ug/L, respectively, in the June 2017 sample. The PCE concentration dropped below the Action Level of 5.0 ug/L starting in June 2014, while the TCE concentration is above the Action Level of 5.0 ug/L. PCE and TCE were first detected

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

above the Action Level at this well in June 2013 at concentrations of 81 and 660 ug/L, respectively. Concentrations of both compounds have continued to decline relative to the 2013 results.

- TCE was detected at monitoring well MW-1002R at a concentration (10.1 ug/L) above the Action Level of 5 ug/L. The only other detection of TCE above the Action Level at this well occurred in June 2015.
- As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 ug/L) and 2012 (approximately 26,400 ug/L). This well is located within the bedrock NAPL zone initially delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998), and more recently refined (based on additional data from the RD/RA activities) in the *Groundwater Conceptual Site Model Update* (Arcadis 2015). This well is also located within the HCTS capture zone. The total VOC concentration in June 2017 was significantly lower (4,573 ug/L) than in June 2012, though concentrations remain elevated above most pre-June 2012 values. VOC concentrations at this well will continue to be monitored as part of future sampling events.

This report also summarizes the three post-thermal treatment monitoring events, conducted in November 2016, March 2017, and July 2017, in accordance with SOW Sections IV.B.5.d and e. Note that three of the ten "N" wells (TW-08A, TW-08B, and TW-08D) were abandoned in March 2017, shortly after the March 2017 sampling event. Results indicate that total VOC concentrations have decreased by one-to-three orders of magnitude at six of the seven remaining "N" wells (relative to the initial comprehensive sampling event conducted in 2010). Significant rebound in total VOC concentrations was observed in groundwater at MWL-304 in July 2017 relative to previous sampling events (Appendix C). This increase in total VOC concentration at MWL-304 is driven primarily by increases in cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) concentrations. Increases in cDCE and VC concentrations indicate increased reductive dechlorination of higher chlorinated VOCs including PCE and TCE.

Results from Bio-Trap[®] sampling with QuantArray-Chlor analyses at three Non-Time-Critical Removal Action (NTCRA) 1 locations, ISTR-1, ISTR-5, and TW-08D, and QuantArray-Petro analyses at one NTCRA 1 location, ISTR-5, demonstrate increased diversity in the microbial population relative to pre-treatment conditions (Appendix D). These results indicate that anaerobic biodegradation processes dominate in the thermal treatment area, especially for chlorinated volatile organic compounds (CVOCs). However, results also indicate a strong potential for aerobic cometabolism of CVOCs and aerobic metabolism of petroleum hydrocarbons if oxidation-reduction conditions become more favorable for these processes in the future. In addition, a Bio-Trap[®] sampler was deployed at 1 monitoring well (CPA-7R) for analysis of 1,4-dioxane and tetrahydrofuran (THF) biodegradation potential. The assessment of 1,4-dioxane biodegradation potential at monitoring well CPZ-7R indicates the potential for

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

multiple biodegradation mechanisms in this area of the site. Because groundwater conditions are generally reducing to strongly reducing, it is likely that aerobic biodegradation is limited. However, it is possible that even small amounts of dissolved oxygen stimulate processes that may include the metabolism and/or cometabolism of 1,4-dioxane.

This MNA Report fulfills the requirement set forth in Section VII.A.2 of the SOW and the reporting approach outlined in the MNA Plan presented as Attachment L to the RDWP (Arcadis 2009) and presents results of an ongoing evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluations (presented in the 2010 through 2016 MNA Reports), this evaluation considers groundwater monitoring results from the June 2017 annual groundwater monitoring event for VOCs and TAL metals at a subset of monitoring wells and presents: an evaluation of current concentration trends for total VOCs in groundwater at select monitoring locations; an evaluation of post-thermal treatment data at the "N" wells; estimates of bulk attenuation rates for total VOCs in groundwater; and HCTS COC mass extraction rates with time.

Results of these evaluations indicated:

- Detected concentrations of VOCs above Action Levels are contained within the estimated capture zone boundary of the HCTS.
- Groundwater total VOC concentrations are generally declining with time throughout the Site groundwater COC plume.
- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the *Feasibility Study* (FS) (BBL and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates from the early 2000s to 2013, with a decline in COC mass extraction rates observed starting in 2014.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

1 INTRODUCTION

1.1 Purpose

This 2017 Groundwater Sampling and Monitored Natural Attenuation Report (MNA Report) was prepared on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Site Group, an unincorporated association of Settling Defendants to a Consent Decree (CD), to address certain requirements of the Statement of Work (SOW) for the Remedial Design/Remedial Action (RD/RA) at the SRSNE Superfund Site in Southington, Connecticut (Site) (Figure 1). The CD was lodged on October 30, 2008 with the United States District Court for the District of Connecticut in connection with Civil Actions No. 3:08cv1509 (SRU) and No. 3:08cv1504 (WWE) and was entered by the Court on March 26, 2009.

This MNA Report presents the results and evaluation of data collected during the June 2017 annual groundwater monitoring event conducted in accordance with the Remedial Design Work Plan (RDWP), the MNA Plan (Attachment L to the RDWP [Arcadis 2009]), and in fulfillment of the requirements of the SOW (Section IV.B.5.f). This report also presents the results and evaluation of data collected during three post-thermal treatment groundwater monitoring events conducted in accordance with SOW Sections IV.B.5.d and e. These events are to be conducted three times per year until equilibrium is restored (i.e., groundwater temperatures return to approximately pre-thermal temperatures). Thermal treatment was completed in early March 2015, and post-thermal monitoring events were performed in March, July, and October/November 2015; March, July, and November 2016; and March and July 2017. The third 2017 post-thermal monitoring event is scheduled for November 2017.

Section VII.A.2 of the SOW requires the submittal of annual MNA Reports as part of the Annual State of Compliance Reports. MNA is a component of the overall remedial strategy set forth for the Site in the Record of Decision (ROD) (United States Environmental Protection Agency [USEPA] 2005) for groundwater containing Site-related constituents of concern (COCs) at concentrations exceeding acceptable risk levels or regulatory limits.

1.2 Scope

In accordance with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Work Plan; Attachment N to the RDWP [Arcadis 2010b]), the 2017 annual groundwater sampling event was performed in June 2017 and included sampling of groundwater from 30 "R", 4 "M", and 3 "B"-designated monitoring wells. Post-thermal treatment groundwater sampling events in November 2016 and March 2017 included 10 "N"-designated monitoring wells; the July 2017 event only included 7 "N" wells, as three of the wells (TW-08A, TW-08B, and TW-08D) were abandoned in March 2017. As further described in Section 3.1, the

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

letter designations generally pertain to the locations, monitoring scope, and sampling frequency of monitoring wells.

In addition to the above SOW-required sampling events, a microbial survey was conducted in 2017 to evaluate post- in-situ thermal remediation (ISTR) QuantArray levels. Bio-Trap[®] samplers were deployed at three monitoring wells (ISTR-1, ISTR-5, and TW08D) to evaluate the post-thermal treatment microbial community relative to the pre-thermal treatment community. In addition, a Bio-Trap[®] sampler was deployed at 1 monitoring well (CPA-7R) for analysis of 1,4-dioxane and tetrahydrofuran (THF) biodegradation potential. A discussion of the results of the microbiological survey is included in Section 4.2.

MNA refers to the reliance on natural attenuation (NA) processes, within the context of a carefully controlled and monitored site cleanup approach, to achieve site-specific remediation objectives within a timeframe that is reasonable compared to those offered by more active methods. Natural attenuation is the reduction in mass or concentration of COCs in groundwater over time or distance from the source of the impact due to naturally occurring processes. Attenuation processes include nondestructive physical processes (e.g., advection, dilution, dispersion, volatilization, dissolution, and sorption) and destructive chemical and biological processes.

The MNA remedy applies to both groundwater and non-aqueous phase liquid (NAPL) and addresses the following areas of the Site, in accordance with the SOW:

- Groundwater and saturated glacial deposits (gravel, sand, silt and clay) in the "Overburden Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria; and
- Groundwater and fractured rock in the "Bedrock Groundwater" unit that contain COC concentrations above acceptable risk levels or regulatory criteria.

COCs in overburden and bedrock groundwater are monitored as part of the MNA remedy. The Site COCs include VOCs such as chlorinated ethenes and ethanes, ketones, aromatic compounds, and 1,4-dioxane; TAL metals; semi-volatile organic compounds (SVOCs); and polychlorinated biphenyls (PCBs). Only VOCs and metals were analyzed during the June 2017 annual event. During the post-thermal treatment sampling events (November 2016, and March and July 2017), VOCs (including 1,4-dioxane during the March 2017 event) and MNA parameters (discussed below) were analyzed.

In addition to monitoring COC concentrations, the MNA Plan specifies long-term monitoring of a suite of geochemical parameters ("MNA parameters") to confirm geochemical evidence of NA and to verify that biochemical processes continue to support COC degradation in Site groundwater. The MNA parameters monitored at the Site include anions (sulfate, chloride, nitrate, nitrite), total organic carbon (TOC), iron (ferric, ferrous), divalent manganese, light

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

hydrocarbons (methane, ethane, ethene), dissolved oxygen (DO), oxidation/reduction potential (ORP), pH, alkalinity, and temperature.

1.3 Document Organization

The remainder of this MNA Report is organized into the following sections:

- Section 2 Annual Groundwater Sampling Event 2017: summarizes the groundwater sampling activities performed in June 2017 and presents an evaluation of the data.
- Section 3 Post-Thermal Treatment Groundwater Sampling: summarizes the groundwater sampling activities performed in November 2016 and March and July 2017 and presents an evaluation of the data.
- Section 4 Additional Sampling: presents the non-SOW-required sampling conducted in June 2017, and presents an evaluation of the data.
- Section 5 MNA Background: describes the MNA performance monitoring program at the Site, including the Site conceptual model, MNA remedy, and performance standards.
- Section 6 Performance Monitoring: describes the MNA performance monitoring program at the Site, including monitoring locations, parameters, frequency and objectives.
- Section 7 MNA Evaluation: presents an evaluation of Site data based on results from the June 2017 annual sampling event, and discusses the analysis of performance monitoring data, including the data quality assessment process, data interpretation approach, and statistical procedures.
- Section 8 Summary: presents a summary of conclusions from the MNA evaluation and provides recommendations for action.
- Section 9 References: lists the references cited within this MNA Report.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

2 ANNUAL GROUNDWATER SAMPLING EVENT – 2017

2.1 Scope of Work

The 2017 annual groundwater sampling event was conducted to satisfy the requirements of SOW Section IV.B.5.f, which includes annual monitoring of VOCs and biennial (i.e., every two years) monitoring of MNA parameters at a select subset of monitoring wells in the overburden and bedrock aquifers. The sampled wells are located in the area outside the NTCRA 1 sheet pile wall and referred to as "R" wells. Note that only VOCs were analyzed during this annual event.

In addition to the SOW-required sampling, the background monitoring wells – referred to as the "M" and "B" wells – were sampled for TAL metals. As outlined in SOW Section VIII.F, Interim Cleanup Levels (ICLs) for metals need to be established prior to submittal of the Demonstration of Compliance Report. To that end, metals will be analyzed on an annual basis to establish a dataset sufficient for determining the appropriate background metals concentrations at the Site.

In total, 37 monitoring wells were sampled as part of the June 2017 monitoring event. Of these, 20 were sampled using HydraSleeve[™] samplers and 17 were sampled using low-flow methods.

In addition to the sampling discussed above, Bio-Trap[®] samplers were voluntarily (i.e., not SOW-required) deployed at four monitoring wells. The analyses conducted for these samples are summarized in Section 4.

2.2 Summary of Field Activities

The 2017 annual groundwater sampling event was conducted June 5 through 9, 2017. Procedures used for gauging and sampling the 17 monitoring wells using low-flow methods were consistent with those outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (Arcadis January 2011a). HydraSleeves[™] were used to collect samples from 20 of the 37 wells, consistent with the approach proposed in a memorandum dated July 7, 2011, and approved by the USEPA in a letter dated May 21, 2012. In summary, the approved HydraSleeve[™] sampling approach included the following conditions:

- Used for "routine" samples collected for tracking changes and trends in the groundwater over time. It does not apply to samples collected for specific decision points such as evaluating remedy protectiveness for five-year reviews, capture zone analysis, confirming results of modeling, risk assessments, etc.
- To be used only for sampling of VOCs and MNA parameters.
- Used for any well that has been given an "R" or "N" designation and that contains one or more constituents at a concentration greater than or equal to ten times the ICL, or, is located within the hydraulic capture zone.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts, for analysis of VOCs or TAL Metals. A tabular summary of the sampling event is provided below:

SOW Section	Well Group	# of \ Inter LF			Wells Ipled HS	Analytical Parameters
IV.B.5.f	"R"	10	20	10	20	VOCs
VIII.F	"M"	5		4		TAL Metals
IV.B.5.f	"B"	3		3		TAL Metals

LF - Wells sampled using low-flow method

HS – Wells sampled using HydraSleeve[™] samplers

There was one deviation from the intended scope: "M" monitoring well MW-901D was not sampled due to insufficient water in this overburden well (i.e., dry) at the time of sampling.

Monitoring well locations in each of the five hydrostratigraphic zones are shown on Figures 2 through 6. Field sampling forms and equipment calibration logs from the sampling event are included in Appendices A and B, respectively.

2.3 Results

Groundwater analytical results from the June 2017 annual groundwater monitoring event are provided in Table 1 (VOCs) and Table 2 (TAL metals). Groundwater data were validated consistent with the procedures outlined in the *Summary of Initial (2010) Comprehensive Groundwater Sampling Event* (Arcadis January 2011a). Any qualifiers and/or modifications made via the validation process are reflected in the tables.

2.3.1 Groundwater Elevations

Synoptic groundwater elevation measurements are only collected during five-year comprehensive monitoring events, and therefore were not collected during the June 2017 groundwater monitoring event. Groundwater elevation data from the most recent comprehensive event (June 2014) were included in the *2014 Groundwater Sampling and Monitored Natural Attenuation Report* (Arcadis 2014).

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

2.3.2 VOCs

Groundwater VOC concentrations from the June 2017 groundwater monitoring event are provided in Table 1. Groundwater VOC concentrations were compared against USEPA Maximum Contaminant Levels (MCLs) and Connecticut Class GA Groundwater Protection Criteria (GWPC), with the lower of the two criteria, referred to as the "Action Level", used as the criterion for the comparison for each VOC. The Action Levels are intended to be protective of groundwater that could be used for drinking water purposes. Groundwater VOC concentrations that exceeded their respective Action Levels are highlighted in Table 1. For comparison, the ICLs specified in Table L-1 of the ROD (USEPA 2005) are also listed in Table 1.

Concentrations of VOCs greater than Action Levels are contained within the estimated capture zone boundary of the Hydraulic Containment and Treatment System (HCTS).

Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 4.13 micrograms per liter (ug/L) and 2.16 ug/L, respectively, in the June 2017 sample. Both concentrations are below the Action Level of 5 ug/L, and concentrations of both compounds continue to decline. PCE was first detected above the Action Level at this well in June 2013, while TCE was first detected above the Action Level in June 2012.

PCE and TCE were detected at deep bedrock monitoring well MW-1003DR at concentrations of 2.67 ug/L and 30.4 ug/L, respectively, in the June 2017 sample. The PCE concentration has been below the Action Level of 5.0 ug/L since June 2014, while the TCE concentration is above the Action Level of 5.0 ug/L (and has been since 2013). PCE and TCE were first detected above the Action Level at this well in June 2013 at concentrations of 81 and 660 ug/L, respectively. Concentrations of both compounds have continued to decline relative to the 2013 results.

TCE was detected at monitoring well MW-1002R at a concentration (10.1 ug/L) above the Action Level of 5 ug/L. The only other detection of TCE above the Action Level at this well (19.3 ug/L) occurred in June 2015.

As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 ug/L) and 2012 (approximately 26,400 ug/L). This well is located within the bedrock NAPL zone initially delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998), and more recently refined (based on additional data from the RD/RA activities) in the *Groundwater Conceptual Site Model Update* (Arcadis 2015). This well is also located within the HCTS capture zone. The total VOC concentration in June 2017 (4,573 ug/L) was significantly lower than in June 2012 (26,400 ug/L), though concentrations remain elevated above most pre-June 2012 values. VOC concentrations at this well will continue to be monitored in future sampling events.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

VOC Plume Delineation

Data from the 2014 through 2017 groundwater monitoring events were used to update the VOC plume maps, originally presented in the Summary of Initial (2010) Comprehensive Groundwater Sampling Event (Arcadis January 2011a), for each of the five hydrostratigraphic units. Using the approach that was initially presented in the RI (BBL June 1998), groundwater VOC results (the most recent data available at each well) were used to derive VOC regulatory exceedance ratios by dividing detected concentrations of VOCs by the lower of the federal standard (MCL) or the state standard (GWPC), which are the ARARs-based "Action Levels"; these generally represent drinking water standards. An exceedance ratio value greater than 1.0 indicates that the detected VOC concentration exceeded the Action Level. Exceedance ratio values less than 1.0 indicate that the detected VOC concentrations were less than the Action Level. The highest (and in some cases, the two highest) VOC exceedance ratio(s) for each well, and the specific compound associated with each ratio, are summarized for each hydrostratigraphic unit on Figures 7 through 11, and these regulatory exceedance ratios were used to delineate groundwater with VOCs above Action Levels. VOCs greater than Action Levels are contained within the estimated capture zone boundary of the Hydraulic Containment and Treatment System (HCTS).

2.3.3 SVOCs and PCBs

SVOC data are only collected in conjunction with five-year comprehensive monitoring events, and PCB data were only collected during the initial comprehensive event; therefore, SVOCs and PCBs were not included in the June 2017 groundwater monitoring event. Previously collected SVOC and PCB data were evaluated in the *Monitored Natural Attenuation Report* (Arcadis September 2010a) and the *2014 Groundwater Sampling and Monitored Natural Attenuation Report* (Arcadis 2014).

2.3.4 TAL Metals

Groundwater concentrations of TAL metals for background samples collected during the June 2017 groundwater monitoring event are summarized in Table 2. Groundwater TAL metals concentrations were compared against the Action Levels (i.e., the lower of the MCLs and GWPCs; note that there are no Action Levels for dissolved metals). ICLs have not yet been developed for metals in groundwater because they are a function of background concentrations, which are to be established in the future based on background sampling performed through that time.

The groundwater sample collected at MW-126B indicated total manganese (Mn) at a concentration (5,793 ug/L) above the Action Level of 500 ug/L. MW-126B is an upgradient, background well located north and west, respectively, of the former Operations Area of the SRSNE Site.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

2.3.5 MNA Parameters

Concentrations and distributions of electron acceptors, electron donors, and byproducts of microbially-mediated reactions are periodically evaluated to verify the types of geochemical and biodegradation processes active in Site groundwater. MNA parameters were not analyzed during the June 2017 annual groundwater monitoring event, but will be collected as part of the June 2019 comprehensive groundwater monitoring event. MNA parameter data were collected as part of the post-thermal treatment groundwater sampling events, as described in Section 3.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

3 POST-THERMAL TREATMENT GROUNDWATER SAMPLING

3.1 Scope of Work

As described in SOW Sections IV.B.5.d and e, groundwater monitoring is required at select overburden and bedrock monitoring wells in the area between the former Boston and Maine railroad tracks and the NTCRA 1 sheetpile wall (i.e., the "N" wells), with different sampling frequencies during different stages of the RD/RA process.

With the completion of ISTR on March 2, 2015, triannual (i.e., three times per year) sampling is continuing until groundwater temperatures return to approximate pre-thermal conditions. Sampling events were conducted in November 2016, March 2017 and July 2017; and the third triannual event for 2017 is anticipated to occur in November. Note that following the March 2017 sampling event, monitoring wells TW-08A, TW-08B, and TW-08D were decommissioned. Analysis for 1,4-dioxane is not part of the post-thermal treatment monitoring program, but was voluntarily added to the analyte list for the March 2017 samples. Additionally, Bio-Trap[®] samplers were deployed at four monitoring wells (ISTR-1, ISTR-5, TW-08D, and CPZ-7R [as a replacement for TW-08B, which was damaged]) in the thermal treatment area on February 6, 2017 and retrieved on March 8, 2017 (CPZ-7R was deployed on March 3, 2017 and retrieved on April 4, 2017). QuantArray-Chlor and/or QuantArray-Petro analyses were applied to Bio-Trap[®] samples from ISTR-1, ISTR-5, and TW-08D to evaluate post-ISTR QuantArray levels prior to subsequent abandonment of these wells. Results of this evaluation are summarized in Section 3.3.

As discussed below, groundwater temperatures are also monitored at selected well locations as a basis for assessing the migration of heated groundwater from the thermal treatment zone, and to assess the point at which temperatures have returned to baseline conditions (which will trigger the completion of the triannual "N" well sampling).

3.2 Summary of Field Activities

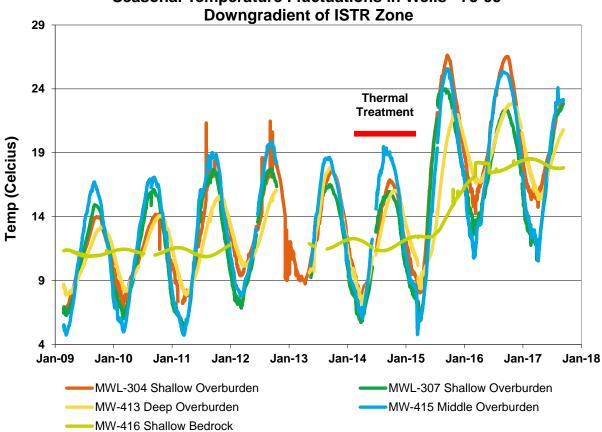
During each monitoring event, wells were sampled using HydraSleeves[™], except for TW-08B in March. During a previous sampling event, it was determined that a portion of the well casing was bent and that HydraSleeve[™] deployment was not feasible for TW-08B. As a result, TW-08B has been sampled using standard low-flow procedures since July 2015.

Samples were submitted to Alpha for analysis of VOCs, 1,4-dioxane (March 2017 only), and MNA parameters.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Temperature Datalogging

Temperature data have been recorded with dataloggers at the following five "N" wells every 12 hours since February 2009: shallow overburden wells MWL-304 and MWL-307; middle overburden well MW-415; deep overburden well MW-413; and shallow bedrock well MW-416. These wells are approximately 75 to 95 feet downgradient of the thermal treatment zone (TTZ).


Manual Temperature Measurements

Temperature data have been measured monthly since July 2015 using a downhole temperature probe at middle overburden well TW-08A, deep overburden well TW-08B, and shallow bedrock well TW-08D, which are at the downgradient edge of the TTZ (Figure 12). However, these three wells were abandoned in March 2017.

3.3 Results

Pre-ISTR temperatures at the continuously monitored wells were between approximately 5°C and 20°C, and fluctuated seasonally by approximately 1°C in the shallow bedrock up to 12°C in the shallow overburden. As shown on the following chart, temperatures in each of these wells increased 5° to 6°C once the thermal treatment was completed and a lag time allowed for movement of the heated water to the downgradient area.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Seasonal Temperature Fluctuations in Wells ~75-95'

Peak temperatures have been occurring in late summer or early fall (September and October). Temperature data from 2017 show an approximate 3°C decline in peak temperatures for the four overburden monitoring locations compared with the previous two years, indicating a shift towards pre-ISTR conditions. However, these data demonstrate that groundwater temperatures have not returned to pre-ISTR conditions, thus sampling of "N" wells continues on a triennial basis. Temperature datalogging will continue at these five wells until such time that they indicate a return to baseline conditions (or until they are no longer available for monitoring because some will be affected by the planned Resource Conservation and Recovery Act [RCRA] cap construction activities). Once temperature data indicate a return to pre-ISTR levels, the SRSNE Site Group will make a demonstration to the USEPA and request a reduced sampling frequency for these wells in accordance with the approved monitoring program.

The VOC concentrations measured in post-thermal treatment groundwater samples are provided in Table 3. Relative to the initial comprehensive sampling event in 2010, total VOC concentrations have decreased by one to three orders of magnitude at six of the seven remaining "N" wells sampled (Appendix C). Significant rebound in total VOC concentrations was observed in groundwater at MWL-304 in July 2017 relative to previous sampling events (Appendix C). This increase in total VOC concentration at MWL-304 is driven primarily by

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

increases in vinyl chloride (VC) concentrations. Increases in VC concentrations indicate increased reductive dechlorination of higher chlorinated VOCs including PCE and TCE. Trend graphs depicting concentration trends select VOCs and total VOCs in groundwater at the "N" wells are included in Appendix C.

Groundwater samples were collected at the "N" wells in June 2014, approximately four weeks after the start of Phase 1 heating upgradient of these wells, but before the first indications of warming associated with the TT remedy. Thus, June 2014 data are considered the baseline condition for evaluation of ISTR-related groundwater changes (Appendix C). Sampling events at the "N" wells in November 2016, March 2017, and July 2017 provide a basis of comparison versus the baseline data from June 2014. Six of the seven remaining "N" wells indicated lower total VOC concentrations in July 2017 compared to June 2014 with total VOC concentration decreases between 58% and 99%, with decreases greater than 95% at five of these six wells. The only exception is the observed increase in total VOC concentrations at MWL-304 described above. Based on the combined results from six of the seven remaining "N" wells, total VOC concentrations have declined by an average of 97% relative to baseline conditions.

Note also that changes in VOC concentrations between June 2014 and June 2017 (excluding MWL-304) varied slightly for different compound groups:

- Halogenated VOCs average concentration decrease of 99.2%
- Aromatic VOCs average concentration decrease of 95.8%
- Ketones one ketone, 2-butanone (MEK) was detected at a concentration of 3.02 ug/L at MW-415

These results indicate that source removal achieved by ISTR resulted in substantial decreases in VOC concentrations in groundwater during and following the thermal treatment period.

MNA parameter concentration results are provided in Table 4. As described in Attachment N to the RDWP (Arcadis 2010b), groundwater MNA parameters were selected to confirm dominant biotransformation processes, evaluate the potential for continued transformation of COCs, and identify zones of dominant geochemical conditions. In general, MNA parameter results indicate moderately to strongly reducing (i.e., manganese and iron reducing, sulfate reducing, and methanogenic) conditions in the NTCRA 1 area, except for shallow bedrock well MW-416, which indicates mildly reducing conditions. This interpretation of MNA parameter results is based on dissolved iron and manganese concentrations greater than 1,000 ug/L, sulfate concentrations less than 10 mg/L, and methane concentrations greater than 1,000 ug/L at most locations sampled during post-thermal treatment groundwater sampling. TOC concentrations were greater than 10 mg/L at most locations, indicating sufficient organic carbon to support microbial populations. At most locations, concentrations of alkalinity, chloride, iron, manganese, TOC, ethane, ethene, and methane increased between the March 2015 and July 2016 post-thermal treatment monitoring events, suggesting microbial populations also increased during this time.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Concentrations of these parameters have generally remained elevated in comparison to the March 2015 results. Results from Bio-Trap[®] sampling with QuantArray-Chlor and QuantArray-Petro analyses (see Section 4) indicate increased diversity in the microbial population relative to pre-treatment conditions. The results suggest that anaerobic biodegradation processes dominate in the thermal treatment area, but also indicate a strong potential for aerobic cometabolism of chlorinated volatile organic compounds (CVOCs) and aerobic metabolism of petroleum hydrocarbons if conditions become more favorable for these processes in the future. These results demonstrate robust microbial activity in the NTCRA 1 area groundwater downgradient from the thermal treatment area.

1,4-dioxane concentrations for the October 2015, March 2016, and March 2017 post-thermal treatment groundwater samples are summarized in Table 5. Concentrations of 1,4-dioxane varied between October 2015 (6.48 to 160 ug/L) and March 2017 (5.4 J to 131 ug/L), with some locations showing a decrease and other locations showing an increase in 1,4-dioxane concentrations. However, for most locations 1,4-dioxane concentrations have a similar order of magnitude for the two events.

The third and final post-thermal treatment groundwater sampling event of 2017 was conducted on November 20-21, 2017. Results from this event will be evaluated as part of the 2018 MNA Report.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

4 ADDITIONAL SAMPLING

4.1 Summary of Field Activities

In addition to the SOW-required sampling described above in Sections 2 and 3, Bio-Trap[®] samplers were deployed at four monitoring wells in the thermal treatment area. The samplers at ISTR-1, ISTR-5 and TW-08D were deployed on February 6, 2017 and retrieved on March 8, 2017. The sampler at CPZ-7R was deployed on March 3, 2017 and retrieved on April 4, 2017. QuantArray-Chlor and/or QuantArray-Petro analyses were applied for the Bio-Trap[®] samplers deployed at wells ISTR-1, ISTR-5 and TW-08D to evaluate post-ISTR QuantArray levels prior to subsequent abandonment of these wells. Following the March 2017 sampling event, monitoring wells TW-08A, TW-08B, and TW-08D were decommissioned. For the CPZ-7R Bio-Trap[®] sampler, quantitative polymerase chain reaction (qPCR) was performed on individual gene targets to assess potential degradation process for 1,4-dioxane. Samples were submitted to Microbial Insights, Inc. located in Knoxville, Tennessee. Sample analytical techniques are described in more detail in Appendix D.

4.2 Results

Results of the microbial sampling indicate a broad range of COC degradation capabilities within the site microbial community, with organisms capable of aerobic and anaerobic degradation present. A comparison of results between the 2014 pre-thermal treatment sampling event and the post-thermal treatment events in 2016 and 2017 demonstrate increased microbial diversity and abundance at the three locations sampled in 2017 (ISTR-1, ISTR-5 and TW-08D). These results indicate that anaerobic biodegradation processes dominate in the thermal treatment area, especially for chlorinated volatile organic compounds (CVOCs). However, results also indicate a strong potential for aerobic cometabolism of CVOCs and aerobic metabolism of petroleum hydrocarbons if oxidation-reduction conditions become more favorable for these processes in the future. The assessment of 1,4-dioxane biodegradation potential at monitoring well CPZ-7R indicates the potential for multiple biodegradation mechanisms in this area of the site. Because groundwater conditions are generally reducing to strongly reducing, it is likely that aerobic biodegradation is limited. However, it is possible that even small amounts of dissolved oxygen stimulate processes that may include the metabolism and/or cometabolism of 1,4-dioxane.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

5 NA BACKGROUND

An MNA remedy requires a strong scientific basis supported by appropriate monitoring. When properly employed, MNA is an effective remedy – based on thorough analysis of site-specific data – to understand, monitor, predict, and document COC transport and NA processes.

5.1 Site Conceptual Model

For any MNA remedy to succeed, it is important to understand the Site Conceptual Model (SCM). The SCM combines available site information into a comprehensive picture of the nature and extent of the COCs and the processes controlling their transport and fate in the environment. The level of site characterization necessary to support a comprehensive evaluation of MNA can be more detailed than that needed to support active remediation.

The SCM, including information regarding the Site operational history, regulatory status, geology, hydrogeology, and surface water hydrology, and the distribution and mass of COCs in Site groundwater, including delineation of NAPL zones and dissolved-phase groundwater plume, and VOC mass estimates, was originally provided in Section 2 of the RDWP (Arcadis 2009) to fulfill the requirements set forth in the SOW, Section V.C.1.I.

A Draft SCM Update was prepared in April 2015 (Arcadis 2015) to reflect additional data collected and changes in Site conditions since completion of the RI (BBL 1998) and Feasibility Study (FS; BBL and USEPA 2005).

The MNA conceptual model for the Site may be described in terms of source condition, dissolved plume stability, and NA processes, and is summarized as follows:

<u>Source Condition</u>: The source of groundwater-quality impacts was extensively characterized during the RI (BBL 1998) and FS (BBL and USEPA 2005), and consists of zones containing NAPL in overburden soils and bedrock. The NAPL is a complex mixture of chlorinated and other solvents. The NAPL zones in overburden soils and bedrock contain mixtures of dissolved NAPL-related chlorinated ethenes, ethanes, and methanes, as well as aromatic hydrocarbons, ketones, phthalates, ethers, furan, and alcohols. These NAPL zones are currently hydraulically contained by the NTCRA 1 sheet-pile wall and overburden groundwater extraction wells and the NTCRA 2 overburden and bedrock extraction wells. Upon entry of the CD, the NTCRA 1 and NTCRA 2 systems became known as the HCTS. The NAPL zones have formed a dissolved-phase chemical plume that has been severed by the HCTS. The Overburden NAPL zone historically contained most of the Site VOC mass, but *in situ* thermal remediation was performed in this zone between May 2014 and March 2015, removing an estimated 210,000 kilograms (kg) of NAPL mass. This greatly diminished the source zone upgradient of the NTCRA 1 sheet-pile wall.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Dissolved Plume Stability: The dissolved-phase chemical plumes in overburden and bedrock groundwater within the source area are stable and are likely shrinking in time due to the combination of hydraulic containment and active *in situ* biodegradation processes in groundwater within the capture zone of the HCTS. *In situ* biodegradation processes within the capture zone of the HCTS were characterized as "robust" in the FS (BBL and USEPA 2005). The dissolved-phase chemical plume in overburden and bedrock groundwater in the severed portion of the plume, beyond the capture zone of the HCTS, are generally shrinking with time due to the combination of hydraulic containment of the higher concentration portions of the dissolved-phase chemical plume and NA processes. Total dissolved-phase VOC concentration trends in groundwater within the HCTS capture zone boundary and the severed plume indicate statistically significantly decreasing concentration trends. None of the wells representative of the severed plume (i.e., wells with historical COC concentrations above Action Levels downgradient of the HCTS capture zone) indicated COC concentrations above drinking-water-based standards during the 2014 through 2017 groundwater monitoring events.

NA Processes: Natural attenuation processes that have contributed to plume stabilization and shrinkage within the overburden and bedrock include in situ abiotic and biodegradation reactions, sorption to aquifer solids, flow path mixing, and matrix diffusion. Reductive dechlorination is a prominent removal mechanism that continues to operate at the Site, as demonstrated by the production of cis-1,2-dichloroethene (cDCE); VC; 1,1-dichloroethane (1,1-DCA); ethene, ethane, and chloride, which are dechlorination (i.e., "breakdown") products of tetrachloroethene (PCE); TCE; and 1,1,1-trichloroethane (TCA). There is also potential for anaerobic oxidation reactions that remove cDCE, VC, and ethene by oxidation to carbon dioxide (CO₂). In addition, microbial population survey results demonstrate robust communities capable of both full reductive dechlorination to innocuous end products, and also aerobic cometabolism of chlorinated compounds, at 11 monitoring locations evaluated using QuantArray-Chlor methodology (Arcadis 2015). In addition, microorganisms capable of degrading aromatic compounds were detected at two locations where the QuantArray-Petro analysis was conducted (Arcadis 2015). Additional microbial monitoring conducted within NTCRA 1 in 2017 also demonstrated robust communities capable of degradation of chlorinated and aromatic compounds as described in Section 4.

A detailed description of the SCM is provided in the *Groundwater Conceptual Site Model Update* (Arcadis 2015).

5.2 Selection of MNA Remedy

Due to the demonstrated efficacy of NA for treating COCs in Site groundwater, MNA was included as a component of several remedial alternatives evaluated in the FS (BBL and USEPA 2005). Based on evaluations presented in the FS, the USEPA selected MNA as a component of the remedial approach for the Site.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

The ROD for the Site was issued by the USEPA in September 2005 (USEPA 2005). The selected remedy consists of MNA of the groundwater plume, including:

- Groundwater outside the capture zone of the HCTS until groundwater cleanup levels are achieved;
- Groundwater within the capture zone of the HCTS until groundwater cleanup levels are achieved; and
- Groundwater in the NAPL area of the overburden and bedrock aquifers, until groundwater cleanup levels are achieved.

5.3 Identified Data Gaps

The SOW identified two data gaps associated with implementing the MNA remedy component at the Site. The identified data gaps and the strategies used for addressing them are as follows:

- Incomplete plume delineation in the severed plume. This data gap has been addressed by the installation and sampling of additional groundwater monitoring wells near the eastern edge of the severed plume, east of the Quinnipiac River and in the CL&P easement as presented in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and subsequent discussions with USEPA. In addition to the new plume delineation wells installed prior to the start of the May–June 2010 comprehensive groundwater sampling (including MW-903S, MW-903M, MW-903D, MW-903R, PZ-903DR, MW-904S, MW-904D, MW-906M, MW-906D, MW-906R, PZ-906DR, and MW-910S), three other well clusters (MW-1001M/MW-1001R, MW-1002DR/MW-1002R and MW-1003DR/MW-1003R) have been installed to address this data gap. Delineation of the downgradient extent of the plume is shown on Figures 7 through 11.
- Long-term monitoring data demonstrating the effectiveness of MNA as a remedy component. This data gap is being addressed through the preparation, submittal, approval, and implementation of the MNA Plan.

5.4 Objectives of MNA Performance Monitoring

The MNA Plan, in conjunction with the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP), describes the monitoring and analysis steps required to meet the following objectives of MNA performance monitoring, as specified in Section VII.A.1 of the SOW:

- Complete the delineation of COCs in groundwater in three dimensions;
- Assess the temporal and spatial variations in groundwater chemistry and geochemistry;

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

- Assess the progress in meeting the long-term remedial goal of groundwater restoration throughout the Site to its natural quality; and
- Evaluate the effectiveness of institutional controls.

Based on the results of MNA performance monitoring, decisions related to the MNA program, described in detail in the MNA Plan, may include:

- Continuation of the performance monitoring program without change.
- Continuation of the performance monitoring program with action.
- Modification of the institutional controls.

5.5 Performance Standards

The remedial action is being implemented in compliance with applicable or relevant and appropriate requirements (ARARs) identified in the ROD (USEPA 2005). These requirements include compliance with performance standards for the affected groundwater, soil and wetland soil, and for NAPL. The following subsections discuss performance standards applicable to MNA and the means for demonstrating compliance with these standards.

5.5.1 MNA-Related Performance Standards

Performance standards pertaining to MNA at the Site, as set forth in the SOW, are described in detail in the MNA Plan for Groundwater, NAPL outside of the Overburden NAPL Area, and the Severed Plume.

5.5.2 Demonstration of Compliance Report

As specified in Section VIII.G of the SOW, a Demonstration of Compliance Report will be prepared in accordance with the evaluation procedures defined in 40 CFR Section 264.97 when groundwater COC concentrations have remained below the ICLs for three consecutive years as outlined in 40 CFR Section 264.96(c). If the USEPA, after reasonable opportunity for review and comment by the Connecticut Department of Energy and Environmental Protection (CT DEEP), approves the Demonstration of Compliance Report and agrees that the ICLs have been achieved, a risk assessment of residual groundwater conditions will be performed.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

6 MNA PERFORMANCE MONITORING

6.1 Introduction

The MNA Plan specified the performance monitoring program for Site groundwater as it relates to the MNA component of the remedy, while Section IV.B.5 of the SOW set forth requirements for an environmental monitoring program to be implemented to evaluate the performance of the HCTS and the overall effectiveness of the Site remedy, including the MNA component. These groundwater MNA monitoring requirements were summarized in the MNA Plan.

The following subsections describe the MNA program monitoring locations, monitoring frequency, monitoring parameters, and data quality objectives (DQOs) designed to meet the environmental monitoring program requirements set forth in Section IV.B.5 of the SOW. Groundwater monitoring is conducted to monitor changes in groundwater COC concentrations, changes in plume size and shape, and the effectiveness of NA processes in reducing concentrations of COCs in groundwater. Groundwater samples from June 2017 were collected in accordance with the monitoring frequency outlined in the MNA Plan and represent the most recent dataset utilized for this MNA evaluation.

6.2 Groundwater Performance Monitoring Locations

Groundwater performance monitoring locations were chosen to provide robust, threedimensional coverage of COCs in overburden and bedrock groundwater at the Site, with monitoring well cluster locations providing vertical assessment of COC concentrations and groundwater geochemistry. Monitoring locations were identified in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP) and are shown on Figures 2 through 6 of this MNA Report.

In accordance with the SOW, selected MNA monitoring locations include upgradient (background) sampling locations, in-plume sampling locations (HCTS capture zones and severed plume), side-gradient sampling locations outside of plume areas, and downgradient locations. Monitoring locations are designated by well groups (e.g., "N") to define the purpose of each sampling location. Well group designations that are relevant to MNA monitoring are summarized in the MNA Plan and shown on Figures 2 through 6.

6.3 MNA Monitoring Parameters

The primary classes of data included in the MNA monitoring program are: Site-specific groundwater COCs; groundwater MNA parameters; groundwater hydraulic information; and HCTS COC mass removal estimates. Each of these primary data classes is described below.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

Site-specific COCs were identified during Site investigations and risk assessment and are required to be addressed by the response actions set forth in the ROD (USEPA 2005). Site-specific COCs for groundwater include selected VOCs, 1,4-dioxane, TAL metals, SVOCs, and PCBs.

Groundwater MNA parameters were selected to confirm dominant biotransformation processes, evaluate the potential for continued transformation of COCs, and identify zones of dominant geochemical conditions. These parameters include: nitrate–nitrogen, nitrite–nitrogen, dissolved manganese, dissolved iron, sulfate, light hydrocarbons (methane, ethane, ethane), alkalinity, chloride, pH, and TOC. In addition to laboratory-analyzed MNA parameters, the following are collected as field measurements: pH, DO, ORP, and temperature.

The hydraulic parameter of interest is groundwater elevation. Groundwater elevations are characterized in all five groundwater depth zones, and provide a basis to assess the horizontal and vertical components of hydraulic gradients that control three-dimensional migration of COCs. Synoptic groundwater elevation measurements are only collected in conjunction with five-year comprehensive monitoring events, and therefore were not collected during the June 2017 groundwater monitoring event.

Estimates of groundwater COC mass removal from the HCTS, obtained as part of the compliance monitoring program for the HCTS operations, are used to evaluate potential trends in COC mass removal from the HCTS and can be used to evaluate future efficacy of groundwater remedies, including MNA.

6.4 Monitoring Frequency

Monitoring frequencies were designed to meet requirements of the environmental monitoring program set forth in Section IV.B.5 of the SOW and are summarized in the MNA Plan. Detailed monitoring frequency information is provided in the *Monitoring Well Network Evaluation and Groundwater Monitoring Program* (Attachment N to the RDWP). Any proposed changes to the long-term monitoring program will be submitted as part of the Annual State of Compliance Report(s).

6.5 MNA Monitoring Objectives

The MNA performance monitoring program set forth in the MNA Plan was designed to evaluate the MNA monitoring objectives listed below (USEPA 1999; USEPA 2004) and described in detail in the MNA Plan:

- Provide timely warning of potential impact to receptors.
- Detect changes in plume size/concentration.
- Determine temporal variability of data.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

- Detect changes in geochemistry that warn of potential changes in COC attenuation.
- Yield data necessary to reliably evaluate progress toward COC reduction objectives.

6.6 Data Quality Objectives

The DQO process is a systematic planning tool based on the scientific method that is used to establish criteria for data quality and to develop data collection designs (USEPA 1994). The DQOs for the data described in this MNA Report are provided in the *Quality Assurance Project Plan* (QAPP; [Rev. 2] Arcadis 2012b; Attachment C to the RD Project Operations Plan [POP]).

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

7 MNA EVALUATION

This section evaluates the effectiveness of the MNA program based on the data collected through June 2017. Data analysis, interpretation and reporting methods were completed in accordance with the following regulatory guidance documents:

- Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water (USEPA 1998)
- Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (USEPA 1999)
- Performance Monitoring of MNA Remedies for VOCs in Ground Water (USEPA 2004)

In general, data interpretation included:

- Placing the MNA performance monitoring data in the context of time, location, sampling and analytical methods.
- Applying appropriate statistical tests to detect changes and trends in COC concentrations, and attainment of remedial objectives.

These data interpretation methods and results are presented in the following sections.

7.1 Total VOC Concentration Trends

Data collected during previous sampling events (RI and Interim Monitoring Sampling [IMS] events) and presented in the MNA Plan and the 2010 through 2016 MNA reports indicate an overall decline in groundwater COC concentrations with time, supporting the selection of MNA as a remedial measure for COCs in groundwater at the Site. This section builds upon results of the previous MNA evaluations discussed in detail in the MNA Plan and the preceding MNA reports (2010 through 2016). Included in this section are a discussion of concentration trends for total VOCs in groundwater at select monitoring locations, estimates of bulk attenuation rates for total VOCs in groundwater at locations with decreasing concentration trends, and presentation of COC mass extraction rates and cumulative mass removal for the HCTS.

7.1.1 Trend Analysis

The final IMS Report (BBL 2005) compared groundwater VOC concentrations reported in the RI with concentrations measured at 25 IMS locations during the April 2005 (final) IMS event. Trend analyses were updated using total VOC concentration data collected at 21 IMS monitoring locations (within the NTCRA 2 portion of the HCTS, the severed plume, and the interior of the VOC plume) during the RI, IMS program, and groundwater sampling events between 2010 and 2016. These trend analyses have been updated with total VOC concentrations from the June 2017 annual groundwater monitoring event and results are summarized in Table 6. Because

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

only 11 of the monitoring locations with long-term time-concentration data sets were sampled during the June 2017 sampling event, only those trend analyses were updated. However, the previous trend results for wells that were not sampled in June 2017 are also included in Table 6. Results of the 2017 trend analyses are similar to the results of the trend analyses conducted in 2010 through 2016, which indicated statistically significant decreasing total VOC concentration trends at most of the IMS monitoring locations.

Groundwater total VOC concentrations plotted versus time were updated for the 11 IMS monitoring locations that were sampled during the July 2017 groundwater sampling event (Figures 13 through 17). As shown on the figures, total VOC concentrations are generally declining or stable at all groundwater depth intervals, consistent with previous results.

Non-parametric Mann-Kendall and Sen's slope trend analyses, and parametric linear regression trend analyses, were conducted to evaluate trend direction and statistical significance of the groundwater total VOC concentration trends at the Site. The Mann-Kendall test provides a yes/no determination for the existence of a slope that is significantly different from zero, while the Sen's slope test provides an estimate of the value for the slope. The linear regression test estimates slope and confidence level and quantifies how well the data correlate to the estimated trend line. Trend analyses were conducted with natural log (ln) normalized total VOC concentrations using all three test methods for all sampling locations.

A 90% confidence level with a corresponding p-value less than or equal to 0.10 was used to determine statistical significance for the trend analyses. Mann-Kendall and linear regression trend results with p-values greater than 0.10 were not considered to be statistically significant. The trend direction was defined as decreasing if total VOC concentrations decreased with time (negative slope), and increasing if total VOC concentrations increased with time (positive slope); however, the trend was not considered significant unless the relationship for the test was significant at a confidence level of 90%. For the linear regression analysis, the correlation coefficient, or R², is a measure of how well the linear regression fits the data. Values close to 1 are considered a good fit, while R² values close to 0 are considered to be a poor fit.

Results of the trend analyses indicate significant decreasing total VOC concentration trends at 10 of the 11 locations sampled for long-term trend evaluation in June 2017 based on the Mann-Kendall, Sen's slope, and linear regression trend tests (Table 6). Statistically significant decreasing total VOC concentration trends at monitoring well MW-707DR were found over the abbreviated evaluation period (from April 2004 through June 2017) by all three evaluation methods. Therefore, this well has been included in the tally of decreasing trends, although total VOC concentrations continue to show a statistically significant increase (linear regression and Mann-Kendall) when the full period (between December 1996 and June 2017) is considered. Monitoring wells sampled in June 2017 that indicate statistically significant decreasing total VOC concentration trends with linear regression and/or Mann-Kendall analysis include P-13, P-101C,

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

MW-03, P-101B, MW-502, MW-704D, MW-127C, MW-704DR, MW-706DR, and at MW-707DR over the abbreviated evaluation period (Table 6).

Monitoring well P-11A shows a statistically significant increasing total VOC concentration based on linear regression analysis. No trend was identified by Mann-Kendall and Sen's slope analyses. Total VOC concentrations at P-11A have decreased by approximately 83% since the recent peak concentration that occurred in June 2012.

MW-707DR, indicates a significant increasing total VOC concentration trend based on the Mann-Kendall and linear regression trend tests using data between December 1996 and June 2017. The maximum total VOC concentration measured at MW-707DR was 18 □g/L (April 2000) and 28% of the historical samples have been below detection for all VOC constituents, indicating generally low concentrations of VOCs in groundwater at this location. The total VOC concentration measured at MW-707DR in June 2017 was 1.4 ug/L. Linear regression, Mann-Kendall, and Sen's slope trend tests were also performed over an abbreviated period using total VOC concentrations from April 2004 to June 2017, to exclude the previous monitoring events in which VOC concentrations were below detection limits. Since April 2004, total VOC concentrations indicate a statistically significant decreasing concentration trend, indicating that groundwater quality is improving at this monitoring location.

7.1.2 Total VOC Attenuation Rate

Results from the linear regression and Sen's slope analyses were used to estimate attenuation rates for total VOCs in groundwater at the Site. Attenuation rates were calculated in accordance with the USEPA guidance document on determining first-order attenuation rate constants for MNA studies (USEPA 2002). Following this guidance, the natural log of COC groundwater concentration versus time was used and a best-fit linear regression line was generated for total VOC concentrations for each monitoring location that had a statistically significant decreasing total VOC concentration trend. Slopes derived from the Sen's slope test were also used to estimate attenuation rates. The slope of the linear regression line and the slope from the Sen's slope test provide estimates of the total VOC attenuation rate constant (k_{point}) in groundwater at the respective monitoring locations.

*k*_{point} = [slope of best-fit regression line]

The half-life $(t_{1/2})$ for total VOC concentrations in groundwater was estimated for each sampling location from the equation:

$$t_{1/2} = 0.693 / k_{point}$$

where: 0.693 is the negative of the natural log of 0.5 (half of the starting total VOC concentration).

Estimated half-life values for total VOCs in groundwater range from 628 to 6,221 days (1.7 to 17.0 years) based on linear regression results and from 610 to 8705 days (1.7 to 23.8 years)

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

based on Sen's slope results. These estimated half-life values for total VOC concentrations compare well with literature values of attenuation rates presented for individual compounds in Appendix H of the FS (BBL and USEPA 2005) and indicate that COC concentrations in groundwater are attenuating.

7.2 Estimate of COC Mass Flux in Groundwater

As part of the compliance monitoring program, COC mass extraction rates and cumulative mass removal are monitored for the HCTS. With the exception of the severed plume and incidental discharge to surface water, the HCTS captures the entire dissolved phase groundwater COC plume at the Site. Therefore, the HCTS COC mass removal rates and cumulative mass removal data represent the total mass flux for the dissolved phase COC groundwater plume and can be used to monitor changes in groundwater total dissolved-phase COC mass flux with time.

Total VOC mass removal rates and cumulative mass removal for the HCTS were plotted for the July 1995 to June 2017 time period (Figure 18). Mass removal rates are expressed in units of pounds per day (lbs/day) and the cumulative mass removal is expressed in units of pounds. Mass removal rates have ranged between about 0.1 to 10 pounds per day and are generally declining since 1995. The overall decline in mass removal rate indicates a general decline in dissolved VOC concentrations in the water pumped by the former NTCRA 1 extraction wells. The total mass of VOCs removed by the HCTS between system startup in 1995 and June 2017 is approximately 18,000 pounds. The mass of COCs removed via the HCTS is small compared with the estimated mass removal that is occurring via *in situ* degradation. As described in detail in the FS (BBL and USEPA 2005) and summarized in the MNA Plan (Arcadis November 2010), the quantity of TCE and degradation products being biodegraded *in situ* was calculated to be approximately 17,000 to 41,000 pounds per year within the NTCRA 1 area alone.

The mass extraction data will continue to be collected as part of the HCTS compliance monitoring program and will be periodically evaluated as part of the MNA performance monitoring program.

7.3 Distribution of VOCs in NAPL and Groundwater

An assessment of the distribution of select VOCs in NAPL and groundwater samples was conducted as part of the 2010 comprehensive MNA report to gain insight into how VOC distributions in NAPL and Site groundwater varied by location and with time. VOCs evaluated in the assessment included:

- Chlorinated ethenes (PCE, TCE, cDCE, 1,1-dichloroethene [1,1-DCE], and VC).
- Chlorinated ethanes (TCA, 1,1-DCA, and chloroethane [CA]).
- Ketones (2-butanone [MEK], 4-methyl-2-pentanone [MIBK], and acetone).

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

- Toluene, ethylbenzene, and xylenes (TEX).
- Methylene chloride, styrene, THF, and 1,4-dioxane.

Data used for assessment of distribution of VOCs in NAPL and groundwater were presented in the 2010 comprehensive MNA report. The assessment concluded that NAPL samples were composed primarily of PCE, TCE, TCA, TEX, methylene chloride, and styrene, with lesser contributions from cDCE, 1,1-DCE, and 1,1-DCA. Ketones generally were not detected in NAPL samples. 1,4-dioxane was not analyzed for these samples. Overall, the results indicated that the detected groundwater constituents are generally consistent with NAPL constituents, except for ketones. The general absence of detectable ketones in the NAPL samples likely relates to the elevated detection levels associated with the NAPL samples.

Molar VOC concentration plots were also presented in the 2010 comprehensive MNA report, were updated following the June 2014 comprehensive sampling event, and were included in the 2014 MNA Report. In general, constituent concentrations in groundwater were greatest in the NTCRA 1 area with consistently decreasing primary constituent (e.g., TCE, TCA, ketones, and TEX) concentrations observed in directions downgradient from the NTCRA 1 area. These results clearly demonstrate degradation of parent compounds in groundwater.

Groundwater molar VOC concentration plots for select groundwater monitoring locations with samples collected during multiple sampling events illustrate that some locations have clear declining concentration trends for most or all constituents. Shifts in the relative distribution of chlorinated VOCs (CVOCs) towards greater proportions of daughter products to parent demonstrate ongoing degradation of CVOCs in Site groundwater.

In summary, molar concentration plots of select CVOCs provide a means for readily comparing the distribution of COC concentrations in Site groundwater with distance from the source area, as well as with depth and with time at discrete locations.

7.4 Evaluation of Monitoring Objectives

7.4.1 Evaluation of Changes in Environmental Conditions that May Reduce Efficiency of MNA

MNA data will be used to evaluate potential changes in environmental conditions that may reduce the efficiency of MNA. Currently, the only anticipated environmental changes that may reduce the efficiency of MNA are within the capture zone of the Site NTCRA 1 groundwater containment system due to the addition of heat and removal of electron donors during *in situ* thermal treatment of the Overburden NAPL Area. The thermal treatment remedy was conducted between May 2014 and March 2015. As described in Section 3, post-thermal treatment groundwater monitoring events were conducted on a triennial basis starting in March 2015 for select monitoring wells in the NTCRA 1 area. Initial results from these monitoring events

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

indicate generally decreasing COC concentrations and moderately to strongly reducing conditions in groundwater in the NTCRA 1 area. The 2017 MNA Report and future MNA Reports will assess potential effects on MNA efficiency due to thermal treatment in the Overburden NAPL Area. Specifically, VOC and MNA parameter concentration data for the post-thermal treatment time period will be compared to results from the pre-thermal treatment time period to see what changes in VOC and MNA parameter concentrations may be attributable to the thermal remedy.

Changes in the composition and availability of electron donors with time may affect the efficiency of NA. As electron donors, such as ketones, aromatic compounds, and alcohols are consumed, the efficiency of NA may decline. As noted in the 2010 comprehensive MNA report, alcohols are currently only minimally detected in Site groundwater. As concentrations of these readily available electron donors decline, other electron donor sources may be available to support continued NA of COCs in Site groundwater. Other potential electron donor sources include natural organic matter in the aquifer matrix, natural organic matter in groundwater, as well as recycling of microbial biomass. The efficiency of NA for remediation of COCs in Site groundwater will continue to be monitored via the MNA remedial program using techniques set forth in the MNA Plan and in this MNA Report including, but not limited to:

- Defining changes in the VOC regulatory plume boundaries, including exceedance of MCLs and GWPC as well as exceedance of ICLs.
- Evaluation of COC concentration trends with time.
- Assessment of changes in the distribution of COCs, especially ketones, alcohols, and aromatic compounds.
- Continued monitoring of groundwater redox conditions.

If changes in the efficiency of NA result in a loss of effectiveness of MNA as a remedy for COCs in Site groundwater, contingencies will be considered, as described in the MNA Plan.

7.4.2 Evaluation of Potentially Toxic and/or Mobile Transformation Products

Potentially toxic transformation products include regulated chemical intermediates, such as cDCE, 1,1-DCE, 1,1-DCA, CA, and VC, and regulated transition metals (e.g., manganese and arsenic). Locations with concentrations of cDCE, 1,1-DCE, 1,1-DCA, CA, VC that exceed MCLs or GWPC are within the overburden and bedrock groundwater capture zone boundary. With the exception of total manganese in upgradient/background monitoring well MW-126B (5,793 ug/L), metals detected in groundwater samples collected in June 2017 did not exceed Action Levels (Table 2).

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

7.4.3 Evaluation of Plume Stability

In terms of plume stability, a dissolved-phase chemical plume in groundwater may be characterized as a:

- Shrinking plume, in which the plume volume decreases through time.
- Stable plume, in which the plume volume does not change through time.
- Growing plume, in which the plume volume increases through time.

In general, shrinking plumes are indicated by decreasing chemical concentrations through time, growing plumes may be indicated by increasing or stable chemical concentrations through time, and stable plumes are indicated by plume volume estimates that do not change significantly through time. Currently available long-term monitoring data demonstrate that the plume of COCs in Site groundwater is generally shrinking or stable.

7.4.4 Evaluation of No Unacceptable Impacts to Downgradient Receptors

Groundwater and surface water monitoring data collected during the RI and the IMS program indicate that there are no potential impacts to downgradient receptors. The water supply wells within the Town Well Field Property are dormant and are beyond the zone of COC concentrations in groundwater that are above drinking water standards. Therefore, there are no receptors within the vicinity of the groundwater plume with COC concentrations above drinking water standards. Monitoring of surface water in the Quinnipiac River demonstrated that surface water is not impacted by the Site COC-impacted groundwater plume. Monitoring of groundwater within the Town Well Field will continue as part of the MNA program.

7.4.5 Evaluation of New Releases of COCs

Evaluation of new releases of COCs is not needed because potential sources of new releases have been removed from the Site, the former source area is located within the capture zone of the HCTS, and the Overburden NAPL Area (also within the capture zone) has been remediated via *in situ* thermal remediation.

7.4.6 Evaluation of Institutional Controls

The draft *Institutional Control Plan* (IC Plan), which is a remedial design submittal required by Section V.B.7 of the SOW, was initially submitted to the USEPA in February 2011. Based on comments received and further coordination with the regulatory agencies, a revised draft IC Plan was provided to the USEPA in May 2013. It describes the proposed scope and monitoring program associated with institutional controls to be implemented at the Site. Once the IC Plan is approved and institutional controls are established, any observed or pending changes in land or resource uses or ownership (e.g., property ownership change, housing developments, and well

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

installations) will be evaluated in view of their current and possible future impact on the effectiveness of the institutional controls and the performance monitoring operations.

7.4.7 COC Mass Flux / Mass Reduction

COC mass flux and mass reduction can be conservatively evaluated by monitoring groundwater COC mass recovery from the HCTS. Because extraction of groundwater COCs by the HCTS does not account for the mass of COCs degraded in situ, this method of estimating mass reduction provides a minimum estimate of mass reduction. With the exception of the severed plume and de minimis discharges to surface water immediately adjacent to the river, the Siterelated groundwater plume is contained within the HCTS capture zone. As a result, the groundwater extracted via the HCTS represents the majority of the mass flux of COCs within the plume. Groundwater extraction rate and COC concentration information collected periodically during system operation, maintenance and monitoring (OMM) activities as part of the compliance monitoring program for the HCTS will be used to evaluate changes in COC mass flux with time. As shown on Figure 18, COC mass extraction rates declined from 1995 to the early 2000s, and were relatively stable between the early 2000s and 2013. Concentrations dropped somewhat in 2014 due to system modifications associated with ISTR preparation and implementation (including shutdown of multiple NTCRA 1 area extraction wells). Concentrations dropped further since 2015 due to reduced source contribution in the NTCRA 1 area due to ISTR implementation.

7.5 Contingency Measures

An evaluation of contingency measures will be performed if progress in meeting long-term groundwater restoration goals is inadequate, as determined by the USEPA. While the specific measures to be undertaken may depend on several factors (e.g., the nature, location, apparent source, or timeframe at which the inadequacy is identified), examples of possible contingency measures are provided in the MNA Plan. Any contingency measure considered will first be approved by USEPA, in consultation with CT DEEP, prior to implementation.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

8 SUMMARY

The 2017 annual groundwater monitoring event was conducted in June 2017, and included the sampling of 37 monitoring wells for VOCs or TAL metals. Results from the annual event indicate that:

- VOCs above Action Levels (the more stringent of the USEPA Maximum Contaminant Levels [MCLs] or Connecticut Class GA Groundwater Protection Criteria [GWPC], i.e., drinking water standards) are contained within the estimated capture zone boundary of the hydraulic containment and treatment system (HCTS). None of the wells within the severed plume (i.e., wells with historical COC concentrations above Action Levels downgradient of the HCTS capture zone boundary) had COC concentrations above Action Levels during the 2014 through 2017 groundwater monitoring events.
- Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at middle overburden monitoring well PZO-2M at concentrations of 4.13 micrograms per liter (ug/L) and 2.16 ug/L, respectively, in the June 2017 sample. Both concentrations are below the Action Level of 5 ug/L, and concentrations of both compounds continue to decline. PCE was first detected above the Action Level at this well in June 2013, while TCE was first detected above the Action Level in June 2012.
- PCE and TCE were detected at deep bedrock monitoring well MW-1003DR at concentrations of 2.67 ug/L and 30.4 ug/L, respectively, in the June 2017 sample. The PCE concentration dropped below the Action Level of 5.0 ug/L starting in June 2014, while the TCE concentration is above the Action Level of 5.0 ug/L (and has been since 2016). PCE and TCE were first detected above the Action Level at this well in June 2013. Concentrations of both compounds have continued to decline relative to the 2013 results.
- TCE was detected at monitoring well MW-1002R at a concentration (10.1 ug/L) above the Action Level of 5 ug/L. The only other detection of TCE above the Action Level at this well occurred in June 2015.
- As noted in the 2012 MNA Report, total VOC concentrations at shallow bedrock monitoring well P-11A increased notably between 2011 (583 ug/L) and 2012 (approximately 26,400 ug/L). This well is located within the bedrock NAPL zone initially delineated during the Remedial Investigation (RI; Blasland, Bouck & Lee, Inc. [BBL] June 1998), and more recently refined (based on additional data from the RD/RA activities) in the *Groundwater Conceptual Site Model Update* (Arcadis 2015). This well is also located within the HCTS capture zone. The total VOC concentration in June 2017 was significantly lower (4,573 ug/L) than in June 2012, though concentrations remain elevated above most pre-June 2012 values. VOC concentrations at this well will continue to be monitored as part of future sampling events.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

This report also summarizes the post-thermal treatment monitoring events performed triennially starting in March 2015, in accordance with SOW Sections IV.B.5.d and e. Results indicate that total VOC concentrations have decreased by one to three orders of magnitude in six of the seven remaining "N" wells (relative to the initial comprehensive sampling event conducted in 2010). Significant rebound in total VOC concentrations was observed in MWL-304 relative to previous sampling events. Much of the rebound in total VOC concentrations at MWL-304 is due to an increase in cDCE and VC concentrations, demonstrating continued degradation of PCE and TCE is occurring in Site groundwater.

Results from Bio-Trap[®] sampling with QuantArray-Chlor analyses at three Non-Time-Critical Removal Action (NTCRA) 1 locations, ISTR-1, ISTR-5, and TW-08D, and QuantArray-Petro analyses at one NTCRA 1 location, ISTR-5, demonstrate increased diversity in the microbial population relative to pre-treatment conditions (Appendix D). These results indicate that anaerobic biodegradation processes dominate in the thermal treatment area, especially for chlorinated volatile organic compounds (CVOCs). However, results also indicate a strong potential for aerobic cometabolism of CVOCs and aerobic metabolism of petroleum hydrocarbons if oxidation-reduction conditions become more favorable for these processes in the future. In addition, a Bio-Trap[®] sampler was deployed at 1 monitoring well (CPA-7R) for analysis of 1,4-dioxane and tetrahydrofuran (THF) biodegradation potential for multiple biodegradation mechanisms in this area of the site. Because groundwater conditions are generally reducing to strongly reducing, it is likely that aerobic biodegradation is limited. However, it is possible that even small amounts of dissolved oxygen stimulate processes that may include the metabolism and/or cometabolism of 1,4-dioxane.

Section 5 presents results of an evaluation of the effectiveness of MNA as a remedial measure for COCs in groundwater in the Site. As an extension of the prior evaluations (presented in the 2010 through 2015 MNA Reports), this evaluation considers groundwater monitoring results from the June 2016 annual groundwater monitoring event for VOCs and TAL metals at a subset of monitoring wells and presents: an evaluation of current concentration trends for total VOCs in groundwater at select monitoring locations; evaluation of post-thermal treatment data at the "N" wells; estimates of bulk attenuation rates for total VOCs in groundwater; and HCTS COC mass extraction rates with time.

Results of these evaluations demonstrated:

- Detected concentrations of VOCs above Action Levels are contained within the estimated capture zone boundary of the HCTS.
- Groundwater total VOC concentrations are generally declining or remaining stable with time throughout the Site groundwater COC plume.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

- Estimated bulk VOC attenuation rates were comparable to attenuation rates for individual COCs presented in the FS (BBL and USEPA 2005).
- Compliance monitoring data from the HCTS indicate generally stable COC mass extraction rates from the early 2000s to 2013 with a decline in COC mass extraction rates observed starting in 2014.

These results support continued use of MNA as a remedy for COCs in Site groundwater.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

9 REFERENCES

Arcadis. 2009. *Draft Remedial Design Work Plan*. Solvents Recovery Service of New England, Inc., Southington, Connecticut. April 2009.

Arcadis. 2010a. *Monitored Natural Attenuation Report*. Solvents Recovery Service of New England, Inc. Southington, Connecticut. September 2010.

Arcadis. 2010b. *Monitoring Well Network Evaluation and Groundwater Monitoring Program*. Solvents Recovery Service of New England, Inc. Southington, Connecticut. November 2010.

Arcadis. 2011a. *Summary of Initial (2010) Comprehensive Groundwater Sampling Event*. January 2011.

Arcadis. 2012b. *Quality Assurance Project Plan* (Rev. 2). Solvents Recovery Service of New England, Inc. Southington, Connecticut. August 2012.

Arcadis. 2014. 2014 Groundwater Sampling and Monitored Natural Attenuation Report. September 2014.

Arcadis. 2015. Groundwater Conceptual Site Model Update. April 2015.

BBL. 1998. *Remedial Investigation Report*. Solvents Recovery Service of New England, Inc., Southington, Connecticut. June 1998.

BBL. 2005. Interim Monitoring and Sampling Report No. 14. June 2005.

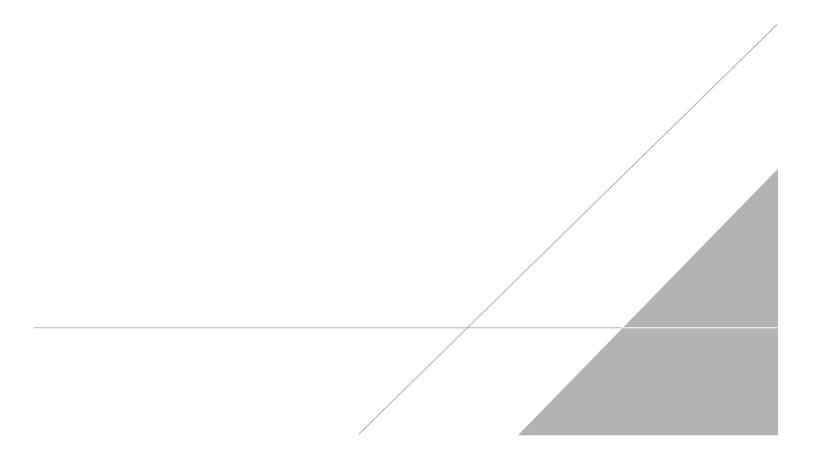
BBL and USEPA. May 2005. Draft Feasibility Study, Solvents Recovery Service of New England, Inc., Southington, Connecticut.

USEPA. 1994. Guidance for the Data Quality Objectives Process. EPA/600/R-96/055 September 1994.

USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128.

USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA OSWER Directive 9200.4-17P. April 1999.

USEPA. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH. November 2002.


USEPA. 2004. Performance of Monitoring of MNA Remedies for VOCs in Ground Water. EPAI600R-041027, April 2004.

USEPA. 2005. EPA Superfund Record of Decision: Solvents Recovery Service Of New England, Southington, CT. EPA/ROD/R01-05/008, EPA ID: CTD009717604. September 2005.

2017 Groundwater Sampling and Monitored Natural Attenuation Report SRSNE Superfund Site Southington, Connecticut

USEPA. 2015. Five-Year Review Report for Solvents Recovery Service of New England, Inc. Superfund Site Hartford County, Connecticut. September 2015.

TABLES

			Sam	ple Location	CP2	Z-4A	CP	Z-8R	M	V-03	MW-1	002DR	MW-	1002R	MW-1	.003DR	MW-	-1003R	MW	-121B	MW	-121C	MW-	121M
				Sample Date		/2017		2017		/2017		2017		/2017		2017		/2017		/2017		/2017		/2017
			Fie	ld Sample ID	CPZ-4A-HS	5-06072017	CPZ-8R-HS	-06082017	MW-03-	06082017	MW-1002DR	HS-06062017	MW-1002	R-06062017	MW-1003DR	-HS-06082017		R-06062017	MW-121B-H	HS-06072017	MW-121C-	HS-06082017		HS-06072017
				Well Group		R				R		R		R		R		R	-	R		R		
			Hvdro	StratZone(s)	SOB.	MOB	S	3R	N	IOB	D	BR	S	BR	D	BR	S	BR	D	ОВ	S	BR	м	ОВ
			1.																	_				
Analyte	CAS No	11	Action																					
VOCs	CAS No.	Unit	Level	ICL																				
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	250	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	7190		0.5	U	2.5	U	0.5	U	0.417	J	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	375	U	0.75	U	3.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.643	J	238	J	0.75	U	1.08	J	0.75	U	0.366	J	0.75	U	0.75	U	0.218	J	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	1630		0.5	U	5.76		0.5	U	0.169	J	0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.385	J	1250	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	1250	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	250	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	1250	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	UJ	2500	UJ	5	UJ	25	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ
2-Hexanone	591-78-6	ug/L	140	5	5	U	2500	U	5	U	25	U	5	UJ	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	UJ	2310	J	5	UJ	25	U	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ
Acetone	67-64-1	ug/L	700	5	44.8	J	2500	U	5	U	25	UJ	5	UJ	5	U	5	UJ	5	UJ	5	U	5	UJ
Benzene	71-43-2	ug/L	1	0.5	2.3		353		0.5	U	0.94	J	0.5	U	0.78		0.442	J	7.12		2.99		0.677	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	500	U	1	U	5	U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	262	J	0.351	J	11.9	J	5	UJ	2.6	J	3.16	J	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	UJ	250	UJ	0.5	UJ	2.5	U	0.5	U	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ
Chlorobenzene	108-90-7	ug/L	100	0.5	0.767		250	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	6.8		5.78		1	
Chloroethane	75-00-3	ug/L	12.1	0.5	12.7		500	U	1	U	5	U	1	U	0.36	J	1	U	25.8		18.5		9.34	
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	82.5	J	0.75	U	3.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	1250	UJ	2.5	UJ	12.5	U	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	UJ	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	10.6		84100		0.5	U	53.1		0.5	U	0.269	J	0.959		0.5	U	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	2.66		5450		0.5	U	2.5	U	0.5	U	0.511		0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	300	U	0.6	U	3	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	386	J	5	U	25	U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	0.615	J	264	J	2.5	U	12.5	U	2.5	U	0.598	J	2.5	U	2.5	U	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	528		1	U	5	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	14600		0.5	U	32.3		0.289	J	2.67		0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	18.6		2500	U	5	U	25	U	5	UJ	5	U	5	U	10.2		5	U	6.64	
Toluene	108-88-3	ug/L	1000	0.5	0.231	J	33900		0.161	J	3.75	U	0.206	J	4.6		1.55		0.75	U	0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	375	U	0.75	U	3.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	250	U	0.5	U	2.5	U	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.348	J	72300		0.5	U	816		10.1		30.4		0.896		0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	25.9		4710		1	U	5	U	1	U	1	U	1	U	1	U	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	3.95		13100		1	U	5	U	1	U	1.88	J	0.426	J	0.486	J	1	U	1	U
Total Volatile Organics L-1 GW	TVO	ug/L			124.499		241403.5		0.512		921.08		10.595		45.62		7.433		50.406		27.488		17.657	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the

Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary,

September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

			Sam	ple Location	MW	-124C	MW	-127C	MW	/-502	MW-	-704D	MW-	704DR	MW-	704M	MW-	705DR	MW-	706DR	MW-7	707DR	MW-	-907D
			9	Sample Date	6/6/	2017		2017	6/7/	/2017	6/6/	2017	6/6/	2017	6/7/	2017	6/8/	/2017	6/8/	2017	6/8/	2017	6/7/2	2017
			Fie	ld Sample ID		HS-06062017		-06072017		S-06072017	MW-704D-H		MW-704DR-		MW-704M		1.1		MW-706DR-		1.1	R-06082017	MW-907D-H	
				Well Group		R		R		R		R		R		R	-	R		R			F	
			Hvdro	StratZone(s	S	BR	S	BR	D	ОВ	D	ОВ	D	BR	м	ОВ	D	BR	D	BR	DI	BR	DC	ЭВ
																								. <u></u>
Analyte	CAS No.	11	Action																					
VOCs	CAS NO.	Unit	Level	ICL																				1
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	250	U	25	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	2.5		1.17		2.5	UJ	0.5	U	0.605		0.5	U	18900		16.5	J	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	3.75	U	0.75	U	0.75	U	0.75	U	375	U	37.5	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	1.78		4.93		3.75	U	1.74		2.14		0.325	J	174	J	37.5	U	0.616	J	0.52	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	4.62		2.21		2.5	U	0.5	U	0.891		0.5	U	3490		60.2		0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	1250	U	125	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	1250	U	125	U	2.5	U	0.25	J
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U	501		25	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	12.5	U	2.5	U	2.5	U	2.5	U	1250	U	125	U	2.5	U	0.261	J
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	UJ	5	UJ	25	UJ	5	UJ	5	UJ	5	UJ	23100	J	250	UJ	5	UJ	5	UJ
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	25	U	5	UJ	5	U	5	U	2500	U	250	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	UJ	25	UJ	5	UJ	5	U	5	UJ	31500	J	186	J	5	UJ	5	IJ
Acetone	67-64-1	ug/L	700	5	5	UJ	5	U	25	UJ	5	UJ	5	UJ	7.14	U	4330	U	250	U	5	U	5	UJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	50.9		0.5	U	0.206	J	0.161	J	478		25	U	0.5	U	17.2	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U	5	U	1	U	1	U	1	U	500	U	50	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	UJ	5	U	25	U	5	UJ	5	UJ	0.299	J	176	J	24.9	J	0.335	J	0.347	J
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	UJ	2.5	UJ	0.5	U	0.5	U	0.5	UJ	250	UJ	25	UJ	0.5	UJ	0.5	UJ
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	18.5		0.508		0.184	J	0.866		250	U	25	U	0.5	U	9.17	
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U	43.8		1	U	1.58		0.233	J	500	U	50	U	1	U	33.1	
Chloroform	67-66-3	ug/L	6	0.5	0.217	J	0.172	J	3.75	U	0.75	U	0.75	U	0.75	U	364	J	37.5	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	UJ	12.5	UJ	2.5	U	2.5	U	2.5	UJ	1250	UJ	125	UJ	2.5	UJ	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	8.86		2.38		1.14	J	0.366	J	0.986		0.5	U	24700		681		0.264	J	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U	53.4		0.5	U	0.5	U	0.5	U	3660		25	U	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	3	U	0.6	U	0.6	U	0.6	U	300	U	30	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U	25	U	5	U	5	U	5	U	17900		91.4	J	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	3.29	J	2.5	U	2.5	U	0.514	J	1250	U	125	U	2.5	U	0.563	J
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	5	U	1	U	1	U	1	U	1130		50	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.513		0.5	U	2.5	U	0.5	U	1.4		0.5	U	29400		175		0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U	1660	J	5	UJ	1.34	J	2.85	J	498	J	250	U	5	U	84.8	
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.218	J	3.07	J	0.75	U	0.75	U	0.192	J	42100		168		0.214	J	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U	3.75	U	0.75	U	0.75	U	0.75	U	375	U	37.5	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	UJ	0.5	U	2.5	U	0.5	UJ	0.5	U	0.5	U	250	U	25	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	2.49		0.574		2.5	U	0.232	J	43.5		0.5	U	480000		4920		0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U	5	U	0.333	J	0.08	J	1	U	508		13.4	J	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U	167	J	1	U	1	U	1	U	8700		50	U	1	U	0.561	J
Total Volatile Organics L-1 GW	TVO	ug/L			20.98		11.654		2001.1		3.179		52.912		5.44		687279		6336.4		1.429		146.772	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the

Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary,

September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

			Sam	ple Location	n MW-9	907DR	MW-	907M	MW	/L-309	MW	L-309	P-1	.01B	P-1	01B	P-1	01C	P-1	1A	P-1	3	PZO-	-2D
				Sample Date		2017		2017		/2017		2017		2017		2017	6/9/		6/7/2		6/5/2		6/7/2	
				ld Sample ID	-1-1	HS-06062017	-1 -1	-		072017-2	MWL-309-H			082017-1	P-101B-HS	-	P-101C-0		P-11A-HS-	-	P-13-06		PZO-2D-0	
				Well Group				R		R	-	R		R					F		R		R	
			Hvdro	StratZone(s		BR	м	OB	S	OB	S	OB	М	OB	М	OB	SC) DB	SE	3R	SC	B	DO	B
									-															
Analyte	CAS No.	11	Action																					
VOCs	CAS NO.	Unit	Level	ICL																				
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	10	U	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ	10	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	897		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	13.4		0.929		0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	9.42	J	15	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	15	υ	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	29.6		15	U	2.23		3.91		0.628	J	0.716	J	3.1		6.22	J	0.308	J	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	301		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	18.4		0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	50	U	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50	U	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	50	U	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50	U	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	15.3		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10	U	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	50	U	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50	U	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	100	UJ	100	UJ	5	UJ	5	UJ	5	IJ	5	UJ	5	UJ	100	UJ	5	UJ	5	UJ
2-Hexanone	591-78-6	ug/L	140	5	100	U	100	UJ	5	U	5	U	5	U	5	U	5	U	100	U	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	275		100	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	U	100	UJ	5	U	5	UJ
Acetone	67-64-1	ug/L	700	5	100	UJ	100	UJ	5	UJ	5	UJ	5	U	5	U	5	UJ	100	UJ	5	UJ	5	UJ
Benzene	71-43-2	ug/L	1	0.5	37.5		49.1		0.5	U	0.5	U	3.58		3.77		1.15		21.4		0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	20	U	20	U	1	U	1	U	1	U	1	U	1	U	20	υ	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	95	J	100	UJ	5	U	5	U	5	U	5	U	5	UJ	100	U	5	UJ	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	10	U	10	U	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	U	10	UJ	0.5	U	0.5	UJ
Chlorobenzene	108-90-7	ug/L	100	0.5	10	U	22.9		0.5	U	0.5	U	1.59		1.26		0.597		3.58	J	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	20	U	89.4		1	U	1	U	4.83		4.77		1	U	20	U	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	15.9		15	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	15	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	50	U	50	U	2.5	U	2.5	U	2.5	UJ	2.5	UJ	2.5	U	50	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	1350		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.473	J	2670		0.559		0.256	J
Ethylbenzene	100-41-4	ug/L	700	0.5	500		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	295		0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	12	U	12	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	12	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	109		100	U	5	U	5	U	5	U	5	U	5	U	100	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	50	U	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	12	J	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	134		20	U	1	U	1	U	1	U	1	U	1	U	20	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	6510		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	18.7		0.343	J	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	100	U	2430	J	5	U	5	U	5	U	5	U	1.93	J	100	U	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	3790		15	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	168		0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	15	U	15	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	15	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	10	UJ	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ	10	U	0.5	UJ	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	75000		10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	30.6		0.238	J	0.921	
Vinyl chloride	75-01-4	ug/L	2	0.5	20	U	20	U	1	U	1	U	1	U	1	U	3.3		1190		1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1500		20	U	1	U	1	U	0.356	J	1	U	1	U	126		1	U	1	U
Tatal Valatila Organias I. 1. Chi	7/0				005(0.72		2501.6		2.22		2.01		10.09/		10 510		10.55		4572.2		2 277		1 1 7 7	
Total Volatile Organics L-1 GW	TVO	ug/L			90568.72		2591.4		2.23		3.91		10.984		10.516		10.55		4573.3		2.377		1.177	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the

Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary,

September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

			Sam	ple Location	PZO	-2M	PZF	R-2R
			9	ample Date	6/6/	2017	6/7/	2017
			Fie	d Sample ID	PZO-2M-HS	5-06062017	PZR-2R-0	06072017
				Well Group	1	२		R
			Hydro	StratZone(s)	M	ОВ	SI	BR
				.,				
Analyte	CAS No.	Unit	Action	ICL				
VOCs	CAS NO.	Unit	Level					
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	0.75	U
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	UJ	5	UJ
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	5	IJ
Acetone	67-64-1	ug/L	700	5	5	IJ	5	IJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	UJ	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	IJ
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	1	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.5	U	0.5	U
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	0.5	U
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	4.13		0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	5	U
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	0.75	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	0.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	UJ	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	2.16		0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	1	U	1	U
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	1	U
Total Volatile Organics L-1 GW	TVO	ug/L			6.29		0	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the

Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary,

September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

		Sam	ple Location	MW-	126B	MW-	126C	MW-2	209A	MW-2	209A	MW-	209B	MW-7	701DR	MW-	901R	P-12	.2
			Sample Date	6/5/	2017	6/5/	2017	6/7/2	2017	6/7/2	2017	6/9/	2017	6/6/	2017	6/6/	2017	6/5/20	.017
		Fiel	d Sample ID	MW-126B	-06052017	MW-126C	-06052017	DUP-060	72017-1	MW-209A-	06072017	MW-209B	06092017	MW-701DF	R-06062017	MW-901R	06062017	P-12-060)52017
			Well Group	Ν	N		В	В		В		E	3	N	N	١	Λ	М	
		Hydro	StratZone(s)	Μ	ОВ	SI	3R	SB	R	SB	R	D	ЭB	D	BR	SI	3R	SOE	В
			-																
Analyte	CAS No.	11	Action																
Metals (6020)	CAS NO.	Unit	Level																
Aluminum (Dissolved)	7429-90-5	ug/L		6.12	J	5.36	J	10	U	3.66	J	49.6		4.24	J	9.05	J	15.8	
Aluminum (Total)	7429-90-5	ug/L		53.9		39.7		94.9		72.5		596		35.7		717		853	
Antimony (Dissolved)	7440-36-0	ug/L		4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U
Antimony (Total)	7440-36-0	ug/L	6	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U
Arsenic (Dissolved)	7440-38-2	ug/L		0.5	U	0.1918	J	0.2283	J	0.2998	J	0.5	U	0.978		0.2277	J	0.5	U
Arsenic (Total)	7440-38-2	ug/L	10	0.1774	J	0.5	U	0.2648	J	0.2523	J	0.1771	J	1.051		0.5524		0.3606	J
Barium (Dissolved)	7440-39-3	ug/L		872.8		677.5	J	291.9		294.8		188.7		103.4		317.5		329.7	
Barium (Total)	7440-39-3	ug/L	1000	1000		601.9	J	280.4		282.4		215.9		105.9		343.9		339	
Beryllium (Dissolved)	7440-41-7	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Beryllium (Total)	7440-41-7	ug/L	4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.1355	J	0.5	U
Cadmium (Dissolved)	7440-43-9	ug/L		0.2977		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Cadmium (Total)	7440-43-9	ug/L	5	0.3056		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Chromium (Dissolved)	7440-47-3	ug/L		0.4268	J	0.3904	J	0.5246	J	0.6321	J	0.4938	J	0.8187	J	0.5674	J	0.2783	J
Chromium (Total)	7440-47-3	ug/L		1.258		0.4558	J	0.7006	J	0.6657	J	1.122		0.92	J	1.348		1.444	
Cobalt (Dissolved)	7440-48-4	ug/L		0.1743	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Cobalt (Total)	7440-48-4	ug/L	10	0.2315	J	0.5	U	0.5	U	0.5	U	0.3758	J	0.5	U	0.3464	J	0.661	
Copper (Dissolved)	7440-50-8	ug/L		4.082	J	2.145	J	1	U	0.4336	J	1.232		0.9637	J	0.6565	J	1.278	
Copper (Total)	7440-50-8	ug/L	1300	1.268	J	0.4423	J	0.4408	J	1	U	1.662		1	U	1.25		1.467	
Iron (Dissolved)	7439-89-6	ug/L		50	U	50	U	50	U	50	U	34.8	J	50	U	50	U	50	U
Iron (Total)	7439-89-6	ug/L		41.6	J	36.5	J	73.6		57		580		23.7	J	528		912	
Lead (Dissolved)	7439-92-1	ug/L		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Lead (Total)	7439-92-1	ug/L	15	1	U	1	U	1	U	1	U	0.6549	J	1	U	0.7774	J	0.4339	J
Manganese (Dissolved)	7439-96-5	ug/L		2926		0.644	J	1	U	0.4581	J	10.14		1	U	4.182		1.825	
Manganese (Total)	7439-96-5	ug/L	500	5793		22.29		3.879		3.421		23.64		1.595		28.66		26.47	
Nickel (Dissolved)	7440-02-0	ug/L		17.96		0.6841	J	2	U	2	U	2	U	2	U	2	U	0.6741	J
Nickel (Total)	7440-02-0	ug/L	100	32.97		2	U	2	U	2	U	1.092	J	2	U	0.9474	J	1.853	J
Silver (Dissolved)	7440-22-4	ug/L		0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Silver (Total)	7440-22-4	ug/L	36	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Thallium (Dissolved)	7440-28-0	ug/L		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Thallium (Total)	7440-28-0	ug/L	2	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vanadium (Dissolved)	7440-62-2	ug/L		5	U	5	U	5	U	5	U	5	U	7.865		5	U	5	U
Vanadium (Total)	7440-62-2	ug/L	50	1.622	J	5	U	5	U	5	U	1.801	J	8.394		2.837	J	3.466	J
Zinc (Dissolved)	7440-66-6	ug/L		8.548	J	4.181	J	10	U	10	U	10	U	10	U	10	U	10	U
Zinc (Total)	7440-66-6	ug/L	5000	9.012	J	10	U	10	U	10	U	4.487	J	10	U	10	U	4.93	J

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL)

and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

			Sample	Location	MW	/-413	MW	-413	MM	/-413	MW-	413	MW	-413	MW	-413	MW	/-413	MW	-413	MW	/-413
			Sam	ple Date	3/18/20	015 0:00	3/18/20	15 14:30	7/17/20)15 11:10	10/23/20)15 9:45	3/11/20	16 11:50	7/19/20	16 10:45	11/4/20	016 10:15	3/13/20	17 10:30	7/7/201	17 10:05
			Field Sa	mple ID	DUPLICATE-C	GW-03182015	5 MW-413-H	S-03182015	MW-413-H	IS-07172015	MW-413-HS	-10232015	MW-413-H	S-03112016	MW-413-H	S-07192016	MW-413-H	IS-11042016	MW-413-H	S-03132017	MW-413-H	IS-07072017
			We	Il Group		N		N		N	N		1	N	1	N		N	1	N	I	N
			HydroStra		D	OB	D	OB	D	ОВ	DC	B	DO	ЭB	D	ОВ	D	ОВ	D	OB	D	OB
				F																		
Analyte	CAC No.	11	Action	101																		
VOCs	CAS No.	Unit	Level	ICL																		
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	50	U	20	U	10	U	25	U	50	U	50	U	25	U	5	U	2.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	50	U	20	U	10	UJ	25	U	50	U	50	U	25	U	5	U	2.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	75	U	30	U	15	U	37.5	U	75	U	75	U	37.5	U	7.5	U	3.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	23.7	J	20.9	J	11.8	J	37.5	U	45.4	J	23.5	J	13.1	J	24.8		1.42	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	50	U	20	U	10	UJ	25	U	50	U	50	U	14.7	J	5	U	2.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	250	U	100	U	50	U	125	U	250	U	250	U	125	U	25	U	1.18	J
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	250	U	100	U	50	U	125	U	250	U	250	U	125	U	2.5	J	2.3	J
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	50	U	20	U	10	U	25	U	50	U	50	U	25	U	5	U	2.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	250	U	100	U	50	U	125	U	250	U	250	U	125	U	2.4	J	3.46	J
2-Butanone (MEK)	78-93-3	ug/L	400	5	886	U	340	U	1090	J	164	J	500	U	500	U	250	U	50	U	25	U
2-Hexanone	591-78-6	ug/L	140	5	500	U	200	U	100	U	250	U	500	U	500	U	250	UJ	50	U	25	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	500	U	200	U	128	J	250	U	500	U	500	U	250	U	50	U	25	U
Acetone	67-64-1	ug/L	700	5	10000	UJ	4000	UJ	2120	J	348	J	500	U	500	U	250	U	50	U	10.5	UJ
Benzene	71-43-2	ug/L	1	0.5	17.5	J	17.5	J	10	U	16.9	J	41.6	J	27.5	J	32.2		36.6		31.8	
Bromomethane	74-83-9	ug/L	9.8	0.5	100	U	40	U	20	UJ	50	U	100	U	100	U	50	U	10	U	5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	500	U	200	U	100	U	250	U	500	U	500	U	250	U	50	U	25	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	50	U	20	U	10	U	25	U	50	U	50	U	25	U	5	U	2.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	45.6	J	44.1		13.7		25	U	50	U	50	U	25	U	5	U	2.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	73.5	J	66.7		4.01	J	24.7	J	100	U	100	U	50	U	10	U	26	
Chloroform	67-66-3	ug/L	6	0.5	75	U	30	U	15	U	37.5	U	75	U	75	U	37.5	U	7.5	U	3.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	250	U	100	U	50	U	125	U	250	U	250	U	125	U	25	U	12.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	50	U	20	U	69.2	J	14.9	J	50	U	64.3		1540		32.2		6.56	
Ethylbenzene	100-41-4	ug/L	700	0.5	1210		1220		504	J	514		917		630		516		688		518	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	60	U	24	U	12	U	30	U	60	U	60	U	30	U	6	U	3	U
Methylene chloride	75-09-2	ug/L	5	0.5	500	U	200	U	100	U	250	UJ	500	U	500	U	250	U	50	U	25	U
Naphthalene	91-20-3	ug/L	280	0.5	250	U	100	U	50	U	31.9	J	250	U	250	U	12.2	J	10.2	U	13.5	
Styrene	100-42-5	ug/L	100	0.5	100	U	40	U	20	U	50	U	100	U	100	U	50	U	10	U	5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	50	U	20	U	10	UJ	25	U	50	U	50	U	25	U	5	U	2.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	125	J	114	J	55.1	J	43	J	500	U	86.1	J	54.1	J	53.8		107	
Toluene	108-88-3	ug/L	1000	0.5	3900		3870		1330	UJ	1800		4190		2360		1000		89.5		23.7	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	75	U	30	U	4.92	J	47.8		75	U	75	U	10	J	7.5	U	3.75	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	50	U	20	U	10	U	25	U	50	U	50	U	25	U	5	U	2.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	50	U	20	U	10	U	25	U	50	U	50	U	25	U	5	U	2.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	100	U	40	U	49.7	J	8.13	J	36.3	J	33.5	J	4540		312		5.16	
Xylenes, Total	1330-20-7	ug/L	530	0.5	2780		2870		1100	UJ	1020		1990		1520		713		55.7		885	
Halogenated VOCs Total	THVO	ug/L			142.8		131.7		153.33		127.43		81.7		121.3		6130		373.9		59.58	
Non-Halogenated VOCs Total	TNHVO	ug/L			7907.5		7977.5		3842		3862.9		7138.6		4537.5		2261.2		869.8		1458.5	
Total Volatile Organics L-1 GW	TVO	ug/L			8175.3		8223.2		4050.43		4033.33		7220.3		4744.9		8445.3		1297.5		1625.08	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample	Location	MW	-415	MM	V-415	MW	/-415	MW	-415	MW	-415	MW	/-415	MW	-415	MW	/-415
			•	ple Date	3/18/20	15 14:45	7/17/20	015 11:45		015 9:00	3/11/20	16 12:10	7/19/20			16 13:15	3/13/20	17 11:15	7/7/201	17 10:35
				ample ID		S-03182015		IS-07172015		S-10232015		S-03112016	MW-415-H			S-11042016		S-03132017	MW-415-H	S-07072017
				ell Group		N		N		N	1	N	1	N		N		N		N
			HydroStra	•	М	ОВ	N	1OB	M	OB	M	OB	M	ОВ	М	OB	М	OB	М	OB
Analyte	CAS No.	Unit	Action	ICL																
VOCs	CAS NO.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	0.5	U	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	1.13	J	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	0.75	U	7.5	U	7.5	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	4.78	J	14.4		9.08		14.7		5.05		3.87		1.33	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	0.864	J	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	2.5	U	25	U	25	U	0.54	J	1.06	J	2.5	U	0.383	J
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	2.5	U	25	U	25	U	2.5	U	0.318	J	2.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	0.5	U	5	U	5	U	0.5	U	0.579		0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	2.5	U	25	U	25	U	2.5	U	0.291	J	2.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	44.3	J	50	U	50	U	2.9	J	5	U	5	U	3.02	J
2-Hexanone	591-78-6	ug/L	140	5	5	U	5	U	50	U	50	U	5	U	5	UJ	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	4.32	J	50	U	50	U	5	U	5	U	2.3	J	5	U
Acetone	67-64-1	ug/L	700	5	100	UJ	97.5	J	50.7	J	52.1		8.67	U	5	U	7.85	U	5	UJ
Benzene	71-43-2	ug/L	1	0.5	0.5	U	0.5	U	8.05		9.04		6.83		14.5		5.6		20.8	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	1	UJ	10	U	10	U	1	UJ	1	U	1	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	0.607	J	5	U	4.64	J	50	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	0.5	U	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	0.5	U	5	U	5	U	0.5	U	0.407	J	0.5	U	0.5	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	2.16		8.54	J	10	U	1.88		3.47		3.13		5.97	
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	0.75	U	7.5	U	7.5	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	2.5	U	25	U	25	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	0.586		57.1	J	2.24	J	5.61		9.79		7.18		0.774		1.28	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.5	U	3.13	UJ	59.4		74.6		17.5		153		4.47		15	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	0.6	U	6	U	6	U	0.6	U	0.6	U	0.221	J	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	0.766	J	50	UJ	50	U	0.476	J	5	U	5	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	2.5	U	25	UJ	25	U	1.91	J	3.2		0.774	U	3.08	
Styrene	100-42-5	ug/L	100	0.5	1	U	1	U	3.82	J	7.56	J	1.11		1	U	1	U	1.24	
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.5	U	0.5	UJ	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5	U	3.04	J	24.3	J	79.6		24.6		33.1		18		39.9	
Toluene	108-88-3	ug/L	1000	0.5	0.75	U	15.8	UJ	379		590		52.3		8.49		0.274	J	17.7	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.75	U	1		134		172		5.6		1.79		1.91		1.21	
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	0.5	U	5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.5	U	0.674		5	U	5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	0.203	J	11.8	J	55.5		1950		9.02		1.72		0.855	J	0.423	J
Xylenes, Total	1330-20-7	ug/L	530	0.5	1	U	7	UJ	49.9		141		29.4		91.1		2.75		11.1	
Halogenated VOCs Total	THVO	ug/L			0.789		80.274		218.5		2144.25		45.026		25.065		10.76		14.916	
Non-Halogenated VOCs Total	TNHVO	ug/L			0		146.12		547.05		866.74		108.93		267.09		15.394		67.62	
Total Volatile Organics L-1 GW	TVO	ug/L			1.396		229.434		794.49		3090.59		187.226		325.255		44.154		122.436	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample	location	MM	/-416	MW	/-416	MW	/-416	MW	/-416	MW	-416	MW	/-416	MW	/-416	MW	/-416
			•	ple Date		015 15:12)15 14:17		015 10:40		016 14:30	7/19/20	-)16 10:45		17 12:00		17 11:45
				ample ID		IS-03182015		IS-07172015		IS-10232015	-1 1 -	IS-03112016	MW-416-H			IS-11042016		S-03132017	11-	S-07072017
				ell Group	-	N		N		N	-	N	-	N	-	N	-	N	-	N
			HydroStra			BR		BR		BR		BR	SI			BR		BR		BR
			.,	(-,	-	1	-	Γ	-	T	-	1	-		-	T	-	T	-	<u> </u>
Analyte			Action																	
VOCs	CAS No.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	2.5	U	1.25	U	2.5	U	5	U	0.5	U	10	U	1.25	U	1.25	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	66.9		45.1	J	42		5	U	0.5	U	25.8		16.9		8.53	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	3.75	U	0.414	J	3.75	U	7.5	U	0.75	U	15	U	1.88	U	1.88	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	18.5		14.6	J	15.4		16.6		10.8		14.6	J	11.5		6.16	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	38.7		30.7	J	34		42		32.3		43.6		34.3		19.8	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	12.5	U	6.25	U	12.5	U	25	U	2.5	U	50	U	6.25	U	6.25	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	12.5	U	6.25	U	12.5	U	25	U	2.5	U	50	U	6.25	U	6.25	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	2.5	U	1.25	U	2.5	U	5	U	0.5	U	10	U	1.25	U	1.25	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	12.5	U	6.25	U	12.5	U	25	U	2.5	U	50	U	6.25	U	6.25	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	25	U	12.5	U	25	U	50	U	5	U	100	U	12.5	U	12.5	U
2-Hexanone	591-78-6	ug/L	140	5	25	U	12.5	U	25	U	50	U	5	U	100	IJ	12.5	U	12.5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	25	U	12.5	U	25	U	50	U	5	U	100	U	12.5	U	12.5	U
Acetone	67-64-1	ug/L	700	5	500	UJ	12.5	U	25	UJ	50	U	10	U	100	U	12.5	U	12.5	UJ
Benzene	71-43-2	ug/L	1	0.5	2.5	U	1.25	U	2.5	U	5	U	0.373	J	10	U	1.25	U	1.25	U
Bromomethane	74-83-9	ug/L	9.8	0.5	5	U	2.5	UJ	5	U	10	U	1	U	20	U	2.5	U	2.5	U
Carbon disulfide	75-15-0	ug/L	700	0.5	25	U	12.5	U	1.87	J	50	U	5	U	100	U	12.5	U	12.5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	2.5	U	1.25	U	2.5	U	5	U	0.5	U	10	U	1.25	U	1.25	U
Chlorobenzene	108-90-7	ug/L	100	0.5	2.5	U	1.25	U	2.5	U	5	U	0.5	U	10	U	1.25	U	1.25	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1.32	J	2.5	U	5	U	10	U	1	U	20	U	2.5	U	2.5	U
Chloroform	67-66-3	ug/L	6	0.5	3.75	U	1.88	U	3.75	U	7.5	U	0.319	J	15	U	1.88	U	1.88	U
Chloromethane	74-87-3	ug/L	2.7	0.5	12.5	U	6.25	U	12.5	U	25	U	2.5	U	50	U	6.25	U	6.25	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	361		320	J	373		537		396		522		265		188	
Ethylbenzene	100-41-4	ug/L	700	0.5	2.5	U	1.25	UJ	2.5	U	5	U	0.5	U	14.6		1.25	U	0.492	J
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	3	U	1.5	U	3	U	6	U	0.6	U	12	U	1.5	U	1.5	U
Methylene chloride	75-09-2	ug/L	5	0.5	25	U	12.5	U	25	UJ	50	U	5	U	100	U	12.5	U	12.5	U
Naphthalene	91-20-3	ug/L	280	0.5	12.5	U	6.25	U	12.5	UJ	25	U	2.5	U	50	U	0.948	U	6.25	U
Styrene	100-42-5	ug/L	100	0.5	5	U	2.5	U	5	U	10	U	1	U	20	U	2.5	U	2.5	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	12.6		9.92	J	10.8		13.7		10.8		13.3		10.3		6.15	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	25	U	7.52	J	7.5	J	50	U	6.19	J	100	U	6.3	J	3.54	J
Toluene	108-88-3	ug/L	1000	0.5	3.75	U	1.88	UJ	3.75	U	7.5	U	0.75	U	15	U	1.88	U	1.88	U
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	3.75	U	0.734	J	3.75	U	7.5	U	0.75	U	15	U	0.57	J	1.88	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	2.5	U	1.25	U	2.5	U	5	U	0.5	U	10	U	1.25	U	1.25	U
Trichloroethene	79-01-6	ug/L	5	0.5	244		199		212		241		178		213		151		67.2	
Vinyl chloride	75-01-4	ug/L	2	0.5	3.15	J	4	J	10.7		20.1		18		16.2	J	12.7		3.91	
Xylenes, Total	1330-20-7	ug/L	530	0.5	5	U	2.5	UJ	5	U	10	U	1	U	20	U	2.5	U	2.5	U
Halogenated VOCs Total	THVO	ug/L			746.17		624.468		697.9		870.4		646.219		848.5		502.27		299.75	
Non-Halogenated VOCs Total	TNHVO	ug/L			0		0		0		0		0.373		14.6		0		0.492	
Total Volatile Organics L-1 GW	TVO	ug/L			746.17		631.988		707.27		870.4		652.782		863.1		508.57		303.782	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample	Location	MW-	902D	MW	-902D	MW	-902D	MW	-902D	MW-	902D	MW-	902D	MW	902D	MW	-902D
			Sam	ple Date	3/18/20	15 15:43	7/17/20	015 13:40	10/23/2	015 10:15	3/11/20	016 13:45	7/19/20	16 12:45	11/4/20	16 11:45	3/13/20	17 14:30	7/7/202	17 12:45
			Field Sa	mple ID	MW-902D-H	IS-03182015	MW-902D-	HS-07172015	MW-902D-I	HS-10232015	MW-902D-	HS-03112016	MW-902D-H	IS-07192016	MW-902D-H	IS-11042016	MW-902D-H	IS-03132017	MW-902D-H	HS-07072017
			We	ll Group	1	N		N		N		N	I	N		N		N		N
			HydroStra	tZone(s)	D	OB	D	OB	D	ОВ	D	ОВ	D	ОВ	D	OB	D	OB	D	ОВ
Analyte			Action	r																
VOCs	CAS No.	Unit	Level	ICL						1		1								
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	10	U	10	U	50	U	12.5	U	25	U	12.5	U	2.5	U	1	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	10	U	10	UJ	50	Ŭ	12.5	U	25	U	12.5	U	2.5	U	1	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	15	U	15	U	75	Ŭ	18.8	U	37.5	U	18.8	U	3.75	U	1.5	U
1.1-Dichloroethane	75-34-3	ug/L	70	0.5	81.2		64.2	-	27.8	1	18.8	U	37.5	U	7.72		4		0.75	1
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	10	U	10	LU	50	Ŭ	12.5	U	25	U	12.5	U	2.5	U	1	Ŭ
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	50	U	50	U	250	U	62.5	U	125	U	62.5	Ŭ	1.7	J	5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	50	U	50	U	250	Ŭ	62.5	U	125	U	62.5	U	1.66	j	0.746	1
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	10	U	10	U	50	Ŭ	12.5	U	25	U	12.5	U	2.5	, U	1	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	50	U	50	U	250	U	62.5	U	125	U	7.4	J	5.04	J	2.76	J
2-Butanone (MEK)	78-93-3	ug/L	400	5	205	U	47.8	J J	1090		162		111	J	125	, U	25	, U	6.05	1
2-Hexanone	591-78-6	ug/L	140	5	100	U	100	U	500	U	125	U	250	J U	125	UJ	25	U	10	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	100	U	100	U	500	U	125	U	250	U	17.6	J	25	U	10	U
Acetone	67-64-1	ug/L	700	5	20000	UJ	200	UJ	1720	U U	189		250	U	125	Ŭ	25	U	8.48	UJ
Benzene	71-43-2	ug/L	1	0.5	9.3	1	10	U	21	1	31.1		29.3		31.8		26.4		11.7	
Bromomethane	74-83-9	ug/L	9.8	0.5	20	U	20	UJ	100	U	25	U	50	UJ	25	U	5	U	2	U
Carbon disulfide	75-15-0	ug/L	700	0.5	89.9		227		99.6	U U	125	U	250	U	125	U	25	U	10	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	10	U	10	U	50	Ŭ	12.5	U	25	U	12.5	U	2.5	U	1	U
Chlorobenzene	108-90-7	ug/L	100	0.5	10	U	5.9	-	22	-	12.5	U	25	U	12.5	U	0.99	-	0.508	
Chloroethane	75-00-3	ug/L	12.1	0.5	172		35.4		537		63.2		24.1	1	18.7	J	13.1		12.5	
Chloroform	67-66-3	ug/L	6	0.5	15	U	15	U	75	U	18.8	U	37.5	Ŭ	18.8	Ŭ	3.75	U	1.5	U
Chloromethane	74-87-3	ug/L	2.7	0.5	50	U	50	U	250	U	62.5	U	125	U	62.5	U	12.5	U	5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	263		10	UJ	50	U	12.5	U	12.4	J	12.5	U	0.955	J	1	U
Ethylbenzene	100-41-4	ug/L	700	0.5	878		367		1570		691		446		437		410		126	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	12	U	12	U	60	U	15	U	30	U	15	U	3	U	1.2	U
Methylene chloride	75-09-2	ug/L	5	0.5	6.52	J	100	U	500	UJ	125	U	17.1	J	125	U	25	U	10	U
Naphthalene	91-20-3	ug/L	280	0.5	8.71	J	50	U	250	UJ	23.2	J	125	U	16.9	J	11	J	8.07	
Styrene	100-42-5	ug/L	100	0.5	20	U	20	U	100	U	18.2	J	50	U	25	U	5	U	2	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	7.85	J	10	UJ	50	U	12.5	U	25	U	12.5	U	2.5	U	1	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	87.7	J	77	J	179	J	85.8	J	250	U	126		37.3		40.3	
Toluene	108-88-3	ug/L	1000	0.5	1990		1510	LU	5790		2870		1560		1820		416		59.2	
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	8.54	J	5.11	J	16.7	J	62.4		18.1	J	5.08	J	2.55	J	3.41	
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	10	U	10	U	50	U	12.5	U	25	Ŭ	12.5	Ŭ	2.5	Ŭ	1	U
Trichloroethene	79-01-6	ug/L	5	0.5	10	U	10	U	50	Ŭ	12.5	U	25	U	12.5	U	2.5	U	1	U
Vinyl chloride	75-01-4	ug/L	2	0.5	592		20	UJ	100	Ŭ	25	U	50	U	8.88	J	5	U	0.32	J
Xylenes, Total	1330-20-7	ug/L	530	0.5	1500		710	UJ	2520		1180		864		837		560		173	
Halogenated VOCs Total	THVO	ug/L			1139.82		110.61		603.5		167		71.7		64.68		40.995		29.064	
Non-Halogenated VOCs Total	TNHVO	ug/L			4377.3		414.8		12711		5123.1		3010.3		3143.4		1412.4		375.95	
Total Volatile Organics L-1 GW	TVO	ug/L			5694.72		829.41		13593.1		5375.9		3082		3334.08		1490.695		445.314	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample I			902M		-902M		-902M	MW-		MW-			902M	MW-			-902M
				ple Date	3/18/20)15 12:20	-1 -1	015 10:00	-, , -	16 14:00	7/19/20			16 12:30	3/13/20		115	17 13:20
				•	MW-902M-I			HS-07172015		HS-10232015			MW-902M-H							HS-07072017
				ll Group		N		N		N			1		1	-	I	-		N
			HydroStra	tZone(s)	M	ОВ	N	ЮВ	M	ЮВ	M	ОВ	M	ОВ	M	ОВ	M	ЭВ	M	ЮВ
Analyte	CAS No.	Unit	Action	ICL																
VOCs	CAS NO.	onit	Level																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	50	U	20	U	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	50	U	20	UJ	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	75	U	30	U	37.5	U	3.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	21.2	J	26.1	J	12.9	J	3.75	U	1.6		1.79		0.273	J	0.269	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	50	U	20	IJ	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	250	U	100	U	125	U	12.5	U	0.436	J	0.403	J	0.435	J	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	250	U	100	U	125	U	12.5	U	0.557	J	0.51	J	1.05	J	0.574	J
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	50	U	20	U	25	U	2.5	U	0.5	U	0.328	J	0.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	250	U	100	U	125	U	12.5	U	0.228	J	0.203	J	0.523	J	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	504	U	200	U	250	U	25	U	5	U	5	U	5	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	500	U	200	U	250	U	25	U	5	U	5	UJ	5	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	500	U	200	U	250	U	25	U	5	U	5	U	5	U	5	U
Acetone	67-64-1	ug/L	700	5	10000	UJ	200	U	74	J	25	U	5	U	5	U	1.68	U	3.77	UJ
Benzene	71-43-2	ug/L	1	0.5	23.4	J	20	U	15.6	J	9.99		4.25		6.18		7.84		3.03	
Bromomethane	74-83-9	ug/L	9.8	0.5	100	U	40	UJ	50	U	5	U	1	UJ	1	U	0.291	J	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	500	U	200	U	250	U	25	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	50	U	20	U	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	50	U	20	U	25	U	2.5	U	1.24		1.62		1.78		0.797	
Chloroethane	75-00-3	ug/L	12.1	0.5	1920		1970		1640		601		86.2		156		124		36.9	
Chloroform	67-66-3	ug/L	6	0.5	75	U	30	U	37.5	U	3.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	250	U	100	U	125	U	12.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	50	U	15.2	J	25	U	2.5	U	2.07		0.766		0.5	U	0.703	
Ethylbenzene	100-41-4	ug/L	700	0.5	2650		1620	J	942		504		49.1		10.2		9.7		1.49	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	60	U	24	U	30	U	3	U	0.6	U	0.6	U	0.6	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	38	J	41.6	J	250	UJ	7.41	J	0.895	J	1.96	J	1.61	J	0.752	J
Naphthalene	91-20-3	ug/L	280	0.5	26.1	J	100	U	125	UJ	8.23	J	3.75		2.9		4.23		1.64	J
Styrene	100-42-5	ug/L	100	0.5	100	U	40	U	50	U	5	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	50	U	20	UJ	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	139	J	133	J	109	J	48.6		21.5		28.5		38		13.8	
Toluene	108-88-3	ug/L	1000	0.5	6060		3890	UJ	2810		29.3		13.8		3.53		2.13		4.98	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	75	U	30	U	37.5	U	5.77		2.27		3.58		2.25		0.447	J
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	50	U	20	U	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	50	U	20	U	25	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	75-01-4	ug/L	2	0.5	100	U	22.9	J	17	J	5	U	3.51		0.643	J	1	U	0.962	J
Xylenes, Total	1330-20-7	ug/L	530	0.5	1250		1030	UJ	696		494		76.9		33.7		68.4		22.1	J
Halogenated VOCs Total	THVO	ug/L			2005.3		2075.8		1669.9		622.41		102.756		170.703		136.442		43.044	
Non-Halogenated VOCs Total	TNHVO	ug/L			9983.4		1620		4537.6		1037.29		144.05		53.61		88.07		31.6	
Total Volatile Organics L-1 GW	TVO	ug/L			12127.7		3828.8		6316.5		1708.3		268.306		252.813		262.512		88.444	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample	Location	MW	L-304	MW	L-304	MW	L-304	MWI	-304	MWI	L-304	MWI	L-304	MW	L-304	MW	L-304	MW	VL-304
			Sam	ple Date	3/18/20	15 12:27	7/17/2	015 8:50	10/22/20	015 14:45	3/11/20	16 12:20	7/19/20	016 9:15	11/4/20	016 8:35	3/13/20	017 9:00	7/7/20	17 0:00	7/7/20	017 9:35
			Field Sa	ample ID	MWL-304-I	IS-03182015	MWL-304-H	IS-07172015	MWL-304-H	IS-10222015	MWL-304-H	S-03112016	MWL-304-H	IS-07192016	MWL-304-H	IS-11042016	MWL-304-H	IS-03132017	DUP-070	072017-1	MWL-304-H	HS-07072017
			We	ell Group		N		N		N	1	J	1	N	1	N		N	I	N		Ν
			HydroStra	atZone(s)	S	ОВ	S	ОВ	S	OB	SC)B	SC	ОВ	SC	OB	S	ОВ	S	OB	S	SOB
Analyte		<u> </u>	Action																			
VOCs	CAS No.	Unit	Level	ICL																		+
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	1.25	U	5	U	1	U	0.5	U	0.5	U	1	U	50	U	50	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	7.35	U U	5	U	1	U	0.5	U	0.5	U	1	U	50	U	50	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	1.88	U	7.5	U	1.5	U	0.842		0.75	U	1.5	U	75	U	75	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	13.3		88.5	ı I	31.5		13.6		10.7		4.33		7.14		71	J J	68.8	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	1.29		1.25	UJ	5	UJ	1	U	1.61		0.5	U	1	U	112		114	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	6.25	U	25	U	1.02	<u> </u>	0.705	1	0.76	J	1.02	1	250	U	250	U
1.2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	1.18	1	2.6	1	2.16	j	1.04	1	1.16	, ,	1.57	1	250	U	250	U
1.2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	1.25	J U	5	U	1	j	0.5	U	1.39		1.37		50	U	50	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	6.25	U	25	U	0.861	1	0.504	1	0.441		0.62		250	U	250	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	12.5	U	50	U	10	U	5	J U	5	U	10	U	500	U	500	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	12.5	U	50	U	10	U	5	U	5	UJ	10	U	500	U	500	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	12.5	U	50	U	10	U	5	U	5	U	10	U	500	U	500	U
Acetone	67-64-1	ug/L	700	5	100	UJ	16.2	UI	21.4	0	4.45	1	7	U	5	U	10	U	500	UJ	500	UJ
Benzene	71-43-2	ug/L	1	0.5	3.31		26.2	U	35.5		43.7		17.7		25.9		10		22.2	1	21.5	0,
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	2.5	UJ	10	UJ	2	U	1	U	1	U	2	U	100	U U	100	U
Carbon disulfide	75-15-0	ug/L ug/L	700	0.5	5	U	4.11	1	50	UJ	10	U	5	U	5	U	10	U	500	U	500	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	1.25	U	5	U	10	U	0.5	U	0.5	U	10	U	500	U	50	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	1.25	U	2.81	0	1	U	0.5	U	1.2		0.86	0	50	U	50	U
Chloroethane	75-00-3	ug/L	100	0.5	1	U	2.5	U	27.2		33.4		0.5	U	12.6		18		100	U	100	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	1.88	U	7.5	U	1.5	U	0.75	U	0.75	U	1.5	U	75	U	75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	6.25	U	25	U	5	U	2.5	U	2.5	U	5	U	250	U	250	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	209		22	0	2.48	0	1	U	389		0.473	1	1	U	8400		8320	
Ethylbenzene	100-41-4	ug/L	700	0.5	0.323	J	161	, ,	217		352		124		82.7		148		786		827	
Hexachlorobutadiene	87-68-3	ug/L ug/L	0.45	0.45	0.6	U	1.5	U	6	U	1.2	U	0.6	U	0.6	U	1.2	U	60	U	60	U
Methylene chloride	75-09-2	ug/L	5	0.45	5	U	12.5	U	50	U	1.2	U	0.307	J	5	U	1.2	U	500	U	500	U
Naphthalene	91-20-3	ug/L	280	0.5	2.5	U	6.25	U	25	U	2.73	1	2.67		2.2	J	4.06	1	250	U	250	U
Styrene	100-42-5	ug/L	100	0.5	2.5	U	2.5	U	10	U	2.73	U	1	U	1	U U	2	U	100	U	100	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.412	1	1.25	UJ	5	U	1	U	0.5	U	0.5	U	1	U	50	U	50	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	3.65	, ,	12.8		9.87	i i	12.3		10.7		8.46		11.3		500	U	500	U
Toluene	108-88-3	ug/L	1000	0.5	6.1		333		800		95.4		146		8.79		50.7		1720		1730	
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	3.01		5.26		7.5	U	0.948		1.62		0.75	U	0.498	1	1720		19.9	<u> </u>
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	1.25	U	5	U	1	U	0.5	U	0.5	U	1	U	50	U	50	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.353	1	1.18	1	5	U	1	U	0.5	U	0.5	U	1	U	50	U	50	U
Vinyl chloride	75-01-4	ug/L	2	0.5	224		106	j	10	U	2	U	563		0.671	J	0.826	0	4340		4230	
Xylenes, Total	1330-20-7	ug/L	530	0.5	4.24		193	U)	388		640		234		175		378		1280		1360	
Halogenated VOCs Total	THVO	ug/L			451.365		231.47		66.59		54.719		971.998		25.225		35.794		12940.6		12752.7	
0	TNHVO				451.365		494		1461.9		1135.55		521.7		25.225		35.794 593.7		3808.2		3938.5	
Non-Halogenated VOCs Total Total Volatile Organics L-1 GW	TVO	ug/L ug/L			468.988		742.38		1538.36		1135.55		521.7		326.075		593.7 640.794		3808.2 16748.8		16691.2	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample I	Location	MW	L-307	MW	/L-307	MW	L-307	MW	L-307	MWI	-307	MW	L-307	MW	'L-307	MW	′L-307
			Sam	ple Date	3/18/20	15 15:15	7/17/20	015 14:55	10/23/20	015 11:00	3/11/20	16 14:15	7/19/20	16 13:30	11/4/20	16 11:15	3/13/20	017 13:00	7/7/20	17 11:10
			Field Sa	mple ID	MWL-307-H	IS-03182015	MWL-307-I	HS-07172015	MWL-307-H	IS-10232015	MWL-307-H	IS-03112016	MWL-307-H	S-07192016	MWL-307-F	IS-11042016	MWL-307-H	HS-03132017	MWL-307-H	HS-07072017
			We	ll Group		N		N		N		N	1					N		N
			HydroStra	tZone(s)	S	ОВ	S	ЮВ	S	ОВ	S	ОВ	SC	DB	S	ОВ	S	ОВ	S	ОВ
Analyte		1	Action																	───
VOCs	CAS No.	Unit	Level	ICL														1		1
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	2.5	U	2.5	U	12.5	U	10	U	10	U	2.5	U	0.5	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	1.08		2.5	UJ	2.5	U	12.5	U	10	U	10	U	2.5	U	0.5	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	3.75	U	3.75	U	18.8	U	15	U	15	U	3.75	U	0.75	U
1.1-Dichloroethane	75-34-3	ug/L	70	0.5	4.2		2.91	-	6.06		17.3		7.55		6.52		4.18		2.53	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.5	U	2.5	LU	2.5	U	12.5	U	10	U	10	U	2.5	U	0.5	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2.5	U	12.5	U	2.33	J	62.5	U	50	U	50	Ŭ	12.5	Ŭ	2.5	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	Ŭ	12.5	U	12.5	Ŭ	62.5	U	50	U	50	U	12.5	U	2.5	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	2.5	U	2.5	U	12.5	U	10	U	10	U	2.5	U	0.5	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	12.5	U	12.5	U	62.5	U	50	U	4.38	J	12.5	U	2.5	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	5	U	113	J J	12.5		52.8	J	100	U	100	, U	25	U	5	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	21.6	1	8.43	J	125	, U	100	U	100	UJ	25	U	5	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5	U	257	1	279		125	U	100	U	100	U	25	U	5	U
Acetone	67-64-1	ug/L	700	5	100	UJ	133	U	277	1	108	J	100	U	100	U	25	U	6.47	UJ
Benzene	71-43-2	ug/L	1	0.5	0.169	1	5.49	U	13.6		35.6		24.8		33.4		8.72		7.47	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	Ŭ	5	UJ	5	U	25	U	20	U	20	U	5	U	1	U
Carbon disulfide	75-15-0	ug/L	700	0.5	2.06	1	25	U	38.3		125	U	100	U	100	U	25	U	5	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	Ŭ	2.5	Ŭ	2.5	U	12.5	U	100	U	100	U	2.5	Ŭ	0.5	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.5	U	2.5	U	2.5	U	12.5	U	10	U	10	U	2.5	U	0.19	
Chloroethane	75-00-3	ug/L	12.1	0.5	1.12		5.59		20.1		25	U	20	U	16.3	J	1.25	U U	2.79	
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	3.75	U	3.75	U	18.8	U	15	U	15	Ŭ	3.75	Ŭ	0.75	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	Ŭ	12.5	U	12.5	U	62.5	U	50	U	50	U	12.5	U	2.5	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	17.5		55.3	J.	2.93		12.5	U	5.18	1	10	U	2.5	U	3.33	
Ethylbenzene	100-41-4	ug/L	700	0.5	12.4		47.5	UJ	129		353		148		355		31.8		13	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	3	U	3	U	15	U	12	U	12	U	3	U	0.6	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	Ŭ	25	Ŭ	25	UJ	125	U	100	U	100	U	25	U	5	U
Naphthalene	91-20-3	ug/L	280	0.5	0.377	<u> </u>	12.5	U	6.87	1	9.67	J	50	U	10.8	J	2.4	U	0.546	J
Styrene	100-42-5	ug/L	100	0.5	1	Ŭ	2.23	1	5.69		38.5		9.73		20	Ŭ	5	U	0.523	
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.477	<u> </u>	2.5	UJ	2.5	U	12.5	U	10	Ŭ	10	U	2.5	U	0.5	, U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	1.29	,	106		69.4		12.5		58.4		140		39.2		15.8	
Toluene	108-88-3	ug/L	1000	0.5	52.1		267	J	448		1890		616		1310		3.75	U	5.81	
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	2.85		3.07	1	62.4		1850		18.3		1510	U	3.31	1	1.86	
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	2.5	U	2.5	U	12.5	U	10.5	U	10	U	2.5	U	0.5	U
Trichloroethene	79-01-6	ug/L	5	0.5	0.288	1	2.5	U	2.5	U	12.5	U	10	U	10	U	2.5	U	0.5	U
Vinyl chloride	75-01-0	ug/L	2	0.5	3.44		74.6	J	2.3	1	432		20	U	20	U	5	U	1.78	
Xylenes, Total	1330-20-7	ug/L	530	0.5	40.7		42.8	IJ	173		779		306		730		5.84	J	9.49	
,,																		-		
Halogenated VOCs Total	THVO	ug/L			31.332		143.7		108.8		667.47		40.76		38		8.74		13.549	
Non-Halogenated VOCs Total	TNHVO	ug/L			105.369		391.6		1449.03		3218.4		1094.8		2428.4		46.36		35.77	
Total Volatile Organics L-1 GW	TVO	ug/L			140.051		641.3		1665.53		4011.87		1193.96		2606.4		94.3		65.119	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

r																		
			Sample			-08A		-08A		-08A	TW-		TW-			-08A	TW-	
				ple Date		15 13:54		15 10:05		015 15:20	3/11/20			16 10:15		016 9:50		17 10:10
				ample ID		S-03182015		S-07172015	TW-08A-HS			5-03112016		5-07192016	TW-08A-HS			5-03132017
				ell Group		N		N		N OD		N 00		N		N		N
			HydroStra	tzone(s)	IVI	OB	IM	OB	M	ОВ	M	OB	IVI	ОВ	IVI	ОВ	IVI	OB
Analyte			Action															
VOCs	CAS No.	Unit	Level	ICL														
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	0.5	U	20	U	10	U	100	U	25	U	50	U	25	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	0.5	U	20	UJ	10	U	100	U	25	U	50	U	25	U
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	0.75	U	30	U	15	U	150	U	37.5	U	75	U	37.5	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	0.75	U	30	UJ	15	U	92.1	J	57		84.1		37	J
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	0.407	J	38.6	J	120		142		25	U	50	U	25	U
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	0.58	J	100	U	50	U	500	U	125	U	250	U	125	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2.5	U	100	U	50	U	500	U	125	U	250	U	125	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	0.5	U	20	U	10	U	100	U	25	U	50	U	25	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2.5	U	100	U	50	U	500	U	125	U	250	U	125	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	52	U	1600	J	399		1000	U	250	U	500	U	250	U
2-Hexanone	591-78-6	ug/L	140	5	5	U	200	U	100	U	1000	U	250	U	500	UJ	250	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	19.5		240	J	277		1000	U	250	U	500	U	250	U
Acetone	67-64-1	ug/L	700	5	100	UJ	2050	UJ	564	U	1000	U	250	U	500	U	250	U
Benzene	71-43-2	ug/L	1	0.5	1.07		20	U	26.7		100	U	42.2		62.7		47.2	
Bromomethane	74-83-9	ug/L	9.8	0.5	1	U	40	UJ	20	UJ	200	U	50	U	100	U	50	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5	U	27.3	J	23	J	1000	U	250	U	500	U	250	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	0.5	U	20	U	10	U	100	U	25	U	50	U	25	U
Chlorobenzene	108-90-7	ug/L	100	0.5	0.294	J	20	U	10	U	100	U	25	U	50	U	25	U
Chloroethane	75-00-3	ug/L	12.1	0.5	1	U	40	U	20	U	200	U	50	U	100	U	50	U
Chloroform	67-66-3	ug/L	6	0.5	0.75	U	30	U	15	U	150	U	37.5	U	75	U	37.5	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2.5	U	100	U	50	U	500	U	125	U	250	U	125	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	34.8		3330	J	6840		7850		25	U	50	U	25	U
Ethylbenzene	100-41-4	ug/L	700	0.5	25.3		178	UJ	503		1000		802		1160		1100	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	0.6	U	24	U	12	U	120	U	30	U	60	U	30	U
Methylene chloride	75-09-2	ug/L	5	0.5	5	U	200	U	100	U	1000	U	250	U	500	U	250	U
Naphthalene	91-20-3	ug/L	280	0.5	1.29	J	100	U	15.2	J	500	U	125	U	250	U	29.8	U
Styrene	100-42-5	ug/L	100	0.5	1.93		16.7	J	30.1		109	J	37.5	J	100	U	50	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	0.424	J	20	UJ	10	U	100	U	25	U	50	U	25	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	3.88	J	61.8	J	100	U	1000	U	67	J	98.3	J	111	J
Toluene	108-88-3	ug/L	1000	0.5	54.5		1000	UJ	2700		4060		3430		5440		4530	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	0.362	J	63.2		805		458		42.2		52.7	1	29	J
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	0.5	U	20	U	10	U	100	U	25	U	50	U	25	U
Trichloroethene	79-01-6	ug/L	5	0.5	1.86		20	U	10	U	100	U	25	U	50	U	25	U
Vinyl chloride	75-01-4	ug/L	2	0.5	76.8		472	J	740		11800		8880		22200		9220	
Xylenes, Total	1330-20-7	ug/L	530	0.5	19.4		423	UJ	1100		2130		1800		2060		2050	
	TUNC				110 747		2020 5		0550.3		20454.4		0016 7		22226.6		0200	
Halogenated VOCs Total	THVO	ug/L			118.747		3920.5		8550.3		20451.1		9016.7		22336.8		9286	
Non-Halogenated VOCs Total	TNHVO TVO	ug/L			119.77 242.397		1840 5849.6		5005.7 13579		7190 27641.1		6074.2 15157.9		8722.7 31157.8		7727.2 17124.2	
Total Volatile Organics L-1 GW	100	ug/L			242.39/		5849.0		122/2		27041.1		12121.9		31127.8		1/124.2	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Sample	Location	TW-0	8B	TW-	08B	TW-	08B	TW-0)8B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	/-08B
			Sam	nple Date	3/18/201	5 13:22	7/17/20	15 12:00	10/22/20	015 0:00	10/22/202	15 11:50	3/11/20	016 0:00	3/11/20	16 10:45	7/20/20	016 0:00	7/20/20	16 11:10	11/3/2	016 0:00	11/3/20	16 13:10	3/9/20	17 0:00	3/9/20	017 9:00
			Field S	ample ID	TW-08B-HS-	03182015	TW-08B-HS	-07172015	DUP-1-10	0222015	TW-08B-1	0222015	DUP-GW-	03112016	TW-08B-	03112016	DUP-072	02016-#1	TW-08B-HS	5-07202016	DUP-11	032016-1	TW-08B-	11032016	DUP-03	092017	TW-08B-	03092017
			W	ell Group	N		1	1	N		N			N	1	N	1	N	1	N		N		N		N		Ν
			HydroStra	atZone(s)	SBF	R	SE	BR	SB	R	SB	R	SI	BR	SI	BR	SI	BR	SI	BR	S	BR	S	BR	S	3R	S	BR
Analyte			Action																									<u> </u>
VOCs	CAS No.	Unit	Level	ICL							1																	
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	500	U	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	1250	U	1250	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	500	U	4000	J	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2900		2750		3450		3500	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	750	U	1500	U	3750	U	3750	U	1500	U	1500	U	7500	U	7500	U	3750	U	3750	U	1880	U	1880	U
I,1-Dichloroethane	75-34-3	ug/L	70	0.5	750	U	2280	J	3750	U	3750	U	1500	U	1500	U	7500	U	7500	U	2140	J	3750	U	2050		2060	
l,1-Dichloroethene	75-35-4	ug/L	7	0.5	2330		1830	J	2500	UJ	2500	UJ	2840		2620		5000	U	2480	J	2920		2900		2990		2860	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	2500	U	5000	U	12500	U	12500	U	5000	U	5000	U	25000	U	25000	U	12500	U	12500	U	6250	U	6250	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	2500	U	5000	U	12500	U	12500	U	5000	U	5000	U	25000	U	25000	U	12500	U	12500	U	6250	U	6250	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	500	U	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	1250	U	1250	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	2500	U	5000	U	12500	U	12500	U	5000	U	5000	U	25000	U	25000	U	12500	U	12500	U	6250	U	6250	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	6890	U	10000	U	25000	U	25000	U	10000	U	10000	U	50000	U	50000	U	25000	U	25000	U	12500	U	12500	U
2-Hexanone	591-78-6	ug/L	140	5	5000	U	10000	U	25000	U	25000	U	10000	U	10000	U	50000	U	50000	U	25000	UJ	25000	UJ	12500	U	12500	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	5000	U	10000	U	25000	U	25000	U	10000	U	10000	U	50000	U	50000	U	25000	U	25000	U	2180	J	1420	J
Acetone	67-64-1	ug/L	700	5	100000	UJ	10000	U	25000	U	25000	U	10000	U	10000	U	50000	U	20400	J	25000	U	25000	U	12500	U	12500	U
Benzene	71-43-2	ug/L	1	0.5	497	J	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	498	J	458	J
Bromomethane	74-83-9	ug/L	9.8	0.5	1000	U	2000	UJ	5000	UJ	5000	UJ	2000	U	2000	U	10000	U	10000	U	5000	U	5000	U	2500	U	2500	U
Carbon disulfide	75-15-0	ug/L	700	0.5	5000	U	10000	U	25000	UJ	25000	UJ	10000	U	10000	U	50000	U	50000	U	25000	U	25000	U	12500	U	12500	U
Carbon tetrachloride	56-23-5	ug/L	5	0.5	500	U	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	1250	U	1250	U
Chlorobenzene	108-90-7	ug/L	100	0.5	500	U	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	1250	U	1250	U
Chloroethane	75-00-3	ug/L	12.1	0.5	890	J	558	J	5000	U	5000	U	2000	U	2000	U	10000	U	10000	U	5000	U	5000	U	2500	U	2500	U
Chloroform	67-66-3	ug/L	6	0.5	750	U	1500	U	3750	U	3750	U	1500	U	1500	U	7500	U	7500	U	3750	U	3750	U	1880	U	1880	U
Chloromethane	74-87-3	ug/L	2.7	0.5	2500	U	5000	U	12500	U	12500	U	5000	U	5000	U	25000	U	25000	U	12500	U	12500	U	6250	U	6250	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	381000		289000	J	289000		299000		326000		309000		342000		303000		339000		336000		390000		381000	
Ethylbenzene	100-41-4	ug/L	700	0.5	3990		3140	UJ	3640		3760		4110		4050		2480	J	2840	J	3680		3460		4320		4160	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	600	U	1200	U	3000	U	3000	U	1200	U	1200	U	6000	U	6000	U	3000	U	3000	U	1500	U	1500	U
Methylene chloride	75-09-2	ug/L	5	0.5	917	J	872	J	25000	U	25000	U	1060	J	1070	J	50000	U	50000	U	25000	U	25000	U	12500	U	12500	U
Naphthalene	91-20-3	ug/L	280	0.5	2500	U	5000	U	12500	U	12500	U	5000	U	5000	U	25000	U	25000	U	12500	U	12500	U	6250	U	6250	U
Styrene	100-42-5	ug/L	100	0.5	390	J	2000	U	5000	U	5000	U	1100	J	1070	J	10000	U	10000	U	5000	U	5000	U	2500	U	2500	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	7200		6120	1	6630		7270		8600		7440		4900	J 	3840	J	7850		7740		7040		7150	
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	5000	U	10000	U	25000	U	25000	U	10000	U	10000	U	50000	U	50000	U	25000	U	25000	U	12500	U	12500	U
Toluene	108-88-3	ug/L	1000	0.5	44900		38300	UJ	40000		41000		46200		42900		36700		33800		41600		41100		46600		46400	
trans-1,2-Dichloroethene	156-60-5	ug/L	100	0.5	750	U	1500	<u> </u>	3750	U	3750	U	1500	U	1500	U	7500	U	7500	U	3750	U	3750	U	1880	U	1880	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	500	U	1000	U	2500	U	2500	U	1000	U	1000	U	5000	U	5000	U	2500	U	2500	U	1250	U	1250	U
Trichloroethene	79-01-6	ug/L	5	0.5	159000		136000		165000		172000		205000		178000		138000		130000		138000		133000		120000	J	118000	<u> </u>
Vinyl chloride	75-01-4	ug/L	-	0.5	16000		12000	J	12200		12800		11000		11200		9280	J	10400		14200		11800		9960		9880	
Xylenes, Total	1330-20-7	ug/L	530	0.5	9030		7560	UJ	8710	J	8910	J	9390		9400		3890	J	13800	J	8160	J	7820	J	9550	1	9280	<u> </u>
Halogenated VOCs Total	THVO	ug/L			567727		452660		472830		491070		555600		510400		494180		449720		507010		494190		535490		524450	
Non-Halogenated VOCs Total	TNHVO	ug/L			58417		0		52350		53670		59700		56350		43070		70840		53440		52380		63148		61718	
Total Volatile Organics L-1 GW	TVO	ug/L			626144		452660		525180		544740		615300		566750		537250		520560		560450		546570		598638		586168	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

			Comula	location	TW-	000	T\A/	-08D	TW-	000	T\A/	-08D	TW-	090	TW	090	TW-	000	T)A/	-08D
			Sample	ple Date	3/18/20			-080 015 0:00	7/17/20			-08D 015 15:00	3/11/20			-08D 016 9:45	11/4/20			-08D 017 9:30
							, ,		, ,		-7 7						, , ,		-7 -7 -	
				mple ID				-07172015		5-07172015 N		S-10222015	TW-08D-HS			S-07192016		5-11042016		S-03132017
				II Group		N		N		•	-	N OB		•	N DOB		N DOB			N OB
			HydroStra	tzone(s)	DC	ЛВ	U	ОВ	D	OB	Di	Ов	DU	OB	DOB		DOB		D	JB
Analyte			Action																	<u> </u>
VOCs	CAS No.	Unit	Level	ICL																
1,1,1,2-Tetrachloroethane	630-20-6	ug/L	1	0.5	250	U	25	U	250	U	500	U	500	U	50	U	250	U	125	U
1,1,1-Trichloroethane	71-55-6	ug/L	200	0.5	250	U	25	IJ	894	J	500	U	500	U	50	U	250	U	208	
1,1,2-Trichloroethane	79-00-5	ug/L	5	0.5	375	U	37.5	U	375	U	750	U	750	U	75	U	375	U	188	U
1,1-Dichloroethane	75-34-3	ug/L	70	0.5	375	U	103	J	407	J	750	U	750	U	695		357	J	526	
1,1-Dichloroethene	75-35-4	ug/L	7	0.5	640		60.7	J	261	J	1290	J	546		682		730		478	
1,2,4-Trichlorobenzene	120-82-1	ug/L	70	2	1250	U	125	U	1250	U	2500	U	2500	U	250	U	1250	U	625	U
1,2-Dichlorobenzene	95-50-1	ug/L	600	0.5	1250	U	125	U	1250	U	2500	U	2500	U	250	U	1250	U	625	U
1,2-Dichloroethane	107-06-2	ug/L	1	0.5	250	U	25	U	250	U	500	U	500	U	50	U	250	U	125	U
1,4-Dichlorobenzene	106-46-7	ug/L	75	0.5	1250	U	125	U	1250	U	2500	U	2500	U	250	U	1250	U	625	U
2-Butanone (MEK)	78-93-3	ug/L	400	5	2500	U	250	U	2500	U	5000	U	5000	U	500	U	2500	U	1250	U
2-Hexanone	591-78-6	ug/L	140	5	2500	U	250	U	2500	U	5000	U	5000	U	500	U	2500	UJ	1250	U
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	350	5	2500	U	250	U	2500	U	5000	U	5000	U	500	U	2500	U	1250	U
Acetone	67-64-1	ug/L	700	5	50000	UJ	250	U	2500	U	5000	U	5000	U	500	U	2500	U	1250	U
Benzene	71-43-2	ug/L	1	0.5	79.9	1	25	U	250	U	174	J	500	U	25.5	J	250	U	125	U
Bromomethane	74-83-9	ug/L	9.8	0.5	500	U	50	IJ	156	-	1000	UJ	1000	U	100	UJ	500	U	64.2	-
Carbon disulfide	75-15-0	ug/L	700	0.5	2500	U	250	U	2500	Ŭ	5000	UJ	5000	U	500	U	2500	U	1250	Ŭ
Carbon tetrachloride	56-23-5	ug/L	5	0.5	250	U	25	U	250	U	500	U	500	U	500	U	250	U	125	U
Chlorobenzene	108-90-7	ug/L	100	0.5	250	U	25	U	250	U	500	U	500	U	50	U	250	U	125	U
Chloroethane	75-00-3	ug/L	12.1	0.5	500	U	50	U	500	U	1000	U	1000	U	100	U	500	U	250	U
Chloroform	67-66-3	ug/L	6	0.5	375	U	37.5	U	375	U	750	U	750	U	75	U	375	U	188	U
Chloromethane	74-87-3	ug/L	2.7	0.5	1250	U	125	U	1250	U	2500	U	2500	U	250	U	1250	U	625	U
cis-1,2-Dichloroethene	156-59-2	ug/L	70	0.5	80600		7360	J	32300	<u> </u>	86100		34500		25000		29300		30500	
Ethylbenzene	100-41-4	ug/L	700	0.5	3440		123	UJ	1740	UJ	3610		2310		1510		1600		3260	
Hexachlorobutadiene	87-68-3	ug/L	0.45	0.45	300	U	30	U	300	U	600	U	600	U	60	U	300	U	150	U
Methylene chloride	75-09-2	ug/L	5	0.5	2500	U	250	U	2500	U	5000	U	5000	U	31.7	<u> </u>	2500	U	1250	U
Naphthalene	91-20-3	ug/L	280	0.5	1250	U	125	U	1250	U	2500	U	2500	U	250	U	1250	U	120	U
Styrene	100-42-5	ug/L	100	0.5	500	U	50	U	500	U	1000	U	1000	U	100	U	500	U	250	U
Tetrachloroethene	127-18-4	ug/L	5	0.5	201		28.9	J	198	J	500	U	500	U	50	U	250	U	125	U
Tetrahydrofuran	109-99-9	ug/L	4.6	0.5	2500	U	250	U U	2500	U U	5000	U	5000	U	500	U	2500	U	1250	U
Toluene	108-88-3	ug/L	1000	0.5	15200		652	UJ	7490	UJ	21600		7510		5840		8890		11200	
trans-1,2-Dichloroethene	156-60-5	ug/L	1000	0.5	375	U	37.5	U	375	U	750	U	750	U	75	U	375	U	11200	U
trans-1,3-Dichloropropene	10061-02-6	ug/L	0.5	0.5	250	U	25	U	250	U	500	U	500	U	50	U	250	U	125	U
Trichloroethene	79-01-6	ug/L	5	0.5	250	U	25	U	250	U	427	0	500	U	50	U	250	U	125	U
Vinyl chloride	75-01-0	ug/L	2	0.5	3140		185	J	1100	1	9100		710	1	1960		6760		5670	
Xylenes, Total	1330-20-7	ug/L	530	0.5	7930		304	UJ J	4170	IJ	9050		4470		2910		2760		4640	
	1330 20-7	46/ L	550	0.5	7550		504		41/0		5050		47,0		2310		2700		4040	<u> </u>
Halogenated VOCs Total	THVO	ug/L			84581		7737.6		35316		96917		35756		28368.7		37147		37446.2	
Non-Halogenated VOCs Total	TNHVO	ug/L			26649.9		0		0		34434		14290		10285.5		13250		19100	
Total Volatile Organics L-1 GW	TVO	ug/L			111230.9		7737.6		35316		131351		50046		38654.2		50397		56546.2	

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

SOB = Shallow Overburden

MOB = Middle Overburden

DOB = Deep Overburden

Table 4 - Post-Thermal Treatment Groundwater Sample Results – MNA Parameters Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample	Location	MM	-413	MW	-413	MW	-413	MW	-413	MW	-413	MW	413	MW	-413	MW	-413	MW	/-413	MW	V-413
	Sar	nple Date	3/18/2	015 0:00	3/18/20	15 14:30	7/17/20	15 11:10	11/23/20	015 10:00	3/11/20	16 11:50	7/19/202	L6 10:45	11/4/20	16 10:15	3/13/20	17 10:30	7/7/20	17 0:00	7/7/201	17 10:05
	Field S	ample ID	DUPLICATE-0	GW-03182015	MW-413-H	S-03182015	MW-413-H	S-07172015	MW-413-H	S-11232015	MW-413-H	S-03112016	MW-413-HS	6-07192016	MW-413-H	S-11042016	MW-413-H	S-03132017	DUP-070	072017-2	MW-413-H	IS-07072017
	w	ell Group		N		N		N		N	1	N	Ν	l	1	N		N		N	1	N
	HydroStr	atZone(s)	D	OB	D	ОВ	D	ОВ	D	ОВ	D	DB	DC	DB	D	OB	D	OB	D	ОВ	D	OB
Analyte																						
MNA	CAS No.	Unit																				
Alkalinity	ALK	mg/L	345	J	345	J	438		291		276		373	J	303		359				568	J
Chloride	16887-00-6	mg/L	84.1		81.2		740		219		349		629		200		325				403	
Iron (Dissolved)	7439-89-6	ug/L	37	J	71000		180000		62000	J	72000		92000	J	28000	J	39000				29000	
Manganese (Dissolved)	7439-96-5	ug/L	282		15200		39700	J	11400	J	14800		19600		7290		9620				11100	
Nitrate as N	14797-55-8	mg/L	0.5	UJ	0.5	UJ	0.1	U	0.1	U	0.139		0.115	U	0.046	J	0.039	J			0.1	U
Nitrite as N	14797-65-0	mg/L	0.097		0.114		0.148		0.053		0.068		0.065		0.031	J	0.04	J			0.05	U
Sulfate	14808-79-8	mg/L	0.207	J	0.099	J	3.54		2.97		0.09	J	1	U	1	U	38.6				1	U
Total Organic Carbon	TOC	mg/L	220	J	220	J	490	J	87	J	54		95	J	43	J	47	J	72		73	
Ethane	74-84-0	ug/L	200		230		220		680		1600		2500		780		2000	J			1700	
Ethene	74-85-1	ug/L	1900	J	2200	J	140		2.3		2600		1		1500		1900	J			2.5	
Methane	74-82-8	ug/L	2000		2300		3000	J	14000		21000		13000		5500		9500				12000	

Notes:

U = Analyte not detected above the laboratory reporting limit J = Analyte result is estimated ug/L = micrograms per liter mg/L = milligrams per liter Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level MOB = Middle Overburden DOB = Deep Overburden SBR = Shallow Bedrock SOB = Shallow Overburden TW-08A, TW-08B, and TW-08D were decommissioned in March 2017.

Page 1 of 10

Table 4 - Post-Thermal Treatment Groundwater Sample Results – MNA Parameters Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample	Location	MM	/-415	MW	-415	MW	-415	MW	-415	MW	-415	MW	-415	MW	/-415	MW	/-415	MW	N-415
	Sar	nple Date	3/18/20	15 14:45	7/17/20	15 11:45	11/23/20	15 10:15	3/11/20	16 12:10	7/19/20	16 11:15	11/4/20	16 13:15	3/13/20)17 11:15	7/7/2017 0:00		7/7/20	017 10:35
	Field S	Sample ID	MW-415-H	S-03182015	MW-415-H	S-07172015	MW-415-HS	S-11232015	MW-415-H	S-03112016	MW-415-H	S-07192016	MW-415-H	S-11042016	MW-415-H	S-03132017	DUP-070	072017-3	MW-415-H	HS-07072017
	W	ell Group		N	1	N	N	1		N		N		N		N		N		Ν
	HydroStr	atZone(s)	М	ОВ	M	OB	M	OB	М	OB	М	OB	М	OB	М	ОВ	М	OB	N	ИОВ
Analyte	CAS No.	Unit																		
MNA																				
Alkalinity	ALK	mg/L	27.8	J	63.2		266		426		479	J	487		370				558	J
Chloride	16887-00-6	mg/L	1.22		225		129		439		262		374		218				218	
Iron (Dissolved)	7439-89-6	ug/L	34	J	22000	J	13000	J	19000		4600		19000	J	3000		4960		4880	
Manganese (Dissolved)	7439-96-5	ug/L	284		4160	J	2080	J	3660		5170		7740		4470		4670		4570	
Nitrate as N	14797-55-8	mg/L	0.142	J	0.04	U	0.1	U	0.052	J	0.1	U	0.024	J	0.1	U			0.1	U
Nitrite as N	14797-65-0	mg/L	0.05	U	0.07		0.021	J	0.017	J	0.05	U	0.015	J	0.05	U			0.05	U
Sulfate	14808-79-8	mg/L	7.09		33.6		26.2		6.54		1.02		1	U	160				0.171	J
Total Organic Carbon	TOC	mg/L	1.4	J	16	J	46	J	100		63	J	70	J	59	J			70	
Ethane	74-84-0	ug/L	0.015	U	0.11	J	18		100		230		670		66				110	
Ethene	74-85-1	ug/L	0.054	U	4.8		91		340		3.2		0.47		9.1				0.083	J
Methane	74-82-8	ug/L	0.3	UJ	42	J	1200		4300		4500		6600		210	J			2200	

Notes:

U = Analyte not detected above the laboratory reporting limit J = Analyte result is estimated ug/L = micrograms per liter mg/L = milligrams per liter Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level MOB = Middle Overburden DOB = Deep Overburden SBR = Shallow Bedrock SOB = Shallow Overburden TW-08A, TW-08B, and TW-08D were decommissioned in March 2017.

Table 4 - Post-Thermal Treatment Groundwater Sample Results – MNA Parameters Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sample	Location	MM	/-416	MW	-416	MW	-416	MW	/-416	MW	/-416	MW	-416	MW	-416	MW	-416	MM	V-416
	Sar	nple Date	3/18/20)15 15:12	7/17/20	15 14:17	11/23/20	015 11:15	3/11/20	16 14:30	7/19/20	016 8:50	11/4/20	16 10:45	3/13/20	17 12:00	7/7/20	17 0:00	7/7/20)17 11:45
	Field S	Sample ID	MW-416-H	IS-03182015	MW-416-H	S-07172015	MW-416-H	S-11232015	MW-416-H	S-03112016	MW-416-H	S-07192016	MW-416-H	S-11042016	MW-416-H	S-03132017	DUP-070)72017-5	MW-416-H	HS-07072017
	w	ell Group		N	1	N		Ν		N		N		Ν	_	N		N		N
	HydroStr	atZone(s)	S	BR	SE	BR	SI	BR	S	BR	S	BR	S	BR	SI	BR	S	BR	S	BR
	•																			
Analyte	CAS No.	Unit																		
MNA		•																		<u> </u>
Alkalinity	ALK	mg/L	107	J	112		108		104		110	J	109		111				126	J
Chloride	16887-00-6	mg/L	11.5		15.1		15.3		12.6		16.7		17.4		16.9		22.6		22.8	
Iron (Dissolved)	7439-89-6	ug/L	38	J	100		32	J	50	U	300		50	U	50	U			20.3	J
Manganese (Dissolved)	7439-96-5	ug/L	7.8	J	29.7		17.9	UJ	4.3	J	145		14.1		13.9				33.7	
Nitrate as N	14797-55-8	mg/L	0.554	J	0.675		0.64		0.659		0.775		0.727		0.591	J	0.964		0.947	
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.026	J	0.05	U	0.05	U	0.05	U	0.047	J	0.05	U	0.05	U
Sulfate	14808-79-8	mg/L	97.6		85		90.7		80.4		73.4		71.2		96.9		67.6		68.8	
Total Organic Carbon	TOC	mg/L	1.9	J	1.4	UJ	0.8	J	0.81	J	0.8	J	0.67	J	0.57	J			1.2	U
Ethane	74-84-0	ug/L	0.18	U	0.027	J	0.45		0.39		0.32		0.28		1.1				0.82	
Ethene	74-85-1	ug/L	0.084	U	0.2	U	0.54		0.53		0.33		0.27		0.43				0.31	
Methane	74-82-8	ug/L	4.9	J	1.6	UJ	55		38		29		20		52	J			11	

Notes:

U = Analyte not detected above the laboratory reporting limit J = Analyte result is estimated ug/L = micrograms per liter mg/L = milligrams per liter Bold = Analyte detected above the laboratory reporting limit Shaded Cell = Analyte detected above the Action Level MOB = Middle Overburden DOB = Deep Overburden SBR = Shallow Bedrock SOB = Shallow Overburden TW-08A, TW-08B, and TW-08D were decommissioned in March 2017.

	Sample	Location	MW	-902D	MW-	902D	MW-	902D	MW	902D	MW	-902D	MW	902D	MW-	-902D	MW	-902D	MW	/-902D
	Sar	nple Date	3/18/20	15 15:43	7/17/20	15 13:40	11/23/20	015 11:00	3/11/20	16 13:45	7/19/20	16 12:45	11/4/20	16 11:45	3/13/20	17 14:30	7/7/20	017 0:00	7/7/20)17 12:45
	Field S	Sample ID	MW-902D-I	HS-03182015	MW-902D-H	IS-07172015	MW-902D-H	IS-11232015	MW-902D-H	IS-03112016	MW-902D-H	HS-07192016	MW-902D-H	IS-11042016	MW-902D-H	IS-03132017	DUP-070	072017-6	MW-902D-	HS-07072017
	W	Well Group N		1	N	1	Ν		N		N		N	_	N		N		N	
	HydroStr	atZone(s)) DOB		D	ОВ	D	OB	D	ОВ	D	ОВ	D	OB	D	ОВ	D	ОВ	D	OB
Analyte	CAS No.	Unit																		
MNA	0.10.1101	•																		
Alkalinity	ALK	mg/L	168	J	173		433		381		459	J	390		416		407	J	416	J
Chloride	16887-00-6	mg/L	74.3		65		776		656		682		729		481				314	
Iron (Dissolved)	7439-89-6	ug/L	37000		36000		210000	J	150000		140000		120000	J	100000				65200	
Manganese (Dissolved)	7439-96-5	ug/L	7040		5940		33400	J	23800		24700		24800		17400				13000	
Nitrate as N	14797-55-8	mg/L	0.5	UJ	0.1	U	0.1	U	0.077	J	0.1	U	0.1	U	0.115	J			0.1	U
Nitrite as N	14797-65-0	mg/L	0.072	U	0.057	U	0.154		0.127		0.106		0.109		0.099				0.033	J
Sulfate	14808-79-8	mg/L	0.529	J	30.2		4.63		0.054	J	1	U	1	U	0.48	J			0.322	J
Total Organic Carbon	TOC	mg/L	56	J	64	J	270	J	100		130	J	100	J	70	J			69	
Ethane	74-84-0	ug/L	7.6		5.2		110		1100		900		880		2000	J			890	
Ethene	74-85-1	ug/L	1300	J	980		1600		61		36		1.4		0.52				0.18	
Methane	74-82-8	ug/L	290		280	J	12000		22000		13000		11000		16000				10000	

Notes:

	Sample	Location	MW-	902M	MW-	902M	MW-	902M	MW	-902M	MW-	902M	MW	-902M	MW-9	02M	MW-	902M	MW-9	902M	MW	902M	MW-	902M
	San	nple Date	3/18/20	15 16:03	7/17/20	15 12:20	11/23/2	015 10:30	3/11/20	016 14:00	7/19/20	16 11:45	11/4/2	016 12:30	3/13/201	7 13:45	7/7/20	17 0:00	7/7/201	7 13:20	7/7/20	17 13:20	7/7/201	17 13:20
	Field S	ample ID	MW-902M-H	HS-03182015	MW-902M-	HS-07172015	MW-902M-	HS-11232015	MW-902M-	HS-03112016	MW-902M-	HS-07192016	MW-902M	HS-11042016	MW-902M-H	S-03132017	DUP-070	072017-7	MW-902M-H	IS-07072017	MW-902M-H	S-07072017 MS	MW-902M-HS-	07072017 MSD
	w	ell Group	1	Ν		N		N		N		N		Ν	N			Ν	Ν	1		N	1	N
	HydroStr	atZone(s)	M	ОВ	M	ОВ	M	ОВ	M	ЮВ	M	ОВ	N	1OB	MC	DB	M	ОВ	M	OB	N	ОВ	M	ОВ
Analyte	CAS No.	Unit																						
MNA	CAS NO.	onic																						
Alkalinity	ALK	mg/L	321	J	300		318		284		314	J	288		418				395	J				
Chloride	16887-00-6	mg/L	151		108		139		282		161		165		229				137					
Iron (Dissolved)	7439-89-6	ug/L	48000		31000		30000	J	47000		24000		20000	J	26000				16400					
Manganese (Dissolved)	7439-96-5	ug/L	9880		6450		6380	J	9450		6060		6670		8000				6030					
Nitrate as N	14797-55-8	mg/L	0.5	UJ	0.034	U	0.024	J	0.098	J	0.1	U	0.044	J	0.1	U			0.1	U				
Nitrite as N	14797-65-0	mg/L	0.09		0.05	U	0.03	J	0.043	J	0.016	J	0.028	J	0.019	J			0.018	J				
Sulfate	14808-79-8	mg/L	1	U	8.9		2.39		2.74		1	U	1	U	0.19	J			1	U				
Total Organic Carbon	TOC	mg/L	85	J	56	J	41	J	48		34	J	31	J	44	J			31					
Ethane	74-84-0	ug/L	780		590		920		790		180		270		280	J	85		180		220		210	
Ethene	74-85-1	ug/L	640		870		12		2.6		21		0.16	J	0.32		0.5		1.1		34		34	
Methane	74-82-8	ug/L	21000		14000	J	13000		22000		5200		6500		7600	J	2000		4100		4700		4600	

Notes:

U = Analyte not detected above the laboratory

reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

mg/L = milligrams per liter
Bold = Analyte detected above the laboratory

reporting limit

Shaded Cell = Analyte detected above

the Action Level

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

SOB = Shallow Overburden TW-08A, TW-08B, and TW-08D were decommissioned

in March 2017.

Page 5 of 10

	Sample	Location	MW	L-304	MW	L-304	MW	L-304	MWI	-304	MW	-304	MW	L-304	MW	L-304	MW	/L-304
	San	nple Date	3/18/20	15 12:27	7/17/20	015 8:50	11/23/2	015 9:00	3/11/20	16 12:20	7/19/20)16 9:15	11/4/20	016 8:35	3/13/20	017 9:00	7/7/20	017 9:35
	Field S	ample ID	MWL-304-H	IS-03182015	MWL-304-H	IS-07172015	MWL-304-H	IS-11232015	MWL-304-H	IS-03112016	MWL-304-H	S-07192016	MWL-304-H	IS-11042016	MWL-304-H	IS-03132017	MWL-304-H	HS-07072017
	w	ell Group	_	N		N		N	I	N		N	_	N		Ν		Ν
	HydroStratZone(s)		S	OB	S	OB	S	ОВ	SC	DB	S	OB	S	ОВ	S	OB	S	SOB
Analyte	CAS No.	Unit																
MNA	CAS NO.	onit																
Alkalinity	ALK	mg/L	108	J	374		295		295		306	J	281		328		331	J
Chloride	16887-00-6	mg/L	2840		417		119		116		114		192		163		86.6	
Iron (Dissolved)	7439-89-6	ug/L	7800		64000		53000	J	62000		49000		66000	J	65000		45200	
Manganese (Dissolved)	7439-96-5	ug/L	16100		12200		11900	J	14500		12100		17200		15300		11500	
Nitrate as N	14797-55-8	mg/L	0.21	J	0.1	U	0.1	U	0.137		0.1	U	0.081	J	0.064	J	0.1	U
Nitrite as N	14797-65-0	mg/L	0.05		0.055	U	0.022	J	0.062		0.021	J	0.07		0.056		0.024	J
Sulfate	14808-79-8	mg/L	19.9		20.7		4.09		0.422	J	0.674	J	1	U	0.163	U	1.15	
Total Organic Carbon	TOC	mg/L	6.8	J	22	J	27	J	24		22	J	25	J	32	J	28	
Ethane	74-84-0	ug/L	2.8		99		1300		1800		780		970		1100	J	290	
Ethene	74-85-1	ug/L	200		1100		620		22		290		0.32		340		900	
Methane	74-82-8	ug/L	1400		1900	J	10000		10000		4600		6400		8700		5300	

Notes:

	Sample	Location	MW	L-307	MW	L-307	MW	L-307	MWI	L-307	MW	307	MW	L-307	MW	L-307	MW	/L-307
	San	nple Date	3/18/20	15 15:15	7/17/20	15 14:55	11/23/20	015 11:30	3/11/20	16 14:15	7/19/20	16 13:30	11/4/20	16 11:15	3/13/20	17 13:00	7/7/20	17 11:10
	Field S	Sample ID	MWL-307-H	IS-03182015	MWL-307-H	IS-07172015	MWL-307-H	IS-11232015	MWL-307-H	IS-03112016	MWL-307-H	S-07192016	MWL-307-H	IS-11042016	MWL-307-F	IS-03132017	MWL-307-H	HS-07072017
	w	ell Group		N		N		Ν	1	N		N		Ν	_	N		N
	HydroStratZone(s)		S	ОВ	SC	OB	S	ОВ	SC	DB	S	OB	S	ОВ	S	OB	S	ЮВ
Analyte																		
MNA	CAS No.	Unit																
Alkalinity	ALK	mg/L	69.8	J	219		425		560		614	J	401		587		640	J
Chloride	16887-00-6	mg/L	18.5		984		780		950		452		585		291		154	
Iron (Dissolved)	7439-89-6	ug/L	11000		23000		78000	J	21000		12000		75000	J	2400		2100	
Manganese (Dissolved)	7439-96-5	ug/L	4130		6540		18400	J	10200		8650		20000		7870		4570	
Nitrate as N	14797-55-8	mg/L	0.1	UJ	0.1	U	0.05		0.054	J	0.1	U	0.085	J	0.26	J		
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.063		0.02	J	0.05	U	0.079		0.032	J	0.05	U
Sulfate	14808-79-8	mg/L	12.8		2.7		10.2		0.541	J	0.229	J	1	U	66.7		9.93	
Total Organic Carbon	TOC	mg/L	11	J	230	J	120	J	210		110	J	93	J	89	J	82	
Ethane	74-84-0	ug/L	2		0.23		270		290		790		1100		54		22	
Ethene	74-85-1	ug/L	100		25		790		1400		0.64		7.6		12		0.38	
Methane	74-82-8	ug/L	110		2100	J	12000		12000		9200		9500		160	J	890	

Notes:

	Sample	Location	TW	-08A												
	San	nple Date	3/18/20	15 13:54	7/17/20	15 10:05	11/23/2	015 9:45	3/11/20	16 10:15	7/19/20	16 10:15	11/4/2	016 9:50	3/13/20	17 10:10
	Field S	Sample ID	TW-08A-H	S-03182015	TW-08A-H	S-07172015	TW-08A-H	5-11232015	TW-08A-H	S-03112016	TW-08A-H	S-07192016	TW-08A-H	S-11042016	TW-08A-H	S-03132017
	Well Group			N		N		N		Ν		N		N		N
	HydroStratZone(s)		М	ОВ	М	OB	М	OB	М	OB	М	ОВ	М	ОВ	М	ОВ
Analyte	CAS No.	Unit														
MNA																
Alkalinity	ALK	mg/L	85.8	J	255		301		254		318	J	278		374	
Chloride	16887-00-6	mg/L	70		630		221		230		370		249		335	
Iron (Dissolved)	7439-89-6	ug/L	4500		78000		33000	J	32000		40000		27000	J	37000	
Manganese (Dissolved)	7439-96-5	ug/L	1470		18500		7350	J	7840		9900		7860		10900	
Nitrate as N	14797-55-8	mg/L	0.1	UJ	0.1	U	0.176		0.083	J	0.1	U	0.052	J	0.026	J
Nitrite as N	14797-65-0	mg/L	0.05	U	0.086		0.056		0.035	J	0.036	J	0.031	J	0.035	J
Sulfate	14808-79-8	mg/L	16.1		4.9		4.93		0.282	J	1.52		1	U	1	U
Total Organic Carbon	TOC	mg/L	23	J	320	J	87	J	57		64	J	41	J	41	J
Ethane	74-84-0	ug/L	1.3		0.49		12		86		12		17		96	
Ethene	74-85-1	ug/L	14		35		98		380		3000		2100		3700	J
Methane	74-82-8	ug/L	9100		1100	J	7900		9200		7900		5900		12000	

Notes:

	Sample	Location	TW	-08B	TW-	-08B	TW-	08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08B	TW	/-08B	TW	-08B	TW	/-08B
	Sar	nple Date	3/18/20	15 13:22	7/17/20	15 12:00	11/23/20	015 0:00	11/23/20	015 14:00	3/11/2	016 0:00	3/11/20	16 10:45	7/20/2	016 0:00	7/20/20	16 11:10	11/3/20	016 0:00	11/3/20	016 13:10	3/9/20	17 0:00	3/9/20	017 9:00
	Field S	ample ID	TW-08B-H	S-03182015	TW-08B-HS	5-07172015	DUPLICATE-G	W-11232015	TW-08B-	11232015	DUP-GW-	-03112016	TW-08B-	03112016	DUP-072	02016-#1	TW-08B-H	5-07202016	DUP-110	032016-1	TW-08B-	11032016	DUP-03	8092017	TW-08B-	03092017
	w	ell Group		N	1	N	N	I		N		N	1	N		N	1	N		N		N		N		N
	HydroStr	atZone(s)	SI	BR	SE	3R	SB	R	S	BR	S	BR	SI	BR	S	BR	SI	BR	S	BR	S	BR	S	BR	SI	BR
Analyte	CAS No.	Unit																								
MNA	CAS NO.	onic																								
Alkalinity	ALK	mg/L	250	J	236		241		241		263		256		251		259		190		256		239		236	
Chloride	16887-00-6	mg/L	195		182		182		185		176		178		178		179		192		216		194		191	
Iron (Dissolved)	7439-89-6	ug/L	11000		4900		4300	J	4500	J	3800		4000		4700		5100		4200	J	4600	J	5000	J	5200	J
Manganese (Dissolved)	7439-96-5	ug/L	7880		4980		4370	J	4500	J	4640		4580		4040		4210		4640		4860	J	4110	J	4540	J
Nitrate as N	14797-55-8	mg/L	0.5	UJ	0.1	U	0.023	J	0.023	J	0.022	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.353	J	0.502	J
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.027	J	0.05	U	0.012	J	0.01	J	0.05	U	0.05	U	0.05	U	0.05	U	0.013	J	0.01	J
Sulfate	14808-79-8	mg/L	1.68		1.79		5.62		6.02		1.42		1.3		1.12		1.45		1.14		1.43	U	0.826	J	0.831	J
Total Organic Carbon	TOC	mg/L	24	J	26	J	31	J	28	J	23		23		21		22		20	J	23	J	19	J	19	J
Ethane	74-84-0	ug/L	66		58		68		62		70		80		61		59		70		68					
Ethene	74-85-1	ug/L	1900	J	1600	J	1300		1200		960		1100		850		850		910		920					
Methane	74-82-8	ug/L	2700		2000	J	2200		2000		2100		2500		2100		1900		2300		2200					

Notes:

U = Analyte not detected above the laboratory

reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

mg/L = milligrams per liter

Bold = Analyte detected above the laboratory

reporting limit Shaded Cell = Analyte detected above

the Action Level

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

SOB = Shallow Overburden

TW-08A, TW-08B, and TW-08D were decommissioned

in March 2017.

	Sample	Location	TW-	08D	TW	-08D	TW	-08D	TW	-08D	TW-	08D	TW	-08D	TW	-08D	TW	/-08D
	San	ple Date	3/18/20	15 12:48	7/17/20	015 0:00	7/17/20)15 9:22	11/23/2	015 9:30	3/11/20	16 11:00	7/19/20	016 9:45	11/4/20	016 9:05	3/13/20	017 9:30
	Field S	ample ID	TW-08D-HS	5-03182015	DUP-GW-	07172015	TW-08D-HS	5-07172015	TW-08D-H	S-11232015	TW-08D-HS	5-03112016	TW-08D-H	S-07192016	TW-08D-H	5-11042016	TW-08D-H	IS-03132017
	w	ell Group	1	N	I	N	I	N		Ν	1	N		N		N		Ν
	HydroStratZone(s)		DC	OB	D	OB	D	OB	D	OB	D	OB	D	OB	D	OB	D	OB
Analyte																		
MNA	CAS No.	Unit																
Alkalinity	ALK	mg/L	146	J	232		134		192		144		191	J	268		238	
Chloride	16887-00-6	mg/L	61.1		186		50.5		75.4		47.9		61.9		98.8		77.3	
Iron (Dissolved)	7439-89-6	ug/L	5100		5200		3300		5100	J	1800		1900		3400	J	2200	
Manganese (Dissolved)	7439-96-5	ug/L	3200		4940		2210		3540	J	1820		2020		3850		2580	
Nitrate as N	14797-55-8	mg/L	0.5	IJ	0.019	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Nitrite as N	14797-65-0	mg/L	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
Sulfate	14808-79-8	mg/L	1.78		1.99		0.973	J	2.64		1.2		0.27	J	1	U	0.224	J
Total Organic Carbon	TOC	mg/L	8.2	J	26	J	5.1	J	23	J	5.6		16	J	40	J	27	J
Ethane	74-84-0	ug/L	64		14		17		32		13		17		34		42	
Ethene	74-85-1	ug/L	680		150		180		240		88		140		300		410	
Methane	74-82-8	ug/L	1400		270	J	340	J	1300		500		820		1800		2400	

Notes:

Table 5 - Post-ISTR Groundwater Monitoring Summary Data – 1,4-Dioxane Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

			Samp	le Location	MW	-413	MW	-413	MW	/-413	MW-4	415	MW	-415	MW	-415	MW	-416	MW	-416	MW	-416
			Sa	ample Date	10/23/2	015 9:45	3/11/20	16 11:50	3/13/20	17 10:30	10/23/20	15 9:00	3/11/20	16 12:10	3/13/20	17 11:15	10/23/20	015 10:40	3/11/20	16 14:30	3/13/202	17 12:00
			Field	Sample ID	MW-413-H	S-10232015	MW-413-H	S-03112016	MW-413-H	S-03132017	MW-415-HS-	-10232015	MW-415-H	S-03112016	MW-415-H	S-03132017	MW-416-H	S-10232015	MW-416-H	S-03112016	MW-416-H	S-03132017
			١	Well Group		N	1	N	1	N	N			N	1	N	1	N	1	J	Ν	N
	Well Gro HydroStratZone		tratZone(s)	D	OB	D	ОВ	D	OB	MO	B	М	OB	M	OB	SE	3R	SE	BR	SB	3R	
Analyte	CAS No.	Unit	Action	ICL																		
VOCs	CAS NO.	Unit	Level																			
1,4-Dioxane	123-91-1	ug/L	20		28.6		300	U	47		13.5		58		52	J	6.48		30	U	5.4	J

			Samp	e Location	MW-	-902D	MW	-902D	MW	-902D	MW	-902M	MW-	902M	MW-	902M	MW	′L-304	MWI	-304	MW	L-304
			Sa	mple Date	10/23/20	015 10:15	3/11/20	16 13:45	3/13/20	17 14:30	10/23/2	015 10:00	3/11/20	16 14:00	3/13/20	17 13:45	10/22/2	015 14:45	3/11/20	16 12:20	3/13/20	017 9:00
			Field	Sample ID	MW-902D-H	HS-10232015	MW-902D-	HS-03112016	MW-902D-H	HS-03132017	MW-902M-	HS-10232015	MW-902M-	HS-03112016	MW-902M-I	HS-03132017	MWL-304-I	HS-10222015	MWL-304-H	S-03112016	MWL-304-H	IS-03132017
			١	Vell Group	1	N		N		N		N		N	1	N		N	١	I	I	N
			HydroSt	ratZone(s)	D	OB	D	OB	D	OB	N	1OB	М	OB	M	OB	S	OB	SC)B	SC	ОВ
Analyte	CAS No.	Unit	Action	ICL																		
VOCs	CAS NO.	Unit	Level	ICL																		
1,4-Dioxane	123-91-1	ug/L	20		70.2		170		72	J	41.7		36		31	J	11.2		8.9		12	

			Samp	le Location	MW	L-307	MW	L-307	MW	L-307	TW	-08A	TW	-08A	TW	-08A
			Sa	ample Date	10/23/2	015 11:00	3/11/20)16 14:15	3/13/20	17 13:00	10/22/2	015 15:20	3/11/20	016 10:15	3/13/20	17 10:10
			Field	l Sample ID	MWL-307-I	HS-10232015	MWL-307-H	HS-03112016	MWL-307-H	IS-03132017	TW-08A-H	S-10222015	TW-08A-H	S-03112016	TW-08A-H	S-03132017
				Well Group		N		N		N		N		N		N
			HydroS	tratZone(s)	S	ОВ	S	ОВ	S	ОВ	М	OB	N	IOB	M	OB
Analyte	CAS No.	Unit	Action	ICL												
VOCs	CAS NO.	Unit	Level	ICL												
1,4-Dioxane	123-91-1	ug/L	20		64.5		160		47	J	27.6		310	J	72	J

			Samp	le Location	TW-	-08B	TW-08	3	TW-	-08B	TW	-08B	TW	-08B	TW	-08B	TW	-08D	TW	-08D	TW-	-08D
			Sa	mple Date	10/22/2	015 0:00	10/22/2015	11:50	3/11/20	016 0:00	3/11/20)16 10:45	3/9/20	017 0:00	3/9/20)17 9:00	10/22/20	015 15:00	3/11/20	16 11:00	3/13/20	017 9:30
			Field	Sample ID	DUP-1-1	0222015	TW-08B-102	22015	DUP-GW-	03112016	TW-08B-	03112016	DUP-0	3092017	TW-08B-	03092017	TW-08D-H	S-10222015	TW-08D-H	5-03112016	TW-08D-HS	S-03132017
			١	Nell Group	1	N	N		Ν	N		N		N		N	1	N		N	١	N
			HydroStratZone(s)		SE	3R	SBR		SE	3R	S	BR	S	BR	S	BR	D	ОВ	D	OB	DC	OB
Analyte	CAS No.	Unit	Action	ICL																		
VOCs	CAS NO.	Unit	Level	ICL																		
1,4-Dioxane	123-91-1	ug/L	20		160		140		138		131		131		128		51.7		3000	U	750	U

Notes:

U = Analyte not detected above the laboratory reporting limit

J = Analyte result is estimated

ug/L = micrograms per liter

VOCs = volatile organic compounds

Action Level = the lower of the USEPA Maximum Contaminant Level (MCL) and the Connecticut Class GA Groundwater Protection Criteria (GWPC)

ICL = Interim Cleanup Level based on Table L-1 from Record of Decision

Summary, September 2005

Bold = Analyte detected above the laboratory reporting limit

Shaded Cell = Analyte detected above the Action Level

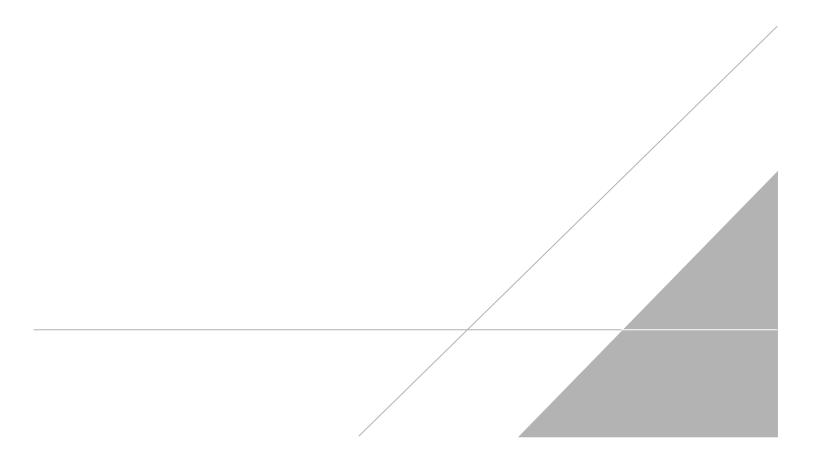
SOB = Shallow Overburden

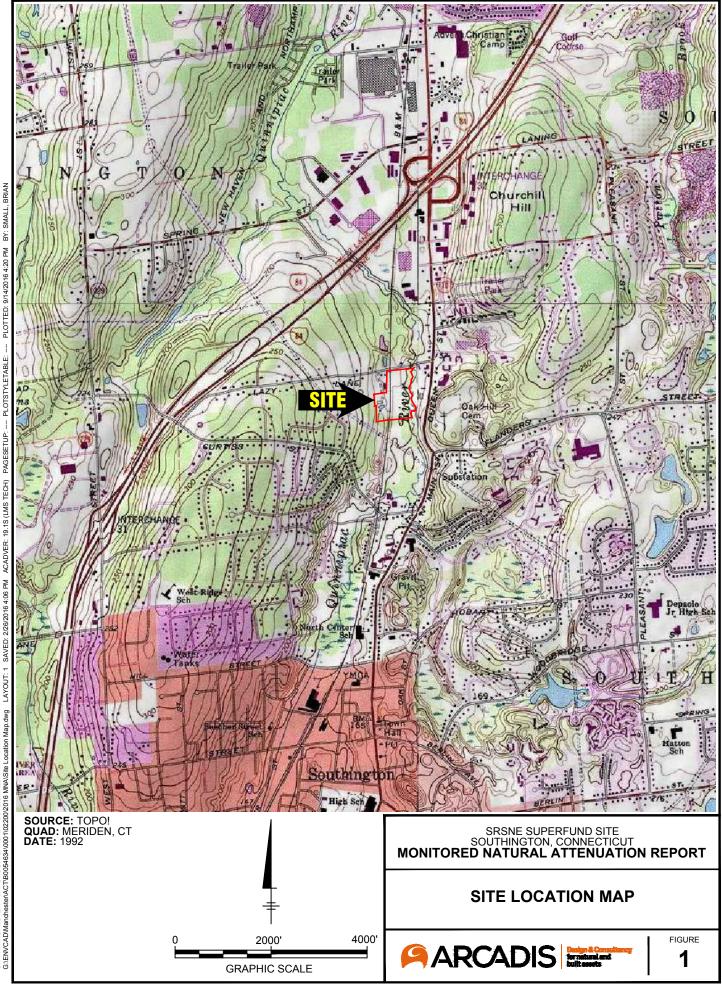
MOB = Middle Overburden

DOB = Deep Overburden

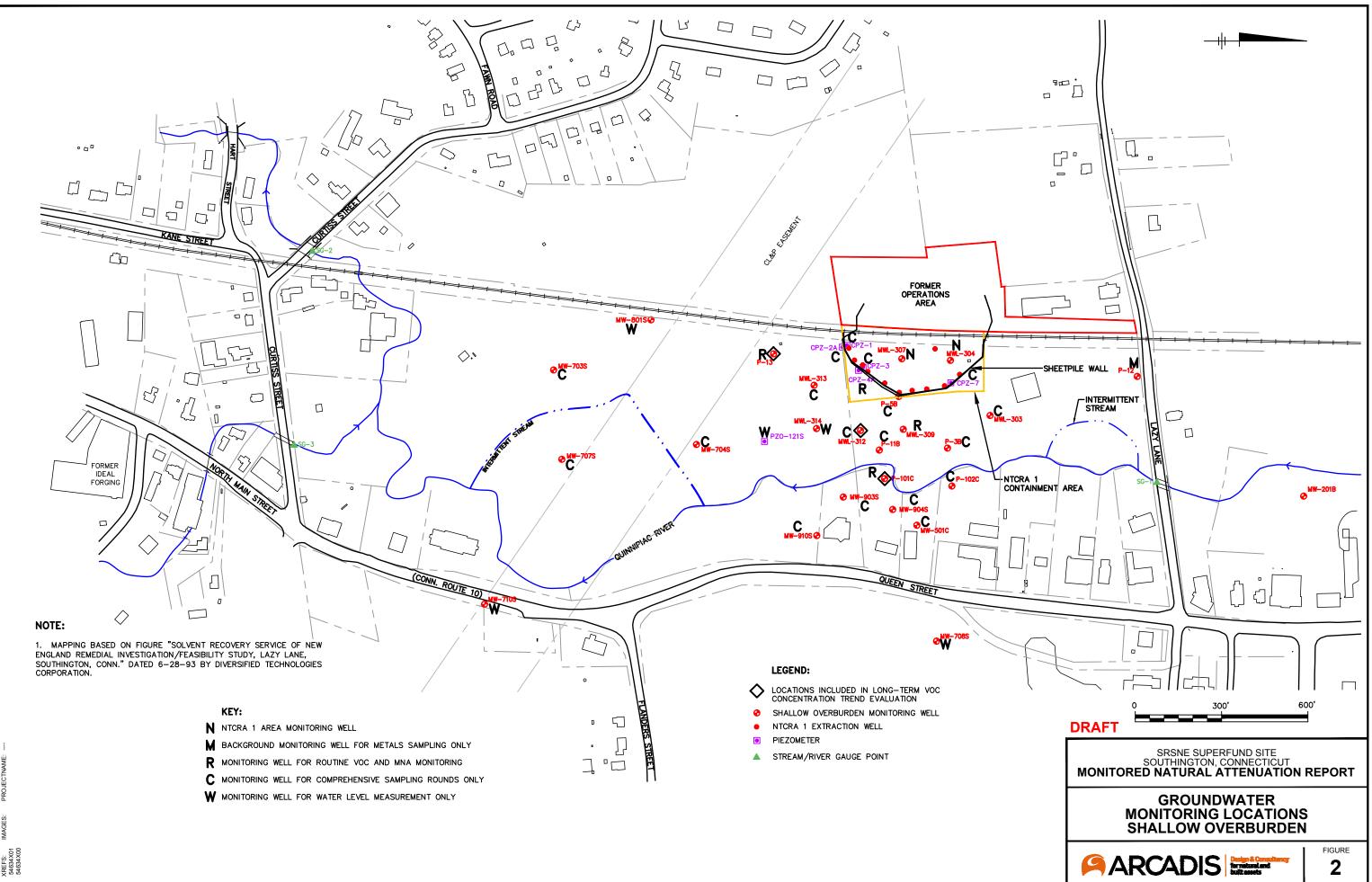
TW-08A, TW-08B, and TW-08D were decommissioned in March 2017.

Table 6 - Statistical Summary of Groundwater Total VOC Concentration Trends Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

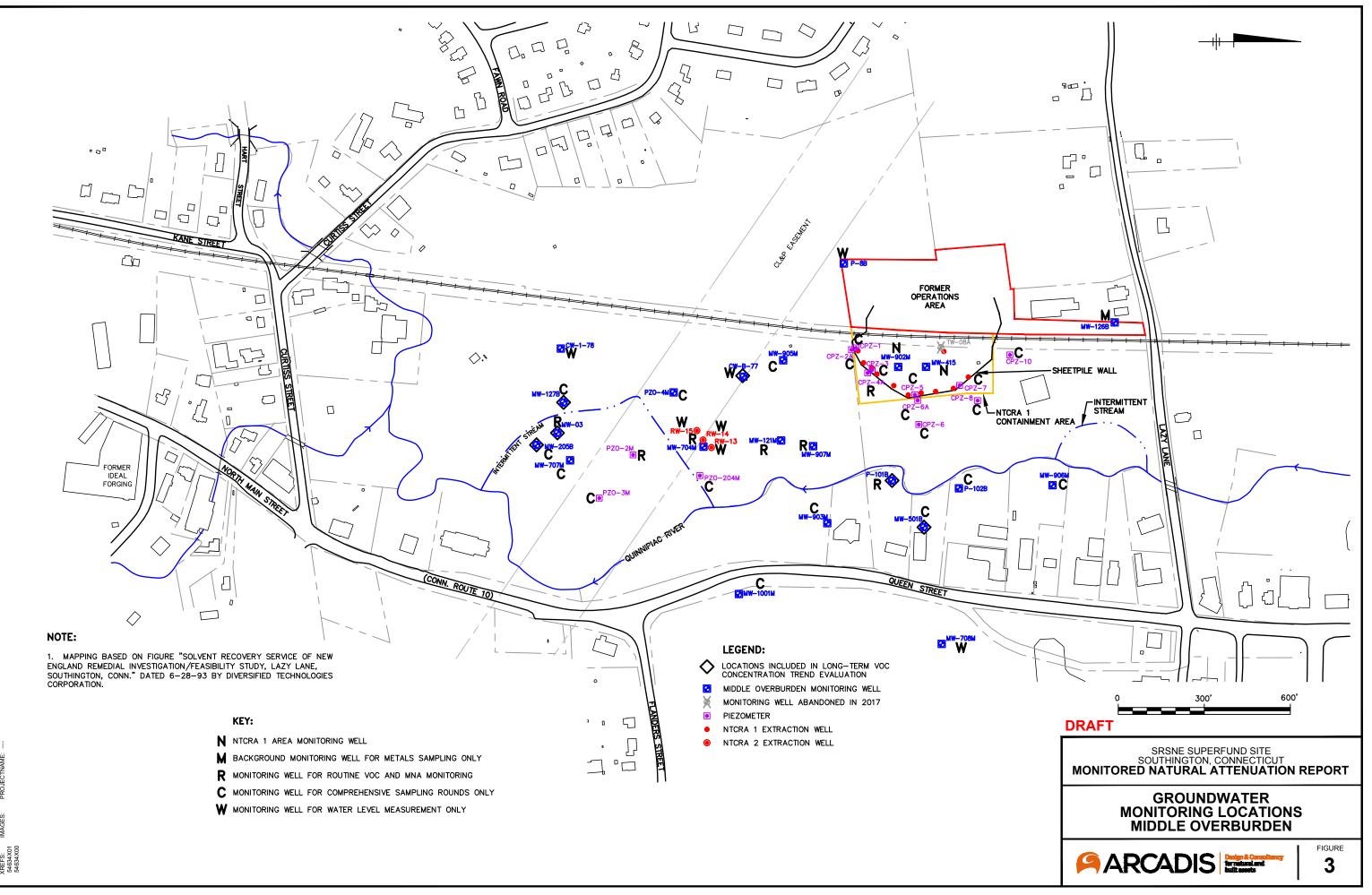

				Data Range					Line	ar Regression	n Analysis		Manı	n-Kendall Ana	alysis	Sen's Slop	e Analysis
		Minimum Concentration	Maximum Concentration	Percent of Data Below Laboratory Minimum Detection			Correlation	p-value of Correlation	Estimated Attenuation Half-life	Trend Direction (slope of	Trend		p-value of	Trend	Trend	Estimated Attenuation Half-life	Trend
Well	Constituent	(ug/L)	(ug/L)	Limit	Start Date	End Date	Coefficient, R ²		(days)	trend line)	Significant?	Comments	Correlation	Direction	Significant?	(days)	Direction
hallow Over	ourden Wells			•			-					·				-	-
P-13	Total VOCs	2.4	69	0	3/28/1995	6/5/2017	0.55	< 0.001	2,497	Decreasing	Yes		< 0.001	Decreasing	Yes	2,252	Decreasir
IWL-312	Total VOCs	<0.5	49	72	3/27/1995	6/10/2014	0.17	0.094	1,936	Decreasing	Yes	72% of results below detection	0.050	Decreasing	Yes	NA	No Tren
-101C	Total VOCs	8	479	0	3/27/1995	6/9/2017	0.82	<0.001	1,802	Decreasing	Yes		<0.001	Decreasing	Yes	1,794	Decreasi
liddle Overbu	urden Wells																
1W-03	Total VOCs	0.31	120	4	12/5/1996	6/8/2017	0.37	0.0020	1,570	Decreasing	Yes		0.005	Decreasing	Yes	1,401	Decreasi
1W-205B	Total VOCs	<0.5	24	11	3/23/1995	6/10/2016	0.49	0.0009	1,594	Decreasing	Yes		0.002	Decreasing	Yes	1,352	Decreasir
P-101B	Total VOCs	1.4	187,400	0	3/27/1995	6/8/2017	0.80	<0.001	628	Decreasing	Yes		<0.001	Decreasing	Yes	610	Decreasir
/W-127B	Total VOCs	<0.5	22	11	3/23/1995	6/11/2014	0.33	0.013	1,648	Decreasing	Yes		0.018	Decreasing	Yes	1,777	Decreasir
IW-501B	Total VOCs	1.8	65	0	3/24/1995	6/11/2014	0.50	<0.001	1,369	Decreasing	Yes		<0.001	Decreasing	Yes	1,118	Decreasi
eep Overbur	den Wells																
/W-204B	Total VOCs	<0.5	87	17	3/28/1995	6/9/2014	0.21	0.054	1,703	Decreasing	Yes		0.001	Decreasing	Yes	924	Decreasir
1W-502	Total VOCs	630	118,160	0	3/21/1995	6/7/2017	0.76	<0.001	1,280	Decreasing	Yes		<0.001	Decreasing	Yes	1,574	Decreasir
1W-704D	Total VOCs	3	665	0	12/18/1996	6/6/2017	0.26	0.013	2,670	Decreasing	Yes		0.011	Decreasing	Yes	2,567	Decreasir
1W-707D	Total VOCs	<0.5	21	53	12/6/1996	6/10/2014	0.001	0.93	NA	No Trend	No	50% of results below detection	0.22	No Trend	No	NA	No Tren
hallow Bedro	ock Wells	-					-						-			-	
/W-127C	Total VOCs	9.8	147	0	3/23/1995	6/7/2017	0.71	<0.001	2,954	Decreasing	Yes		<0.001	Decreasing	Yes	3,106	Decreasir
/W-128	Total VOCs	2.2	15	0	3/23/1995	6/11/2014	0.62	<0.001	2,966	Decreasing	Yes		<0.001	Decreasing	Yes	2,390	Decreasi
1W-204A	Total VOCs	0.9	682	0	3/28/1995	6/9/2014	0.62	<0.001	872	Decreasing	Yes		<0.001	Decreasing	Yes	762	Decreasir
/W-501A	Total VOCs	8.7	118	0	3/24/1995	6/11/2014	0.85	<0.001	1,795	Decreasing	Yes		<0.001	Decreasing	Yes	1,690	Decreasir
P-11A	Total VOCs	223	26,400	0	3/27/1995	6/7/2017	0.17	0.047	NA	Increasing	Yes	Changed from decreasing in 2011	0.25	No Trend	No	NA	No Trend
eep Bedrock	Wells																
1W-703DR	Total VOCs	<0.5	8.0	76	12/9/1996	6/10/2014	0.005	0.79	NA	No Trend	No	76% of results below detection	0.40	No Trend	No	NA	No Trend
IW-704DR	Total VOCs	11	455	0	12/17/1996	6/6/2017	0.50	<0.001	3,242	Decreasing	Yes		<0.001	Decreasing	Yes	3,822	Decreasir
1W-706DR	Total VOCs	2,079	11,240	0	12/10/1996	6/8/2017	0.34	0.0032	6,221	Decreasing	Yes		0.017	Decreasing	Yes	8,705	Decreasi
IW-707DR	Total VOCs	<0.5	18	28	12/30/1996	6/8/2017	0.09	0.15	NA	Increasing	No	28% of results below detection	0.138	Increasing	Yes	NA	NA
1W-707DR(2)	Total VOCs	1.31	16.86	0	4/20/2004	6/8/2017	0.51	0.0062	2.379	Decreasing	Yes	Using data beginning in April 2004	0.006	Decreasing	Yes	1,640	Decreasir

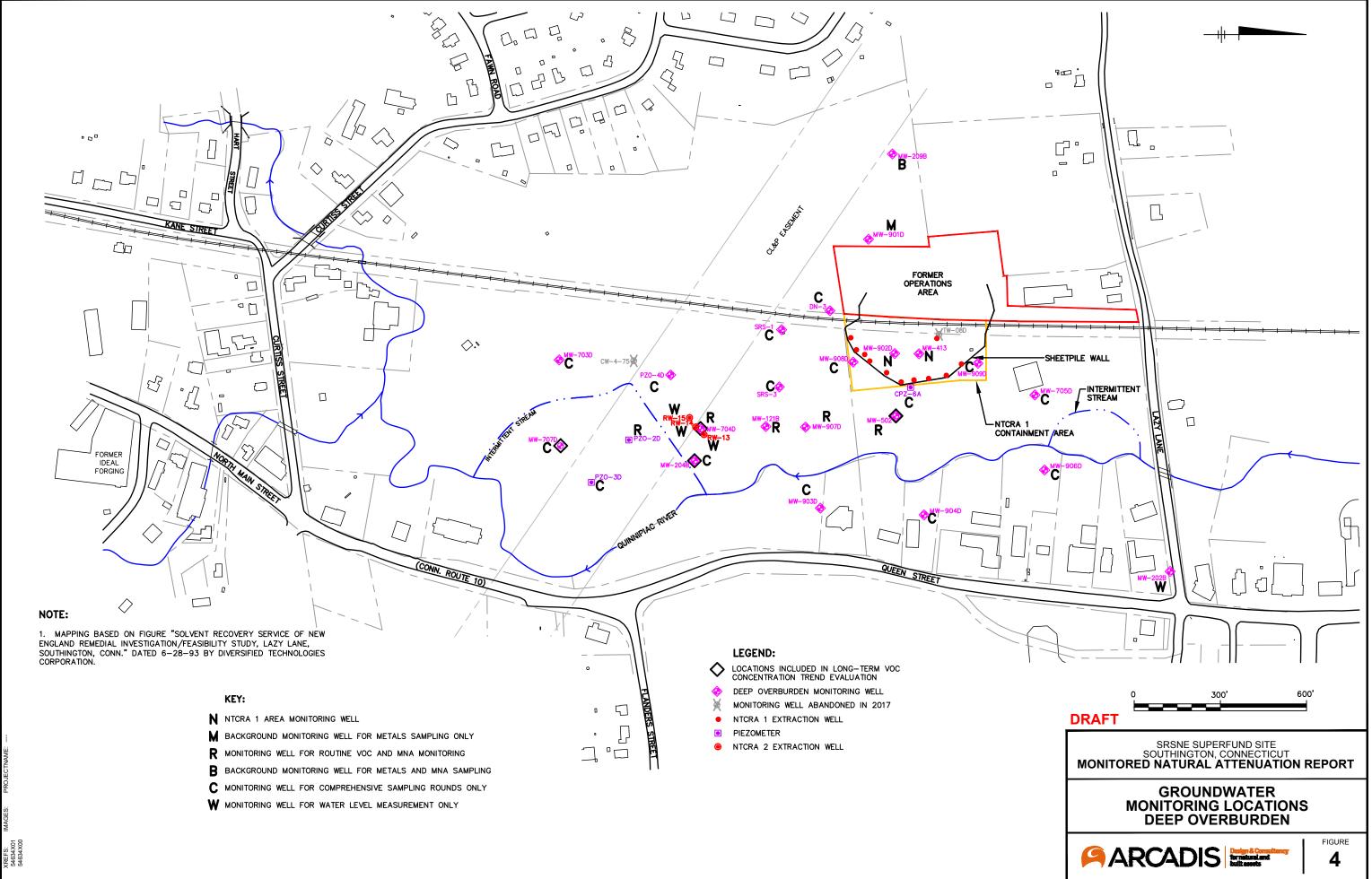

Notes and Assumptions:

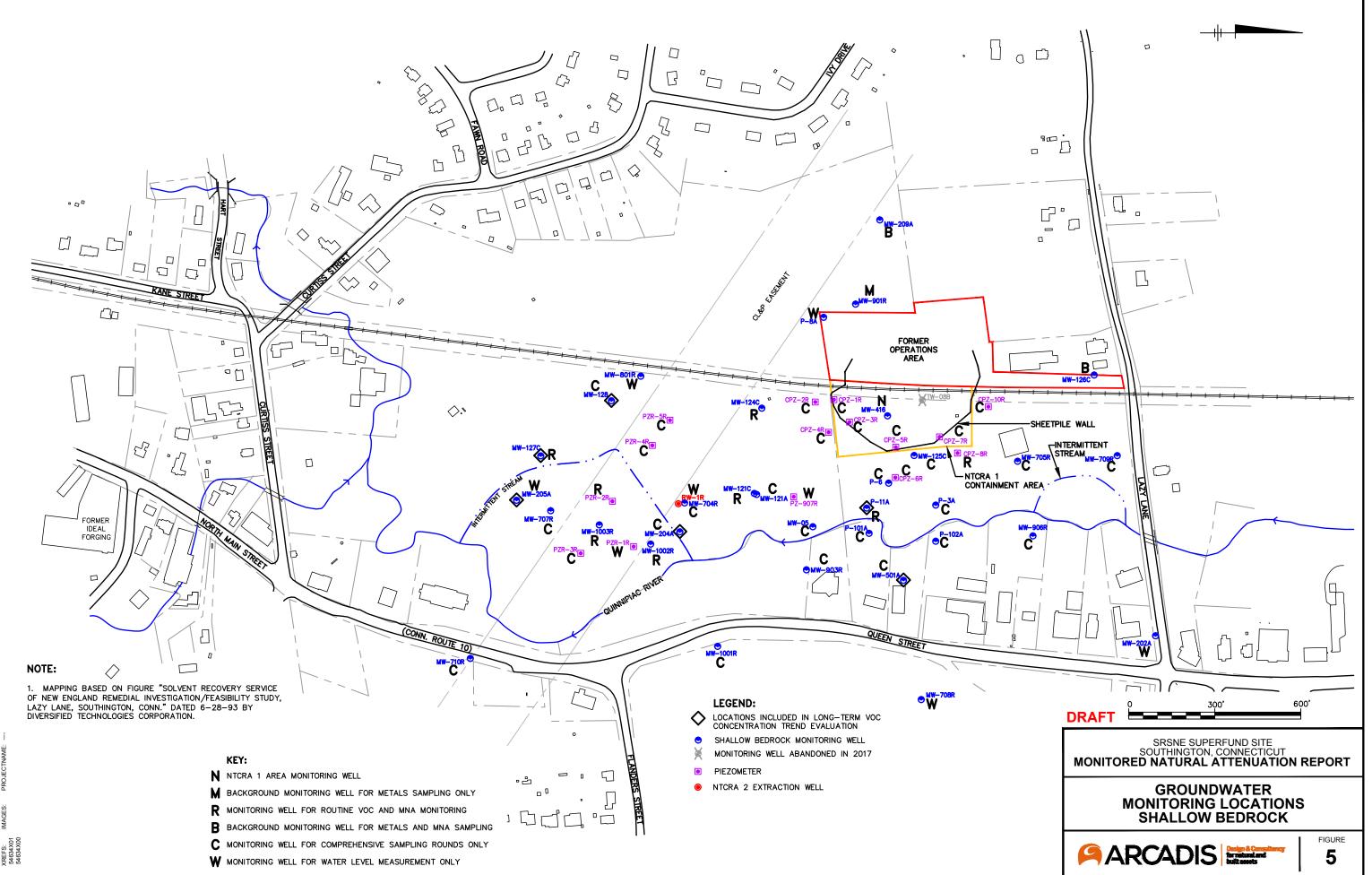
ug/L = micrograms per liter NS = no significant trend NA = not applicable due to increasing trend or non-significant trend Statistically significant trend defined as p-value less than or equal to 0.1.

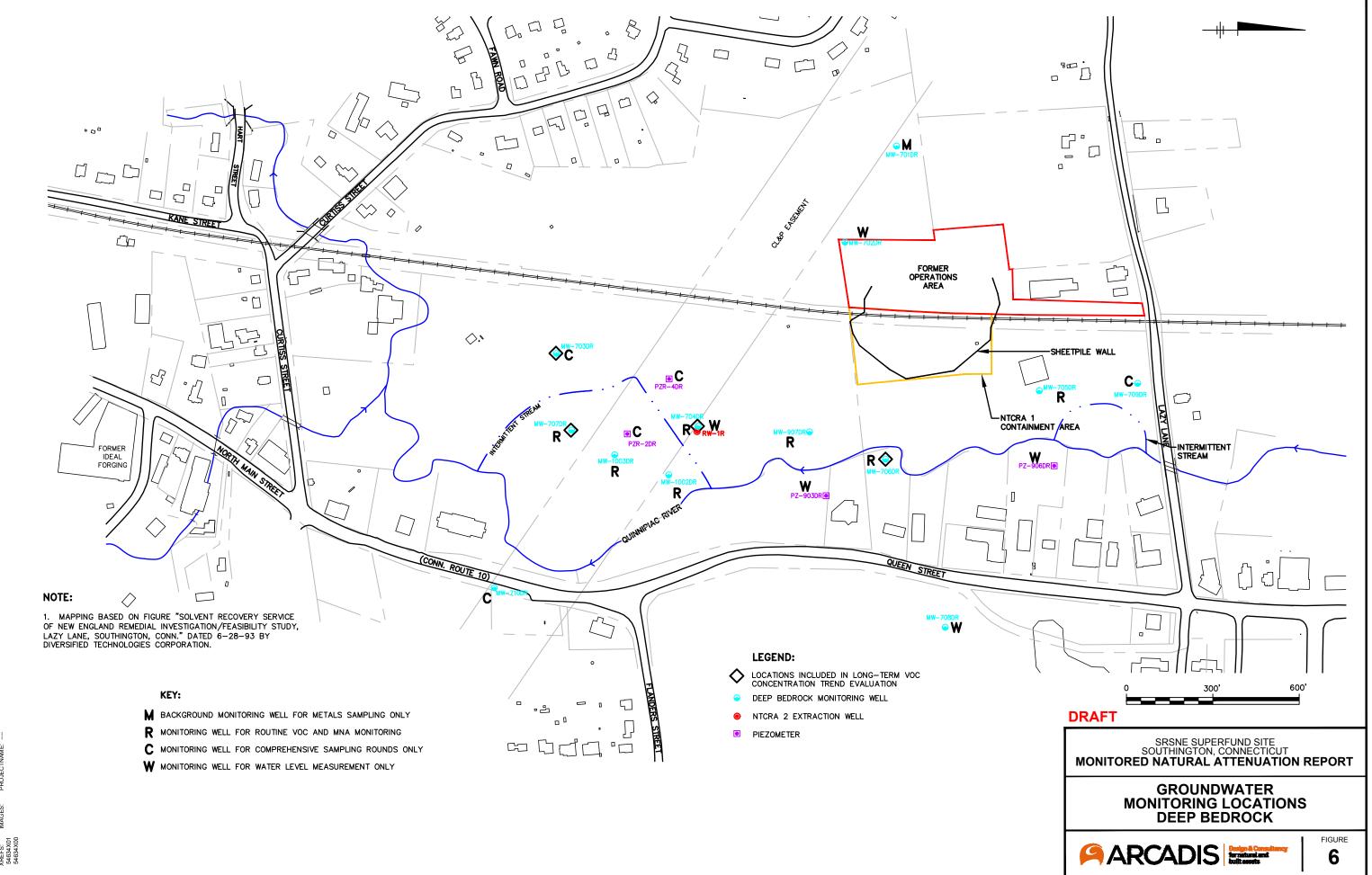

For the linear regression analysis, 'No Trend' is defined as p-value greater than 0.1 and R² less than 0.1.

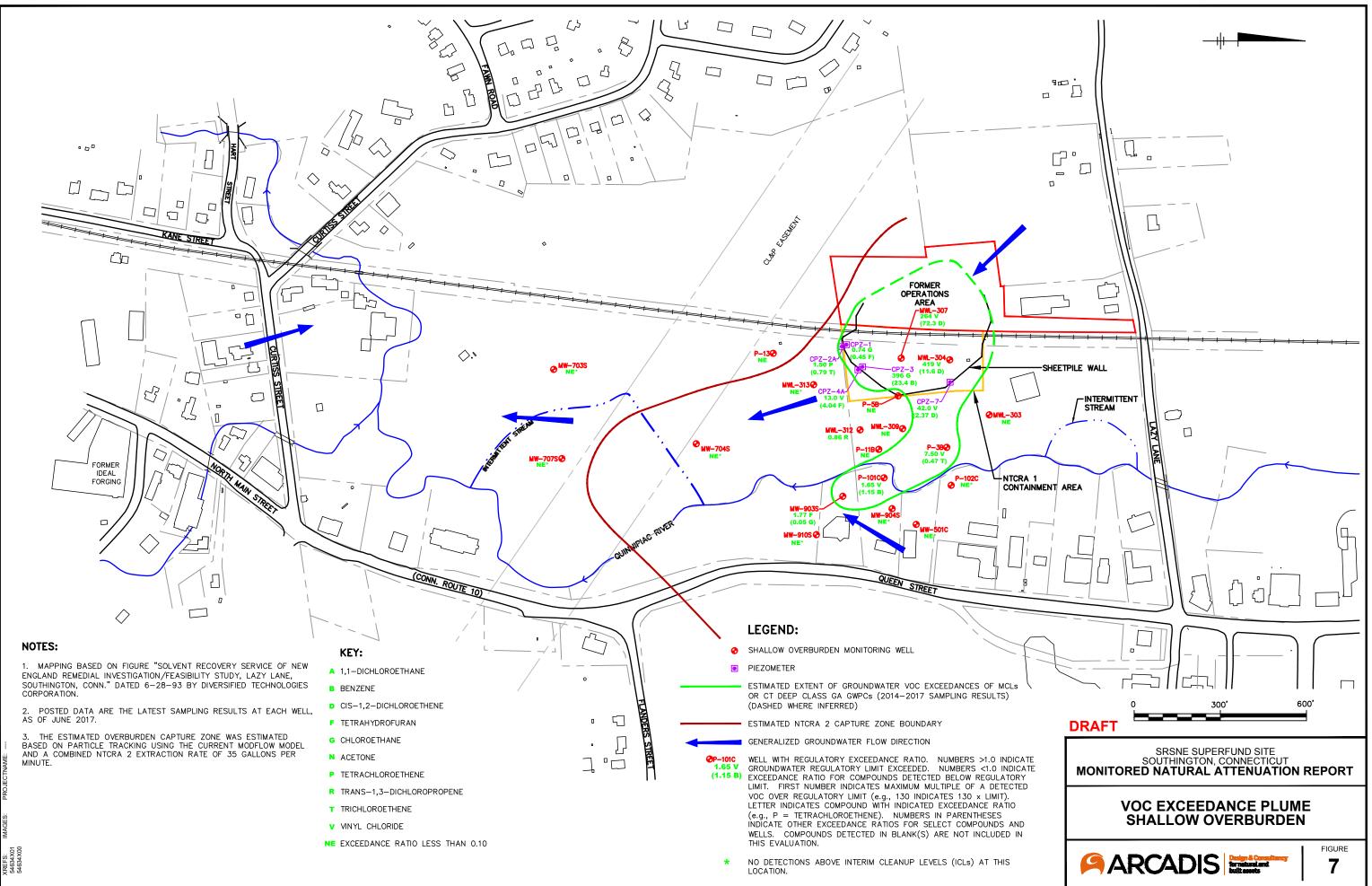
FIGURES

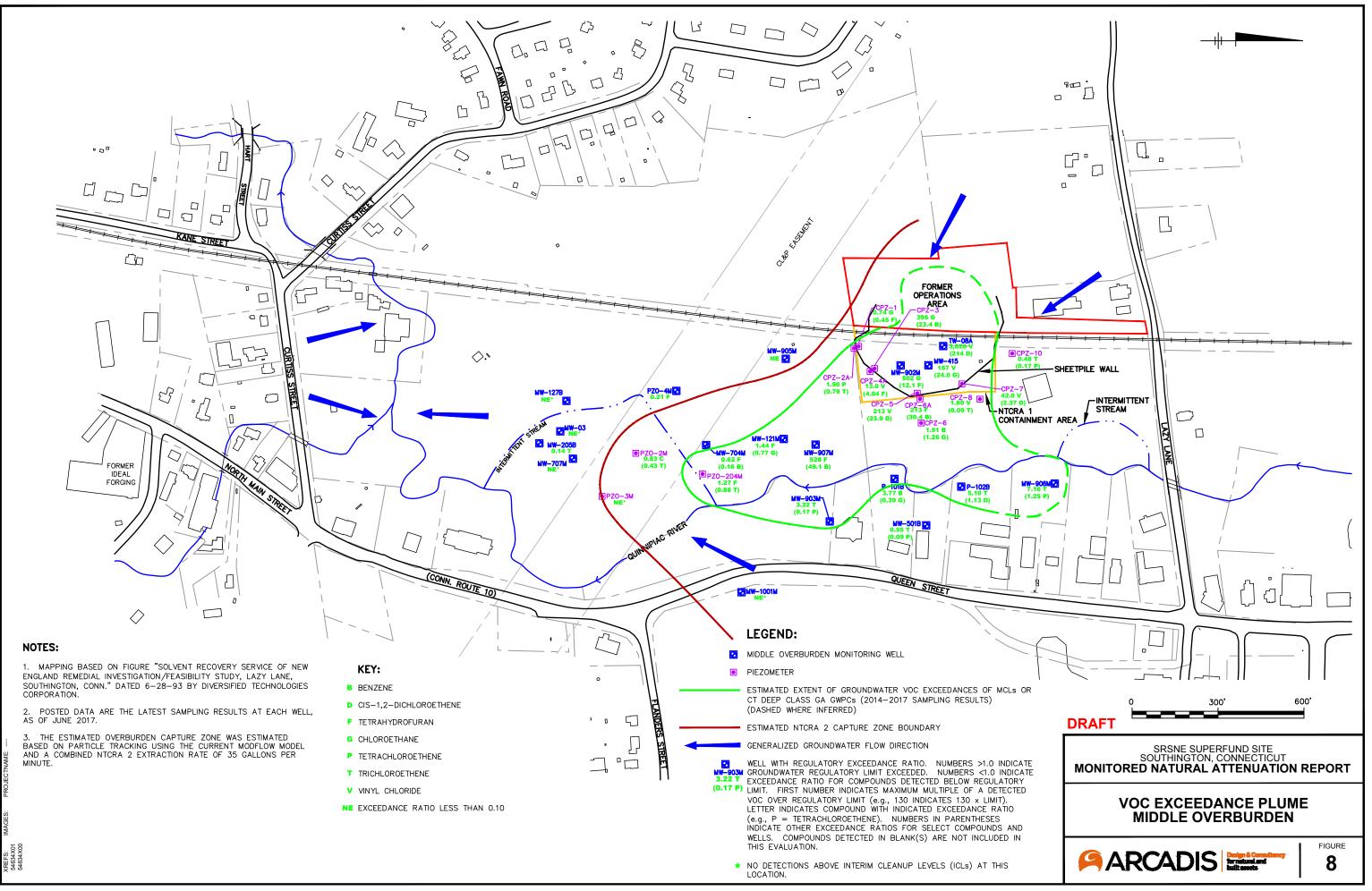


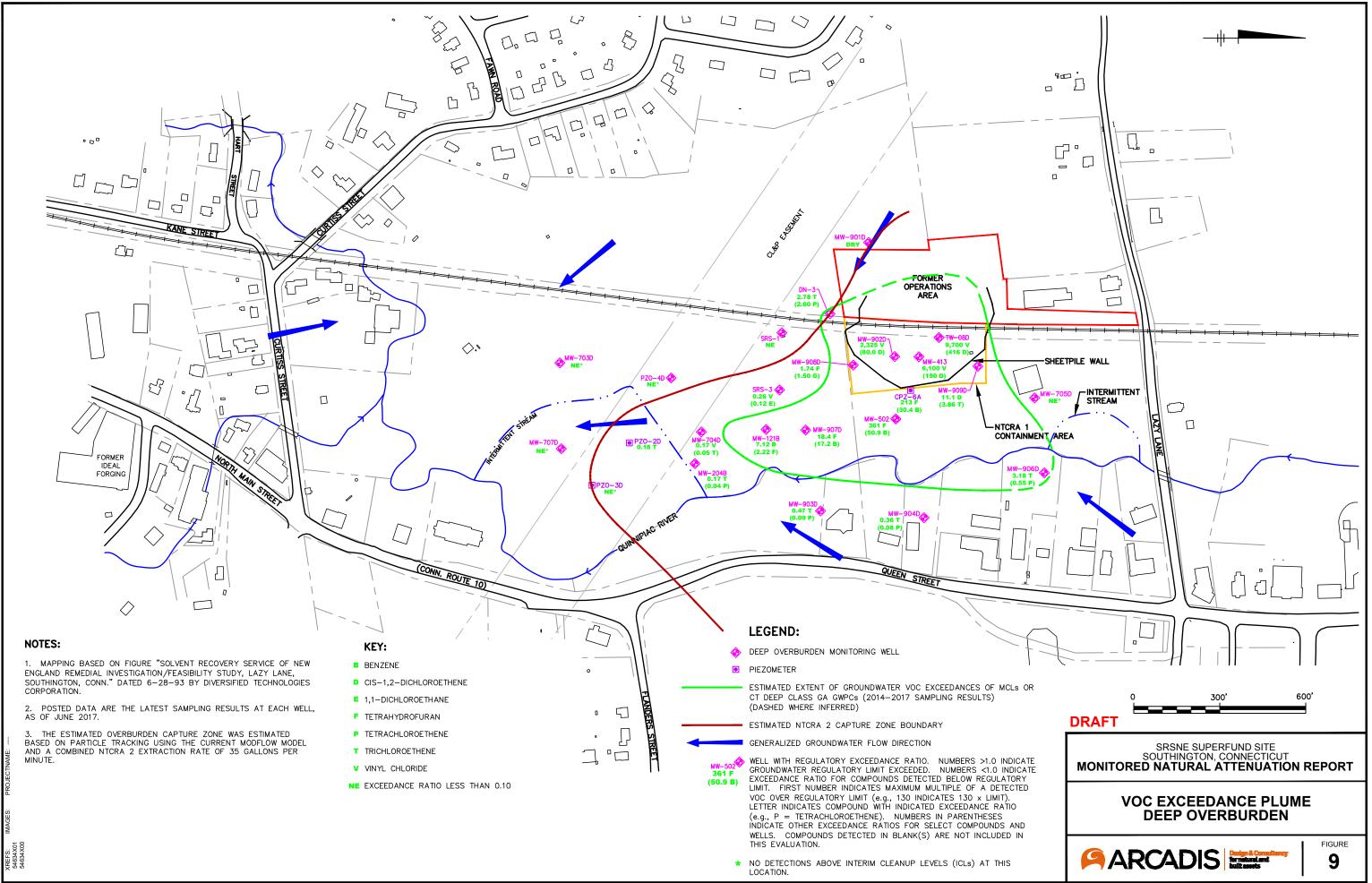

PLOTTED: 9/14/2016 4:20 PM PLOTSTYLETABLE: ACADVER: 19.1S (LMS TECH) PAGESETUP: SAVED: 2/26/2016 4:06 PM LAYOUT: 1 Map.dwg ocation Ξ DB: B.SMALL PM: 200/2016 MNA/Site Lo DIV/GROUP: ENVCAD CITY: MANCHESTER G:\ENVCAD\Mancheste

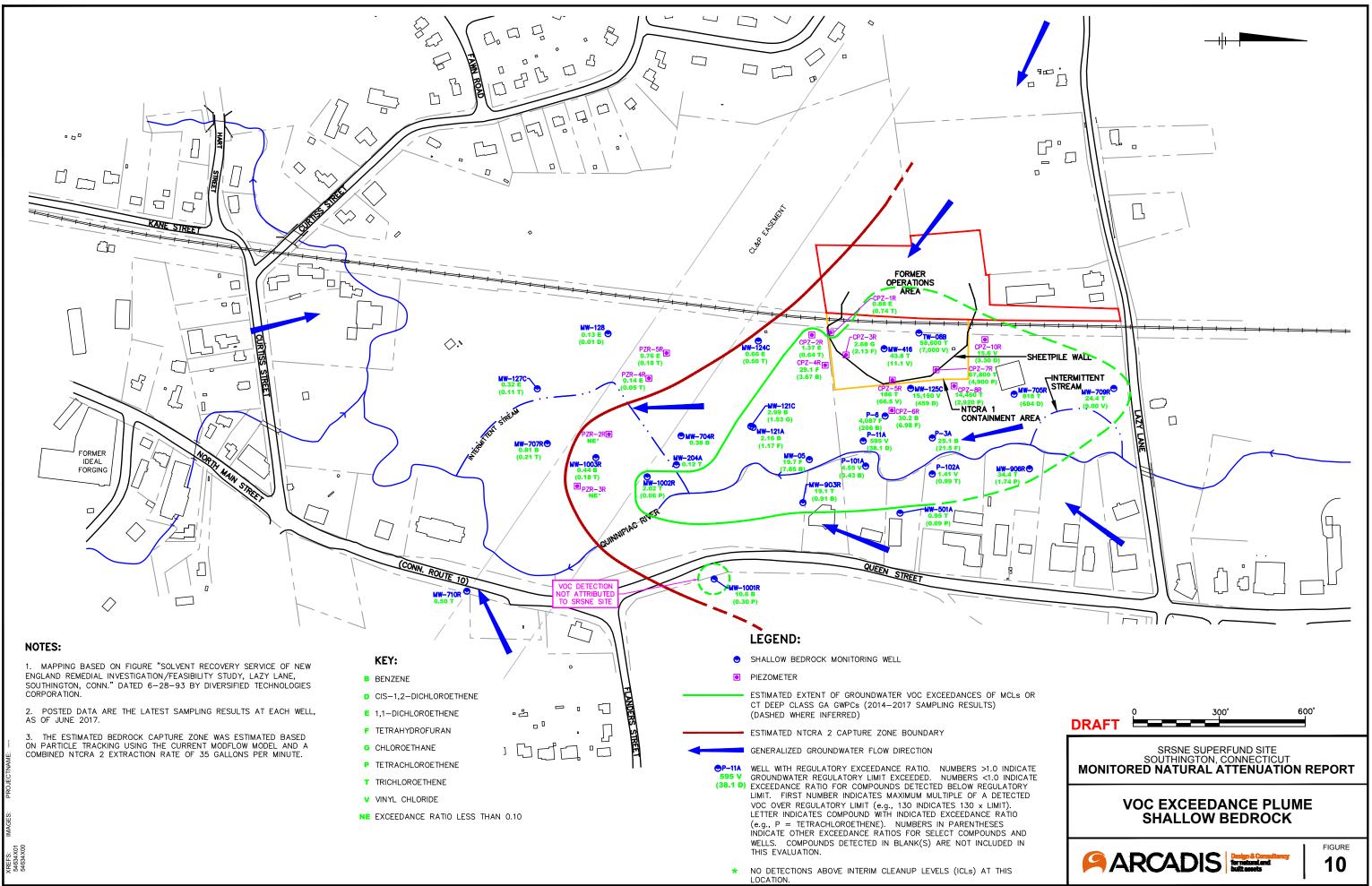

TM/TR: R. . HOLDEN PM: J. DWG B.SMALL

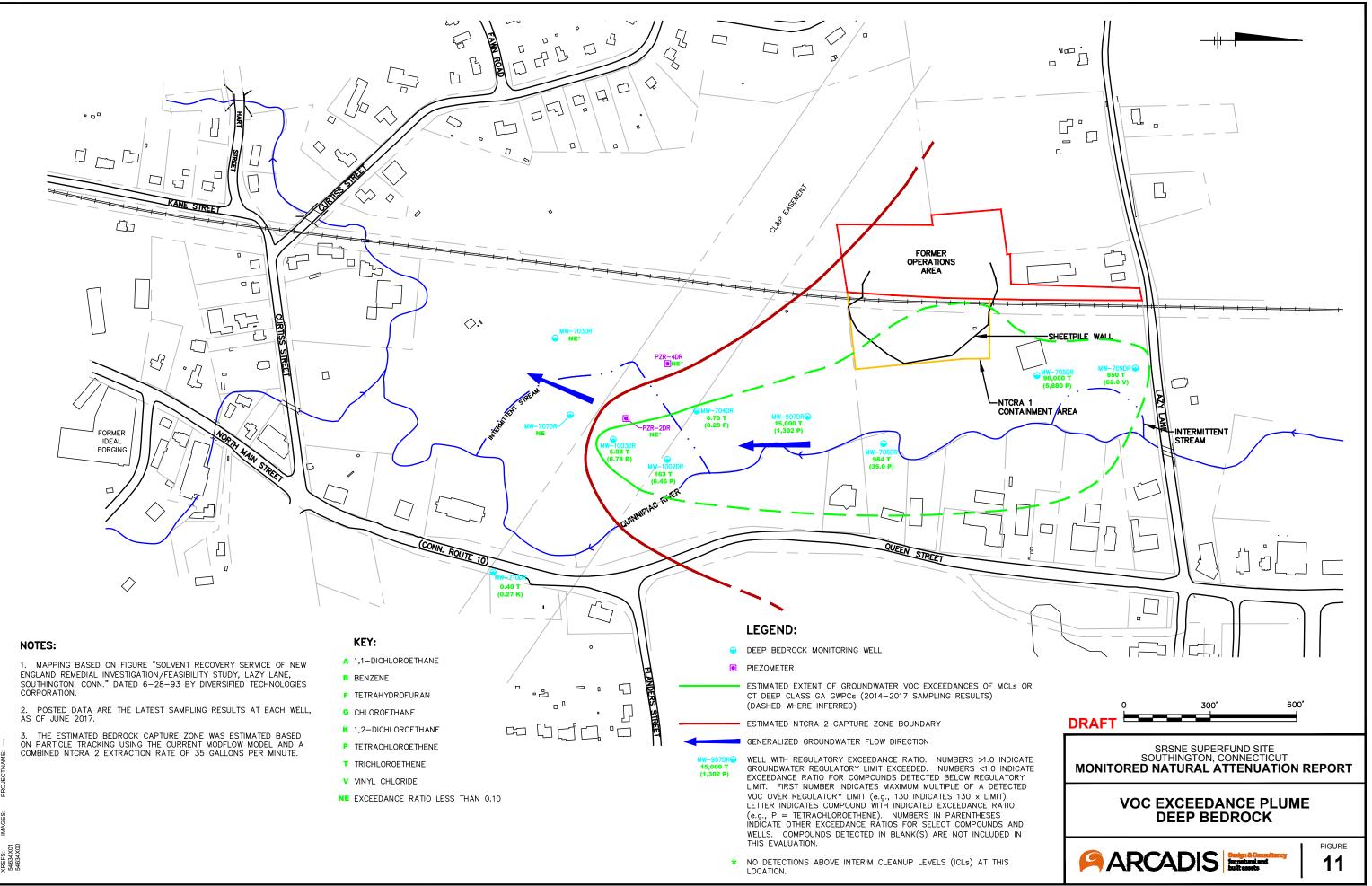


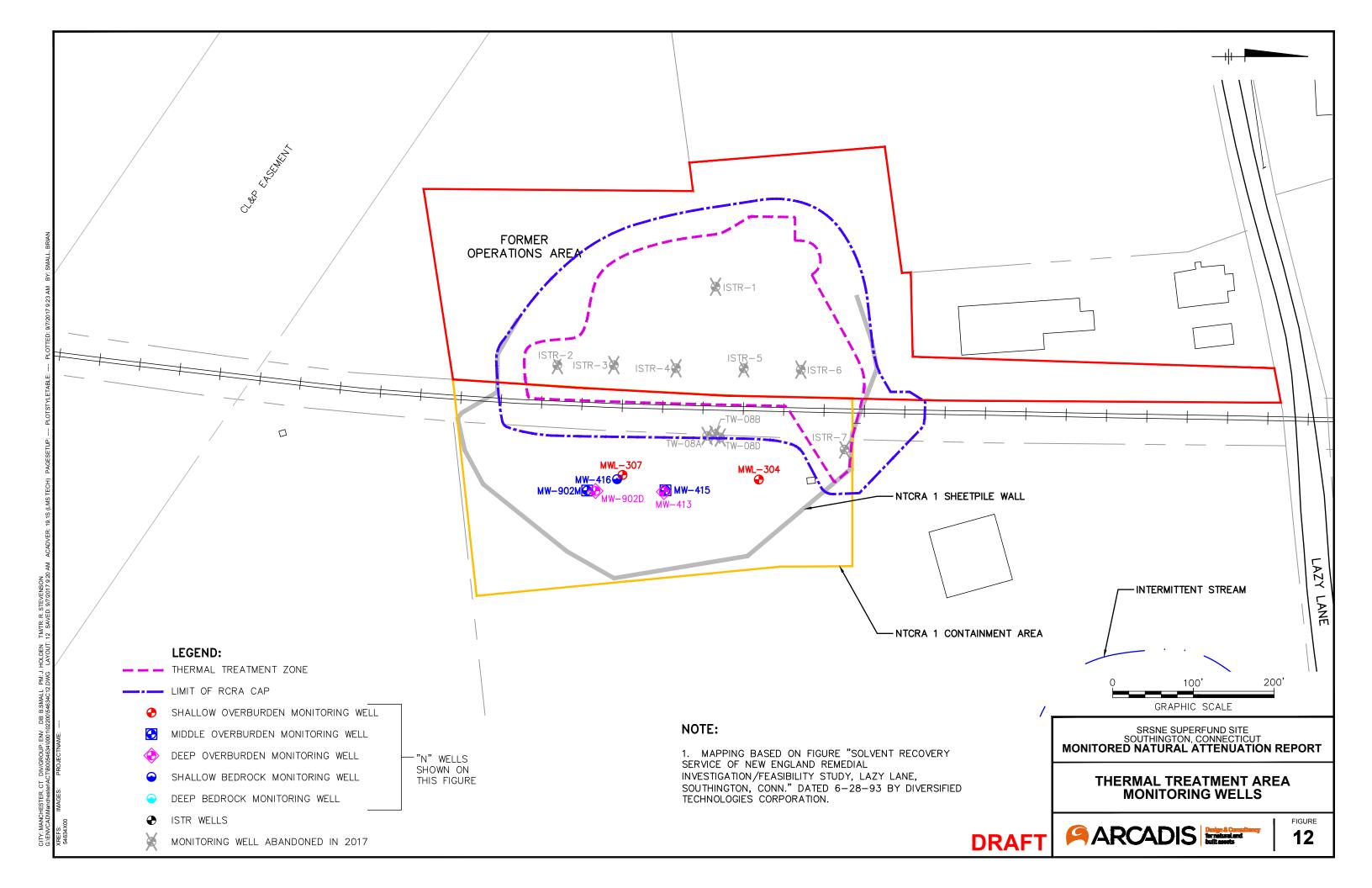

TM/TR: N I

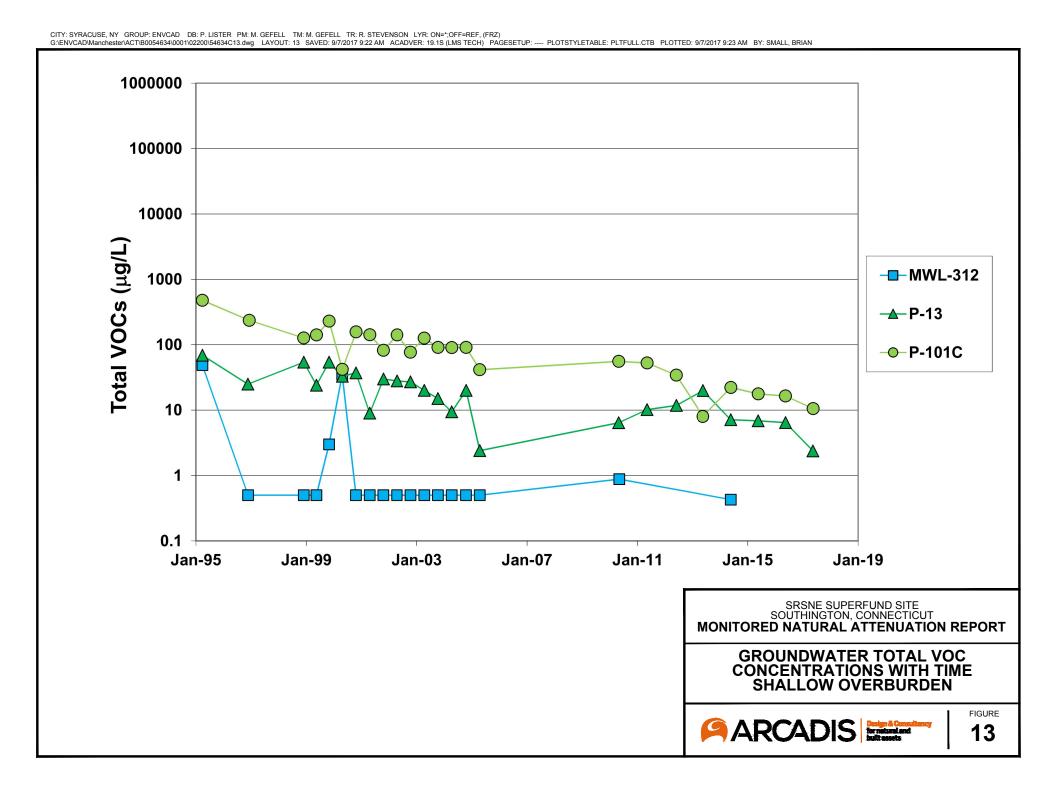


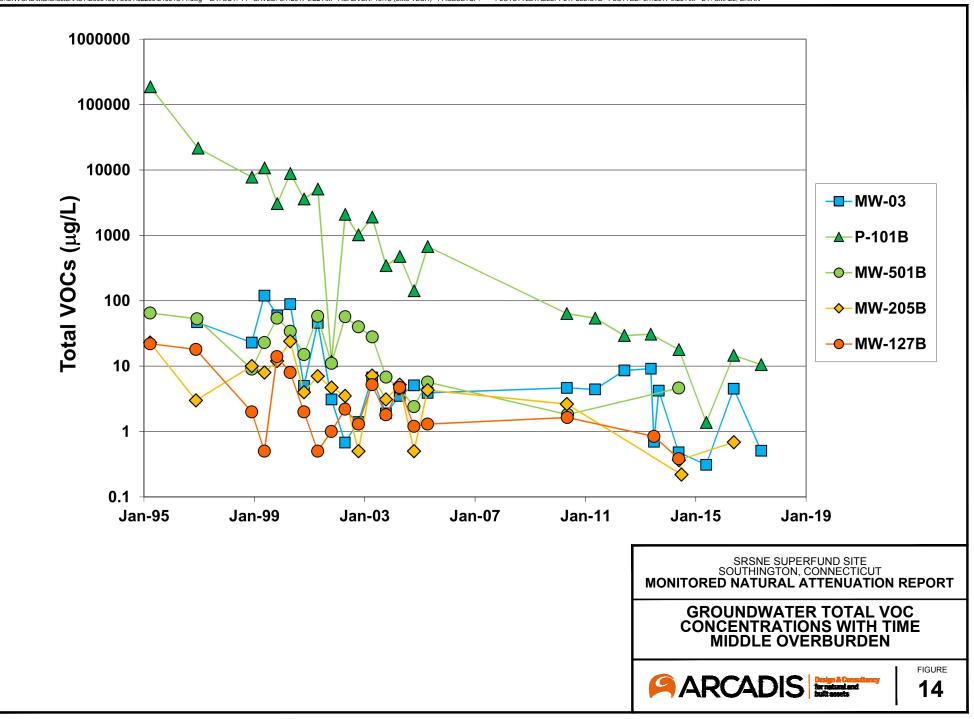

TM/TR: R. N I

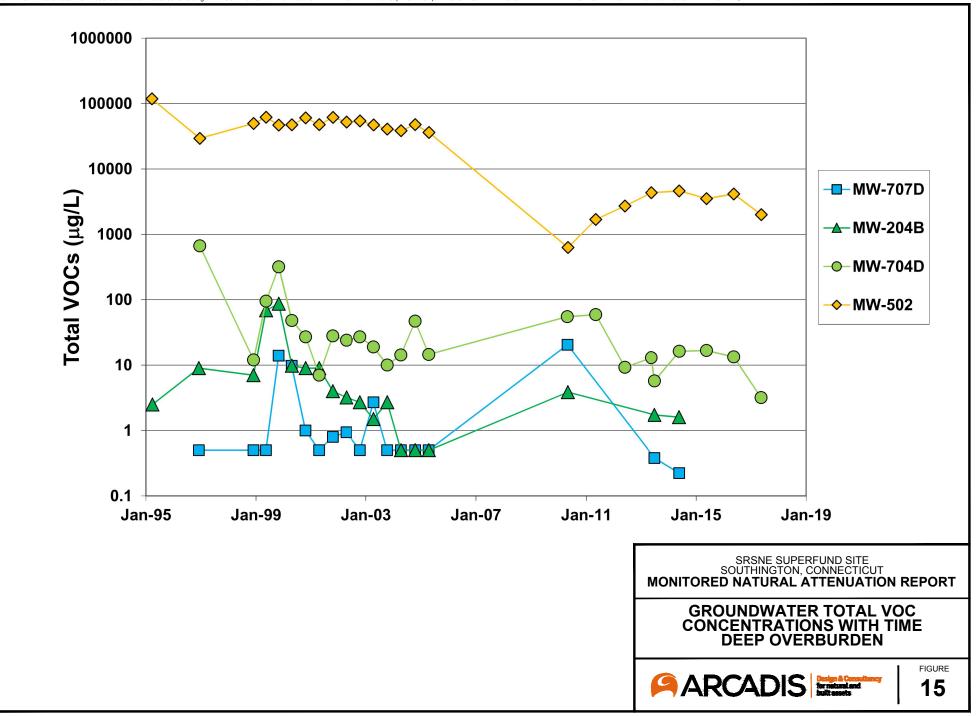


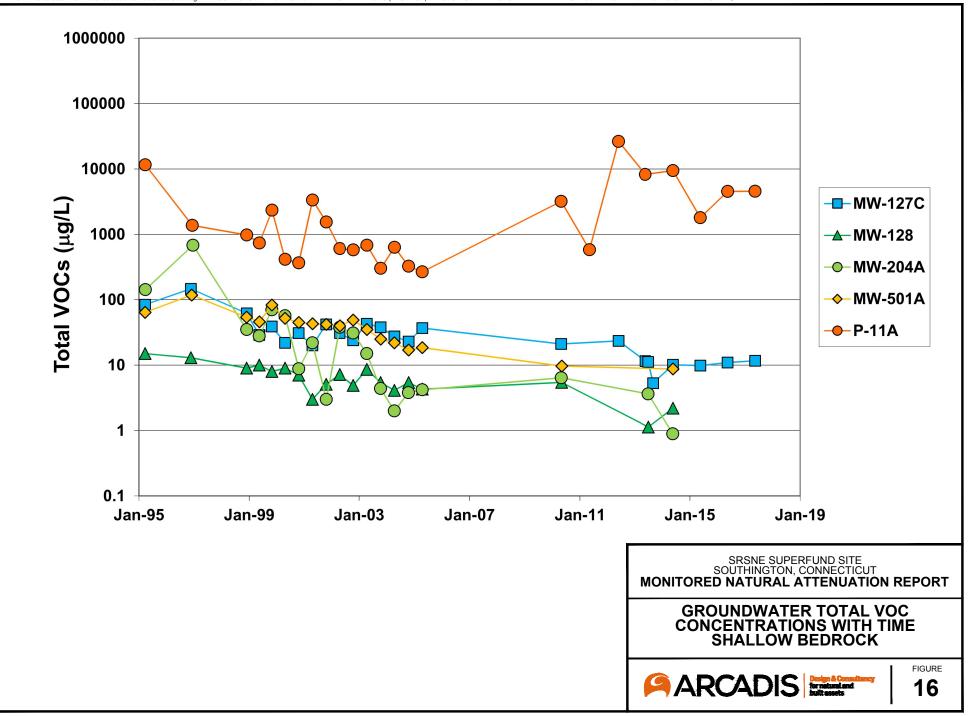


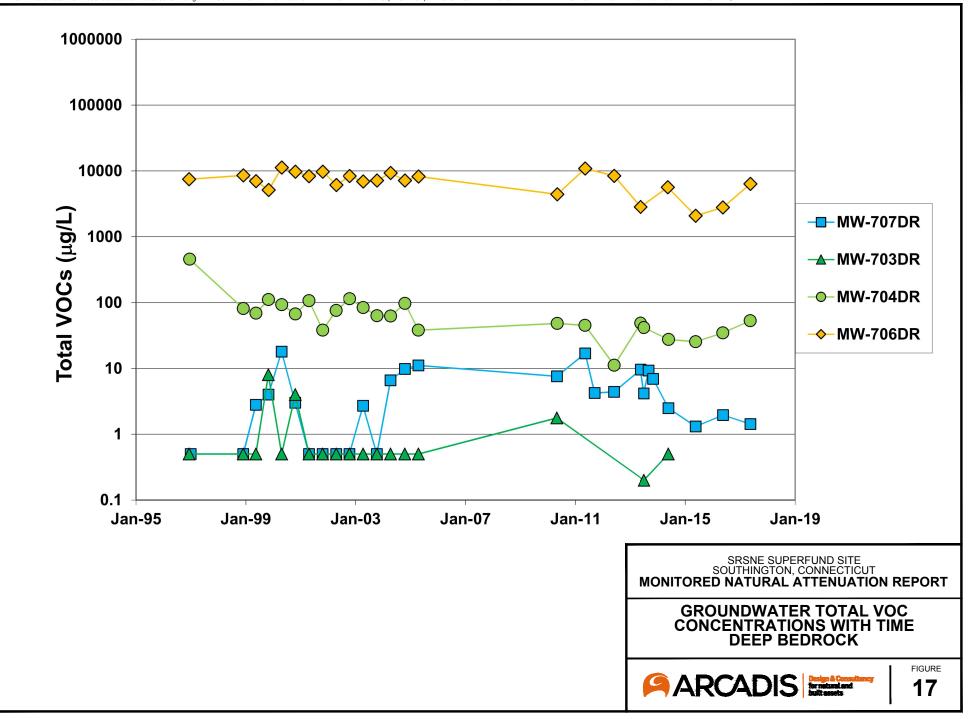


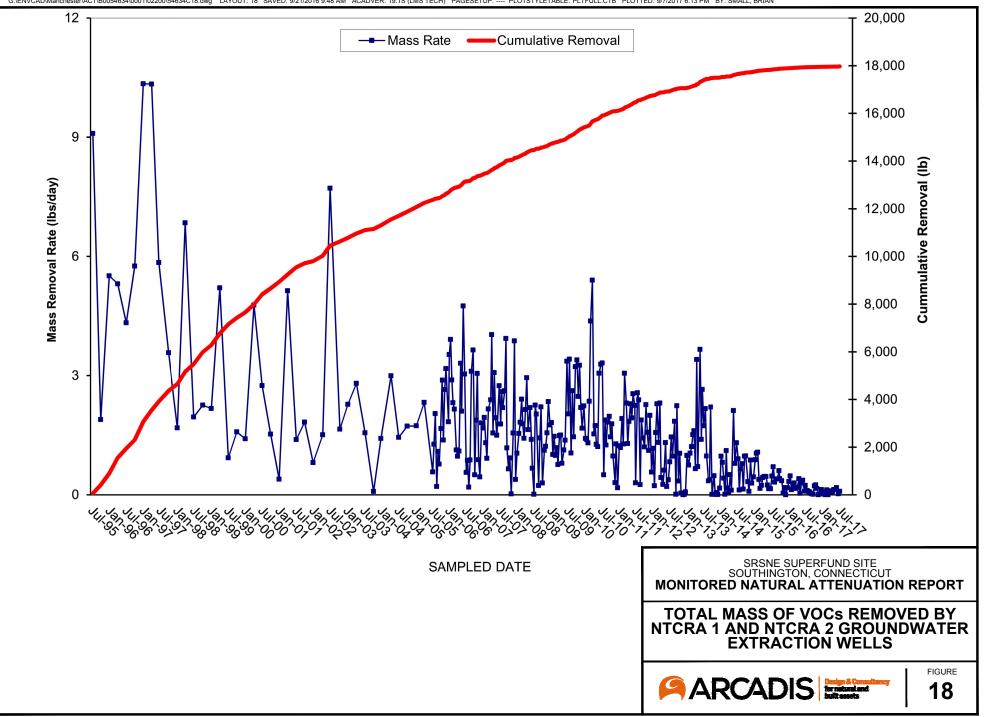




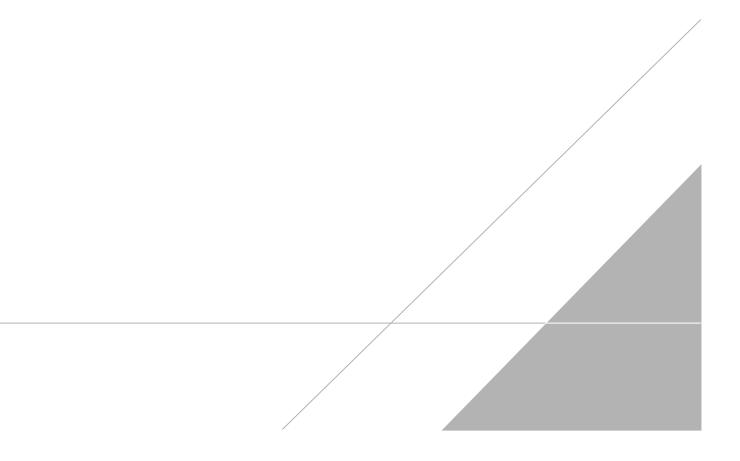





CITY: SYRACUSE, NY GROUP: ENVCAD DB: P. LISTER PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCAD\Manchester\ACT\B0054634\0001\02200\54634C14.dwg LAYOUT: 14 SAVED: 9/7/2017 9:23 AM BY: SMALL, BRIAN


CITY: SYRACUSE, NY GROUP: ENVCAD DB: P. LISTER PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCADIManchester/ACT\B0054634\0001\02200\54634C15.dwg LAYOUT: 15 SAVED: 9/7/2017 9:23 AM BY: SMALL, BRIAN

CITY: SYRACUSE, NY GROUP: ENVCAD DB: P. LISTER PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCAD\Manchester\ACT\B0054634\0001\02200\54634C16.dwg LAYOUT: 16 SAVED: 9/7/2017 9:23 AM BY: SMALL, BRIAN


CITY: SYRACUSE, NY GROUP: ENVCAD DB: P. LISTER PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCAD\Manchester\ACT\B0054634\0001\02200\54634C17.dwg LAYOUT: 17 SAVED: 9/7/2017 9:24 AM BY: SMALL, BRIAN

CITY: SYRACUSE, NY GROUP: ENVCAD DB: P. LISTER PM: M. GEFELL TM: M. GEFELL TR: R. STEVENSON LYR: ON=*;OFF=REF, (FRZ) G\ENVCADIManchester/ACT\B0054634\0001\02200\54634C18.dwg LAYOUT: 18 SAVED: 9/21/2016 9:48 AM ACADVER: 19.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 9/7/2017 6:13 PM BY: SMALL, BRIAN

APPENDIX A

Field Sampling Forms

	ARCADIS	Appendix B-2 HydraSleeve™ Field Form
	Site: SRSNE Location: Southington, CT Well ID: MW-706DR	
	Well Type: Moniforing Other: Well Finish: Stick Up Flush Mount Measuring Pt: Top of Casing Total Depth As Constructed (ftbgs): 26.5 ¹	• Other (specify): 1/C.5 - 126.5 / Screened interval (ftbgs):
 	Well Casing: Diameter: 2^{ct} Well Screen: Diameter: 2^{ct} Deployment Date and Time of Deployment: Date	Material: <u>PYC</u>
	Weather Conditions: <u>Cloudy</u>	
	Depth to groundwater at time of deployment	1.82
	Total well depth at time of deployment:	13.8.40.
	Dimensions of HydraSleeve™: Length (in.)	Diameter (in.)
4 -	Deployment Method/Position of Weight:	
• .	PID (ppm): 6 0 minutes and a second sec	Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
		[●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
	Deployment Depth (Top of HydraSleeve™) (ftbg	15): <u>121.5'</u>
	Retrieval	· · · · · · · · · · · · · · · · · · ·
	Date and Time of Retrieval: Date	: 618117 Time: 0945
	Total # of days deployed: <u>1Day</u>	
-		noly~70°
	Depth to groundwater at time of retrieval	1.781
	Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval:	128,40'
	Temp: $[8, 21]$ (°C) ORP: $[d2, 3]$ pH: $[2, 98]$ DO: $[3, 70]$	(mV) Water quality meter: <u>YSL556 MDS</u> (mg/L) Serial #: <u>15D[0[637</u>
	Notes/Observations:	
		Tu-6(N+W).1871
	96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Tu-b(NHW): 1871 SpCard(Us/cm): 228
	Field Sampling Technician: Name(s) and Comp	pany Compony

43

Name Matthew Kissana Dav Jol Bindley Company <u>Ancadis</u> <u>Arcadis</u>

<u>a</u> AR	ADIS	Hydr	Appendix B-2 aSleeve™ Field Form
Site:	JRSNE		
Location:	Southing ton (hinductory
Well ID:	MW-121C		
Well Type:	Monitoring Other:		
Well Finish:	Stick Up • Flush	Mount	han an ann an tha an an an ann an an an an an an an an a
Measuring Pt:	• Top of Casino	Other (specified)	ecify):
Total Depth As Co	onstructed (ftbgs): CS	<u></u> Screened In	terval (ftbgs): 58, 7-68, 7
Well Casing:	Diameter: <u>20</u>		al: <u>pVC</u>
Well Screen:	Diameter: 2 "		
Deployment			
Date and Time of	• •	Date: 6/6/1	1 Time: 1346
Weather Conditio		4~55	
2	ater at time of deployme	Table of the second sec	na Arabitetypyynyn an ar a argenyn ag yn ar ar a felydd yn golyn yn yr yn ar ar ar a felydd yn yngyn ar ar ar a
Total well depth a	t time of deployment:	10.28	
Dimensions of Hy	rdraSleeve™: Length (ii	n.) <u>36</u>	Diameter (in.)
Deployment Meth	od/Position of Weight:		
PID (ppm):(0	Veight susp Top-Down	Weight attached to bottom of HydraSleeve™. ended in well. : Weight attached to top of HydraSleeve™.
			ended in well.
Deployment Dept	h (Top of HydraSleeve™) (ftbgs):	<u>63.1'</u>
Retrieval			ĊĸĹĸġĸĸĊŎĊĸŎĸŎĸŎĸŎĊŎĊĊĊĊŎŎĊĊŎŎŎĊŎŎŎŎŎĊŎĊĊĊĊŎŎŎŎŎĊŎĊŎŎŎŎŎŎ
Date and Time of		Date: 6/8/11	Time: 1045
Total # of days de			
Weather Conditio		Clandy ~ 70°	
ž	ater at time of retrieval.	And Station and Station	n y ny saraha amin'ny a
Total well depth a		76.28'	
Temp: 15.72	arameters Upon Retriev: (°C) ORP: -	AO 2	Water quality meter: <u>YSI556MDS</u>
pH: 7. dx	DO; 1,3	<u> ろびン</u> (mV) 〇 (mg/L)	Serial #: 15001637
		(mg)c)	Senar #. 13PPO 1037
Notes/Observatio	าร:		
			Turb(NTU):924 SpCard(48/cm): 507
Field Samoling Te	chnician: Name(s) and	Company	
	Name	Company	
Makhew	Kissane	<u>K</u>	25
Nound R.	dwu	K. Co	

2-3

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: Sauthington PT	
Well ID: <u>MW-1003 DR</u>	
Weil Type: • Monitority • Other:	~
Well Finish: Suck Up Flush Moun	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs): 192.0'	Screened Interval (ftbgs): 171.0-1012.01
Well Casing: Diameter: 2"	Material: <u>PVC</u>
Well Screen: Diameter. 2 "	-
Deployment	
Date and Time of Deployment: Dat	te: 6/6/17 Jime: 1415
Weather Conditions: Cloudy ~55°	
Depth to groundwater at time of deployment:	1382.
Total well depth at time of deployment:	196.26
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1, 8
Deployment Method/Position of Weight:	
	• •
PID (ppm): <u>Color of Annal</u> (ppm) (ppm)	^e <u>Fop-Down:</u> Weight attached to bottom of HydraSleeve™. Weight suspended in well.
i ann anns an anns an garaíoca a 14. Anns an stài	[●] Top-Down: Weight attached to top of HydraSleeve [™] . Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftb	pgs): 184,51
Retrieval	
Date and Time of Retrieval: Date	te: 6/8/117 Time: 1145
Total # of days deployed: <u>1. Dora</u>	
Weather Conditions: Rarthy C	Vandy ~ 75°
Depth to groundwater at time of retrieval: U	13.78'
Total well depth at time of retrieval:	13.78' 196.26'
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval:	196.20'
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: <u>17.17</u> (°C) ORP: <u>139.</u>	(mV) Water quality meter: <u>TST 55G MDS</u>
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval:	196.20'
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: <u>17.17</u> (°C) ORP: <u>139.</u>	<u>196.26'</u> (mV) Water quality meter: <u>YST 566 MDS</u> (mg/L) Serial #: <u>\5D\9\637</u>
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 17.17 (°C) ORP: PH: 11.913 DO: 1.43	<u>196.26'</u> (mV) Water quality meter: <u>YST 566 MDS</u> (mg/L) Serial #: <u>\5D\9\637</u>
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 17.17 (°C) ORP: -139.4 pH: 11.913 DO: 1.43	<u>196.26'</u> (mV) Water quality meter: <u>YST 566 MDS</u> (mg/L) Serial #: <u>15D101637</u>
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 17.17 (°C) ORP: -139.4 pH: 11.913 DO: 1.43	<u>196.26'</u> (mV) Water quality meter: <u>YST 556 MDS</u> (mg/L) Serial #: <u>15D101637</u> Tw-6(NHL): 32.1 Yand (us/on): 268
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 1.11 (°C) ORP: -139.4 pH: 11:93 DO: Notes/Observations:	<u>196.26'</u> (mV) Water quality meter: <u>YST 556 MDS</u> (mg/L) Serial #: <u>15D101637</u> Tw-6(NHL): 32.1 Yand (US/an): 268
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 17.17 (°C) ORP: -139.4 pH: 11.93 DO: 1.43 Notes/Observations: Field Sampling Technician: Name(s) and Communication	<u>196.26'</u> (mV) Water quality meter: <u>151.566 MDS</u> (mg/L) Serial #: <u>15D101637</u> Tw-6(NHL): 32.] SpCand (US/cm): 368 npany

· 14.

.

÷ _ -

· _

•••

. J

Ξ

2

100

15

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRINE	
Well ID: <u>CP2-8R</u>	
Well Type: Monitoring Other:	
Well Finish: Stick D • Flush N	Mount
Measuring Pt: • Top of Casing)	Other (specify): A
Total Depth As Constructed (ftbgs): C[;	
Well Casing: Diameter: <u>24</u> Well Screen: Diameter: <u>7</u>	Material: <u>Pvc</u>
Deployment	
Date and Time of Deployment:	Date: 6/6/11 Time: 480
Weather Conditions: <u>Cloue</u>	
Depth to groundwater at time of deployme	
Total well depth at time of deployment:	62.11
Dimensions of HydraSleeve™: Length (ir	n.) <u>36</u> Diameter (in.) <u>18</u>
Deployment Method/Position of Weight:	
PID (ppm): C. Transfer	Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
	[●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
Deployment Depth {Top of HydraSleeve™	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™ Retrieval	Weight suspended in well.
Retrieval Date and Time of Retrieval:	Weight suspended in well.
Retrieval Date and Time of Retrieval: Total # of days deployed: <u>1 D</u> a	Weight suspended in well. ') (ftbgs): 46.7' Date: 6.8/11 Time: 1245
Retrieval Date and Time of Retrieval: Total # of days deployed: <u>1 Do</u> Weather Conditions: <u>Panet</u>	Weight suspended in well. ") (ftbgs): $46.7'$ Date: $6(8/11)$ Time: 1245 Time: 1245
Retrieval Date and Time of Retrieval: Total # of days deployed: <u>1 Days</u> Weather Conditions: <u>Party</u> Depth to groundwater at time of retrieval:	Weight suspended in well. (ftbgs): $46.7'$ Date: <u>G(8/11</u> Time: 1245 <u>Time: 1245</u> <u>Time: 1245</u> <u>Time: 1245</u> <u>Time: 1245</u> <u>Time: 1245</u>
RetrievalDate and Time of Retrieval:Total # of days deployed:Total # of days deployed:Weather Conditions:Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retriev	Weight suspended in well. (ftbgs): $46.7'$ Date: <u>G(8/11</u> Time: 1245 <u>1y</u> <u>Cloudy</u> ~ 15° <u>1.00'</u> <u>G2.77'</u> ral:
RetrievalDate and Time of Retrieval:Total # of days deployed:1 DoWeather Conditions: $Par-H$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon RetrievTemp: $LC_2 R$ (°C)ORP:	Weight suspended in well. *) (ftbgs): $46.7'$ Date: $G(8/11)$ Time: 1245 13 C (ondy ~ 75') : $1.00'$ G2.77' val: 152.1 (mV) Water quality meter: $18TSSC MOS$
RetrievalDate and Time of Retrieval:Total # of days deployed:Total # of days deployed:Weather Conditions:Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retriev	Weight suspended in well. ") (ftbgs): $46.7!$ Date: <u>G(8/11</u> Time: 1245 <u>Jy</u> <u>C(ondy ~ 15°</u> <u>1.00'</u> <u>62-77'</u> ral: <u>152.</u> (mV) Water quality meter: <u>TSTSTC MOS</u>
RetrievalDate and Time of Retrieval:Total # of days deployed:1 DoWeather Conditions: $Par-H$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon RetrievTemp: $LC_2 R$ (°C)ORP:	Weight suspended in well. *) (ftbgs): $46.7'$ Date: <u>G(8/11</u> Time: 1245 <u>Time: 1245</u> <u>Time: 12455</u> <u>Time: 124555555555555555555555555555555555555</u>
Retrieval Date and Time of Retrieval: Total # of days deployed: 1 D. Weather Conditions: Par.H Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retriev Temp: 1 D. PH: 0.2 18 (°C) ORP: 1.0	Weight suspended in well. *) (ftbgs): $46.7'$ Date: $G(8/11)$ Time: 1245 13 C (ondy ~ 75') : $1.00'$ G2.77' val: 152.1 (mV) Water quality meter: $18TSSC MOS$
Retrieval Date and Time of Retrieval: Total # of days deployed: 1 D. Weather Conditions: Pan-H Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retriev Temp: 1 D. PH: 6-18 (°C) ORP: PH: 00: Notes/Observations:	Weight suspended in well. ') (ftbgs): $46.7'$ Date: $G(8/11)$ Time: 1245 13 Claudy ~ 75° 1.00' G2.77' ral: 152.1 (mV) Water quality meter: $152556 mo. P22$ (mg/L) Serial #: $15D101637Two (NTW): 68.1SpCord.(15/cm): 571$
Retrieval Date and Time of Retrieval: Total # of days deployed: 1 D. Weather Conditions: Par.H Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retriev Temp: 1 D. PH: 0.2 18 (°C) ORP: 1.0	Weight suspended in well. *) (ftbgs): <u>46.7'</u> Date: <u>G(8/11</u> Time: 1245 <u>19</u> Cloudy ~ 75° <u>1.00'</u> <u>G2-77'</u> ral: <u>152.1</u> (mV) Water quality meter: <u>TSTSSC MOP</u> <u>22</u> (mg/L) Serial #: <u>15D LO1637</u> Tw-6 (NTW: 68.1 <u>SpCord (ros/cro.):571</u> I Company
Retrieval Date and Time of Retrieval: Total # of days deployed: 1 Do Weather Conditions: Pan-H Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retriev Temp: 1 Content PH: Content Notes/Observations:	Weight suspended in well. ') (ftbgs): $46.7'$ Date: $G(8/11)$ Time: 1245 13 Claudy ~ 75° 1.00' G2.77' ral: 152.1 (mV) Water quality meter: $152556 mo. P22$ (mg/L) Serial #: $15D101637Two (NTW): 68.1SpCord.(15/cm): 571$

e.,

· . ·

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
site: SRSNE	
Location: Southington	- CT
Well ID: MW · 105 DR	and an
Well Type: "Monitoring " Oth	
	sh Mount
Measuring Pt: Top of Casilig	Other (specify):
Total Depth As Constructed (ftbgs): \00	8
Well Casing: Diameter. 2."	Material: PVC
Well Screen: Diameter. Q ^{tr}	
Deployment	
Date and Time of Deployment:	Date: 6/6/17 Time: 1450
Weather Conditions: Cle	maly ~55°
Depth to groundwater at time of deploy	ment: 1.621
Total well depth at time of deployment:	104.481
Dimensions of HydraSleeve™: Length	n (in.) <u>36</u> Diameter (in.) <u>\</u>
Deployment Method/Position of Weight	
	 Top-Down Weight attached to bottom of HydraSieeve™. Weight suspended in well.
na na stanta na stanta na sere se	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve	
Retrieval	
Date and Time of Retrieval:	Date: Gr8/17 Time: W30
Total # of days deployed: 1D	a.M
and a second	Hy Clander ~80
Depth to groundwater at time of retriev	
Total well depth at time of retrieval:	104,481
Downhole Field Parameters Upon Retr	ieval:
Temp: 16.12 (°C) ORP:	
pH: 9:48 DO:_	1.21 (mg/L) Serial #: 15D101635
รัฐ 	 #################################
Notes/Observations:	
	Turb(NTU):27.1
	turb(NTU):27.1 SpCard (Usran): 692
Sigid Campaine Packaine Alama	
Field Sampling Technician: Name(s) a	
Marthea Kussane	Company
Dave Blad De 1	hand a chill

S.

•** -- •

,

÷ i. i,

94<u>5</u>

Ū

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
site: SRSNE	
Location: Southen oton (T	
Well ID: MW-JAIN	
Well Type: • Monitoring • Other:	
Well Finish: Sick U? Flush Mount	######################################
Measuring Pt: • Top of Casing)	Other (specify):
Total Depth As Constructed (ftbgs): 310'	Screened Interval (ftbgs): <u>21.0-31.0'</u>
Well Casing: Diameter: <u>2</u> //	Material: PVC
Well Screen: Diameter: Q"	•
Deployment	
	<u>C/G/17</u> Time: 1\50
Weather Conditions: <u>Cloudy</u>	
Depth to groundwater at time of deployment: 0	601'
Total well depth at time of deployment:	33.24
Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>\.</u>
Deployment Method/Position of Weight:	
PID (ppm): <u>(,)</u>	Pop-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
	[●] Top-Down: Weight attached to top of HydraSleeve [™] . Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbg	
Retrieval	
Retrieval	<u>667111</u> Time: 1435
Retrieval Date and Time of Retrieval: Date Total # of days deployed: 1Day	677111 Time: 1435
RetrievalDate and Time of Retrieval:DateTotal # of days deployed:1DateWeather Conditions:Partly C	$= \frac{677111}{10^{\circ}}$ Time: 1435
RetrievalDate and Time of Retrieval:DateTotal # of days deployed:1 DateWeather Conditions:ParffyCDepth to groundwater at time of retrieval:	6.05 ³
Retrieval Date and Time of Retrieval: Date Total # of days deployed: <u>1 Day</u> Weather Conditions: <u>Party C</u> Depth to groundwater at time of retrieval: Total well depth at time of retrieval:	$= \frac{677111}{10^{\circ}}$ Time: 1435
RetrievalDate and Time of Retrieval:DateTotal # of days deployed:1 D a.g.Weather Conditions:Partfy CDepth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:	$\frac{6(7/117)}{1000}$ Time: 1435 $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$
RetrievalDate and Time of Retrieval:DateTotal # of days deployed: $1 - D_{a-a}$ Weather Conditions: $P_{a-4} + Q_{a-4}$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:Temp: $15 + 32$ (°C) $ORP:-92 - 8$	$\frac{677111}{100000000000000000000000000000000$
RetrievalDate and Time of Retrieval:DateDate and Time of Retrieval:DateTotal # of days deployed:1 D andWeather Conditions:PanHYCDepth to groundwater at time of retrieval:DateTotal well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:	$\frac{6(7/117)}{1000}$ Time: 1435 $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$ $\frac{1000}{1000}$
RetrievalDate and Time of Retrieval:DateTotal # of days deployed: $1 - D_{a-a}$ Weather Conditions: $P_{a-4} + Q_{a-4}$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:Temp: $15 + 32$ (°C) $ORP:-92 - 8$	$\frac{677111}{100000000000000000000000000000000$
Retrieval Date and Time of Retrieval: Date Date and Time of Retrieval: Date Date Total # of days deployed: 1 D a.g Date Weather Conditions: Party C Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 15,32 (°C) ORP:-40.8 pH: 6.81 DO: 1.83	$\frac{677111}{100000000000000000000000000000000$
Retrieval Date and Time of Retrieval: Date Total # of days deployed: 10 and Weather Conditions: 0 and 0 a	<u>Gr7117</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Grossicals}</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossica</u>
Retrieval Date and Time of Retrieval: Date Total # of days deployed: 1 D a.g. Weather Conditions: Party C Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 16,32_ (°C) ORP:- 40_8 pH: 6.8(DO: 1.83	$\frac{677111}{1000000}$ $\frac{677111}{100000000}$ $\frac{605^{3}}{505^{3}}$ $1000000000000000000000000000000000000$
Retrieval Date and Time of Retrieval: Date Date and Time of Retrieval: Date Date Total # of days deployed:	<u>Gr7117</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Ime: [435</u> <u>Grossicals}</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossicals</u> <u>Grossica</u>

۲.,

.

55

ARCADIS

David Rindley

Appendix B-2 HydraSleeve™ Field Form

γ,

.

......

. S . ÷ et I 3_

-: *

	Site: SRSNE	
	** **	RADDALBAUGP.gr.g.p.ypt 3.0000 Emblandmen.com/9.0000
- 1- k-	Location: <u>Jourhington</u> , CT Well ID: P-101B	
a an		held Mark ())) up op an anna anna an anna anna anna anna
	Well Type: Monitority Other.	
	Well Finish: Stick Up • Flush Mount	
	Measuring Pt: * Top of Casing	Other (specify):
	Total Depth As Constructed (ftbgs): 4-4.0"	_Screened Interval (fibgs): 34.0-44.0'
يوندير مايوني. مين الوليسيين -	Well Casing: Diameter: 24	Material: <u>PVC</u>
,	Well Screen: Diameter:	
in the factor and the T	Deployment	
· · · · · · · · · · · · · · · · · · ·	Date and Time of Deployment: Date	e: 6/6/17 Time: 12:45
Allan, same garaadiitti	Weather Conditions: Claudy ~55°	
The second se	Depth to groundwater at time of deployment:	2.66
	Total well depth at time of deployment:	43.70'
	Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 18
	Deployment Method/Position of Weight:	economicology • • • • • • • • • • • • • • • • • • •
· .		
	PID (ppm):	• Top-Dover: Weight attached to bottom of HydraSleeve™.
م الم الم		Weight suspended in well.
	್ ಕತ್ತಪ್ರಸಹಾಭಗಳು ಭಾರತ ಸಿಕ್ಷಣಗಳು ಸೌಕ್ಷಿ	Top-Down: Weight attached to top of HydraSleeve [™] .
	and an and	Weight suspended in well.
	Deployment Depth (Top of HydraSleeve™) (fibg	is): 39.0'
ا الافتاري بويتار	المريكية المريح بسنامير منكرها حد الأمير الذي الارتحار المحتورات من الارباط الارتحاف المالة المكونية المحتومة المحتوية المحتورة المحتومة المحتوية المحتومة المحتومة المحتومة المحتومة المحتومة المالية المريح المحتومة المحتومة المحتومة المحتورات المحتومة المحتومة المحتومة المحتومة المحتومة المحتو المحتومة المحتومة الم	
	Retrieval	
م سط ۲۰۰۰ م	Date and Time of Retrieval: Date	: <u>C/8/11</u> Time: 0900
	Total # of days deployed: 1 Day	
-	Weather Conditions: Pourfle Clo	Judg ~ 65°
· · · · · · · · · · · ·	Depth to groundwater at time of retrieval:	2625
	Total well depth at time of retrieval:	43,70'
	Downhole Field Parameters Upon Retrieval:	
	Temp: 17.20 (°C) ORP: -74,1	the second
,	рн: <u>1469</u> DO: 0.93	(mg/L) Serial #: 150101637
		ֈ ՟՟՟՟՟ֈ ՟՟՟՟ֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈֈ
. •	Notes/Observations:	
	Take DUP-06082017-1 +MS	(MUD) Furb(NAM: 24-15
		MSD Twob(NAM): 24.75 SpCond(45(cn): 1,566
- * • • *		
i N	Field Sampling Technician: Name(s) and Comp	-
		Company
	Matthenk: Stare	Arcadis

Ancadis

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: <u>SRSNE</u> Location: <u>Scutha</u> Well ID: <u>MW-907</u>	-aton ("T
Well Type: Monitoring Well Finish: Stick Up Measuring Pt: Top of Casir	Flush Mount
Total Depth As Constructed (ftbg:Well Casing:Diameter:Well Screen:Diameter:	s): <u>38.1</u> Screened Interval (ftbgs): <u>38.1.38.1'</u> <u>2"</u> Material: <u>PVC</u>
Deployment Date and Time of Deployment: Weather Conditions:	Date: <u>6/5/17 Time: 1255</u>
Depth to groundwater at time of deploy	deployment: <u>C.95</u>
Dimensions of HydraSleeve™:	Length (in.) 36 Diameter (in.) 18
PID (ppm): 0.0	■ Kop-Down: Weight attached to bottom of HydraSieeve [™]
PID (ppm):	 Top-Down: Weight attached to bottom of HydraSleeve™ Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
PID (ppm): 0.0 Deployment Depth (Top of Hydra	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed:	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): <u>33,1</u> Date: <u>G(G(11</u> Time: \@00 \ Day
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval:	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): <u>33.1</u> Date: <u>G(G(11)</u> Time: <u>100</u> <u>1</u> Day <u>Clandy 55°</u> retrieval: <u>G.93</u>
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 33.1 ' Date: G(G(1)) Date: G(G(1)) Time: 430 Clandy 55° retrieval: Val: 46.551
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>2.2</u> (°C)	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 33.1' Date: G(G(1)) Date: G(G(1)) Time: 400 Day Gl and n 55° retrieval: G93 val: 46.551 on Retrieval: ORP: ORP: 51.6 (mV) Water quality meter: DO: 0.87 (mg/L) Serial #:
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>1,2,12</u> (°C) pH: <u>1,2</u>	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 33.1' Date: G(G(1)) Date: G(G(1)) Image: G(G(1)) Value: G(1) Value: G(1) <t< td=""></t<>
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>2.12</u> (°C) pH: <u>1.22</u> Notes/Observations: Field Sampling Technician: Nan	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): 33,1' Date: <u>G(G(11</u> Time:) 420 <u>Day</u> <u>Clanda 55°</u> retrieval: <u>G93</u> val: <u>46.551</u> In Retrieval: ORP: <u>51.8</u> (mV) Water quality meter: <u>YSIS56 MM</u> DO: <u>0.87</u> (mg/L) Serial #: <u>44 100062</u> Tur 6 (WtW): 15.6 Sp(and (WS/kW): 1001
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: 12,12 (°C) pH: 1.22	• Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 33.1' Date: $G(G/T^{-1} Time:)$ 430 1 Day Cloudy 55° retrieval: $G93$ val: $46.55'$ on Retrieval: ORP: 51.6 (mV) Water quality meter: $YSI656$ MC DO: 0.67^{-1} (mg/L) Serial #: 145160063 Tur- $6(NtH)$: 15.6 Sp(cud) ($VSKN$): 1001

ν,.

•..

_

ř.

the second s

AR(ADIS			Appendix B-2 Sleeve™ Field Form	
Site:	SRSN				
Location:	Sauth	ingten. MT		28 v	
Well ID:	MW-121			**	
Well Type:	· Monitoring	P 🖲 Other:			-
Well Finish:	• Stick Up	> • Flush Mount		na postan na na zana na postan postan na mana na	
Measuring Pt:	• Top of Ca	SIDG	Other (spec		
Total Depth As C			Screened Inte	rval (ftbgs): <u>35,9⁽45,9</u> (
Well Casing:	Diamete		Material	PVC	
Well Screen:	Diamete	er. <u>Q</u> «	14 J		
Deployment					an a
Date and Time of	f Deployment:		615/17	Time: \345	
Weather Condition		Cloudy ~?	's enot?'	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	<u>, 11 11 1 1 1 1 1 1</u>
Depth to ground			5,78	an a	
Total well depth	at time of dep	loyment:	47.68	ารกรารรายและสารประโภโกระบาทการกระบาทการกระบาทการกระบาทการกระบาทการกระบาทการกระบาทการกระบาทการก 	
Dimensions of H	lydraSleeve™:	: Length (in.)	30	Diameter (in.) <u>\ 8</u>	
Deployment Met	hod/Position c	of Weight:		4	
PID (ppm):	<u>).(V</u>		Weight susper Top-Down:	Weight attached to top of Hydr	
	97 201 201 4	draSleeve™) (ftbg:	Weight susper Top-Down: Weight susper	nded in well. Weight attached to top of Hydr	
	97 201 201 4	draSleeve™) (ftbg:	Weight susper Top-Down: Weight susper	nded in well. Weight attached to top of Hydr nded in well.	
Deployment Dep	th (Top of Hyd		Weight susper Top-Down: Weight susper	nded in well. Weight attached to top of Hydr nded in well.	
Deployment Dep Retrieval	oth (Top of Hyd f Retrieval:	Date: 1 Day	Weight susper Top-Down: Weight susper): <u>G /C/11</u>	nded in well. Weight attached to top of Hydr nded in well. 보요.약 '	
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition	oth (Top of Hyd f Retrieval: leployed: ons:	Date: <u>1 Day</u> <u>Clandy~5</u>	Weight susper Top-Down: Weight susper :: <u>G /C/11</u>	nded in well. Weight attached to top of Hydr nded in well. 보요.약 '	
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition	oth (Top of Hyd f Retrieval: leployed: ons: water at time o	Date: <u>1 Day</u> <u>Clandy~5</u> of retrieval:	Weight susper Top-Down: Weight susper 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	nded in well. Weight attached to top of Hydr nded in well. 보요.약 '	
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth	oth (Top of Hyd f Retrieval: leployed: ons: water at time of retr	Date: <u>1 Druy</u> <u>Cloudy~5</u> of retrieval: ieval:	Weight susper Top-Down: Weight susper :: <u>G /C/11</u>	nded in well. Weight attached to top of Hydr nded in well. 보요.약 '	
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U	Date: <u>1 Day</u> <u>Clandy~5</u> of retrieval: ieval: pon Retrieval:	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 (75'</u> <u>41.65'</u>	nded in well. Weight attached to top of Hydr nded in well. <u>469</u> ' <u>Time: 1600</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>]2, []</u>	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U	Date: <u>1 Day</u> <u>Clandy ~5</u> of retrieval: ieval: pon Retrieval: ORP: -15:4	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 .75'</u> <u>41.65'</u> (mV)	Neight attached to top of Hydr nded in well. <u>469</u> <u>Time:</u> <u>1600</u> Water quality meter: <u>MS</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U	Date: <u>1 Day</u> <u>Clandy~5</u> of retrieval: ieval: pon Retrieval:	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 (75'</u> <u>41.65'</u>	nded in well. Weight attached to top of Hydr nded in well. <u>469</u> ' <u>Time: 1600</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>]2, []</u>	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C)	Date: <u>1 Day</u> <u>Clandy ~5</u> of retrieval: ieval: pon Retrieval: ORP: -15:4	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 .75'</u> <u>41.65'</u> (mV)	hded in well. Weight attached to top of Hydr nded in well. <u>469</u> <u>Time: 600</u> Water quality meter: <u>455</u> Serial #: <u>4500003</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>1 및 대</u>	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C)	Date: <u>1 Day</u> <u>Clandy ~5</u> of retrieval: ieval: pon Retrieval: ORP: -15:4	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 .75'</u> <u>41.65'</u> (mV)	hded in well. Weight attached to top of Hydr nded in well. <u>469</u> <u>Time: 600</u> Water quality meter: <u>455</u> Serial #: <u>4500003</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>1 및 대</u>	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C)	Date: <u>1 Day</u> <u>Clandy ~5</u> of retrieval: ieval: pon Retrieval: ORP: -15:4	Weight susper • Top-Down: Weight susper •): <u>6 /C/11</u> <u>5</u> <u>5 .75'</u> <u>41.65'</u> (mV)	Neight attached to top of Hydr nded in well. <u>469</u> <u>Time:</u> <u>1600</u> Water quality meter: <u>MS</u>	aSleeve™. 558 MC
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: 12.11 pH: 7.299 Notes/Observation	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C)	Date: <u>1 Day</u> <u>Clandy-5</u> of retrieval: ieval: pon Retrieval: ORP:-15.4 DO:-1.33	Weight susper Top-Down: Weight susper 	hded in well. Weight attached to top of Hydr nded in well. <u>469</u> <u>Time: 600</u> Water quality meter: <u>455</u> Serial #: <u>4500003</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: 12.11 pH: 7.299 Notes/Observation	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C)	Date: <u>1 Day</u> <u>Clandy ~5</u> of retrieval: ieval: pon Retrieval: ORP: -15:4	Weight susper Top-Down: Weight susper 	hded in well. Weight attached to top of Hydr nded in well. <u>469</u> <u>Time: 600</u> Water quality meter: <u>455</u> Serial #: <u>4500003</u>	aSleeve™.
Deployment Dep Retrieval Date and Time o Total # of days d Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>12.11</u> pH: <u>7.3</u> C	oth (Top of Hyd f Retrieval: leployed: ons: water at time of at time of retr Parameters U (°C) ons: Technician: N Name	Date: <u>1 Day</u> <u>Clandy-5</u> of retrieval: ieval: pon Retrieval: ORP:-15.4 DO:-1.33	Weight susper Top-Down: Weight susper :: <u>G /G/11</u> <u>S'</u> <u>5 (15'</u> <u>41.68'</u> (mV) (mg/L)	hded in well. Weight attached to top of Hydr hded in well. <u>469'</u> <u>Time:</u> <u>1400</u> Water quality meter: <u>451</u> Serial #: <u>14F100003</u> Tunb(NtW) SpCand(W	aSleeve™.

۰.

i

,

ь.

- .-

		States in a	· · · · · · · · · · · · · · · · · · ·
	102	ARCA	n C
r		40.41	LAIS
-	- 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1	19 19 19 19 19 19 19 19 19 19 19 19 19 1	

142

.....

.......... -.

> . ۰., 20 <u>–</u> 1.

· ***

Appendix B-2 HydraSleeve™ Field Form

٠,

- 1

:1

ł

£

3 ī

ŝ

ъ. –

site: * SRSNE	-
Location: Southington (+	
Weil ID: MWL-309	•
Well Type: " Montoning) Other.	SINITIAN STATUNGS (SINITIAN)
Well Finish: Slick Up • Flush Mount	۳.
Measuring Pt: * Top of Casing	Other (specify):
Total Depth As Constructed (fibgs): 11.0	Screened Interval (ftógs): 1 - 11
Well Casing: Diameter: 2"	Material: pvC
Well Screen: Diameter: 2.	
Ocnoyment.	55
Oate and Time of Deployment: Date	:_C/5/17 Time: ()900
Weather Conditions: Clauder ~ 55°	Construction of the second
Depth to groundwater at time of deployment:	3.58
Total well depth at time of deployment:	13.17'
Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>1,8</u>
Deployment Method/Position of Weight:	Buorgafalalapananonnyteepaanan :
Enclaration of Mergin.	
e PID (ppm): e Otor al - total aves	Rep-Down: Weight attached to bottom of HydraSleeve ™.
and the second s	Weight suspended in well.
ార్ స్పరాభ దార్యాంధ్ర ఓ 223 ఫిగ్లా నిర్ణమంత్రి. 	[●] Top-Down: Weight attached to top of HydraSleeve™.
a second	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbg	s): 6.6'
	ระบุระบุระบบการและสายสายสายสายสายสายสายสายสายสายสายสายสายส
Retrieval	
Date and Time of Retrieval: Date	: <u>6/1/17</u> Time: ()915
Total # of days deployed: 2 Day S	
Weather Conditions: Pour-Ha Co	Lander ~ 60°
Depth to groundwater at time of retrieval:	3.557
Total well depth at time of retrieval:	13.17
Downhole Field Parameters Upon Retrieval:	15+ 600
$\begin{array}{cccc} \text{Temp:} & 13.25 & (°C) & ORP: 67.1 \\ \text{pH:} & G & S^{\circ} & DO: 1 & 52 \\ \end{array}$	(mV) Water quality meter: <u>MST 556 M.D.S</u>
pH: <u>G:89</u> DO: <u>5</u>	(mg/L) Serial #: <u>LUF[00063</u>
Notes/Observations:	
Take DUP-06072017-2 + 1	4S/MSD on VOCS turb (NHW): 15,8
for the second of the second s	
	SpCard.(KS/an):29
Field Sampling Technician: Name(s) and Comp	
Name	Company
Matthe, Kissone	Arradis

`=

. 1945

> Appendix B-2 HydraSleeve™ Field Form

	Site: SRSWIE	
-	Location: Southin	ton ct
	Well ID: <u>MW-1002DR</u>	
	Well Type: [•] (Monitoring) • Other: Well Finish: [•] Stick Up, • Flush Mount	and an the first of the first o
	Measuring Pt: • (op of Casing	Other (specify):
	Total Depth As Constructed (fbgs): 1920'	Screened Interval (fibgs): 1770.1920'
	Well Casing: Diameter. "	Material: PVC
	Well Screen: Diameter: 2 (1	nna
	Deployment	
	Date and Time of Deployment: Date	
, 1	Weather Conditions:	PICLOUNDY SSOF
	Depth to groundwater at time of deployment:	67.65
-	Total well depth at time of deployment:	189.91'
	Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) \ 8
,	Deployment Method/Position of Weight:	<u>รายสายสายสายสายสายสายสายสายสายสายสายสายสา</u>
	Deployment methods conton of Weight.	:
	PID (ppm):::::::::::::::::::::::::::::::::::	Top-Down) Weight attached to bottom of HydraSleeve™.
والمراجع والمواجع		Weight suspended in well.
•••	(1) The second se second seco second second sec	Top-Down: Weight attached to top of HydraSleeve™.
	· · · · · · · · ·	Weight suspended in well.
1	Deployment Depth (Top of HydraSleeve™) (ftbg	18): 184.5
	andron summy support and the second and the second and the second s	งสารเขตสารและการสารและสารและสารและสารและสารสารสารสารสารสารสารสารสารสารสารสารสารส
	Retrieval	
	Date and Time of Retrieval: Date	: 6-6-17 Time: 1630
	Total # of days deployed:	Party SS FIDEN
	Weather Conditions:	Rain SSPF /
	Depth to groundwater at time of retrieval:	51.63'
• . a-a-24.4	Total well depth at time of retrieval:	189.971
	Downhole Field Parameters Upon Retrieval:	and the second
	Temp:(6(°C)ORP:	
	pH: <u>//////3</u> DO: <u>//3</u> "3	(mg/L) Serial #: 197100062
-		ֈՠֈֈ֎֎ՠՠՠՠ֎֎ՠՠՠՠՠ֎֎֎ՠՠՠՠ֎֎ՠ֎֎֎֎֎֎֎֎֎֎֎
	Notes/Observations:	
		Turb: 39.72 NTU 501030
		Spland: 1864 Aslem

Field Sampling Technician: Name(s) and Company

Name	Company
Day Pridxy	Arrad S
Maspirikiscung	Arrelis

1. FT	ARCADIS	Appendix B-2 HydraSleeve™ Field Form
	site: SRINE	
an kan 1871 kan kestendin an	Location: Southington (+	anti-line konstanna (1994) Alexandre konstanna -
	Well ID: MWE.502	
	Well Type: "Moniford Other:	
,	Well Finish: "Side UA" Flush Mount	n a fer felde en genarate en sen ante en a
ំ ី.ភិភ្លេចក្តែស កំព័រភ្លៃក្រុមស្រុ	Measuring Pt: • Top of Casing	Other (specify):
	Total Depth As Constructed (ftbgs): Q5.01	Screened Interval (ftbgs): 15 .0 -25.0'
	Well Casing: Diameter 24	Material: PVC
*	Weil Screen: Diameter 2 *	
	Deployment	
A State State	Date and Time of Deployment: Date	: 6/5/17 Jime: 1010
- Andre and the Andrews	Weather Conditions: Cloudy	~55°
	Depth to groundwater at time of deployment: ^J	7.09'
	Total well depth at time of deployment:	36.14
	Dimensions of HydraSleeve ^{T4} : Length (in.)	<u></u>
	Deployment Method/Position of Weight:	etanonemplaiseitentanonenonen :-
· .	sopoyment memory ostion of treight.	
	PID (ppm): A. (): . One was synthesis in	• Top-Down: Weight attached to bottom of HydraSieeve™.
		Weight suspended in well.
	Certatassy, activities of.	[●] Top-Down: Weight attached to top of HydraSleeve [™] .
مې د دده و چې		Weight suspended in well.
a.	Deployment Depth (Top of HydraSleeve™) (ftbg	a b c c
ومدير بالمراجع	می که که که و سیسیم سی که اینجاب با که اینجاز با می دود موادی می که به اینجاب که دور میکنود (بایکه او موسوع که وی مورو مسیم و مورد می مورد می مورد اینکه اینجاب که است. می موادی می که مورد و میکنود و میکنود (بایکه ای موسوع که	๛๛๛๚๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
	Retrieval	
	Date and Time of Retrieval: Date	: 6/7/17 Time: \015
	Total # of days deployed:	
	Weather Conditions: Paulu (1 cndg ~60° 7,084
ی مد در مد	Depth to groundwater at time of retrieval:	1.084
un million automose	Total well depth at time of retrieval:	36.14'
	Downhole Field Parameters Upon Retrieval:	UCT SEP 400
· - # · · -	Temp: 11.20 (°C) ORP: -14,9 pH: 6.75 DO: 0,9	
	рН: <u></u>	e_ (mg/L) Serial #: 14F100062
	Notes/Observations:	
		turb (Ntu): 35.43
		C C N (BCL VI milm
-,	ĨĨŎĔŦĊŧĸĨĸŎĸŎŔŎŎĨĬŎŎĨŎŦĔŦĸĊĔĬĬĬĬŎĬĬĬŎŎĬĸIJĸĸIJĸĸĬĊĬĬŎŎĬŎĬĸŎĬĬŎŎĬĬŎĬĬŎĬĬŎĬĬŎĬĬŎĬĬŎĬĬŎĬĬŎĬĬŎ	SpCond. (45/cm): 747
	Field Sampling Technician: Name(s) and Comp	y
	Name	Company
	Marthew KDSsane	Arcadis
2		

4

. .

.

. .-

.. ·

.

•

-

4

í.

- **-** - -

the second second

1.000

.

· • •

. .

••

Υ.

ŝ

{

	الملك المراجع المراجع المراجع	·
and the second se		
	ARCADIS	Appendix B-2 ^t HydraSleeve™ Field Form
, '		
- -	Site: <u>SRINE</u>	del Villege Successformen over successformen geographies
÷ ,	Location: <u>Southington (T</u> Well ID: P-114	NARA SA MARTIN MARTIN MARTIN MARTIN MARTIN MARTIN MARTINA AND AND AND AND AND AND AND AND AND A
P. T. J. Hand Amerika. La Hank		
1.51	Well Type: • Monitoring • Other: Well Finish: • Stick Up • Flush Mount	
	Measuring Pt: * Top of Casing	Other (specify):
	Total Depth As Constructed (ftbgs): 68.0'	Screened Interval (ftbgs): 58.0-68.0'
	Well Casing: Diameter: 2"	Material: PVC
	Well Screen: Diameter. 211	
	Deployment	-
· • • • • • • • • • • •	Date and Time of Deployment: Date	: 6/6/17 Time: 8900
مسجو الرجو يعربنا الأراك الأر	Weather Conditions: Cloudy	~55°
	Depth to groundwater at time of deployment:	5.38'
	Total well depth at time of deployment:	<u>C5.72'</u>
	Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>18</u>
,	Deployment Method/Position of Weight:	
į		
		Cop-Down: Weight attached to bottom of HydraSleeve™.
	nan tradicij	Weight suspended in well.
		Top-Down: Weight attached to top of HydraSleeve™.
in a second s	Deployment Depth (Top of HydraSleeve™) (ftbg	Weight suspended in well.
		(s): <u>63.0</u> ^r
	Retrieval	2299/00/00/00/00/00/00/00/00/00/00/00/00/0
-	Date and Time of Retrieval: Date	: 6/1/11 Time: 1110
همینانین در	Total # of days deployed: \ Day	
	Weather Conditions: Pow-fla	Cloudy NG5
	Depth to groundwater at time of retrieval: U	5.35 "
- et in a constant a marane	Total well depth at time of retrieval:	65,724
	Downhole Field Parameters Upon Retrieval:	VOLEKAND
	Temp: 3.52 (°C) ORP:-45.3 pH: G-78 DO: 1.58	
•	ph: <u>b210</u> 0: <u>100</u>	(mg/L) Serial #:_ <u>V4+ [V00(52</u>
	Notes/Observations:	
· · · <u>-</u> · · · ·	ਗ਼ਖ਼ਸ਼ਖ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਜ਼ਗ਼ਫ਼ਸ਼ਜ਼ਜ਼ਫ਼ਸ਼ਜ਼ਫ਼ਫ਼ਫ਼ਸ਼ਫ਼ਫ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਸ਼ਫ਼ਫ਼ਫ਼ੑਗ਼ੑੑਗ਼ੑੑਗ਼ਫ਼ਫ਼ਫ਼ਜ਼ਜ਼ਫ਼ਜ਼ਫ਼ਫ਼ਫ਼ਫ਼ਜ਼ਗ਼ਫ਼ਗ਼ਫ਼ਸ਼ਫ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਸ਼ਫ਼ਸ਼ਫ਼ਸ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਜ਼ਫ਼ਜ਼ਫ਼ਜ਼ਫ਼ਜ਼	Turb (NT14), 11.35
		Turb (NTU): 11.35 SpCond (Usicm): 429
· .		punch i som udgy
1	Field Sampling Technician: Name(s) and Comp	-
· · · /		
	Most hew kassane	Areadis
	มมาระแนนการแสดงกระสุขติมุณกระบบคุณกระบบคุณกระสุขตระสุขตระสุขตระสุขตระสุขตระบบคุณกระบบคุณกระสุขภูมิการสุขานกระบบ 	ສະມາຂະນະແນນກະນະການແມ່ນວ່າຫຼັງການທີ່ສະຫະກະກັງການສຽງການແມ່ນການທີ່ການແມ່ນການສະຫຼຸມສະຫຼຸມສູງການແມ່ນການແມ່ນແມ່ນສະຫະກ

•;

ł

- [

:1

4

11111

.]

:+

.

į, !

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
site: <u>SRSNE</u> Location: <u>Surthhaton</u>	۰. ۲۰۰۰
Well ID: <u>CP2-4A</u>	
Well Type: * Monitoring * Othe Well Finish: * Stick De * Flush	n Mount
Measuring Pt: • Top of Casing Total Depth As Constructed (ftbgs): 23	• Other (specify): 3Screened Interval (ftbgs):3.3.3.3.
Well Casing: Diameter: 2" Well Screen: Diameter: 2"	Material: <u>PVC</u>
Deployment	Daily C/C/17
Date and Time of Deployment: Weather Conditions:	Date: 6/6/17 Time: 0945
Depth to groundwater at time of deployr Total well depth at time of deployment:	
Dimensions of HydraSleeve™: Length Deployment Method/Position of Weight:	
PID (ppm): teaO (Hama) and the s	Top-Down:Weight attached to bottom of HydraSleeve™. Weight suspended in well.
Deployment Depth (Top of HydraSleeve	 Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. ™) (ftbgs): \5.8 '
Retrieval	
Date and Time of Retrieval: Total # of days deployed:	Date: $G/7/17$ Time: 1245 zy 4^{1} 1^{1}
Weather Conditions: <u>Pour</u> Depth to groundwater at time of retrieva Total well depth at time of retrieval:	
	eval: <u>- 86,3 (mV)</u> Water quality meter: <u>YST556M0D</u> <u>3.85 (mg/L)</u> Serial #: <u>14F100062</u>
Notes/Observations:	
	Turto(NTW): MMMM SpCandl(US Km): Gq-
Field Sampling Technician: Name(s) an	
Name	Company

i

i

13

. .د

••

· •=•

.

i

		ADIS			Appendix B-2 Sleeve™ Field Form	
	Site:	SRONE				
	Location:	South noton (T	<u>an an a</u>	• ·	
	Well ID:	MW-907D	d drame or one	**************************************	7	
	Well Type:	Monitoring Other:			u	-
	Well Finish:	• Stick Up • Flush M	lount		anna a' an amhairt fha bhaile an ann ann an ann an ann an ann ann an	-
	Measuring Pt:	• Top of Casing		• Other (speci	ify):	
•:	Total Depth As Con	nstructed (ftbgs): 50).OI	Screened Inte	rval (ftbgs):_40.0.50.0'	
	Well Casing:	Diameter: <u>2"</u>		Material:		
	Well Screen:	Diameter: 2"			- Watered La Geometrica and an anno фил фунkti (her Nach) y Waterean annan an an air an bhan mar an anna	
	Deployment			• •		
-	Date and Time of D	eployment:	Date:	G16/17	Time: 1055	
	Weather Condition	s: <u>Cloud</u>	<u>и~</u> с	55°		
	Depth to groundwa	nter at time of deployme	nt:	7.80'	TRATERNA STORES TO THE REPORT OF THE PARTY OF	
	Total well depth at	time of deployment:		52.581		
	Dimensions of Hyd	IraSleeve™: Length (in	.)	36	Diameter (in.) 1,8	
	Deployment Metho	d/Position of Weight:				
	PID (ppm): <u>6</u>	<u>.0</u>		Weight susper	Weight attached to top of HydraSI	
-	Deployment Depth	(Top of HydraSleeve™)	(ftbgs	5):	45.0'	
	Retrieval					n mar ann an
	Date and Time of F	letrieval:	Date:	6/1/17	Time: 1320	
	Total # of days dep	loyed: <u>1 Dav</u>	1			
	Weather Condition	s: <u>Partli</u>	\mathbb{C}	mdy 270) ⁶ 1	
	Depth to groundwa	ater at time of retrieval: ¹	1	7.774		
	Total well depth at	time of retrieval:		52.58'	ana any amin'ny soratra ana amin'ny soratra ana amin'ny soratra ana amin'ny soratra amin'ny soratra amin'ny so	zkužedni 1994 – 1995 marka meriosane soverno soverno soverno soverno soverno soverno soverno soverno soverno s
	2	rameters Upon Retrieva				-
	Temp: 18,47	(°C) ORP:	9.0	(mV)	Water quality meter: 15155	<u>TC MDS</u>
	рн: <u> </u>	DO:	<u>,98</u>	(mg/L)	Serial #: 147100062	
	Notes/Observation	s:		na an ann an ann ann ann ann ann ann an	a de marta da marta de la constructiva d	929(52)(193)(193)(193)(193)(193)(193)(193)(193
		an maran manan manda manga kepangan pangan sa pangan sa kanan manan manan manan manan kanan kanan kanan kanan k	diversity of the second se		- Tilel (h	mal'(WH
	- Markov (Markov)				Sola	vt4):10,97 1(451cm):569
					Y WWW.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Field Sampling Teo	chnician: Name(s) and	Compa	алу		
	x Airi	Name		Company		
	Rata Mart	then Kissane	-944.000	Ar cad	<u>()</u>	N 1 - 20 - 20 N 20 N 20 N 20 N 20 N 20 N 20

 \mathbf{e}_{2}

.*

-	AR AR	ADIS		Appendix B-2 Sleeve™ Field Form	
····	Site: Location: Well ID:	SRSIVE Southington, MW-1218		aa •	
21 - 1	Well Type:	· Monitoring · Other			
· · ·	Well Finish:		Mount		
	Measuring Pt:	• Cop of Casing	• Other (spec	city): erval (ffbgs):6-52_0'	
	Well Casing:	Diameter: 2.		rval (rugs): <u>40-0-Jold)</u> : PVC	
	Well Screen:	Diameter: 24			zalista
	Deployment				
	Date and Time of Weather Condition	ons: <u>Clear</u>	Date: <u>616117</u>	Jime: 1185	
n and the state	Contraction of the second s	water at time of deploym at time of deployment:	$\frac{5.72'}{53.91'}$		
		ydraSleeve™: Length (hod/Position of Weight:	(in.) <u>36</u>	Diameter (in.) <u>8</u>	
		th (Top of HydraSleeve	Weight susper Top-Down: Weight susper	Weight attached to top of Hydra	
···	Retrieval		and a second department of the second s		
بین ،	🐐 🕂	leployed: <u>LD or</u> ons: <u>Port</u> water at time of retrieva	··· ··· ···	Time: 1355	
- · · ······	Downhole Field		val: <u>-95,1</u> (mV) <u>,26 (mg/L)</u>	Water quality meter: <u>Y</u> Serial #: <u>14FlCCCGA</u>	<u>F556MDS</u>
	Notes/Observati	ons:		•	·
	7		-	tur Solo	6(NTU):6.62 nd.(451cm):578
,	Field Sampling 1	Fechnician: Name(s) an Name	d Company Company	างของ และการที่มาย ของการการการการการการการการการการการการการก	aansaaniinin arronnooliinii gogoo aaniinin oo dadaa aanii
·	Matthe	-KISSOLE	Arca	212	

÷;

-1

.

ŗ

۲

÷ :

ł

۰. 2 ÷.

ł

400

1

- John

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
SUCAL	
Site: <u>SRSNE</u>	۲۶٬۳۵۱ میروند. در میروند میروند میروند میروند و میروند و میروند میروند و میروند و میروند میروند و میروند و میرو مراجع ایروند میروند میروند میروند و میرو
Location: Southington, CT	
Well ID: <u>Mw-907DR</u>	
Well Type: Monitoring Other:	*
Well Finish: Sick Up Flush Mount	
Measuring Pt: Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs): 144	Screened Interval (ftbgs): 159-174/
Well Casing: Diameter: <u>2</u> (1	Material: <u>PVC</u>
Well Screen: Diameter: <u></u>	
Deployment	
	:: <u>646717-615/1-1 Time: 1236</u>
Weather Conditions: <u>Claudy~5</u>	S'
Depth to groundwater at time of deployment:	0.00
Total well depth at time of deployment:	<u>40 CT1</u>
Dimensions of HydraSleeve™: Length (in.)	<u>3C</u> Diameter (in.) <u>\</u>
Deployment Method/Position of Weight:	
PID (ppm):() ()	 Op-Down? Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. (66.5)
Retrieval	
Date and Time of Retrieval: Date	: <u>GIGN1 Time: 350</u>
Total # of days deployed:	
Weather Conditions:	~55"
Depth to groundwater at time of retrieval:	0.00
Total well depth at time of retrieval:	112.94'
Downhole Field Parameters Upon Retrieval:	
Temp: 1. 4 (°C) ORP: 44,7	(mV) Water quality meter: <u>MST_556 MOS</u>
pH: <u>8(51</u> DO: <u>51</u>	(mg/L) Serial #: 1 L F 60000
Notes/Observations:	
2002	Jurb (12th.) 31.7
formation and the second se	Turb (W112):31,7 Sp Caddus/cn):1797
	· · · · · · · · · · · · · · · · · · ·

Field Sampling Technician: Name(s) and Company

--

. . . .

-

2

_____·

. . . .

. -

÷ • • • •

1

· ---

۰.

Name	Çompany
 Dave Bindsen	Arcadio
Matthee Kitsane	Arcadiu

	ADIS			Hydra	Appendix B-2 Sleeve™ Field Form
A 11	SRSNE			-	
Site:	E I I	<u> </u>	1-4-	n ta an	zz
Location:	South h	zton, (_]	anna ann an a Duigean Carl ann an an Aobh	m
Well ID:	<u>MW-704</u>	ະ <u>ນ</u>		ana ana mangangan kana ana ana ana ana ana ana ana ana	
Well Type:	Monitórino	Other:	THE OWNER OF THE OWNER OWNER OF THE OWNER		-
Well Finish:	STALE	Elush M	lount'		
Measuring Pt:	• (Top of Casin	Ð		Other (spec	ify):
Total Depth As Cor			<u>)/</u>		rval (ftbgs): 53.6 - 6 3.0 '
Well Casing:	Diameter. 2	24		Material	PVC.
Well Screen:	Diameter:	<u>)"</u>		6 1	
Deployment				<u>elstr</u>	<u> </u>
Date and Time of D	eployment:		Date:	616717	Time: 10 55
Weather Condition	s:	C:Lon	<u>dy~</u>	-56	
Depth to groundwa	iter at time of d	eployme	nt: Ü	4.52	
Total well depth at	time of deploy	nent:		<u>G1.01'</u>	
Dimensions of Hyd	raSleeve™: l	.ength (in	.)	36	Diameter (in.) 1.8
Deployment Metho	d/Position of W	/eight:			
PID (ppm):	0			• Cop-Down Weight susper	Weight attached to bottom of HydraSleeve™.
					Weight attached to top of HydraSleeve™.
				Weight susper	
Deployment Depth	(Top of Hydras	Sleeve™)	(ftbgs	-	58.01
Retrieval	Charge Company Million and an and	1011-1011-101-101-101-101-101-101-101-1			
Date and Time of R	letrieval:		Date:	6/6/17	Time: // \\ 5
Total # of days dep	loyed:			Duy	
Weather Condition	s:		é		0F
Depth to groundwa	iter at time of r	etrieval:		4.48	
Total well depth at	time of retrieva	al:		61.011	
Downhole Field Pa	rameters Upon	Retrieva	ıl:		
Temp: <u> </u>	(°C) ()RP: <u>``</u> `	14.5	(mV)	Water quality meter: <u>\st556m?</u>
pH:		00:	1.81	(mg/L)	Serial #:14F100067
Notes/Observation	S.		udarad Vitakhar ara	2000-000-000-000-000-000-000-000-000-00	yu yan ang ng n
generales attente areas and an an an and a second representation of the second s	ann-ann Annais an Annaichtean Annaichtean Annaichtean Annaichtean Annaichtean Annaichtean Annaichtean Annaichte				NTU (NV) -6.82 Sp cond. (45/cm) - 276
				1	Sp (ond. (45/cm) - 275
	a de la constante de la constan	ana ana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana a		an and a sub-	สมเองสงกระบบการแรงสมเองสงรางการสาวสงกระหว่างการการการการการการการการการส่วนให้สุดที่สาวสาวสาวสาวสาวสาวสาวสาวสาว
Field Sampling Tec	hnician: Name	e(s) and (Compa	iny Company	

 $\mathbf{w}_{\mathbf{q}}$

Name Company <u>Subscher Arcodic</u> <u>Mudikovani</u> <u>Arcodic</u>

ARC ARC	ADIS	Appendix B-2 HydraSleeve™ Field Form
Site:	SRSWE	
Location:	Scothington C.T.	2010 BECERNTHANDARDANIK AND
Well ID:	MW. 100MR	
Well Type:	Monitoring) Other.	
Well Finish:	Stick Up Flush Mount	*
Measuring Pt:	• (Top of Casing)	Other (specify):
Total Depth As Co	nstructed (ftbgs): 32'	Screened Interval (ftbgs): 102 0 - 132 01
Well Casing:	Diameter. <u>A''</u>	Material: PVC
Well Screen:	Diameter: 2 "	-
Deployment		
Date and Time of C		676/17 G/5/17 Time: 130
Weather Condition	· · · · ·	
	ater at time of deployment:	70.82
i otal well depth at	time of deployment:	135.01
Dimensions of Hyd	fraSleeve™: Length (in.)	<u>36</u> Diameter (in. <u>) .</u>
Deployment Metho	od/Position of Weight:	
PID (ppm):	<u>.</u>	• Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
1986 		[●] Top-Down: Weight attached to top of HydraSleeve [™] .
		Weight suspended in well.
Deployment Depth	i (Top of HydraSleeve™) (ftbg	s): <u>((7.0</u> '
Retrieval		
Date and Time of F	Retrieval: Date:	G16117 Time: \300
Total # of days dep		
Weather Condition	is: <u>Clandly ~S</u>	5~
1	ater at time of retrieval:	<u>76 50</u>
Total well depth at		135.01'
Temp: <u>\ 3</u> 2	arameters Upon Retrieval: (°C) ORP: <u> </u>	(mV) Water quality meter: <u>YST 556 M.pS</u>
pH: <u>5.06</u>	DO: 1.28	(mg/L) Serial #: 45100062
Notes/Observation	15: 	
		NTU (WWW) 12,75
	กระการกระกับ และกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระการกระก	Spland, (us/cm)-1254
Field Sampling Te	chnician: Name(s) and Comp	3ny
~ ~ · ·	Name	Company
Dave Bin	alsen	Anoady
Matthe	ow Kyssane	Aroadis

۱.,

•

81.e

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
site: SRSNE	
	uthington CT
Vell 10: P20-2M	ann an
Vell Type:	• Other
Vell Finish: Slick UD	* Flush Mount
Aeasuring Pt: Top of Casi	
otal Depth As Constructed (fibg	
Vell Casing: Diameter.	
Vell Screen: Diameter.	
Deployment	
Date and Time of Deployment:	Date: 6-5-17 Time: 0815
Neather Conditions:	Clandy N55
Depth to groundwater at time of	
otal well depth at time of deploy	yment: <u>58.32/</u>
)imensions of HydraSleeve™:	Length (in.) 36 Diameter (in.) 1.8
Deployment Method/Position of	
PID (nom): - O - O - Correction	■ Kop-Down: Weight attached to bottom of HydraSleeve ™.
PID_(ppm)://eO/laO/citorial/instance capitolization	 Top-Down: Weight attached to bottom of HydraSleeve ™. Weight suspended in well.
ν το του χρατικό το του του του του του του του του του	Weight suspended in well.
eelo valla. Negatatooneelii, ooloo gaabe	Weight suspended in well.
PID (ppm): <u>re() a Contains to</u> legitor as a constall, of eight threates as observed establish constant. Deployment Depth (Top of Hydra	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
asa mwali (<u>)</u> Metyrtarataka kubulu (kina) e Kubulukel	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
really well, and a second state of the second secon	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 51.0 ⁴
The second secon	Weight suspended in well. [●] Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
Deployment Depth (Top of Hydra Retrieval Date and Timë of Retrieval: Fotal # of days deployed:	Weight suspended in well. ^e Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 51.0 ⁴ Date: 6-6-17 Time: 0920
Deployment Depth (Top of Hydra Retrieval Date and Timë of Retrieval: Fotal # of days deployed: Weather Conditions:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. aSleeve™) (ftbgs): 51.0' Date: 0-6-17 Time: 0920 Ray Ray Ray Ray Ray
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Fotal # of days deployed: Weather Conditions: Depth to groundwater at time of	Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): $51.0'$ Date: $6-6-17$ Time: 092.0 12ay Ray $E55^{\circ}F$ retrieval: 7.70
Deployment Depth (Top of Hydra Retrieval Date and Timë of Retrieval: Fotal # of days deployed: Weather Conditions: Depth to groundwater at time of Fotal well depth at time of retriev	Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): 51.0^{\prime} Date: $6-6-17$ Time: 092.0 Ray $E55^{\circ}F$ retrieval: $7,70$ val: $58,30^{\prime}$
Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Fotal # of days deployed: Weather Conditions: Depth to groundwater at time of Fotal well depth at time of retriev Downhole Field Parameters Upo	Weight suspended in well. Top-Down: Weight attached to top of HydraSieeve TM . Weight suspended in well. aSieeve TM) (ftbgs): $51.0'$ Date: $6-6-17$ Time: $0.972.0$ The contract of the second
Retrieval Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Fotal # of days deployed: Weather Conditions: Depth to groundwater at time of Fotal well depth at time of retriev Downhole Field Parameters Upo Temp: <u>10.55</u> (°C)	Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): Date: $6-6-17$ Time: 51.0^{\prime} Date: $6-6-17$ Time: $0.97.0$ Non 51.0^{\prime} Date: $6-6-17$ Time: $0.97.0$ Non 53.32^{\prime} on Retrieval: $0RP$: 57.32^{\prime} Water quality meter: $151556mP$
Retrieval Deployment Depth (Top of Hydra Retrieval Date and Time of Retrieval: Fotal # of days deployed: Weather Conditions: Depth to groundwater at time of Fotal well depth at time of retriev Downhole Field Parameters Upo Temp: <u>10.55</u> (°C)	Weight suspended in well. Top-Down: Weight attached to top of HydraSieeve TM . Weight suspended in well. aSieeve TM) (ftbgs): $51.0'$ Date: $6-6-17$ Time: $0.972.0$ The contract of the second
Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>10.55</u> (°C) pH: <u>534</u>	Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): 51.0^{\prime} Date: $6-6-17$ Time: 092.0 12ay Ray $E55^{\circ}F$ retrieval: $7,70$ val: $58,33^{\prime}$ on Retrieval: $658,33^{\prime}$ DO: 3.30 (mV) Water quality meter: $\frac{151556m2}{15600472}$
Retrieval Deployment Depth (Top of Hydra Retrieval Date and Timë of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>10.55</u> (°C)	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): 51.0^{\prime} Date: $6-6-17$ Time: 0.9720 12a Ray ESS°F retrieval: 7.70 val: 58.30^{\prime} on Retrieval: 58.30^{\prime} DO: 3.20 (mV) Water quality meter: $151556m2$ DO: 3.20 (mg/L) Serial #: 14200042
Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of Total well depth at time of retriev Downhole Field Parameters Upo Temp: <u>10.55</u> (°C) pH: <u>534</u>	Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve TM . Weight suspended in well. aSleeve TM) (ftbgs): 51.0^{\prime} Date: $6-6-17$ Time: 092.0 12ay Ray $555^{\circ}F$ retrieval: 7.70 val: 58.32^{\prime} on Retrieval: $0RP$: $51.556mP$ DO: 3.50 (mV) Water quality meter: $151.556mP$ DO: 3.50 (mg/L) Serial #: $14P10004P2$

ł

21m

`. ·

Mart Kissonel Arcunis

Well Nu Field Per Sampling	Location (Site/Facility Name) SRS Well Number MW 1268 Date 6/5/201 Field Personnel See Meture Sampling Organization OLM Tree Purging Device; (pump type) Blackles Identify MP Book RVK RBEC Total Volume Purged 25 CHEVS													
Clock Time 24 HR	Water Depth below MP ft	Pump Dial 95	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments			
10:00	3.12	10	50	0	14.02	528	6.49	35.7	1.46	12.53	Visible Solids			
10:05	3.12	10	50	.25	13.99	542	6.28	23.9	2.14	13.49				
10:10	3.12	10	50	,50	14,40	561	6.20	16.8	1.38	10.76				
10:15	3.12	10.	50	,75	14.46	563	6.20	16.0	1.17	14.54				
10:20	3.12	10	50	1-00	-14-53	5.15	6.19.	15.0	0.97	11.34	·			
10:25	3.12		50	1.25	14.35	568	619	14.6	0.80	16.41				
10:30	3.12	de l ústre	50	1.50	14.22	567	6.18	12.5	0.56	11,4-1	ni se			
10:35	3.12-	-10	-50	1.75	1442	575	6.17	10.7	0.46	5.84	· · · · · ·			
10:40	3,12	16	. 50	2.00	1457	5.89	6:18	10.1	0.46	9:25	· · · · ·			
10:45	3.12	TOTA	50	2.25	14:33	588	6.18	99	0.44	9707	· · · · · · · · · · · · · · · · · · ·			
Stabilizati	ion Criteria		(if),#[;9]		3%	3%	±0.1	± 10 mv	10%	10%	······································			
				cles/min, etc	c). Initia	Depth to	Water:	31	C	omments:	16 R			
	ens per cm(imhos/cm)at	25°C.		to Botton					50 50			
J. OAIdat	ion reduction				- opu	i io botton	i cyr c	1	e i					
	-{t03})/of													

Location (Site/Facility Name) SRS Well Number Muider Muider Muider Field Personnel Seen Hutchins Sampling Organization Outhout Inc Identify MP Top of PVC													
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	-	A
10:50	3.12	10	50	2.50	14.34	588	6.18	7.6	6.35	9.02	VRible	501,35	
10:55	5	mple	Calle	reted									
		1											
•				ana natarang panga	and the second second	م حر المتسليل المانيا				an in the payments			
		•	i - i		in the second								
	td - I - I - I - I - I - I - I - I - I -		· · · · · · · · · · · · · · · · · · ·				173						
	Tile V		1.15			· _	(1-1	- B	:	1 - 13			
-16 75 (-17 p1)	a Charlie						<u>319</u> 19 - 2	t te		1		PERCENT AND A REPORT	
1000	an an Arigan an Arian	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •		· · · · · · · · · ·								
1. a pros					1	1		11 2) 10 mm	100/	10%	H		
Stabilizati	ion Criteria		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3%	3%	₩0.1	± 10 mv	10%	10%0***			κ.
	-	•		ycles/min, et	c). Initia	Depth to	Water:	3.11	C	omments:	1		
	ens per cm(imhos/cm)at	25°C.	•	i to Botton					· · · · · · · · · · · · · · · · · · ·	· ·	
J. OARdan	ion reducto	i.				i to Sotton	<u></u>		2 .	d	·		
		-	e e		-			2	1	1 	t		
				1		meaning lates if a			i		4 	J.	of
	1	-	-		*	1	.1	ŀ					

h

Well Nu Field Per	g Organizat	-126C	Date utchin 3	5 061051 zer	7105	Depth to 24/34 of screen (below MP) top bottom PID: Pump Intake at (ft. below MP) 29 Purging Device; (pump type) (3/2) 20 Total Volume Purged 1.5 Lites 5						
Clock Time 24 HR	Water Depth below MP fl	Pump Dial ¹ o ^{si}	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1315	1.77	.20	100	0	13.25	525	6.72	423	6.55	2.82	Water Clear	
1320	1.77	30	100	0.5	13.10	534	6.64	51.6	6.32	2.88		
1325	1.77	20	100	1.0	13.05	535	6.61	57.8	6.27	4,49		
1330	1.77	30	100	1.5	13.04	535	6.58	61.8	6.24	3.66		
1335	So	igni	es	en come post	a and a star				المحمر الاحتماد المست	·····		
				5.4 m								
			1						1-			
				-	-	Te.						
		- 04 - 1					1 :					
				1							Contact the state of the state	
1. Pump 2. μSiem		(for exam same as p	imhos/cm)at	ycles/min, et 25°C.		3% I Depth to 1 to Botton	Water:		10% 2 C	10% omments:	10 Q 5 D (103)	

ţ

Well Nu Field Per Sampling	(Site/Faci mber_ <u>MA</u> sonnel_ <u>5</u> g Organizat MPT6	ion (Date 0	6/03/20	w/	· · ·	Depth to <u>/ / / 4</u> of screen (below MP) top bottom Pump Intake at (ft. below MP) <u>11.5</u> Purging Device; (pump type) <u>Blaster</u> Total Volume Purged <u>6.0 Lites</u>								
Clock Time 24 11R	Water Depth below MP ft	Pump Dial V31	Purge Rate ml/min	Cum. Volume Purged liters	°C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	-	*		
1440	7.40	10	100	0	13.96	343	7.43		1.79	13.76	Water clear				
1445	7.40	10	100	.5	13.57	337	7,42	-7.2	1.50	8.96			-		
14:50	7,40	10	100	1.0	1310	385	7.19	0.1	0.88						
1455	7.40	10	100	1.5	12.96	423	685		0.70	87.08					
1500	7.40	10	100-	-20-	19:00	.427.	6:70	9.0	1.02	17.10					
1505	7.40	10	10.0	25	12.85	432	6.57	12.2	0.89	75.91	Anne and The Second				
1510	7.39	10.	100	3.0	12.69	430	6:52	14.7	0.82	75.06	· · ·				
1515	7.39	10	105	3.5.	-12.66	434	6.48	17.3	6.71	73,16			1		
1520	7.40	:10 .	100	4.0.	12.69	434	6:47	18:2	0.69	61.99					
1525	7.40	10	100	4.5	12.70		6:48	20.8	0.81=	51.63					
Stabilizat	on Criteria	1			3%	3%	±0.1	± 10 mv	10%	10%					
2. µSiem		same as µ	mhos/cm)at	ycles/min, et 25°C.		Depth to	1	EI	C	omments:	10 R 5 D (103)		~~~~ ¹		

Well Nu Field Per Sampling	Location (Site/Facility Name) SRS Well Number MW-PID Date 06/05/2017 Field Personnel Sean Hwtchins Pump Intake at (fl. below MP) PID: Sampling Organization OM Inc Purging Device; (pump type) RIadder Identify MP 100 cS MC K3es Total Volume Purged G.O.L.TERS													
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments			
1530	17.40	10	100	5.0	12.74	434	6.46	22,5	0:73	49.31				
1535	7.40	10	100	5.5	12.64	434	6.46	22.5	0.73	45.73		911		
1540	7.40	10	(00)	6.0	12.67	434	6.46	22.4	0.75	46.33				
1545	Sen	ples	Taker											
			- M	yn wrangwar		an Sama ya				، بعد حر من المحمد موجد	<i>i</i>	The second		
			terrer family committee	Sec			-13 - <u>1</u>				hare the second second a constant of	a 914 1 4 40 94		
		241 (MP -	-				17-11	1.4		t				
Ē.			P. 12.					11 5 1 3			÷ :			
p i h	1	t n	1990 (1990) 1990 (1990)				Τ.,	e, e f		· · · · · · · · · · · · · · · · · · ·	t is internet			
			-	и) — 19 Ц	a de la companya de	· · · · · · · · · · · · · · · · · · ·	4 : TE				4	· · · · · · · · · · · · · · · · · · ·		
Stabilizat	ion Criteria	0		1	3%	3%	±0.1	± 10 mv	10%	10%	1			
1. Pump	dial setting	(for exam	ple: hertz, cy	cles/min, etc	c). Initia	Depth to	 Water:	17.2	1 c	omments:	: *			
2. µSiem		same as µ	mhos/cm)at			to Bottom	1	Z -7	3. 	#***				
J. OAIGA				1	- Dopt	- to Dotton	1-					· ·		
			1955 game		4		1 -		i A					
			and a second sec				-			tion from)) .he	4		

Well Nur Field Per	g Organizat	-10031	R Date) 		· · ·	Depth to 103/118 of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) 110.5 Purging Device; (pump type) Sladser Total Volume Purged 10-5 4					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °¢ ₣	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	Temp
1355	5.66	60	100	,5L	50.72	982	8.17	-146.7	3.57	15.53	Water Cl	ec- 10.40
1400	6.61	60	100	11	50.76	1163	8.67	-121.6	2.00	55.63		10.42
1405	7.29	60	100	1.5L	50.98	11.80	8.80	-124.7	1.56	36.21		10.54
1410	7.88	60	100	20	51,04	1186	8.89	-125.1	1.39	10,90		p.58
1415	8.22	60	100-	254	51.1.3	and the second s	9.04	- 125.6	1.10	9.99		10.57 10,76
1420	8.45	60 .	122	31	51.36	1136	211	-127.4	1.12	9.23	- Anna contractor a contra a con	10.76 10.00
1425	9.18	60 .	1100	3.56	50.85	1169	9,19	-129.3	1.13	16.01	1. T. 19	10.47 10.41
M30	9.29	60 -	-1052	ML.	50.73		9.20	-130.8		11:41	¥ 1:	10.11
1433	9:81	160.	100-	. 4.5.	56.55	445	120	1344	1:01	13:27		1032 +038
1440	10.12	607	1007	51	50,59	1140	51.4	137.1	0.76=	20:01		10.33
Stabilizati	on Criteria				3%:	3%	±0.1	± 10 mv	10%	10%		
				veles/min, et	c). Initia	Depth to	Water:	8.86	C	omments:		
	ens per cm(imhos/cm)at	25°C.		1 to Botton	4	4		1 1 1 1 1		
J. Oxidati		n potenti			-							104 ·
	*					222	1			and the second		_ /
				1	-		-					1

of 3

1

\$

Well Nu Field Per	g Organizat	v-1003		5)		Depth to /of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C F	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments temp °C		
1445	10.44	60	100	5.56	50.96	1137	9.19	-139.6	1.01	Anna, Anna	10,53		
1450	10.60	60	100	62	50.58	1132	9.20	-140.8	0.49	10.88	10.32		
1455	1071	60	100	6.52	50.46	1127	920		6.95	637	10.26		
1500	10.89	60	100	70	50.44	1126	9.20	-141.8	0.42	14.45	10.24		
1505	11.32	60	100	7.61	56-31	11:35	9.21	-141.3	0.71	12.69	10.17		
1510	11.61	60.	1.20	8.0L	50.31	1136	9.))	-1443	0.61	15,42	16.17		
1515	11.94	60-	1100	8.56	50.37	133	4.24	-1433	0.55	12.98-	10.21		
1520	12.4.4	60-	100	9.0L	-50:43	1132	4.25	-148.4	0.50	12:53	10.24		
1576	12.65	60	100	9.5L	50.53	1134	9127	-1997	0:48	13.87	10.30		
1530	12.81	,60-	100	10.0L	50.61	1138	9:38	-150.8	-0.47=	14:39	10.34		
- manufacture and	ion Critoria	the state of the local division of the local	and and	i ir.	3%	3%	#0.1	± 10 mv	10%	10%			
1. Punip d	lial setting	(for exam	ple: hertz, c	veles/min, etc	c). Initia	Depth to	Water		C	omments:			
2. µSieme	ens per cm(same as p	imhos/cm)at		; • ·	-		1		-	1) 1)		
3. Oxidat	ion reduction	on potenti	ial (ORP)		Dept	hito Botton	n:j		1				
	and and		1 And a start of the start of t					a an	1	1 N 1		0	
Ag **	Ĵ.			1	1	1	1	11		*	1	0	
	and the	i.	1	1	Sector and the sector of the s				1994 B	7			

- of 3 i

Well Nu Field Per	g Organizat	W-1003 Seen 6)		Depth to /of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged						
Clock Time 24 HR	Water Depth below MP A	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments temp		
1535	13.78	60	100	10.5	50.69	1174	930	-1517	0.44	13.67	10.38		
1540													
•				ಕ್ಷಮ್ಮ (ಎಲ್.ಎಲ್. ನಿರ್ದಾಶನ	and the second second	1973 - Stanman Ja	-1 ₇			aring Congermany			
		• • • • • • • • • • • • • • • • • • • •	a 1410 for to annual anno an	·· · · ·			-				و المحمد الم		
	une in die	. *	- it				9- p-			1			
		1		-	-					а. —	7 T 1		
e 3 1.		त् स्त्र स्व				, .,	$[\mathcal{V}_{j}]_{ij}$		ta di		· · · · · · · · · · · · · · · · · · ·		
		. : 1	4	an a			4 76	2					
1. Pump	dial setting	(for exam	plc: hertz, c imhos/cm)at	ycles/min, et	c). Initia	3% Depth to		± 10 mv	10% C	10% omments:			
	ion reduction				Dept	to Bottor	n: -1) -	242	and a second		2 · · · ·		
	The second s						-		ally several	Line and a second	4. ·		

3 + 3

ъ

:

.

Well Nm Field Per	Organizat	-1003) St Date St Otm Dvc	6/6/17 Top	- 5R		Purgit	MP) to Intake at	op bo (fl. below ; (pump t	00 of sci ottom MP) 11 J. ype) Oladd 14-60	5PID:		
Clock Time 24 HR	Water Depth below MP A ^(1,)	Pump Diat PSi	Purge Rate ml/min	Cum. Volume Purged liters	Temp. ℃Ę	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	-	Temp
1030	NO B	60	200	1.0	51.03	2942	7,54	-72.0	3.06	12.04			\0.51
1035	14.34	60	190	20	51.05	2442	7.57	-63.1	2.03	21.92	127		10.58
1040	16.22	60	150	2.75	51.01	2940	1.57	-61.5	2.16	29.06			10.56
1045	17.23	60	150	3.5	50.99	2938	7,56	-59.7	2.03	32.05	· · · ·		10.55
1050	17.50	60	150	4.25	51.02	2438	7.55	-58.2	1.98	3490			10.57
1055	17.87	50	150	5	51.63	2945	7.54	-53.1	1.96	35.04	Let Well	Recharge, Redi	~n
1130	15.84	55	106	5,75	51.53	2458	761	-51.9	1.99	38.20	109 50	(103)	10.83
1125	15.76	60	12-5	6.675	-51.27	2947	7.49	4-5122	12:00	3412			10.71
11301	15,78	60	125	57	51.27	3943	7146	-50.2	1:99	59112	a a suar		10.71
1135	15.79	60-	125	,7.625	51.22	2942	Tiyi	-50.4	1.90-	46.81			10.68
Stabilizati	on Criteria		1 112	r.	3%	1	±0.1	± 10 mv	10%	10%			
1. Pump o	hal setting	(for exam	ple: hertz, c	ycles/min, et	c). Initia	Depth to	Water:	14.91	o C	omments:	4 4 4		
 Pump dial setting (for example: hertz, cycles/min, etc). Initial Depth to Water: <u>4.96</u> Depth to Bottom: <u>123.68</u> 												j	
J. Oxidati	on reduction	n potenti		l		-1	-				-	и .	
	ť.					4	4 -			nd			(of 3
		1	and the second second				-				-		

ţ

3 --

Well Nu Field Per	g Organizati	reenth	Date stuh S-	5 616139	17		Purgit	MP) to Intake at	op bo (fl. below ; (pump ty	Consci tiom MP) 1/2 ype) Class	5 PID:
Clock Time 24 IIR	Water Depth below MP fi	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp.	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments temp c
1140	15.80	60	126	8.250	51:26	2943	7.36	-50.3	1.67	60.58	10.70
1145	15.80	60	125	8,275	51.17	2945	7.34	-51.4	1.54	48.56	10.65
1150	15.80	60	125	9.50	51,20	2946	1.33	-50.7	1.36	57.73	10.67
1155	15.80	60	125	10.125	51.22	2948	7.32	-50.3	4:28	60.58	10.68
1200	15.80	60	125-	10.750	5113	29.88	7.31	-50:2	1.17	66.74	0.63
1205	15.80	60.	125	11.375	5117	2948	7.30	-49.9	1.09	83.30	10.65
1210	15.80	60.	175	12.0	51.13	2954	7.29	-48.5	0.95	74,00	10.63
1215	15.80	60-	1-2-5	12.625-	51.11.	2953	1.28	4.48.3	0.901	7.8.98	10.62
1200	15.80	60	125	13,350	51.13	2953	7128	-48.2	0.85	83:41	10.63
1225	15-80	60:	125	13.975	51.13	2954	7.28	-48.0	0.20	76.53	10.63
	ion Criteria		ble: hertz, c	veles/min, et	3%.	,3% Depth to		± 10 mv	10% C	10%	
2. µSiem	ens per cm(same as p	imhos/cm)at			1 to Bottom		1		-	
3. Oxidal	lion reduction	on potenti		4 c/m	Depu		-	1			
									1		\sim

2

4

1

Well Nu Field Per	rsonnel g Organizat) Date				Pump Purgit		(fl. below ; (pump t)		reen PID:	
Clock Time 24 HR	Water Depth below MP A	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. ℃F	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments tenp C	
1230	15.80	60	126	14.60	51:14	2954	7.28	-47.9	6.77	31.12	10,63	
1235			Ser	Dies	Take	1						
100.11				8								
				·								
				are surmariana	in a second	21. 1	-1			hanna the second		
		•	and a set of the set of the set								. Las contrato and a contrato a contrat	
		125	P				9. g.		1	15	······	
			ी कि जिस्			12.1					8 ° 1	
<u> </u>		4 - + a					T' I	e, it. k	54 L - 7	11. 9		
	-	1		сі і сілі я _. В			78				· · · · · · · · · · · · · · · · · · ·	
I. Pump		(for exam	nple: hertz, c unhos/cm)at	ycles/min, et	c). Initia	,3% Depth to	Water:			10% omments:		
	ion reducti			25 C.	Dept	to Bottor	n: <u>- </u>	23.60	1	· · ·		· ·
	gaar - mula			,					ł		· · · · ·	
						and the second	-		Ban	and the second design of the s		

3 of is

Well Nur Field Per	g Organizat	Seen 10-) SRS Date (Date (Dat		evV7		Purgi	MP) to Intake at ig Device	op bo (fl. below ; (pump ty	ttom	PID:				
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments						
0900	0900 10.14 80 150 0 11.79 477 8.27-2022 2.13 29.66														
0405	10.56	30	150	,75	10.83	909	291	-1862	1.43	46.19					
0410	10.78	80	125	1.5	11.06	1033	7.86	-183.5	0.79	5222					
0915	10.88	30	125	2.125	11.09	1042	7.66	-183.8	0.72	49.34					
0600	10.89	80	125	2.750	-11.19	1051	7.86	-186.6	0.64	51.91					
5925	10.59	80	125	3.315	12.20	1073	7.78	-156.9	0.62	54.53	a				
>430	10,65	80	125	34	12.55	1080	7.78	-165.3	0.77	47.08					
2435	10.72	.80	125	4.625	11.79	1076	7.79	-165.3		42.47					
7940	10.83	30	125	5.250	11.33	1062	7.81	-167.3	0.80	43.90					
1949	10.88	20	100	5.875	(1,55)	1066	782	-153.6	0.76	49.20					
Stabilizat	ion Criteria	>			3%	3%	±0.1	± 10 mv	10%	10%					
1. Pump	dial setting	(for exam	ple: hertz, c	ycles/min, et	c). Initia	Depth to	Water:	10.16	C	omments:					

2. μSiemens per cm(same as μmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Depth to Bottom: 195.60

0-1

Well Nu Field Per	rsonnel g Organizat	IW 70 Seen 1 ion C		06/08/			Purgir	(MP) to Intake at ng Device	op bo (fl. below ; (pump t	<u>4)</u> of scr ttom MP) <u>17</u> ype) <u>8143</u> 26.875				
Clock Fime 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments			
6450														
0955	11.00	30	100	6.875	11.53	1068	7.79	-176.2	0.57	48.57				
1000	11.06	20	100	7.375	11.44	1066	7.77	-172.3	0.52	60.63				
1005	11.67	80	100	7.875	11.45	1065	1.76	- 170.7	0.51	53.23				
1610	11.08	80	100	8.375	-11.87	1071	7.77	-160.1	0.49	59.19				
1015	11.06	80	100	3.875	12.11	1083	7.78	-155.5	0.48	74.60				
1020	11.62	80	160	9.375	13.44	1101	7.61	-181.1	.0.51	38.64				
1025	10.96	30	100	9.875	13.42	1103	7.61	-186.4	0.53	33.63				
1030	10.80	80	100	10.375	13:30	1108	7.61	-187.9	0.54	35.16				
1035	10.82	30	. (00	10.875	12.37	1093	7.62	-1784	0.57	38.99	:			
Stabilizat	ion Criteria			:	3%	3%	±0.1	+ 10 mv	10%	10%				

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Initial Depth to Water: Depth to Bottom: 195.0

Comments:

10.16

2 of

Well Nur Field Per Sampling	(Site/Faci mber\ sonnel g Organizat MP T c	N 7075 Seen	DA Date Antelins MENC	3			Purgir	MP) to Intake at	op bo (ft. below ; (pump t	$\frac{4}{2} \text{ of sc}$ $\frac{4}{2} \text{ of sc}$ $\frac{1}{2} \text{ MP}$ $\frac{1}{2} \frac{1}{2} 1$	PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² μS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1040	10.82	80	100	11.375	12.20	10.8.4	7.62	-1.83.3	0.57	35.67	
1045	10.38	80	100	11.875	12.10	107)	7.61	-178.0	0.55	38.23	
1050	11.00	30	180	12.375	12.49	1686	7.55		0.51	37.78	
1055	11.02	30	100	12.875	12.13	1080	7.52	-167.9	0.51	34.24	
1100	11.06	80	100	13.375	12.26	1079	8.48	-156.1	6.44	36.20	
1105	11.07	80	100	13.875	12.65	1079	7.46	-160.0	0.42	32.86	
1110	11.07	30	100	14.375	1231	1078	7.44	-164.0	6.38	31.35	
1115	10.91	- 20	100	14.875	13.12	1091	7.41	-153.7	0.36	28.47	
1120	10.95	20	100	15.375	13.05	1094	7:39	- 146.4	0.36	3137	
1125	11.01	80	100	15.875	13.01	1095	7.38	-145.0	0.36	25:72	
Stabilizat	ion Criteria				3%	3%	±0.1	± 10 mv	10%	10%	,

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Depth to Bottom: 193.0

Initial Depth to Water:

Comments:

10.16

3 of

Well Nur Field Per Sampling	(Site/Facil nber <u>Mk</u> sonnel g Organizati MP <u>To</u> (5000 Sean	R Date Hutchir	5			Purgin	MP) to Intake at	(ft. below ; (pump t	ttom	-7 PID:		
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments				
130	11.64	80	100	16,375	12.74.	1088	7.38		0.35	26.35			
135	11.06	80	100	16.875	12.81	1088	-1.37			28.09			
1140	11.07	80	100	17.375	12.95	1089	7.35	-142.1	0:31	27.90			
145	11.10	30	100	17.875	12.85	1087	7.34	-141.9	0.31	26.01			
1150	11.06	30	100	18.375	12.83	1035	7.32	-149.6	6.30	25.87			
1155	10.99	80	100	18.875	12.91	1090	7.33	-147.7	0.31	24.45	. Sacha a		
1200	11.01	80	100	19.375	12.34	1073	7.26	-158.5	0.32	36:70			
1205	MIL	80	100	19.875	11.91	1058	7.27	-161.8	0.31	16.04			
1210	11.19	80	100	20.375	12.01	1054	7.28	-1637	0.30	16-91			
1215 11.25 80 100 20.875 11.99 1048 729 -1687 0.78 17.29											1220 Somples Taken		
Stabilizati	tabilization Criteria $3\% 3\% \pm 0.1 \pm 10 \text{ mv} 10\% 10\%$												

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Initial Depth to Water: 10.16 Depth to Bottom: 145.0

Comments:

Well Nu Field Per Samplin	1 (Site/Faci mberM_ rsonnel g Organizat MP]	-704M Sear H	Date (<u> <u> </u> </u>	16-07-	2017		Pump Purgin	MP) t Intake at	op bo (ft. below ; (pump t	MP) Y ype) RIA 2.51) PID:		
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	ai.	
1505 6.15 50 50 0 21.23 339 7.20-924 3.26 4.53 1412-Pulled													
1510 6.15 50 50 0.25 20.29 323 5.23 - 67.0 2.02 4.21 Transducer													
1510 6.15 50 50 0.25 20.29 325 5.23 -61.0 2.02 9.21 mosture 1515 6.13 50 30 0.50 20.62 316 5.07-67.2 1.69 3.36													
1520	6.10	50	50	a75	21.50	317	4.96		1.21	3.91			
1525	6.66	50	50	-1	21.98	320	4.95	-76.3	0.96	3.27			
1530	6.03	SU	50	1.25	21,79	326	491	- 78.3	0.80	3:79			
1335	6.00	50	50	1.5	21.76	322	4.88	-78.5	0.73	3.70			
1340	5.96	50	50	1,75	21.63	327	4.86	-33.1	0.60	4.64			
1345	5.96	SU	50	2.0	21,55	332	4.86	- 83.1	0.49	4.73			
1350	5,96	50	50	2,25	21.64	322	4.84	-81.8	0.40	4.77	1624 - Placed Transtu	ce	
Stabilizat	ion Criteria	1			3%	3%	±0.1	± 10 mv	10%	10%	4		
1. Pump dial setting (for example: hertz, cycles/min, etc). Initial Depth to Water: 6.67 Comments: Pipe Kinked 2. µSiemens per cm(same as µmhos/cm)at 25°C. Depth to Bottom: 48.10 Comments: Pipe Kinked 3. Oxidation reduction potential (ORP) Depth to Bottom: 48.10 Comments: Pipe Kinked													
										*Um	ble Gas in water		
							ł		In		/	of 2	

Well Nur Field Per	nber <u>M</u> sonnel Organiză	Sean	M Date (Huntelia Miac	10-07-	- 2017		P	(MP) t	op bo	MP) M ype) Bla.	> PID:	-	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/inin	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments		
1355	596	50	50	<i>a</i> .5	21.76	330	4.83	-20.6	0.38	4.82			
1600		Sampl	25 Tak	cr.		8							
		,											
								Æ			0.	-	
		<u></u>					5		54				
					-								
			12			5.6		8 15			1	5	
Itabilizati	on Criteria	a			3%	3%	±0,1	± 10 mv	10%	10%		·····	
 Pump α μSieme 	lial setting	g (for exam	nple: hertz, cj unhos/cm)at ial (ORP)			al Depth to h to Bottor			<u>7</u> c	comments:			

~. 1

Well Nu Field Per	g Organizat	Sean	Date Att Line	-	17/17		Purgin	MP) t Intake at	op bo (fl. below ; (pump t).5 of sc ottom MP) <u>130</u> ype) <u>Ria</u> 12.75	5 PID:			
Clock Time 24 HR	Water Depth below MP ft	Pump Díal	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments				
1100														
1105	641	65	150	.75	12.25	211	7.89	12.4	2.34	9.09				
110	6.95	65	150	1.5	1259	212	7.74	7.1	1.)1	9.92				
1115	7.35	65	100	2.25	13.07	214	7.73	2.0	0.94	8.56				
1120	7.68	65	106	2.75	13.42	218	7.65	-7.2	0.83	7.83				
1125	8.04	65	100	3,25	1325	217	7.59	-10.3	0.73	8.33				
1130	8.66	60	100	3.75	13.65	218	7.51	-14.5	0.66	8.75	Changed from 10850 to 7880			
1139	8.82	60	100	4.25	12.91	213	7.45	-19.3	0.43	7.36				
1140	9.63	60	100	4.75	13.36	215	7.44	-199	0.43	6.35				
1145	10.25	60	100	5.25	13,66	218	7.43	-20.9	0.44	4.91				
Stabilizat	ion Criteria				3%	3%	±0.1	± 10 mv	10%	10%	,			
			ple: hertz, c		c). Initia	Depth to	Water:	8.06	, C	omments:				

µSiemens per cm(same as µmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Depth to Bottom: 141.5

1 of 3

Well Nu Field Per	g Organizat	an Hm	Date Julins Milon	6/7/1	?		Purgin	MP) to Intake at ng Device	op bc (ft. below ; (pump t	10.5 of sc ottom MP) 130 ype) 6(22 2.7.5 C	,5 PID:	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1150	10.37	60	100	5.75	14.62	331	7:38	-	0.45	4.27		
1155	10.78	60	100	6.25	15.21	221	7.34	-23.0	0.47	3.13		
1200	11.05	60	100	6:75	19.96	231	7.33	-22.5	0,46	2.51		
1205	11.06	60	100	7.25	17.34	235	7.28	-12.4	0.54	2.28		
1210	11,17	(0)	100	7.75	-17.49	240	7.27	-13.6	0.54	2.60		
1215	11.35	60	100	8.25	16.90	23.8	7.22	-14.2	0.52	2.65		
1220	11.53	60	100	8.75	17.24	239	7.20	-14,3	0.54	5.03		
1225	11.69	60	100	9.25	16.80	238	7.19	-14.9	0.53	7.52		
1230	11.84	60	[60]	9.75	17.12	240	7.17	-17.8	0.49	20.67		
1235	12.00	60	100	10.25	16.55	237	7.17	-19.4	0.50	28.76		
Stabilizat	abilization Criteria 3% 3% $\pm 0.1 \pm 10 \text{ mv}$ 10%											

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.
 3. Oxidation reduction potential (ORP)

Depth to Bottom: 141.5

1

Initial Depth to Water: 8.06

Comments:

Well Nu Field Per Sampling	(Site/Faci mber PZ sonnel g Organizat MP Too	R-JI Deent	2 Date Interior	617117 S Riser			Purgir	MP) to Intake at g Device) / <u>%</u> op bo (ft. below ; (pump ty	9.5 of scr ttom MP) 1 30 ype) 2(a) 12.7 5 4	.5 PID:			
Clock Time 24 HR	Comments													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
1240 12.17 60 100 10-75 16.21 234 7.17 -28.3 0.44 42.01														
1250	12.50	60	100	1175	16,90	237	2.15	-425	D.41	37.55				
1255	12.58	60	100	12.25	17.00	238	7.15	-43.3	0.39	37.84				
1300	12.92	60	100	12.75	.17,19	239	7.17	-487	0.33	35.11				
1305	- Q O			ples	Taker	1					1350 Replaces			
				· · · ·							Pasteer			
								1						
Stabilizat	ion Criteria		1		3%	3%	±0.1	± 10 mv	10%	10%	· · · · · · · · · · · · · · · · · · ·			
 Pump μSiem 	dial setting	(for exam same as p	nple: hertz, c imhos/cm)at al (ORP)		c). Initia	I Depth to	Water:	8.01	•	Comments:	2			

1

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

-. ¥

3 of 3

;

Well Nu Field Per	(Site/Faci mber_QZ sonne] g Organizat MP	D-2D sean H	Date utchins	6/7/17		Depth to <u>75 / 85</u> of screen (below MP) top bottom PID: Pump Intake at (ft. below MP) <u>80</u> Purging Device; (pump type) <u>Bladles</u> Total Volume Purged <u>6.5</u>					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial pSi	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0835	7.16	40	100	0	10.75	188	8.81	38.9	7.52	18.45	
0840	7.16	40	100	500m	10.73	188	8.54	40.6	7.88	7.37	
0845	7.16	40	100	ý	10.89	194	8.44	42.0	7.88	6.25	
0850	7.16	40	100	1.5	10.91	196	8.34	43.9	7.93	7.76	
0855	7.16	40	160	21	.11.14	196	8.24	45.0	290	9,93	
09 00	7.16	40'	100	2.5	11.16	197	8.15	47.4	9.93	84.24	
0905	7.16	40	100	31	11.20	194	8.14	483	7.90	83.84	
0910	7.16	40	100	3.5	11.26	193	8.68	44.2	7.85	39.35	
0915	7.16	40	100	4	11.21	195	8.03	50.4	7.90	24.99	
6920	7.16	40	100	4.5	11.35	198	8.03	51.2	7.88	16.91	
Stabilizat	ion Criteria			1	3%	3%	±0.1	± 10 mv	10%	10%	

1. Pump dial setting (for example: hertz, cycles/min, etc).

μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

5

Initial Depth to Water: 7.16: Depth to Bottom: 35.50

Comments:

Well Nur Field Per Sampling	(Site/Faci mber P sonnel g Organizat MP C	<u>Seen</u>	e) <u>SRS</u> Date Whitelin Minc PVC	617/1-	Depth to 75/85 of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) <u>SO</u> Purging Device; (pump type) <u>Btabder</u> Total Volume Purged <u>(c. 52</u>						
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
6925	7.16	40	100	5	11.24	194	7,97	53.0	7.98	7.65	
0930	7.16	40	100	5.5	11.16	189	7.96	and an and a second second	7.90	3.46	
0935	7.16	40	100	6	11.33	191	7.45	53.8	7.86	3.16	
0940	7.16	40	IOD	6.5	1199	192	792	54.7	7.93	1.23	
0945	San	ples	Taken								
			19 1			· · · · · · · · · · · · · · · · · · ·					
							1				
Stabilizat.	ion Criteria	1	1	3	3%	3%	±0.1	± 10 mv	10%	10%	ť

Well Nu Field Per	g Organizat	-10	BC	-	Date Mk	SW & 6/9/17 Tacarlos Op	,	Depth to <u>3</u> / <u>13</u> of screen (below MP) top bottom 8 PID: Pump Intake at (ft. below MP) 8 PID: Purging Device; (pump type) Fight Perstaltic Total Volume Purged <u>5.5 Liters</u>					
Clock Time 24 HR	Water Depth below MP ft	D	ump ial M	Ra	irge ite i/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0430	3.40	d,	14	10	0	-5	13-92	247	7-85	-123-8	7-76	100-7	Cloudy
0935	3.42	/	1			1-0	13.99	248	7-83	-127.0	8-03	101-4	· · · ·
0940	3.42					1.5	14-14	250	7-83	-127-3	9.13	93-2	
0945	3.45		1			2.0	14-22	254	7-83	-127-9	10-04	76-8	
0950	3.48					3-5.	14-29	257	2.83	-129.3	12.92	56-4	
0955	3.48					3.0	14.40	258	7.81	-129-7	13-04	65-8	
6000	3.50					3.5	14.56	259	7-87	-1320	13.51	61-0	Clear-postral dearing
1005	3.52					4-0	14. 78	261	7.80	-131-4	13-56	54-3	
100	3-53					4-5	14-92	263	-	-132-6	in the second second		
2101	3-54	~	1	1		5.0 "	15-02	265	7-78	- (33-0) - 133-8	13-72	50-8	
Stabilization Criteria						3%	3%	±0.1	± 10 mv	10%	10%		

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Depth to Bottom: 15.25

Initial Depth to Water: 3.46

Comments:

Sample (a) 1030

	599.1				011022						
Well Nu Field Pe	g Organizat	w-901 ((k ion		6/6/1	7		Purgin		op bo (fl. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1000	Dru										
	1					-					
			1	ury alama parag		ې چې مېسېد ولاي	an an an			والمرجوب المسادي	
	- 250 - 44	•				· · · · ·					
	an a tha an thank	al en la fact and					171				20 million - 10 mi
, PERN	ange n		1.23			-		27 []] 10 - 14	ting h		
i strple		PL	1 · · · · · · · · · · · · · · · · · · ·			• •	$\mathbf{T}_{i}^{\mathbf{r}} = \mathbf{r}_{i}$:) <u> </u>	
and the second s											
Stabilizat	ion Criteria	i Prijp	ni Pinatuta		3%	3%	±0.1	± 10 mv	10%	10%	
1. Pump	dial setting	(for exam	ple: hertz, c mhos/cm)at	cles/min, etc	c). Initia	Depth to	Water:	Dry	C	omments:	
	ion reducti			25 C.	Dept	h to Botton	n: <u>14</u>	183	-		
		ļ				· · ·	1		н () т	A. Second	
							Ţ			and and an and a second	t and an end of the second sec
• • •	· · · ·	-					1	*	2	21	the second se

e.

- 1

Well Nu Field Per	sonnel g Organizat	1-701 k	$\frac{SR}{DR} Date \frac{DR}{M} Date \frac{DR}{M} To $	SNE 6/6/17)		Purgi	MP) t Intake at	op bo (fl. below ; (pump t)	77-§ of sc ttom MP) /C (pe) <u>13(c</u>	PID:	
Clock Time 24 HR	Water Depth below MP A	Pump Dial CPM	Purge Rate ml/min	Cum. Volume Purged liters	°C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	-
1330	16.82	11/4	125	0.635	10.56	181	6.90	59.1	6.53	31.73	Cleant	
1335	16-84			1.25	10.49	197	6-98	23.0	5.11	23.08		
1340	16.86			aposts	10-47	213	7.07	14-8	5.22	17.55		
1345	16.86			Mario S	10.50	221	7.19	13-2	5.24	11-06		
1350	16-88	1	- <u>1</u> - 1 - 1	3.125	10-61-	228	7.38	20.3	5.49	7.64	6	
1355	16.88		1	1375 1990	10.43.	232	7.61	38-9	5.77	8-08	and the second second second second second	
1400	16.89		i	30.375	10.30	241	7.68	40.4	5.90	8-14:		
1405	16 89			Kind	-10.27	244	12.72	40.6	5-67	8:01	17 ° 1	
14:10	16.90			62.625	10-22	245	P-73	40.9	5.73	8:13		
1415	16.90			1 -2-5 -	10-22	245	23	40.9	5-75	7.99		
and the second s	ion Criteria		1 1 1,12	1.11	3%.	3%	±0.1	± 10 mv	10%	10%		
. I. Pump	dial setting	(for exam	nple: hertz, c	ycles/min, ct	c). Initia	Depth to	Water:	16-8	2 C	omments:		
	ens per cm(ion reduction		unhos/cm)at ial (ORP)	25°C.	5 . 4	h to Botton	4	1		3		
			and the second se			Care Land		a starte			6. 	
					1		1_		- Andrew State of the State of	and the second		

1 of 2

Well Nu Field Per	, Organizat	v- 70		Date	RSING 6/6/17			Purgir	MP) to Intake at	op bo (fl. below ; (pump ty	27-8 of sc ttom MP) 10 ypc) 120 10-0	PID:		
Clock Time 24 HR	Water Depth below MP N	Pump Dial CRM	Puŋ Rate mi/r	e	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU-	Comments		-
周天(420	16.90	tity	12	25	6.875	10-22	246	7.77	41-3	5.75	80	Gear		
1425	16.90]			7.5	10,20	246	7-78	414	5.80	7-34			_
1430	16.90				8.125	10.20	246	7.78	41-5	5-81	7.56			_
1435	16-90				8.75	10-18	248	7-80	41-6	5-83	6-99			
1440	16-91				9-275		248	.7.80	41-6	-5-83		-		
1445	16-91	· Vi		4	10.0	10.17	250	7-8	41.7	5.85	7-18	Loss		
	1.11	¥	1					9× 13		/	-		•	
				11.5	-			s(° si i	11 (1 - 1) (1 - 1)					
e 16	1 -	tf +a				-		$[1^{*}]_{i_{1}}$	\mathbf{r}_{i} (c. (n na seanna an seanna		
				291	at en la de d		tina di	a . TE	1.11 - 1.12 - 1.1 - 1.5				1	
Stabilizati	ion Criteria					- 3%	3%	±0.1	# 10 mv	10%	10%			2
1. Pump	dial setting	(for exa	11	hertz, c	ycles/min, et	c). Initia	Depth to	Water:	16.5	2 C	omments:			
2. µSiem	ens per cm	(same as	umbos	s/cm)al	25°C.	÷ •	h to Botton		1	4		1		;
J. Oxidat	ion reducu			ICP)			i Donon	-	122.5	1	1	<u>}</u>	÷.	
			-					-		4				0
					and the second se			-					-	0

d of A)

Well Nu Field Pe	ng Organiza	w-	209,		Date	SRSNE 6/7/ Top	, ₁ ,		Pump Purgin	MP) t Intake at ng Device	op bo (fl. below ; (pump t	of sc ottom MP) 25 ype) <u>Blo</u> 13-125	PID:		
Clock Time 24 HR	Water Depth below MP ft	Di	mp al P/~	Pur Rat ml/	~	Cum. Volume Purged liters	Temp. °C F	Spec. Cond. ² μS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	temp	-
09.5	0915 21.8 11/4 125 .625 52.40 209 7.53 -21.0 8.30 40.03 Clear 113														
0920	0920 21.8 1.25 52.01 292 6.96 -13.2 8.01 39.90 11.12														
0925															
0930	21-8					2.5	51.82	289	652	-14.6	7.77	39.08		11.01	_
0935	81.8					3.125	51.61	386	8-3	- 20.5	7.65	39.98		1059	
0940	21.8		·			3.75	51-60	286	6-34	-20.6	7.59	43.74		(0.89	
0945	21.8			×		4.375	51.71	287	6.33	-20.8	7.58	39-01		10,95	
0950	21.8					5.0	51-81	287	630	-21.0	7-54	38.31		11.01	
0955	21.8					5.625	51-87	287	6-29	-21.2	7.55	37-03		11.04	
1000	21.8			1		6.25	51-81	288	6-28	-20.9	7.56	43-52		11.01	
Stabiliza	tion Criteria	a a					3%	3%	±0.1	± 10 mv	10%	10%			-
2. µSien 3. Oxida	nens per cm ation reduct	(sam ion p	ne as µ otenti	imho al (C	s/cm)at (RP)		Dept	al Depth to h to Bottor	n: 40	-04	, (Comments:	purge 3.26	Minimum gallors -	of
for t	Total st	15/ drss.	olued	m	t f	DUP-060	72017-	1)(Sa	mple a) 1100	/	<u> </u>	Page 1	54

3

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

Well Ni Field Pe	g Organizat	W-259		1 1 7	17		Purgin	MP) to Intake at	op bo (fl. below ; (pump ty	ttom MP) 2 pe) <u>Blac</u>	8PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹ CPM	Purge Rate ml/min	Cum. Volume Purged liters	Temp.	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments Temp
1005	21.8	4/4	125	6-875	51-85	289	6.27	- 32-0	7-53	37.09	Geor 11.03
1010	21.8	i		7.5	51-90	290	6.26	-220	7-52	34.03	11.00
1015	21.8			8-125	51.95	290	6.26	-21-6	7.53	30.76	11.08
1020	21.8			8-75	51.94	291	6.06	-21.4	7.54	27.05	11.08
1025	21-8			9.375	51.89	292	6.25	-21.2	7.57	25.15	11.03
10 30	21.8			10.0	51.81	294	6.25	-20.3	7-58	21.45	11.01
1035	21.8			10.625	51-88	295	6-25	-20.1	7-56	20.09	11.04
10 40	21.8			11.25	51.62	293	6.24	-20-5	7-63	19.23	10,90
1045	21.8			11-875	51.39	295	6.23	-19.8	7-70	18-56	(0.77
10 30	21-8			12.5	51.28	295	6.22	-18-8	7.72	17-93	0.77
	tion Criteria	V	V	13-125	3% 51-10	3% 295	±0.1 6-22	$\pm 10 \text{ mv}$ -i8-3	10%	10%	10.6

3. Oxidation reduction potential (ORP)

Depth to Bottom:

.

Dado 2 of 2

R

Well Nu Field Per	g Organizat	U-901R	Date RM OSM PVC	SESNO 6/6/	F		Purgi	MP) t Intake at	op bo (fl. below ; (pump t	$\begin{array}{c} 0 & \text{of sc} \\ \text{ottom} \\ MP \\ MP \\ \end{array} \begin{array}{c} 3^{\circ} \\ 3^{\circ} \\ 3^{\circ} \\ 1^{\circ} \\ 3^{\circ} \\ 3^{\circ$	2 PID:		*
Clock Time 24 HR	Water Depth below MP fi	Pump Dial CPM	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments Purge 12	2.45 gals.	a
1020	16-91	11/4	150	0 750	10.13	263	8.21	74.5	7.91	461.9	Jaidy	· · · · · · · · · · · · · · · · · · ·	19 19 - 19
1025	16.91	í	1	1.5	9.93	260	7.08	94/1	7.78	387.6			
1030	16.91			2.25	9.87	259	6.95	96.7	7-83	301.6			
1035	16-93			3.0	4.88	258	6-66	10.2	7.76	221.4			
1040	16.95			3.75	10-08-	358	6.59	99.2	7-26	201.6	<u>.</u>		
1045	16.95	1. 1		4.50	10.14	256	6.55	96.2	7.08	191.4	tan multiples and a commence of	e dinana ina ka ka ma	
1050	16.95	-	1	5.25	10-14	255	6-53	94.6	7-61	155-3	5,		
1055	16.95			6.0 -	10.04	250	6.50	92.6	7-11	122.8	and the second sec		
1100 11	16.95		-	6.75	-10-04	2:45	6147	92.7	7.18	123.4	e e estat		
1105	16.95	V		7-5	=10-02	243	6= 45	93.5	7.26	107-1		а 	
	ion Criteria		1	1.1	3%	3%	#0.1	± 10 mv	10%	10%			
1. Punip	dial setting	(for exam	ple: hert	, cycles/min, e	tc). Initia	al Depth to	1) Water	1/ 91	C	omments:			
2. µSiem	ens per cm(same as p	imhos/cm			11			3	1			1
3. Oxidat	ion reduction	on potenti	ial (ORP)		Dept	h to Botton		4-26	;			. /	of 2
	-					1		The second se	1			,	
					T	-	1	1	1				
	1	i.	1	ţ	1	T	-	ł	÷	t	. þe		

1

1

3

. .

Well Nu Field Per	sonnel	W-901	Dale Dale	SNE G/6/	17		Purgi		(fl. below ; (pump t)		reen PID:	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1110	16.95	11/4	150	8.25	9.88	237	6.41	100.2	7.46	123-1		· · · · · · · · · · · · · · · · · · ·
1115	16.95			9.0	9.88	236	6.39	101.4	7.46	109.2		
1120	16.95			9.75	9.89	236	6.38	1024	7.43	102.1		
1125	16.95			10.5	9.89	235	6.37	102-1	7.39	98.7		
1130	16.95	V	V	11.25	- 47.88	234	6.37	101.9	7.39	-96.1.	5	
		۰ تعدید الاتر ا	and the second sec								in and a segulificities of a community of a second of the	
	1 A						4-11		. 7			
				-		()	C				1 Te	
E 15	<u>,</u>	i∮ ina	· · · · · · · ·				T_{ij}	e, to B			and the second	
				ан н. н. Н								
 Pump μSiem 	ens per cm	(for exam (same as p	ple: hertz, c umhos/cm)at			3% Depth to	₩0.1 Water:	4021	10% C	10%	de a unida	· · · · · · · · · · · · · · · · · · ·
3. Oxidat	ion reducti	oh potenti	ial (ORP)		Dept	i to Bottom	177	-		Jul 24	mple @ 1140	
		and the second	and the second se	T I		and the state of t		and a set of the set o		- Munth Make war b		2 of

1

-

....

·] ;

.

Well Nu Field Pe	rsonnel g Organizat	P-13 Rr	Date	SNE 5/5);	> /		Purgir	MP) to Intake at g Device	op bo (fl. below ; (pump ty	<u>.9</u> of sci tiom MP) <u>/3</u> ype) <u>[Slaw</u> 5-625	PID:		-
Clock Time 24 HR	Water Depth below MP ft	Pump Dial CP:4	Purge Rate ml/min	Cum. Volume Purged liters	Temp. ℃Ę	Spec. Cond. ² µS/cm	pH	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	temp	-
1330	10.13	11/4	75	. 375	53.32	212	7.62	-264	9-54	130-5	Cloudy	11.84	
1335 1340	10.25	1	1	-75	55.15	215	7.63	-29.5	7.57	138-1	/	-	12.86 12.46
1345	10.28			1.5 1-875	54.11	276	7.74	-29.4 -28.7	7-01 7-04	118.3		2.46	12.20
1355 1400	10-78 10-28			2.25	51- 40	265	7.75	- 34-4 - 26.4	7.25	104-2 68-9	Clear	1-0	11.06
1405	12.28			3-0	52. 22	253	7.48	-26.3	7.37	59.9	-	1218	11.23
1415	10-38			3.75	52.38	249	7-26	-25.0	7.77	39.98 35.89			11.32
1420	10-28			4-175	52.46	241	7.07	- 22.8	8-09	34.30			11.37
1430	10.30		12.0	4-875	57.58	938	6-90	+ 20-15	8-31	33:44 33.29			11.47
1440	10-30			5-625	52.64	239	6-38	-30 <u>-1</u>	5455	>>	· · · · · · · · · · · · · · · · · · ·		11.41
ANA I							1		-0.4		· · · · · · · · · · · · · · · · · · ·	1	
Stabilizat	tion Criteria			13	3%	3%		± 10 mv	10%	10%		<u> </u>	
1. Pump 2. μSien	dial setting	(for exan same as j	nple: hertz, c umhos/cm)at ial (ORP)		1 .	al Depth to h to Botton	i		C .c	omments: Samp	le 60 14	45	

- - -

and date

- 4

1.1

Well Nun Field Per	g Organizat	W- (27		NE 6/7/1	7		Purgin		op bo (fl. below ; (pump t	ype) <u>15/a</u>	reen 5 PID: dder Hers	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial C <i>PM</i>	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1340	2.82	11/4	100	,500	15.67	313	7.41	-81.7	3.27	45.66	Clear	
1345	2-88			1.0	16.02	318	7.45	- 93.9	3-61	51-06	11	
1350	2-93			1-5	16.32	324	7.52	- 103.4	3.97	67.03	11	122
13550	2-99			2.0	16.57	326	7.54	-107.8	3.92	69.04	17	
1400	3.08			2.5	15-94	326	7-59	-100-9	4-08	97-39	· Cloudy	
1405	3.12			3.0	15.92	324	7.59	-103.6.	3.84	86-05		
1410	3.13		1	3.5	16.03	326	7.56	-103.9	3-82	83.05	• . · · · ·	
1415	3-10		-	4.0 .	-16-51.	-328	26	-1041	3-80	83.15	7.14	
14201	3.10			4-5	16.52	330	7:60	-1845	3.79	81.63		
	3-10	VI	V	15-0	16.45	379	7=59	-103.9	3-76	75.14		
	ion Criteria	100 · · ·	la pri	ycles/min, et	3%	3% Depth to		± 10 mv	10%	10%		ann an an Arland Anna

Pump that setting (for example, here, cycles in
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

5

Depth to Bottom: 102-27

1 of 2

~ 4

Well Nu Field Per	sonnel g Organizat	W-127)SRS CDate		>		Pump Purgin	to v MP) t Intake at ng Device Volume I	(ft. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial CPM	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	pН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
3430	3-10	11/4	100	5.5	16.36	328	7.59	-103.0	3.71	76.10	
1435	3.11		(6.0	16.35	32f	7.58	~103.0	3.70	70.10	
1440	3.11			6.5	16-33	327	7.58	-102-3	3.72	63-89	
1445	3-11		-	7.0	16.33	327	7.58	-100.2	3-70	64-06	
1450	3-11			7.5	-16-22	326	2.57	101.5	3.71	62.40	
1455	3-11			8-0	16.30	327	2.57	- 100.7	3.67	62-48	8 - A.A.
1500	3. 4		······V.						-		Sample (a) 1500
							<u>.</u>				
				.1							
Stabilizat	ion Criteria			F.	3%	3%	±0.1	± 10 mv	10%	10%	
2. µSiem		(same as µ	nple: hertz, c umhos/cm)at ial (ORP)			al Depth to h to Botton	±.	1	C	Comments:	2.

2 of 2

. :

Well Nur Field Per	g Organizat	?~~03	Date RM	NE 6/8	(17		Purgir	(MP) to Intake at	op bo (fl. below ; (pump t	F_2_f of sc ottom MP)_67 ype)_5/ac 11-0_L	PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dials Macorrige 1.5/1.5	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0940	4.70		50	.25	15.40	291	7.55	127.7	3.40	18-10	Clear
0445	4-68			- 50	11.73	271	4.93	243.7	2.20	17.53	•
0950	4.62			- 75	13-05	274	4.92	251-3	2-01	1651	
0955	4.57			1-0	14.06	278	4-89	256.7	1-97	18-01	
1000	4-52			1.25	-14.15	294	4.90	267.6	Dert	15.11	
1005	4.52		-	1.50	14.73	296	4.93		0.41	10.06	
1000	4.50			1.75	14-89	297	5.00	269-1	0.42	9-50	
1015	4-55			2-0	15.19	299	4.95	273.8	0-40	5.40	
1020	4.52			2-25	15.57	304	4.94	276.5	0.37		
1025	4.52	V	V	2-50	15.74	305		279.3	0.40		
	ion Criteria	1			3%	3%	±0.1	± 10 mv	10%	10%	

1. Pump dial setting (for example: hertz, cycles/min, etc).

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

Depth to Bottom:

Initial Depth to Water:

Comments:

Purge 2.75 gallons Sample @ 1300 1 of

3

Well Nu Field Per	g Organizat	ion) <u>SRSA</u> Date M D+M ZVC TO	6/8	/17		Pump Purgir	MP) to Intake at	op bo (fl. below ; (pump t	of sc ttom MP) ype)	PID:
Clock Time 24 HR	Water Depth below MP fl	Pump Dial i.5/1.5	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1030	4.54		501	2-75 3-0	16-20 16-39	309	4.97	274-3 274-2	0.43	5.78	
1040	4.56		<u> </u>	3.25 3.55	16-49	310 710 310	4.97	279-8 280-7	0.47	5.69 5.55	
1050	4.55			3.75 4-00	11-85	314 315	4.99	280.7	0.68	2.99	
1000	4.54			4-25 4-50	17.28	317	4.98	282-1	0.57	264 269	
1110	4.56			4.75	17.36	317 320	4.99	282.5	0-11 -0-04	2.65	
1120	4-60			6.25	17-66 17.99	320 323	4.99	252-6 282.7	0.04 0-0	2.25	
1130	4-61 4-61			5-50	18-19	330	4.99	280.4 278.6	0-04	3-08 4.49	
1140	4-61			6.75	18.36	336	5-04	277.4	0.16	3-04	
11 50	4-6i 4-6i			6-75	19-71 20-43	343	5.04	270-6 266-4	0.23 0.27	4.19 3.88	
1200	4-61 4-61 4-61	V	V	7-35	21-49.	355	3-07	260.9	0.30	3.91	
The second	tion Criteria	l <u></u> l			3%	3%		± 10 mv	10%	10%	

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.

Initial Depth to Water:

Comments:

3. Oxidation reduction potential (ORP)

Depth to Bottom:

2.53

3.

Well Nu Field Pe	g Organizat	N-03) SRSI Date RM 0+M PVC	VE 6/8 Tap	רי/		Pump Purgi	v MP) t Intake at	(fl. below ; (pump t	of so ottom v MP) ype)	PID:	-
Clock Time 24 HR	Water Depth below MP fl	Pump Dial 1-5/1.5 M?	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	-
1210 1215	4-61 4-61	1	50	7.75 8-0	21-88	355	5-04	256-8	0-27	517 3.89		
12.20	4.61			8-25	21-87	357	510	256-2 256-1	0.29	3-91 4-09		
1225	4.61			8-30	21-83	358	5.11	255-1	0-31	Soi		
12-35	4-61			9-0	21-81	360		256.0	0-32	4.98		
12.45	4.61			9-50	21-79	362	5-11	255.7	0-72 0-33	3.97 3.63		
1250	4-61 4-61			9-75	21- 77	362	3-11 5-17-	255-7	0.35	3.53		
1300	4-61	· ·		10.25	21-61	364	5-12	253.9	0:37	3.50		
1305	4-61		1 - 17 <u>11 - 19</u> 11 - 191		21-55	364 -	5-12	253.7	0-78	2.98	· · · · · · · · · · · · · · · · · · ·	
1315	4-61	V	V	11-00	21-55	364	5-12	253-4	0.38	3.26		
			•				10 1					
			:					- -			-	
Stabiliza	tion Criteria	1.			3%	3%	±0.1	± 10 mv	10%	10%		
2. µSiem		(same as p	imhos/cm)at	ycles/min, et 25°C.		n Depth to h to Bottor				Comments:		
		n							-	-		

3of 3

Well Nu Field Per	rsonnel g Organizat	w - 20	e) <u>SRS</u> <u>9 B</u> Date 14 14 14 14 14 14 14 14	6/7/17			Pump Purgi	v MP) 1 Intake at ng Device	(ft. below ; (pump)	ottom	PID:	
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1115	15.72			1 - A - 1							Bail / well volume	-6-7-1-
1500	15.72										Recharge & Sangle 10 130	6-9-17
											, , , , , , , , , , , , , , , , , , ,	
				1.5. J. 1.5. 2. J.	and the same say	· · · ·	nje v vr		a constant of the	· · · · · · · · · · · · · · · · · · ·		
											la constante con constante de la secondaria	
											č	
		8										
2							20					
							1				2 A 2	-
Stabilizat	ion Criteria	1	<u>La en </u>		3%	3%	,±0.1	± 10 mv	10%	10%	1	
2. µSiem	ens per cm	(same as p	umhos/cm)a	cycles/min, et t 25°C.		al Depth to h to Bottor		11	2 (Comments:		
3. Oxida	tion reducti	on potent			Dept		"[/				1. 1.	
			2 1 1 1 1					derman der	4		84	

or i i i i i i

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE Location: Southing ton, CT Well ID: MW-902D	
Well Type:MonitoringOther:Well Finish:Stick UpFlush MountMeasuring Pt:Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs): Well Casing: Diameter: Well Screen: Diameter: Deployment	Screened Interval (ftbgs): A.5-17.5 Material: PVC
Date and Time of Deployment: Date	3/8/17 Time: 1425
Weather Conditions:	-45
Depth to groundwater at time of deployment: igcelow Total well depth at time of deployment:	13.33' 93.50'
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1,75
Deployment Method/Position of Weight:	
アナン・ス۱.0 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve[™]. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve[™]. Weight suspended in well. s): ~\S,O
Retrieval	
Date and Time of Retrieval: Date	:3/13/17 Time: 1430
Total # of days deployed: _5	
Weather Conditions: Partly Cl	andy~25°
Depth to groundwater at time of retrieval:	12341
Total well depth at time of retrieval:	23,50'
Downhole Field Parameters Upon Retrieval:Temp: 6.1 (°C)ORP: -11.6pH: 6.39DO: 1.8	(mV) Water quality meter: <u>VST</u> (mg/L) Serial #: <u>\UDIOIU39</u>
Notes/Observations:	
turb: 70.30 Cus/cm: 1420	
Field Sampling Technician: Name(s) and Comp	any
Name Maitik Spare	Company Arready
Ryan Halane	OLN

ARCADIS

Appendix B-2 HydraSleeve™ Field Form

Site: Location: Well ID:	SRENE Southington CT Marchig		
Well Type:	•(Monitoring)* Other:		
Well Finish:	Stick Up Flush Mount		
Measuring Pt:	Top of Casing	Other (specify):	
Total Depth As Co		Screened Interval (ftbgs): 29.4 -	- 49.4
Well Casing:	Diameter: Q ^{it}	Material: YVC	
Well Screen:	Diameter: 🥱 "		
Deployment	5		
Date and Time of I		3/8/17 Time: []!	55
Weather Condition	is: Sunny~4	5°	
Depth to groundwa	ater at time of deployment:	11.95'	
Total well depth at	time of deployment:	51.88'	
Dimensions of Hy	draSleeve™: Length (in.)	<u>36</u> Diameter (in.)	.75
Deployment Metho	od/Position of Weight:		
	D : C , C n (Top of HydraSleeve™) (ftbg:	 Top-Down: Weight attached to bot Weight suspended in well. Top-Down: Weight attached to top Weight suspended in well.): ~ 39.0' 	
Retrieval	Defetore Defe	2	
Date and Time of I Total # of days de		3/13/17 Time: 12	00
Weather Condition		1. ~~~	
	ater at time of retrieval:	12014	
Total well depth at		51.881	
	arameters Upon Retrieval:		
Temp: 11, 4		(mV) Water quality meters	YSI
pH: 7.48	DO: 1,1	(mg/L) Serial #: CDicks	9
Notes/Observation			
Turb: 17			
	55		

Field Sampling Technician: Name(s) and Company

Matt Kissome	Name	Company
Ryon Menlone		D&M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: Southingten (it	
Well ID: TW-084U	
Well Type: • Konitoriag • Other:	
Well Finish: • Stick Up • Flush Mount	<u>`````````````````````````````````````</u>
Measuring Pt: • Top of Casing	・ Other (specify): Screened Interval (ftbgs):(ひ~」は、ひ
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 4.0 - 14.0
Well Casing: Diameter: 2 //	Material: Pvd
Well Screen: Diameter: <u>Q</u> ie	-
Deployment	
Date and Time of Deployment: Date	45°
Depth to groundwater at time of deployment?	7.83'
Total well depth at time of deployment:	14.16'
Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>175</u>
Deployment Method/Position of Weight:	
Pエワ∶こ6 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. (a) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Retrieval	
Date and Time of Retrieval: Date	: <u>3/13/17</u> Time: <u>1010</u>
Total # of days deployed: _5	
	I cudy ~ 25°
Depth to groundwater at time of retrieval:	7.89'
Total well depth at time of retrieval:	14:16'
Downhole Field Parameters Upon Retrieval: Temp: 11.5 (°C) ORP: - 8억.네	(mV) Water quality meter:
pH: 6.48 DO: 2.1	- (mV) Water quality meter: <u>45</u> (mg/L) Serial #: <u>10月月月</u>
Notes/Observations:	
Turb: 381,7	
Turb: 381,7 Cus/cm: 1254	
Field Sampling Technician: Name(s) and Comp	bany

	Name	Company
Matthissand		Arcady
Ryan Malan	۹	0 8 M

A

Appendix B-2 ARCADIS HydraSleeve[™] Field Form SNF aton ot Location: Well ID: Monitoring • Other: Well Type: Stick Up Flush Mount Well Finish: top of Casing • Other (specify): **Measuring Pt:** 17-22' Total Depth As Constructed (ftbgs): Screened Interval (ftbgs):_ Diameter: \mathcal{Q}^{il} Material: PVC Well Casing: Diameter: 🥥 🤃 Well Screen: Deployment Date and Time of Deployment: Date: 318/17 Time: Cille Sta 0925 Weather Conditions: 5 Depth to groundwater at time of deployment: 1.20' Total well depth at time of deployment: 35.89 36 Diameter (in.) 1,75 Dimensions of HydraSleeve™: Length (in.) Deployment Method/Position of Weight: Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. PID: 18,6 Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. Deployment Depth (Top of HydraSleeve™) (ftbgs): 51 10 Retrieval

Date and Time of Retrieval:	Date:	3/13/17	Time: () 930
Total # of days deployed:	5		
Weather Conditions:	PartinCin	andy~25	
Depth to groundwater at time of	retrieval:	7.28'	
Total well depth at time of retriev	al:	25,89'	
Downhole Field Parameters Upon	n Retrieval:		
Temp: <u>11.5</u> (°C)	ORP: -57.7	(mV)	Water quality meter: YSI
рН: <u>7.02</u>	DO: <u>19</u>	(mg/L)	Serial #: 100101039

Notes/Observations:

Site:

Turb 23,23 Cond: 45/cn: 632

Field Sampling Technician: Name(s) and Company

	Name	Company
Katt Kissane		Arreader
Ryan Malque		0 &M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: <u>Southington</u> , CT Well ID: <u>Mun-4150</u>	
Well Type: Monitoring Other: Well Finish: Stick Up Flush Mount	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): <u>C.S. 11.8</u>
Well Casing:Diameter: $\mathfrak{Q}^{i\ell}$ Well Screen:Diameter:	Material: <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Deployment	•
	3/8/17 Time: 1100
	45° 9.44'
Depth to groundwater at time of deployment. ^D Total well depth at time of deployment:	1600
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1,75
Deployment Method/Position of Weight:	
PTDIAG	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
PID:00	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbgs	~8,0'
Retrieval	
	3/B/11 Time: 115
Total # of days deployed:5Weather Conditions:Par HunCle	1
Depth to groundwater at time of retrieval:	9.5t
Total well depth at time of retrieval:	10.00'
Downhole Field Parameters Upon Retrieval:	
Temp: <u>49</u> (°C) ORP: <u>-24.4</u>	
pH: <u>G.50</u> DO: <u>Q.</u>	(mg/L) Serial #: <u>_[612](여내광역</u>
Notes/Observations:	
turb: 47.98 Caskn: 1029	
Field Sampling Technician: Name(s) and Compa Name	any Company
Marth Kissene	Agendin
- Ryan Malené	Q & M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
	en Ct
Well ID: 10-4/30	
Well Type: • Monitoring • C	Other:
	lush Mount
Measuring Pt: • Top of Casing	• Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 14.8-19.8
Well Casing: Diameter:	Material: PVC
Well Screen: Diameter: Q4	
Deployment	
Date and Time of Deployment:	Date: 3/8/17 Time: 1000
Weather Conditions:	nng~45°
Depth to groundwater at time of dep	
Total well depth at time of deployme	nt: <u><u>04,60'</u></u>
Dimensions of HydraSleeve™: Len	gth (in.) <u>36</u> Diameter (in.) <u>1,15</u>
Deployment Method/Position of Weig	ght:
アエロ:O.C Deployment Depth (Top of HydraSle	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. eve™) (ftbgs): ~ \(\sum \lambda 5, 5 \)'
Retrieval	
Date and Time of Retrieval:	Date: 3/13/17 Time: 1030
Total # of days deployed:5Weather Conditions:Pa	HINGLENDR -25°
Depth to groundwater at time of retri	
Total well depth at time of retrieval:	
Downhole Field Parameters Upon Re	etrieval:
	P: - <u>80.9</u> (mV) Water quality meter: <u>457</u>
	: 4.2 (mg/L) Serial #: 100101197
Notes/Observations:	
Turb. 23.11	
C reston : 12Kg	
Field Sampling Technician: Name(s) and Company
Name	Company
Heatt Kaking	
Ryan Malane	QAN

	Appendix B-2
Anchois	HydraSleeve™ Field Form
Site: SRSNE	
Location: Southington, Ct	· · · · · · · · · · · · · · · · · · ·
Well ID: PIWL-302	
Well Type: • Monitoring • Other:	
Well Finish: Stick Up • Flush Mount	
Measuring Pt: • (op of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 1, C - 11, C
Well Casing: Diameter: <u>Q</u>	Material: PVC
Well Screen: Diameter: <u>1</u> ⁱⁱ	
Deployment	
Date and Time of Deployment: Date	e: 3/8/17 Time: 6900
Weather Conditions: <u>Sunny</u>	~450
Depth to groundwater at time of deployment: ^U	9.32'
Total well depth at time of deployment:	16.00'
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1,75
Deployment Method/Position of Weight:	
	 Top-Down: Weight attached to bottom of HydraSleeve™.
PID:00	Weight suspended in well.
	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbg	$\sim 9.5^{\circ}$
Retrieval	
	e: <u>3/13/17</u> Time: <u>0900</u>
Total # of days deployed:	
	cualy ~ X.
Depth to groundwater at time of retrieval:	9.34
Total well depth at time of retrieval:	1600'
Downhole Field Parameters Upon Retrieval: Temp: 18.71 (°C) ORP: -57.1	(mV) Water quality meter: YSI MDS
pH: 229 DO: 12	(mV) Water quality meter: <u>Y \ 1 MD</u> (mg/L) Serial #: <u>10 DIC 1439</u>
Notes/Observations:	
Outer (coing: 44" turb: 37.7	11
Outer Caling: 44" turb: 37.7 PVC: 41" Custon: 9	
Field Sampling Technician: Name(s) and Com	bany
Name	
M . 11 128	Company
Matt Kussane Ryan Malche	

ARCADIS	Appendix B-2 HydraSleeve™ Field Form					
Site: SRSNE						
Location: Southington, CT						
Well ID: MWL-30P						
Well Type: • Monitoring • Other:						
Well Finish: • Stick UP • Flush Mount						
Measuring Pt: • Top of Casing	Other (specify):					
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 1.0 - 11.0					
Well Casing: Diameter: 2 ^{it}	Material: VVC					
Well Screen: Diameter: 2 ^(t)	_					
Deployment						
	: 3/8/17 Time: 255					
Weather Conditions: <u>Sunny</u>	~ 45°					
Depth to groundwater at time of deployment:	9.12					
Total well depth at time of deployment:	15,92'					
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1.75					
Deployment Method/Position of Weight:						
り エロ ∶ 0 0 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. 					
Retrieval						
Date and Time of Retrieval: Date	e: 3/13/17 Time: 300					
Total # of days deployed: 5						
	cudy~25°					
Depth to groundwater at time of retrieval:	4.17					
Total well depth at time of retrieval:	15,921					
Downhole Field Parameters Upon Retrieval: Temp: <u>(3,5</u> (°C) ORP: <u>-S</u> (3)	(mV) Water quality meter: YS1					
pH: <u>1.01</u> DO: <u>2.1</u>	(mg/L) Serial $\# 10010149$					
Notes/Observations:						
Turb: 63.11 C.45/cm: 1:134						
Field Sampling Technician: Name(s) and Com	bany					

Name	Company	
Mattkossane	Arcodis	
Ryan Malane	08-M	

Appendix B-2 HydraSleeve™ Field Form

ARCADIS	Appendix B-2 HydraSleeve™ Field Form							
Site: Location: Well ID: Well Type: • Monitoring • Other:								
Well Type: Monitoring Other: Well Finish: Stick Up 5 Flush Mount								
Measuring Pt: • Top of Casipa	Other (specify):							
Total Depth As Constructed (ftbgs):Well Casing:Diameter:Well Screen:Diameter:Q U	Screened Interval (ftbgs): 12,5-17,5 Material: PVC							
Deployment Date and Time of Deployment: Date:	3/8/17 Time: \340							
Weather Conditions:								
Depth to groundwater at time of deployment:	12,15'							
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1.75							
Deployment Method/Position of Weight:								
PID ! S . () Deployment Depth (Top of HydraSleeve™) (ftbgs	 Top-Down: Weight attached to bottom of HydraSleeve[™]. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve[™]. Weight suspended in well. s): ~ 15, c¹ 							
Retrieval								
	3/13/17 Time: 13 45							
Total # of days deployed: <u>5</u>								
	andly ~ 25°							
Depth to groundwater at time of retrieval: 1	12.34							
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval:	28,20							
Temp: 5.9 (°C)ORP: -91.5 pH: 6.91 DO: 2.2	Implicit (mv) Water quality meter: Implicit (SI (mg/L) Serial #: \lambda 0 \lambda 439							
Notes/Observations:								
tur 6: 81.72 C.45/cm: 954								
Field Sampling Technician: Name(s) and Compa	any							
Name Mait Kussence	Company Arcads							
Rum Malcol	D& M							

J

Well Nu Field Per Samplin	Location (Site/Facility Name) Well Number T StR - Date 3/16/17 Field Personnel Math Kissene Sampling Organization Identify MP TOC								Depth to /of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged			
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1230			120	16	18.73	C33	1.09	-1:13	7.22	228		
135			120	1.2	18.82	620	7.08	-1.12	\$P1	195		
240			120	1.8	18.81	010	7.11	-147	643	18.1		
12.15		(a)	120	2.4	18.89	6.05	-110	- 148	5.31	10.1		
1250			120 -	ary Zarra saa	18:88-	C.C.H	7.1C.	-1:48	5.38	17.8		
1255			-126-	3.6	18,89	C.05	7.11	- 119	5.21	16.6	And an extended strength of the strength of th	
	SAMPL		à				1.0				7.84	
r €iP	William Street Street		i - 1 - 4 t			-		station) and the		1.035	and the second second	
i topia	·····································	+ (-) (1.	94. (MAR)		na di secondo Nota di Secondo		
A BARRET	1100 12002年(第三)年)	ten an Gelf	115-11		ुरव हुन ह	(*					The second s	
1. Pump		(for exam	ple: hertz, cy		3% c). Initia	3% I Depth to	ia L	± 10 mv	10%	10%		
	ens per cm(ion reduction		imhos/cm)at al (ORP)	25°C.	•	h to Botton						

Well Nu Field Per Sampling	Location (Site/Facility Name) SRSNE Well Number ISTRA Date 3 / 9 / 17 Field Personnel RM, MK, DIS Sampling Organization Arcgans/ Early Identify MP To aff Steel								Depth to /of screen (below MP) top bottom PID: Pump Intake at (ft. below MP) Purging Device; (pump type) Ferry Total Volume Purged			
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
SE1500	11-20		100		21.2	872	6.90	-1.5.3	4.0	36.92	(lea(
1315	11.41		1		26-9	2735	0.57	-147-7	0-9	30.56		
1310	11-59				21-0	2736	6.94	-1484	0.4	28.76		
1315	11. 63				20.9	2917	6.91	-149-0	0-1	31.09		
1320	11-70			1990 - 199 7 - 2 94	20-6	27.18.	6.8.7	-147.3	6	29.4		
1325	11.78	1.000.000.000.000			20.5	2733	6 39	- 147.9	0	28 56	The second s	
330	- M- 87-	-Includer			20.5	2736	190	- 148.7	0	29.01	16, 109	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tile I	in a second and	dente de la competition de la				(* 1) 51			No. 10	The second	
$\{x,y\}$	1.2003-FF	1 - et		eronner er			1	b. Best		1		
i di stana	New Rout			*	÷ t (= 19	*> :				10.47432		
Stabilizat	ion Criteria		20	1011-26	3%	3%	±0.1	± 10 mv	10%	10%		

Initial Depth to Water: 11 20

Comments:

Pump dial setting (for example: hertz, cycles/min, ctc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Depth to Bottom:

Well Nu Field Pe Samplin	Location (Site/Facility Name) SRSNE Well Number STR-S Date 3/4// Field Personnel MK DS Sampling Organization Identify MP								Depth to /of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged			
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments	
1345	163		/00	15	20-5	2450	6.85	- 90-1	3-0	1995	Brown	
1350	16.21		ţ	1.0	202	2523	6.87	- 78.2	2.4	42.5		
, 1355	16,32			1.5	21.3	2536	6.87.	-101.2	2.2	37.2		
1400	16.35			2.0	21.2	2337	6,87	-103.1	2.5	34.6		
1405	16.41		-	- 2.05-	2. Robert	.2543.	687	-104,2	2.5	.33.L.		
1-110	16,43	•		3.0	21.5	2516	6.87	705.7.	7.5	34.		
a ge f	a streets	- No - No -	-	Ŷ			the second			1.1	Decision -	
a a pra	Jale r		diama di setta di				(* *			20.3436	No. Concernen	
i ang F	a charff	анана 11 - 11		1 mil - 4 mil 4 Mil - 14		- (.).	The second	the start	62020			
i n quite	ner its.				1 1 1	form :						
	tion Criteria	1	ple: hertz, c	ycles/min, ct	3% c). Initia	3% I Depth to	1	± 10 mv	10%	10%		

or

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

1

Depth to Bottom:

Well Nu Field Pe	rsonnel g Organizat	R-3	Date	$SN \in \frac{3/9/17}{5}$ Steej			Purgi		(ft. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1030	13.77		120		19.1	1020	6.78	-15.2	5.5	16.91	dar
1035	13.82		i		16.0	1033	6.76		0.4	14.81	
1040	13.83				19.5	1036	6.75	-966	02	13.01	
1045	13.83			10	19.2	1042	6.75	-101.3	0.1	12.96	
1050	13.83		19 dina	uru ularat solu	19.2	1042	6.75	-1076	Ô.[12-93	
1055	13.83	61168159318	communications, 2011		19.3	1044	6.74	-102.9	0.1	12.97	Name and Changel Commences and a second data of the second second
100-11-	13.83	的时候			19.4	1044	6.74	-183.7	01	12 03	hicke
e € a P	destruction and and and and and and and and and an	1	in the second states of the		en el managor		$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$			1.22	
$1 + L_{2,1}$	1.241	4			на на мата на 14 р. ж. — 44	108	$T_{i} \in$	ner.	ीक्षय	110 D	- 1
HE 199142				100 134	n ne di	Sec. 2	1 4 4 4 1	1		10	1 Transmission (1997)
Stabilizat	tion Criteria	11 II I	- 150 BA		3%	3%	±0.1	± 10 mv	10%	10%	an line of
2. µSiem		same as p	ple: hertz, c mhos/cm)at al (ORP)			al Depth to h to Botton		12-7	<u>17</u> C	omments:	

of screen Depth to Location (Site/Facility Name) bottom (below MP) top Date 3/16/17 PID: Well Number ISTR -Co Pump Intake at (ft. below MP) Field Personnel Purging Device; (pump type) Sampling Organization Total Volume Purged Identify MP TCC ORP³ pН DO Turb-Comments Spec. Cum. Temp. Clock Water Pump Purge Cond.² °C mg/L idity Dial Rate Volume mv Time Depth NTU Purged µS/cm below 24 HR ml/min liters MP ft 11 47 1.6 35.71 1035 16.2 730 0330 120 6 8 20 163 11 52 7.15 -1136 2831 0835 3 1,8 1.9 1163 16.22 7.00. 12011 0540 16.4 120 23 15.11 0.85 - 123,2 164 1173 3345 130 24 13,99 7.6-5---6.79-126.7 1178 2.5 120 -----Rentaria 0.850 4.72 36 16.4 679-1262 25 1179 055 120-3900: SAMPLE : C - 1 11.1 11111 11 -T . 1 1.11 ì $\pm 0.1 \pm 10 \text{ mv}$ 10% 10% 3% Stabilization Criteria 3% 14.155

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

1. Pump dial setting (for example: hertz, cycles/min, etc).

Initial Depth to Water: 13.20'

Comments:

2. μSiemens per cm(same as μmhos/cm)at 25°C.
 3. Oxidation reduction potential (ORP)

Depth to Bottom:

Well Nu Field Pe	g Organizat	R. S.		/16/17		Depth to /of screen (below MP) top bottom PID: Pump Intake at (fl. below MP) Purging Device; (pump type) Total Volume Purged					
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0915			120	. 6	15.6	428.6	7.81	-1.28.5	46	12:78	
0920			120	1.2	13.1	427.1	7.31	-161,7	3.6	7.61	
0925			120	1.8	128	4271	7.11	-117.6	20	5.11	
0930			120	2,11	11,7	1768	7.68	.1153	0,9	1.89	
0.935			120 7	. Zana	-1+5	1766	7,600	-113.7	6.5 -	.A. U.,	-
696 E			120	3.6	-11,6	126.5	695	113.5	0.3	3.89	An and the statement of the second second
6945	a Karentara	- He y Blar	120	4,2	11,62	4265	696	-113.6	0;3	341 -	tigenter the
0950	SAMP	E	1.45							91 - 16 (B) 10 - 16 (B)	and the second
1,1121	a contra de					al estates Netta	1	they.		(et:10	- 78-0
e a certa			1-11-1	i meri	्राव से	inter el				74 (22)	er erden ander al
Stabilizat	ion Criteria				3%	3%	±0.1	± 10 mv	10%	10%	

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Depth to Bottom:

Initial Depth to Water: 15.95

Comments:

Location (Site/Facility Name) SPONE Well Number TWC&B Date 3/9/17 Field Personnel 75, MK RM Sampling Organization Arcuits Com Identify MP STEEL Top								Depth to /of screen (below MP) top bottom PID: Pump Intake at (ft. below MP) Purging Device; (pump type) Ferry Total Volume Purged			
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0830	7.72		100		15-8	1128	7.94	- 79.3	27	11-60	Clour
0835	7.88		Ì		18.1	1063	6.46	- 59.0	0.2	12-30	
0840	7.96				17.8	1068	6.63	- 59.2	0.2	13.62	
0845	8.17			•	17.3	1065	6.62	-58.5	Ort	12-61	
0856	8.28			una alara da al	17. 3.	1063	6-61.	- 57.4	0	11-78	
0855	8.31	e com e quite	Ciprice Commence	lowest mich	16-9	1064	661	-567	0.1	12-01-	
0900	8.36	da Ara			169	1063	60	- 559	04	12.12	Sind Con 0900
e en is Note	subs r		dentes a			-				1:23	1.0
UR	the participation	1999 Barrier		na hana a sa		404 142	T	-, et e	1.22.2	1919	
19 20-11 A	AT THE P	e te via	1	*	114141	14+++= (t)				NA SEASE	
Stabilizat	ion Criteria	19 Ja.	100 H (20)	e ar the	3%	3%	±0.1	± 10 mv	10%	10%	
 Pump dial setting (for example: hertz, cycles/min, etc). μSiemens per cm(same as μmhos/cm)at 25°C. Oxidation reduction potential (ORP) Initial Depth to Water: <u>112</u> Comments: Comments: 											

1.

I;

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE Location: Southing ton, CT Well ID: MW-902D	
Well Type:MonitoringOther:Well Finish:Stick UpFlush MountMeasuring Pt:Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs): Well Casing: Diameter: Well Screen: Diameter: Deployment	Screened Interval (ftbgs): A.5-17.5 Material: PVC
Date and Time of Deployment: Date	3/8/17 Time: 1425
Weather Conditions:	-45
Depth to groundwater at time of deployment: igcelow Total well depth at time of deployment:	13.33' 93.50'
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1,75
Deployment Method/Position of Weight:	
アナン・ス۱.0 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve[™]. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve[™]. Weight suspended in well. s): ~\S,O
Retrieval	
Date and Time of Retrieval: Date	:3/13/17 Time: 1430
Total # of days deployed: _5	
Weather Conditions: Partly Cl	andy~25°
Depth to groundwater at time of retrieval:	12341
Total well depth at time of retrieval:	23,50'
Downhole Field Parameters Upon Retrieval:Temp: 6.1 (°C)ORP: -11.6pH: 6.39DO: 1.8	(mV) Water quality meter: <u>VST</u> (mg/L) Serial #: <u>\UDIOIU39</u>
Notes/Observations:	
turb: 70.30 Cus/cm: 1420	
Field Sampling Technician: Name(s) and Comp	any
Name Maitik Spare	Company Arready
Ryan Halane	OLN

ARCADIS

Appendix B-2 HydraSleeve™ Field Form

Site: Location: Well ID:	SRANE Southington CT Mardia		
Well Type:	•(Monitoring)• Other:		
Well Finish:	Stick Up Flush Mount		
Measuring Pt:	Top of Casing	Other (specify):	
Total Depth As Co		Screened Interval (ftbgs): 29.4 -	- 49.4
Well Casing:	Diameter: Q ^{it}	Material: YVC	
Well Screen:	Diameter: 🥱 "		
Deployment	5		
Date and Time of I		3/8/17 Time: []!	55
Weather Condition	is: Sunny~4	5°	
Depth to groundwa	ater at time of deployment:	11.95'	
Total well depth at	time of deployment:	51.88'	
Dimensions of Hy	draSleeve™: Length (in.)	<u>36</u> Diameter (in.)	.75
Deployment Metho	od/Position of Weight:		
	D : C , C n (Top of HydraSleeve™) (ftbg:	 Top-Down: Weight attached to bot Weight suspended in well. Top-Down: Weight attached to top Weight suspended in well.): ~ 39.0' 	
Retrieval	Defetore Defe	2	
Date and Time of I Total # of days de		3/13/17 Time: 12	00
Weather Condition		1. ~~~	
	ater at time of retrieval:	12014	
Total well depth at		51.881	
	arameters Upon Retrieval:		
Temp: 11.4		(mV) Water quality meters	YSI
pH: 7.48	DO: 1,1	(mg/L) Serial #: CODICIES	9
Notes/Observation			
Turb: 17			
	55		

Field Sampling Technician: Name(s) and Company

Matt Kissome	Name	Company
Ryon Menlone		D&M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: Southingten (it	
Well ID: TW-084U	
Well Type: • Konitoriag • Other:	
Well Finish: • Stick Up • Flush Mount	<u>`````````````````````````````````````</u>
Measuring Pt: • Top of Casing	・ Other (specify): Screened Interval (ftbgs):4.ひ~ 14.ひ
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 4.0 - 14.0
Well Casing: Diameter: 2 //	Material: Pvd
Well Screen: Diameter: <u>Q</u> ie	_
Deployment	
Date and Time of Deployment: Date	45°
Depth to groundwater at time of deployment?	7.83
Total well depth at time of deployment:	14.16'
Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>175</u>
Deployment Method/Position of Weight:	
PエD:0-0 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. (a) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Retrieval	
Date and Time of Retrieval: Date	e: <u>3/13/17</u> Time: <u>1010</u>
Total # of days deployed: _5	
	Icudy ~25°
Depth to groundwater at time of retrieval:	7.89'
Total well depth at time of retrieval:	14.16'
Downhole Field Parameters Upon Retrieval: Temp: 11.5 (°C) ORP: - 8억.네	(mV) Water quality meter:
pH: 6.48 DO: 2.1	- (mV) Water quality meter: <u>45</u> (mg/L) Serial #: <u>10月月月</u>
Notes/Observations:	
Turb: 381,7	
Turb: 381,7 Cus/cm: 1254	
Field Sampling Technician: Name(s) and Comp	bany

	Name	Company
Matthissane		Arcady
Ryan Malon	Q	0 & M

Appendix B-2 ARCADIS HydraSleeve[™] Field Form SNF aton ot Location: Well ID: Monitoring • Other: Well Type: Stick Up Flush Mount Well Finish: top of Casing • Other (specify): **Measuring Pt:** 17-22' Total Depth As Constructed (ftbgs): Screened Interval (ftbgs):_ Diameter: \mathcal{Q}^{il} Material: PVC Well Casing: Diameter: 🥥 🤃 Well Screen: Deployment Date and Time of Deployment: Date: 318/17 Time: Cille Sta 0925 Weather Conditions: 5 Depth to groundwater at time of deployment: 1.20' Total well depth at time of deployment: 35.89 36 Diameter (in.) 1,75 Dimensions of HydraSleeve™: Length (in.) Deployment Method/Position of Weight: Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. PID: 18,6 Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. Deployment Depth (Top of HydraSleeve™) (ftbgs): 51 $\sim \Lambda G$ Retrieval

Date and Time of Retrieval:	Date:	3/13/17	Time: $0^{9}13\sigma$
Total # of days deployed:	5		
Weather Conditions:	PartlyCin	anda~25	<i>42</i>
Depth to groundwater at time of r	etrieval:	7.25'	
Total well depth at time of retrieva	al:	25,89'	
Downhole Field Parameters Upor	n Retrieval:		
Temp: <u>11.5</u> (°C)	ORP: -57.7	(mV)	Water quality meter: YSI
рН: <u>7.02</u>	DO: <u>1.9</u>	(mg/L)	Serial #: 100101439

Notes/Observations:

Site:

Turb 23,23 Cond: 45/cn: 632

Field Sampling Technician: Name(s) and Company

	Name	Company
Katt Kissane		Arreader
Ryan Malque		0 &M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: <u>Scuthington</u> , CT Well ID: <u>Muni-4150</u>	
Well Type: Monitoring Other: Well Finish: • Stick Up • Flush Mount	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): <u>C.S.11.8</u>
Well Casing:Diameter: $\mathfrak{Q}^{i\ell}$ Well Screen:Diameter:	Material: <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Deployment	•
	3/8/17 Time: 11()()
	45° 9.44'
Depth to groundwater at time of deployment ^D Total well depth at time of deployment:	1600
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1,75
Deployment Method/Position of Weight:	
PTDIAG	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well.
PID:00	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbgs	~8,0'
Retrieval	
	3/B/11 Time: 115
Total # of days deployed:5Weather Conditions:Par Hullic	1
Depth to groundwater at time of retrieval:	9.5t
Total well depth at time of retrieval:	16.00'
Downhole Field Parameters Upon Retrieval:	
Temp: <u>49</u> (°C) ORP: <u>-24.4</u>	
pH: <u>G.50</u> DO: <u>Q.</u>	(mg/L) Serial #: <u>_[60_iciu39</u>
Notes/Observations:	
turb: 47.98 Caskn: 1029	
Field Sampling Technician: Name(s) and Compa Name	any Company
Marth Kissene	Agendin
- Riyan Malené	0. & M

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: Scathington (1 T
Well ID: MW-4/30	
Well Type: • Monitoring • Other:	
Well Finish: • Stick Up • Flush M	lount
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 14.8-19.8
Well Casing: Diameter: 2 ^K	Material: PVC
Well Screen: Diameter: Q ⁴	
Deployment	
Date and Time of Deployment:	Date: 3/8/17 Time: 1000
Weather Conditions: Sunne	~45°
Depth to groundwater at time of deployme	
Total well depth at time of deployment:	24,00'
Dimensions of HydraSleeve™: Length (in) <u>36</u> Diameter (in.) <u>1,15</u>
Deployment Method/Position of Weight:	
PTD:00 Deployment Depth (Top of HydraSleeve™)	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. (ftbgs): ~\{5,5'\}
Retrieval	
Date and Time of Retrieval:	Date: 3/13/17 Time: 1030
Total # of days deployed: 5	41 0 .000
Weather Conditions: <u>Partin</u> Depth to groundwater at time of retrieval:	(lendy ~25"
Total well depth at time of retrieval:	
Downhole Field Parameters Upon Retrieva	
Temp: <u>8 4</u> (°C) ORP:	
pH: C78 DO: 4	
Notes/Observations:	
Tu-6: 23.11	
C uslom: 1219	
Field Sampling Technician: Name(s) and (
Name	Company
Henty Kakene	Arcides
Ryan Malane	QAM

	Appendix B-2
Anchois	HydraSleeve™ Field Form
Site: SRSNE	
Location: Southington, Ct	· · · · · · · · · · · · · · · · · · ·
Well ID:	
Well Type: • Monitoring • Other:	
Well Finish: Stick Up • Flush Mount	
Measuring Pt: • (op of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 1, C - 11, C
Well Casing: Diameter: <u>Q</u>	Material: PVC
Well Screen: Diameter: <u>1</u> ⁱⁱ	
Deployment	
Date and Time of Deployment: Date	e: 3/8/17 Time: 6900
Weather Conditions: <u>Sunny</u>	~450
Depth to groundwater at time of deployment: ^U	9.32'
Total well depth at time of deployment:	16.00'
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1,75
Deployment Method/Position of Weight:	
	 Top-Down: Weight attached to bottom of HydraSleeve™.
PID:00	Weight suspended in well.
	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbg	$\sim 9.5^{\circ}$
Retrieval	
	e: <u>3/13/17</u> Time: <u>0900</u>
Total # of days deployed:	
	cualy ~ X.
Depth to groundwater at time of retrieval:	9.34
Total well depth at time of retrieval:	1600'
Downhole Field Parameters Upon Retrieval: Temp: 18.71 (°C) ORP: -57.1	(mV) Water quality meter: YSI MDS
pH: 229 DO: 12	(mV) Water quality meter: <u>Y \ 1 MD</u> (mg/L) Serial #: <u>10 DIC 1439</u>
Notes/Observations:	
Outer (coing: 44" turb: 37.7	11
Outer Caling: 44" turb: 37.7 PVC: 41" Custon: 9	
Field Sampling Technician: Name(s) and Com	bany
Name	
M . 11 128	Company
Matt Kussane Ryan Malche	

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: SRSNE	
Location: Southington, CT	
Well ID: MWL-30P	
Well Type: • Monitoring • Other:	
Well Finish: • Stick UP • Flush Mount	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): <u> .O - 11.O</u>
Well Casing: Diameter: 2 ^{it}	Material: VVC
Well Screen: Diameter: 2 ^(t)	_
Deployment	
	: 3/8/17 Time: 255
Weather Conditions: <u>Sunny</u>	~ 45°
Depth to groundwater at time of deployment:	9.12
Total well depth at time of deployment:	15,92'
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1.75
Deployment Method/Position of Weight:	
り エロ ∶ 0 0 Deployment Depth (Top of HydraSleeve™) (ftbg	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
Retrieval	
Date and Time of Retrieval: Date	e: 3/13/17 Time: 300
Total # of days deployed: 5	
	cudy~25°
Depth to groundwater at time of retrieval:	4.17
Total well depth at time of retrieval:	15,921
Downhole Field Parameters Upon Retrieval: Temp: <u>(3,5</u> (°C) ORP: <u>-S</u> (3)	(mV) Water quality meter: YS1
pH: <u>1.01</u> DO: <u>2.1</u>	(mg/L) Serial $\# 10010149$
P	
Notes/Observations:	
Turb: 63.11 C.45/cm: 1:134	
Field Sampling Technician: Name(s) and Com	bany

Name	Company	
Mattkossane	Arcodis	
Ryan Malane	08-M	

Appendix B-2 HydraSleeve™ Field Form

ARCADIS	Appendix B-2 HydraSleeve™ Field Form
Site: Location: Well ID: Well Type: • Monitoring • Other:	
Well Type: Monitoring Other: Well Finish: Stick Up 5 Flush Mount	
Measuring Pt: • Top of Casipa	Other (specify):
Total Depth As Constructed (ftbgs):Well Casing:Diameter:Well Screen:Diameter:Q U	Screened Interval (ftbgs): 12,5-17,5 Material: PVC
Deployment Date and Time of Deployment: Date:	3/8/17 Time: \340
Weather Conditions:	
Depth to groundwater at time of deployment:	12,15'
Dimensions of HydraSleeve™: Length (in.)	3C Diameter (in.) 1.75
Deployment Method/Position of Weight:	
PID ! S . () Deployment Depth (Top of HydraSleeve™) (ftbgs	 Top-Down: Weight attached to bottom of HydraSleeve[™]. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve[™]. Weight suspended in well. s): ~ 15, c¹
Retrieval	
	3/13/17 Time: 13 45
Total # of days deployed: <u>5</u>	
	andly ~ 25°
Depth to groundwater at time of retrieval: 1	12.34
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval:	28,20
Temp: 5.9 (°C)ORP: -91.5 pH: 6.91 DO: 2.2	Implicit (mv) Water quality meter: Implicit (SI (mg/L) Serial #: \lambda 0 \lambda 439
Notes/Observations:	
tur 6: 81.72 C.45/cm: 954	
Field Sampling Technician: Name(s) and Compa	any
Name Mait Kussence	Company Arcads
Rum Malcol	D& M

J

Well Nu Field Per Samplin	n (Site/Faci imber <u>t Si</u> rsonnel <u>V</u> g Organizat MP <u>TOC</u>	R.A.		16.07			Pump Purgi	MP) 1 Intake at	top bo (fl. below e; (pump t	of sc ottom v MP) sype)	PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1230			120	16	18.73	C33	1.09	-1:13	7.22	228	
135			120	1.2	18.82	620	7.08	-1.12	\$P1	195	
240			120	1.8	18.81	010	7.11	-147	643	18.1	
12.15		(a)	120	2.4	18.89	6.05	-110	- 148	5.31	10.1	
1250			120 -	ary Zarra saa	18:88-	C.C.H	7.1C.	-1:48	5.38	17.8	
1255			-126-	3.6	18,89	C.05	7.11	- 119	5.21	16.6	And an extended strength of the strength of th
	SAMPL		à				1.0				7.84
e Ci P	William Street Street		i - 1 - 4 t			-		station) and the		1.035	and the second second
i topia	·····································	+ (-) (1.	94. (MAR)		na di secondo di secon	
A BARRET	1100 12002年(第三)年)	ten an Gelf	115-11		ुरव हुन ह	(*					The second s
1. Pump		(for exam	ple: hertz, cy		3% c). Initia	3% I Depth to	ia L	± 10 mv	10%	10%	
	ens per cm(ion reduction		imhos/cm)at al (ORP)	25°C.	•	h to Botton					

Well Nu Field Per	g Organizat	TR.1) SRSA Date <u>3</u> R.M. M.K. Arcaes		1		Pump Purgir		(ft. below ; (pump t		PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
SE1500	11-20		100		21.2	872	6.90	-1.5.3	4.0	36.82	(lea(
1315	11.41		1		26-9	2735	0.57	-147-7	0-9	30.56	
1310	11-59				21-0	2736	6.94	-1484	0.4	28.76	
1315	11. 63				20.9	2917	6.91	-149-0	0-1	31.09	
1320	11-70			1990 - 199 7 - 2 94	20-6	27.18.	6.8.7	-147.3	6	29.4	
1325	11.78	1.000.000.000.000			20.5	2733	6 39	- 147.9	0	28 56	The second s
330	- M- 87-	-Includer			20.5	2736	190	- 148.7	0	29.01	16, 109
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tile I	in a second and	dente de la competition de la				(* 1) 51			No. 10	The second
$\{x,y\}$	1.2003-FF	1 - et		eronner er			1	b. Best		1	
i di stana	New Rout			*	÷ t (= 19	*> :				10.47432	
Stabilizat	ion Criteria		20	1011-26	3%	3%	±0.1	± 10 mv	10%	10%	

Initial Depth to Water: 11 20

Comments:

Pump dial setting (for example: hertz, cycles/min, ctc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Depth to Bottom:

Well Nu Field Pe	g Organizat	572-5	e)Date D(M,MK	3/9/1 , DB			Purgi		(fl. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1345	163		/00	15	20-5	2450	6.85	- 90-1	3-0	1995	Brown
1350	16.21		ţ	1.0	202	2523	6.87	- 78.2	2.4	42.5	
, 1355	16,32			1.5	21.3	2536	6.87.	-101.2	2.2	37.2	
1400	16.35			2.0	21.2	2337	6,87	-103.1	2.5	34.6	
1405	16.41		-	-2.05-	2. Robert	.2543.	687	-104,2	2.5	.33.L.	
1-110	16,43	•		3.0	21.5	2516	6.87	705.7.	7.5	34.	
a ge f	a streets	- No - No -	-	Ŷ			the second			1.1	Decision -
a a gra	Jale r		diama di setta di				(* *			20.3436	No. Concernen
i ang F	a charff	анана 11 - 11		1 mil - 4 mil 4 Mil - 14		- (.):	T.	the start	62020		
i n quite	ner its.				1 1 1	form :					
	tion Criteria	1	ple: hertz, c	ycles/min, ct	3% c). Initia	3% I Depth to	1	± 10 mv	10%	10%	

or

2. µSiemens per cm(same as µmhos/cm)at 25°C.

3. Oxidation reduction potential (ORP)

1

Depth to Bottom:

Well Nu Field Pe	rsonnel g Organizat	R-3	Date	$SN \in \frac{3/9/17}{5}$ Steej			Purgi		(ft. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial ¹	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
1030	13.77		120		19.1	1020	6.78	-15.2	5.5	16.91	dar
1035	13.82		i		16.0	1033	6.76		0.4	14.81	
1040	13.83				19.5	1036	6.75	-966	02	13.01	
1045	13.83			10	19.2	1042	6.75	-101.3	0.1	12.96	
1050	13.83		19.000	uru ularat solu	19.2	1042	6.75	-1076	Ô.[12-93	
1055	13.83	61168159318	communications, 2011		19.3	1044	6.74	-102.9	0.1	12.97	Nerve Million (1997) and a second second second second second
100-11-	13.83	的时候			19.4	1044	6.74	-183.7	01	12 03	hicke
e € a P	destruction and and and and and and and and and an	1	in the second states of the		en el managor		$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$			1.22	
$1 + L_{2,1}$	1.241	4			на на мата на 14 р. ж. — 44	108	$T_{i,j}$	ner.	ीक्षय	110 D	- 1
HE 199142				100 134	n ne di	Sec. 2	1 4 4 4 1	1		10	1 Transmission (1997)
Stabilizat	tion Criteria	11 II I	- 150 BA		3%	3%	±0.1	± 10 mv	10%	10%	an line of
2. µSiem		same as p	ple: hertz, c mhos/cm)at al (ORP)			al Depth to h to Botton		12-7	<u>17</u> C	omments:	

of screen Depth to Location (Site/Facility Name) bottom (below MP) top Date 3/16/17 PID: Well Number ISTR -Co Pump Intake at (ft. below MP) Field Personnel Purging Device; (pump type) Sampling Organization Total Volume Purged Identify MP TCC ORP³ pН DO Turb-Comments Spec. Cum. Temp. Clock Water Pump Purge Cond.² °C mg/L idity Dial Rate Volume mv Time Depth NTU Purged µS/cm below 24 HR ml/min liters MP ft 11 47 1.6 35.71 1035 16.2 730 0830 120 6 8 20 163 11 52 7.15 -1136 2831 0835 3 1,8 1.9 1163 16.22 7.00. 12011 0540 16.4 120 23 15.11 0.85 - 123,2 164 1173 3345 130 24 13,99 7.6-5---6.79-126.7 1178 2.5 120 -----Rentaria 0.350 4.72 36 16.4 679 -1262 25 1179 055 120-3900: SAMPLE : C - 1 11.1 11.15 11 -T . 1 1.11 ì $\pm 0.1 \pm 10 \text{ mv}$ 10% 10% 3% Stabilization Criteria 3% 14.155

WELL PURGING-FIELD WATER QUALITY MEASUREMENTS FORM

1. Pump dial setting (for example: hertz, cycles/min, etc).

Initial Depth to Water: 13.20'

Comments:

2. μSiemens per cm(same as μmhos/cm)at 25°C.
 3. Oxidation reduction potential (ORP)

Depth to Bottom:

Well Nu Field Pe	g Organizat	R. S.		/16/17			Pump Purgii	-	(fl. below ; (pump t		reen PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0915			120	. 6	15.6	428.6	7.81	-1.28.5	46	12:78	
0920			120	1.2	13.1	427.1	7.31	-161,7	3.6	7.61	
0925			120	1.8	128	4271	7.11	-117.6	20	5.11	
0930			120	2,11	11,7	1768	7.68	.1153	0,9	1.89	
0.935			120 7	. Zana	-1+5	1766	7,600	-113.7	6.5 -	.A. U.,	-
696 E			120	3.6	-11,6	126.5	695	113.5	0.3	3.89	An and the statement of the second second
6945	a Karentara	- He y Blar	120	4,2	11,62	4265	696	-113.6	0;3	341 -	tigenter the
0950	SAMP	E	1.45							91 - 16 (B) 10 - 16 (B)	and the second
1,1121	a contra de					al estates and a second se	1	they.		(et:00	- 78-1
e a certa			1-11-1	i meri	्राव से					74 (22)	er erden ander al
Stabilizat	ion Criteria				3%	3%	±0.1	± 10 mv	10%	10%	

Pump dial setting (for example: hertz, cycles/min, etc).
 μSiemens per cm(same as μmhos/cm)at 25°C.
 Oxidation reduction potential (ORP)

Depth to Bottom:

Initial Depth to Water: 15.95

Comments:

Well Nu Field Pe	mber <u>tw</u> rsonnel g Organizat	CSB 75	E) SPSNE Date 3 MK R Aread	1917 M	5M		Purgi	v MP) t Intake at	(fl. below ; (pump t	of sc ottom MP)_ ype) <u>Ferra</u>	PID:
Clock Time 24 HR	Water Depth below MP ft	Pump Dial	Purge Rate ml/min	Cum. Volume Purged liters	Temp. °C	Spec. Cond. ² µS/cm	рН	ORP ³ mv	DO mg/L	Turb- idity NTU	Comments
0830	7.72		100		15-8	1128	7.94	- 79.3	27	11-60	Clour
0835	7.88		Ì		18.1	1063	6.46	- 59.0	0.2	12-30	
0840	7.96				17.8	1068	6.63	- 59.2	0.2	13.62	
0845	8.17			•	17.3	1065	6.62	-58.5	ort	12-61	
0856	8.28			una alara da al	17. 3.	1063	6-61.	- 57.4	O. l.	11-78	
0855	8.31	e com e quite	Ciptur (annu -)	lowest mich	16-9	1064	661	-567	0.1	12-01-	
0900	8.36	da Ara			169	1063	60	- 559	04	12.12	Sind Con 0900
e en is Note	subs r		dentes a			-				1:23	1.0
UR	the participation	1999 Barrier		na hana a sa		404 142	T	-, et e	1.22.2	1919	
19 20-11 A	11 AND THE OWNER	e te via	1	*	114141	14+++= (t)				NA SEASE	
Stabilizat	ion Criteria	19 Ja.	100 H (20)	e ar the	3%	3%	±0.1	± 10 mv	10%	10%	
2. µSiem	-	same as μ	ple: hertz, cy mhos/cm)at al (ORP)			ll Depth to h to Botton		1.12	_ C	omments:	

1.

I;

	Attachment A HydraSleeve™ Field Form
Site: SRSNE Location: Sutheaston, CT Well ID: MW - 902 M	
Well Type: Monitoring Other: Well Finish: Stick Up Flush Mount Measuring Pt: Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):17-5Well Casing:Diameter:Diameter:) !(Well Screen:Diameter:	Screened Interval (ftbgs): 12-5-17.5 Material: PVC
Deployment	
Date and Time of Deployment: Date:	7/6/12 Time: 13:20
Depth to groundwater at time of deployment:	11.34 11.34
Total well depth at time of deployment:	28,201
Dimensions of HydraSleeve™: Length (in.)	<u> </u>
	HydraSleeve™. Weight rests on well bottom. Top-Down: Weight attached to bottom of HydraSleeve
PID:0.0 Deployment Depth (Top of HydraSleeve™) (ftbgs)	Weight suspended in well. ● Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
	Weight suspended in well. ● Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Date: Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): <u>~15-0</u> <u>7177777</u> Time: <u>1320</u> Rain
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Date: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): <u>~/5-∂</u> <u>7/7/17</u> <u>Time: 1320</u> <u>Rain</u> {[.32]
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): <u>~15-0</u> <u>7177777</u> Time: <u>1320</u> Rain
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Date: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): ~ /5-0 ↓/1/1/1 Time: \3200 \$\begin{tabular}{lllllllllllllllllllllllllllllllllll
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 71-42	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): ~ /5-0 ↓/1/1/1 Time: \3200 \$\begin{tabular}{lllllllllllllllllllllllllllllllllll
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Ø5 Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 71-2 0 6.6.3 DO: 9-10 Notes/Observations:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.): ~ / 5-0 ☐ / 1 / 1 / 1 Time: 1320 Rain ((.32/200)
Deployment Depth (Top of HydraSleeve $^{\text{TM}}$) (ftbgs) Retrieval Date and Time of Retrieval: Date: Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.):
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: <u>77-72</u> (°C) pH: <u>6-£ 3</u> Do: <u>7-10</u> Notes/Observations:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.):
Deployment Depth (Top of HydraSleeve™) (ftbgs) Retrieval Date and Time of Retrieval: Date: Total # of days deployed: Weather Conditions: 65° Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 77.22 (°C) ORP: -77.4 pH: 6.53 DO: 9.10 Notes/Observations: $MS_MSD_1DUP - diss. gusse (= b07 Tor6 = 43.76$ Field Sampling Technician: Name(s) and Compa	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well.):

	CADIS	
Site:	SRSNE	
Location:		CT
Well ID:	MW - 415	
Well Type:	Monitoring Other.	
Well Finish:	• Stick Up • Flush Mount	
Measuring Pt:	• Cop-of Casing	Other (specify):
Total Depth As C	Constructed (ftbgs):	Screened Interval (ftbgs): 6-8-168 Material: PVC
Well Casing:	Diameter: _ Ə "	Material: PVC
Well Screen:	Diameter:	
Deployment		the second se
Date and Time o		
Weather Conditi		Clouchy (
and the second sec	lwater at time of deployment:	/ 9.04
Total well depth	at time of deployment:	16.001
Dimensions of H	łydraSleeve™: Length (in.)	36 Diameter (in.) /. 75
Deployment Met	thod/Position of Weight:	 Bottom Anchor: Weight attached to bottom of
		HydraSleeve™. Weight rests on well bottom.
		Top-Down) Weight attached to bottom of HydraSleev
-	DINIAG	Weight suspended in well.
-		
÷	PTD:0.0	 Top-Down: Weight attached to top of HydraSleeve™
· .		 Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well.
· .	Υ + V ← U, U pth (Top of HydraSleeve™) (ftb	 Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well.
Deploy <mark>m</mark> ent Dep		 Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well.
Deployment Dep Retrieval	pth (Top of HydraSleeve™) (ftb	• Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well. gs): ~ S- 3
Deployment Dep Retrieval Date and Time c	of Retrieval: Da	 Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well.
Deployment Dep Retrieval Date and Time of Total # of days of	of Retrieval:	• Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well. gs): ~ 8-3 te: <u>1/1///1</u> Time: <u>1036</u>
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition	of Retrieval: Dated of Re	• Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well. gs): ~ 8-3 te: <u>7/7//7</u> Time: 1035
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground	of Retrieval: Dat deployed: ions: <u>65° Ra</u> dwater at time of retrieval:	Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well. gs): ~ 8.3 te: <u>1/1///1</u> Time: <u>1036</u> A.02'
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth	of Retrieval: Dated of Re	Top-Down: Weight attached to top of HydraSleeve™ Weight suspended in well. So te: <u>7/1//1</u> Time: <u>1036</u>
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth	of Retrieval: Dat deployed: dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval:	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. gs): ~ 8.2 te: <u>7/7//7</u> <u>Time: 1035</u> \sim <u>A.02</u> ⁷ <u>16.02</u> ⁷
Deployment Dep Retrieval Date and Time of Total # of days of Weather Conditi Depth to ground Total well depth Downhole Field	pth (Top of HydraSleeve™) (ftb of Retrieval: Dat deployed: ions: <u>65 Raa</u> dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP:2	• Top-Down: Weight attached to top of HydraSleeve Weight suspended in well. rgs:
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>20-5</u>	pth (Top of HydraSleeve™) (ftb of Retrieval: Dat deployed: ions: <u>65 Rad</u> dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP:2	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. rgs): NS . te: <u>$1/1/1/1$ Time: 1036</u> <u>A.02'</u> <u>16.00'</u> <u>7-1</u> (mV) Water quality meter: <u>556 µPS</u>
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>20-5</u>	pth (Top of HydraSleeve™) (ftb of Retrieval: Dat deployed: ions: <u>65° Ra</u> dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP: <u>- 2</u> DO: <u>1-6</u>	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. rgs): NS . te: <u>$7/7/17$ Time: 1036</u> <u>$3.02'$</u> <u>$3.02'$</u> <u>7.1 (mV) Water quality meter: 556 µPS</u>
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp:	pth (Top of HydraSieeve™) (ftb of Retrieval: deployed: ions: 65° Rab dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP: DO: 1-6	• Top-Down: Weight attached to top of HydraSleeve Weight suspended in well. $gs): \qquad \sim 8.3$ te: <u>7/7//17</u> Time: <u>1036</u> a.oa' <u>16.cc'</u> <u>7-1</u> (mV) Water quality meter: <u>556 µP5</u> <u>8</u> (mg/L) Serial #: <u>14F100059</u> Meta(S
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp:	pth (Top of HydraSieeve™) (ftb of Retrieval: deployed: ions: 65° Rab dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP: DO: 1-6 ions: Dos	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. rgs: rg
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp:	pth (Top of HydraSleeve ^{M}) (ftb of Retrieval: Dat deployed: ions: <u>65 Rab</u> dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: $\frac{9}{2}$ (°C) ORP: <u>-27</u> DO: <u>1-6</u> ions: Retrieval: Parameters Upon Retrieval: $\frac{9}{2}$ (°C) ORP: <u>-27</u> DO: <u>1-6</u>	• Top-Down: Weight attached to top of HydraSleeve Weight suspended in well. gs): ~ 8.3 te: <u>7/7//7</u> Time: <u>1035</u> <u>A 02'</u> <u>16.00'</u> <u>7.1 (mV)</u> Water quality meter: <u>556 µP5</u> <u>8 (mg/L)</u> Serial #: <u>14F100059</u> Metals <u>8 uslow</u>
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>20-5</u> pH: <u>6.73</u> Notes/Observation	pth (Top of HydraSleeve™) (ftb of Retrieval: deployed: ions: dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) ORP: DO: 16 (°C) DO: 16 (°C) DO: 17 (°C) DO: 18 (°C) 19 (°C) 10 (°C)	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. gs): $NS = S$ te: $\underline{7/7/17}$ Time: $\underline{1035}$ $\underline{10.02^{\prime}}$ $\underline{10.02^{\prime}}$ $\underline{7.1}$ (mV) Water quality meter: $\underline{556}$ <u>HPS</u> $\underline{8}$ (mg/L) Serial #: <u>[UF100059]</u> Metals <u>8uslow</u> mpany
Deployment Dep Retrieval Date and Time of Total # of days of Weather Condition Depth to ground Total well depth Downhole Field Temp: <u>20-5</u> pH: <u>73</u> Notes/Observation MS/MSD at Turb:	pth (Top of HydraSleeve™) (ftb of Retrieval: deployed: ions: dwater at time of retrieval: at time of retrieval: Parameters Upon Retrieval: 9 (°C) DO: DO: 16 ions: Parameters Upon Retrieval: 9 (°C) DO: DO: 16 17 18 19 10	• Top-Down: Weight attached to top of HydraSleeve TM Weight suspended in well. rgs: NS-3 te: <u>JITIII</u> Time: 1035 $a \cdot 03'$ <u>IG.50'</u> <u>Z-1</u> (mV) Water quality meter: <u>556 µPS</u> <u>Serial #: [UF10059</u> <i>Metals</i> <i>Metals</i> <i>Metals</i>

SREWE	
Site: SRSNE	
Location: Jouthington CT	
Well ID: MWL 304	
Well Type: Monitoring Other:	
Well Finish: Stick Up • Flush Mount	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 1-0 - 11- 3
Well Casing: Diameter:	Material:PVC
Well Screen: Diameter: 2.10	
Deployment	
Date and Time of Deployment: Date:	7/6/17 Time: 0930
Weather Conditions: 80°	Cloudy
Depth to groundwater at time of deployment:	8-91
Total well depth at time of deployment:	16.01'
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) /- 75
Deployment Method/Position of Weight:	Bottom Anchor: Weight attached to bottom of
	HydraSleeve™. Weight rests on well bottom.
and the second	Top-Down: Weight attached to bottom of HydraSlee
p-tD:0.6	Weight suspended in well.
	• Top-Down: Weight attached to top of HydraSleeve [†]
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbgs	s): N9-5
Retrieval	
Date and Time of Retrieval: Date:	7/7/17 Time: 6935
Date and Time of Retrieval. Date.	
Total # of days deployed:	
Total # of days deployed:Weather Conditions:Rain $\sim C_{e}$	
Total # of days deployed:IWeather Conditions: $Rain \sim C$ Depth to groundwater at time of retrieval:	8.92
Total # of days deployed:Weather Conditions:Depth to groundwater at time of retrieval:Total well depth at time of retrieval:	8.92
Total # of days deployed:IWeather Conditions: $Rain \sim G$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:	8.92 16.01 50-50
Total # of days deployed:Weather Conditions: $Rain \sim G$ Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:Temp: $24 - 9$ (°C)ORP: $-98 - 6$	8.92 16.01 50-94 (mV) Water quality meter: 556 MF
Total # of days deployed:Weather Conditions:Depth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:	8.92 16.01 50-50
Total # of days deployed:IWeather Conditions:Rain ~ CDepth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:Temp: $2 + 25$ (°C)pH: $6 \le 0$ DO: $2 - 73$	8.92 16.01 50-94 (mV) Water quality meter: 556 MF
Total # of days deployed:Weather Conditions:Rain ~ CDepth to groundwater at time of retrieval:Total well depth at time of retrieval:Downhole Field Parameters Upon Retrieval:Temp: $2 + 25$ (°C)pH: $6 \le 0$ DO: 2.73 Notes/Observations:	8.92 16.01 500 906

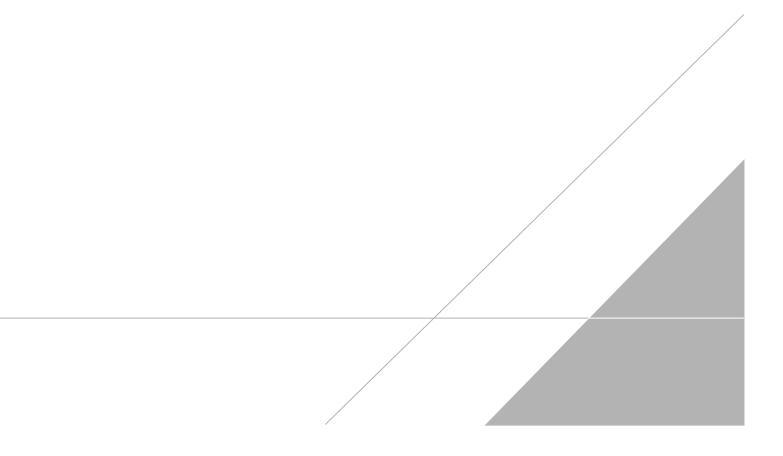
Field Sampling Technician: Name(s) and Company

Name	Company	
Katt Kissane	Ancadis	A
Ryan Molone	0 8-M	
0		

ARCADIS	Attachment A HydraSleeve™ Field Form
Site: SRSWE	
Site: JKSNE Location: Southington, CT	
Well ID: MW-J413	
Well Type: Monitoring • Other	
Well Finish: • Stick Up • Flush Mount	
Measuring Pt: • Top of Casing	• Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 14-8-19-8 Material: PVC
well Casing: Diameter.	Material:
	_
Deployment Date and Time of Deployment: Date Date	e: <u>7/6/17</u> Time: 0945
Weather Conditions:	80 Eloudia
Depth to groundwater at time of deployment:	9.12
Total well depth at time of deployment:	24.591
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1.25
Deployment Method/Position of Weight:	Bottom Anchor: Weight attached to bottom of
	HydraSleeve™, Weight rests on well bottom.
	Top-Down: Weight attached to bottom of HydraS
PID:0.0	Weight suspended in well.
PID:0.0	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev
	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well.
PID : 0 ,0 Deployment Depth (Top of HydraSleeve™) (ftb	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well.
	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): • 15-5 • 1005
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): e: 1/1//1 Time: 1005 Rain
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): e: <u>1/1//11</u> Time: <u>1005</u> Rain <u>9.10</u>
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): e: 1/1//1 Time: 1005 Rain
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): •:
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): •:
Deployment Depth (Top of HydraSleeve™) (ftb Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):
Deployment Depth (Top of HydraSleeve™) (ftbp Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 19-41 PH: 6-38	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs): • 15.5 • 15.5 • 10.5 Roin 9.10.6 9.10.6 9.10.6 • 4.59.7 • 4.59.7 • 56 M 17 (mg/L) Serial #: 14F100059
Deployment Depth (Top of HydraSleeve™) (ftb) Retrieval Date and Time of Retrieval: Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval: Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 19.41 (°C) ORP: 73 pH: 6.38 DO: 1- Notes/Observations: M3/MSD + DUP of To	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):
Deployment Depth (Top of HydraSleeve [™]) (ftb: Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):
Deployment Depth (Top of HydraSleeve™) (ftb) Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):
Deployment Depth (Top of HydraSleeve ™) (ftb) Retrieval Date and Time of Retrieval: Dat Total # of days deployed:	Weight suspended in well. • Top-Down: Weight attached to top of HydraSleev Weight suspended in well. gs):

ARCADIS	Attachment A HydraSleeve™ Field Form
Site: SRSNE	
Location: Jouthington, C	T
Well ID: MW-446	
Well Type: Monitoring • Other.	
Well Finish: • Stick Up • Flush Mount	
Measuring Pt: • Top of Casing	Other (specify):
Total Depth As Constructed (ftbgs): 49.4	Screened Interval (ftbgs): <u>29-4-49-</u> 4
Well Casing: Diameter:	Material: PVC
Well Screen: Diameter:	
Deployment	
Date and Time of Deployment: Date	e: 7/6/17 Time: 1/:20
Weather Conditions:	Cloudy -
Depth to groundwater at time of deployment:	11.09
Total well depth at time of deployment:	1109 51.87'
Dimensions of HydraSleeve™: Length (in.)	36 Diameter (in.) 1.75
PTD : 0,0 Deployment Depth (Top of HydraSleeve™) (ftb	Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. S9-0
Retrieval	
Date and Time of Retrieval: Dat	e: 7/7/17 Time: 145
Total # of days deployed:	
Weather Conditions:	5 Rain
Depth to groundwater at time of retrieval:	11-12
Total well depth at time of retrieval:	51871
Downhole Field Parameters Upon Retrieval:	
Temp: $(\cancel{32}, (^{\circ}C), ORP: -3)$	(mV) Water quality meter: 556 MPS
pH: 7.82 DO: 2.	24 (mg/L) Serial #: 14 Floor 9
Notes/Observations:	
MS/MSD + Dup - SO4. (1 C= 423 TUB: 80	NO2, NO3
Field Sampling Technician: Name(s) and Com	
Name	Company

Ryan Malone Ot M. Inc. Mott Kissione Arcondia


ARCADIS	Attachment A HydraSleeve™ Field Form
Site: SRSNE Location: Jouthington, CT Well ID: <u>Mw-902D</u>	
Well Type: Monitoring Other: Well Finish: • Stick Up • Flush Mount Measuring Pt: • Top of Casing	• Other (specify):
Total Depth As Constructed (ftbgs): 17-5 Well Casing: Diameter: 3 K Well Screen: Diameter: 3 K	Screened Interval (ftbgs):S17-5 Material:V<
Deployment	
Date and Time of Deployment: Date and Time of Deployment: Weather Conditions: Sood Depth to groundwater at time of deployment:	Cloudy 1 1202'
Total well depth at time of deployment:	23.50
Dimensions of HydraSleeve™: Length (in.)	<u> </u>
P-SD:0,0 Deployment Depth (Top of HydraSleeve™) (fth	 Top-Down: Weight attached to bottom of HydraSleeve™. Weight suspended in well. Top-Down: Weight attached to top of HydraSleeve™. Weight suspended in well. bgs):
Retrieval	
Total # of days deployed: Weather Conditions: Depth to groundwater at time of retrieval:	ate: 717171 Time: 245 65 Rain 12.001
Total well depth at time of retrieval:	73.50
Total well depth at time of retrieval: Downhole Field Parameters Upon Retrieval: Temp: 1777 (°C) pH: 640	D3.50 Water quality meter: SST MPS 6(mg/L) Serial #:
Downhole Field Parameters Upon Retrieval:Temp:1777 (°C)ORP:	(mV) Water quality meter: 557 MPS
Downhole Field Parameters Upon Retrieval: Temp: 17.77 (°C) pH: 6.40 DO: 1.70 Notes/Observations: DVP DVP MS MSP	(mV) Water quality meter: 557 APS
Downhole Field Parameters Upon Retrieval: Temp: <u>17.77</u> (°C) ORP: pH: <u>6.40</u> DO: <u>1.40</u> Notes/Observations: DVP , MS, MSD - AIK	741 (mV) Water quality meter: 557 APS 6 (mg/L) Serial #: Y3-86 mpany Company

incre

	Attachment A HydraSleeve™ Field Form
TOCHE	
Site: SRSNE	
Location: <u>AMUL - 307</u> Well ID: <u>Southington</u> CT	
Well Type: •Monitoring • Other.	
Well Finish: •Stick Up • Flush Mount	
Measuring Pt: • Top of Casing	• Other (specify):
Total Depth As Constructed (ftbgs):	Screened Interval (ftbgs): 1-0 - 11-0 Material: PVC
Well Casing: Diameter:	Material:
Well Screen: Diameter:	-
Deployment	
Date and Time of Deployment: Date	
Weather Conditions:	Closely 27
Depth to groundwater at time of deployment:	18:13
Total well depth at time of deployment:	15191
Dimensions of HydraSleeve™: Length (in.)	<u>36</u> Diameter (in.) <u>-75</u>
Deployment Method/Position of Weight:	 Bottom Anchor: Weight attached to bottom of
	HydraSleeve™. Weight rests on well bottom.
ntnico	Top-Down: Weight attached to bottom of HydraSleeve™.
PID:00	Weight suspended in well.
	 Top-Down: Weight attached to top of HydraSleeve™.
	Weight suspended in well.
Deployment Depth (Top of HydraSleeve™) (ftbg	s): ~ 8-0
Retrieval	
	: <u>7/7/17</u> Time: 11(0
Total # of days deployed:	0
Weather Conditions: Rain 10	()) / · · · · · · · · · · · · · · · · ·
Depth to groundwater at time of retrieval:	8.19
Total well depth at time of retrieval:	15.91'
Downhole Field Parameters Upon Retrieval:	
Temp: <u>20-27</u> (°C) ORP: <u>-8</u> pH: <u>0.91</u> DO: <u>2-3</u>	2 (mV) Water quality meter: 45155C H49
pH:DO:	(mg/L) Serial #: 14F100059
Notes/Observations:	
MS/MSD + DUP - Total me	Halc
Turb: 23.45 C:15:	12 USICA
Field Sampling Technician: Name(s) and Comp	bany
O Name	Company
Kyon Matone	Orth. Tac
Mott Kixsure	Accedit
	$\rho \wedge O \times T$

APPENDIX B

Equipment Calibration Logs

DATE: 6/8/17

۱

INSTRUMENT IDENTIFICATION

. .:

Brand: YSI	Model: 556 MDS	Serial Number: 15D101637	-
Brand: MicroTPW	Model: 20000	Serial Number: 2016 0553]	

WINDH RECORD

1

CALIBRATION RECORD

1.10.104	Morning Calibration	ing them. Afternoon Check	Evening Check	
n 5.	Calibration Standard Successful	Standard Reading	Standard Reading	
	pH (S.I. units) 4.00 402 4.00 7.00 698 7.00 10.00 00 11 10.00	4.00 7.00 10.00	4.00 <u>4.05</u> 7.00 <u>6.95</u> 10.00 <u>16.12</u>	
	Turbidity (NTUs) 0.02 0.02 10.0 0.0 1000 000	0 10	0 <u>0.56</u> 10 <u>9.87</u> 1000 987.1	
	Conductivity (umhos/cm)- -U.S/CM 1000 q12 <u>1000</u>	10	1000 1015	
	Dissolved Oxygen (mg/L) 141.1 9.48/9.54 Zero DO Solution	Not Applicable	Not Applicable	
	REDOX (mV) (Zobel Solution) $\frac{223}{207.6}$ (Light's Solution) $\frac{417.2}{11.52}$	Chart 1	Chart 1 <u>201.1</u> <u>447.5</u> <u>1698</u>	

DATE: 617/17

1

INSTRUMENT IDENTIFICATION

Brand: YSI	Model: 556 MDS	Serial Number: 14F100062	-
Brand: MicroTPW	Model: 20000	Serial Number: 2016 05531	

WILDH BECARD

CALIBRATION RECORD

¢2€ بزر ا	Morning Calibration	g Check Afternoon Check	Evening Check	(<u>1.4</u>
	Calibration Standard Successful	Standard Reading	Standard Reading	
	pH (S.I. units) 4.00 407 <u>4.00</u> 7.00 7.04 <u>7.06</u> 10.00 10 .01 <u>10.00</u>	4.00 7.00 10.00	4.00 <u>4.11</u> 7.00 <u>7.06</u> 10.00 <u>16.08</u>	
	Turbidity (NTUs) 0.02 6.02 100 10.0 1000 1000	0 10	0 <u>6.31</u> 10 <u>9.72</u> 1066 991.4	
	Conductivity (umhos/cm) MS/cm 1000 95] <u>1000</u>	10	1006 1012	
	Dissolved Oxygen (mg/L) 기식7.1	Not Applicable	Not Applicable	
	REDOX (mV) (Zobel Solution) <u>201.1 (200.0</u> (Light's Solution) <u>446.1</u> Temperature (C) <u>11.2 1</u>	Chart 1	Chart 1 201.2 446.8 17.51	

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

(:

. ÷

DATE: 6/6/17

INSTRUMENT IDENTIFICATION

Brand: HF Screntific	<u>Model:</u>	Micro TPW	Serial Number. 201464348
Brand: VSI	<u>Model:</u>	556 MPS	Serial Number. 14F100058

VATION RECORD

f

CALIBRATION RECORD

]†- <u>7</u> 54	Morni	ng Calibration	ng Check Afternoon Check	Evening Check	il
• •	Standard	Calibration Successful	Standard Reading	Standard Reading	
· · · ·	pH (S.I. uni 4.00 7.00 7.00 20 10.00	15) 4.01 -> 4.0 03 -> 7.0 05 -> 10.01	4.00 7.00 10.00	4.00 <u>3-96</u> 7.00 <u>7-64</u> 10.00 <u>10-13</u>	
	Turbidity (I 0-2- 10 1000		0 10	0-52 0-52 10 <u>9-96</u>	n se tradución de la composition de la Composition de la composition de la comp
	1	ty (µmhos/cm) 789 → <u>1,068</u>	10	10997	
	搐	Oxygen (mg/k) %	Not Applicable	Not Applicable	
	REDOX (m) (Zobel Solu (Light's Soli Temperatur つうみ- 1	tion)	Chart ¹	Chart' 204-2	

DATE: 6/17

INSTRUMENT IDENTIFICATION

Brand: HF Scrontific	Mizro TPW	Serial Number 201404248
Brand:	Model:	Serial Number:
YS:I	556MPS	15D101-637

MIGH RECORD

1

CALIBRATION RECORD

Morning Calibration	g These Afternoon Check	Evening Check	ý
Calibration Standard Successful	Standard Reading	Standard Reading	
$\begin{array}{c c} pH (S.I. units) \\ 4.00 \ V \\ 7.00 \ V \\ 6.91 \rightarrow 7.04 \\ 10.00 \ V \\ 9.84 \rightarrow 10.09 \end{array}$	4.00 7.00 10.00	4.00 <u>3-89</u> 7.00 <u>7-07</u> 10.00 <u>(0.04</u>	
Turbidity (NTUs) 0 - v 2 10 10	0	0-22 <u>0-2</u> 10 <u>9-96</u>	in tetra.
Conductivity (μ mhos/cm) 10 997 -> 1000	10	10999	
Dissolved Oxygen (1997) $\frac{9}{5}$ Zero DO Solution $\frac{105-9}{5}$ 99.4	Not Applicable	Not Applicable	
REDOX (mV) 205 mV (Zobel Solution) (Light's Solution)	Chart 1	Chart 1 204.0	
Temperature (C) 202.9 -> 200-0			

DATE:

INSTRUMENT IDENTIFICATION

Brand: <u>Model:</u> <u>Model:</u> <u>SS6</u> MPS <u>SS6</u> MPS <u>Serial Number</u> <u>SS6</u> 1501632		Model: 556 MPS		
--	--	-------------------	--	--

VATION RECORD

1

CALIBRATION RECORD

٩.

Morning Calibrati			
	onEvening these Afternoon Check	Evening Check	ifight - some start
Calibre Standard Succe	i i i	Standard Reading	-
7.00 6.82 -> 7	4.00 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<u>, 2</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 10	0-02.0.02 10 <u>10.04</u>	
Conductivity (µmhos/cm 10 $994 \rightarrow /D1$	2010	10	
Dissolved Oxygen (#g/ /Do-2 Zero DO Solution	99-5 Not Applicable	Not Applicable	
REDOX (mV) 200 mL (Zobel Solution) (Light's Solution)	Chart 1	Chart 1 /99-6	
Temperature (C)		CETE Constanting of the Cete C	

DATE: 6/7/17

INSTRUMENT IDENTIFICATION

Brand: HE Screntific	Model: - Micho TPW	Serial Number: 201404348
Brand: YSI	Model: 556 MPS	Serial Number: 14F 1000 58

VATION RECURD

1

CALIBRATION RECORD

(† 7 <u>2</u>).	Morning Ca	libration	g there Afternoon Check	Evening Check	∯}
's	Standard	Calibration Successful	Standard Reading	Standard Reading	
· · · · · ·	pH (S.I. units) 4.00 3-99 7.00 6-97 10.00 19-07	-7 4.00 " -7 7.00 -7 10.00	4.00 7.00 10.00	$\begin{array}{r} 4.00 & \underline{3-96} \\ 7.00 & \underline{6-96} \\ 10.00 & \underline{9-97} \end{array}$:
	Turbidity (NTUs) 0-ッユ 10 1000		0 10	0.02 <u>0.02</u> 10 <u>9.97</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Conductivity (µn 10	nhos/cm) <u>1000</u>	10	10998	
	Dissolved Oxyge Zero DO Solution	97.9 -	Not Applicable	Not Applicable	
	REDOX (mV) (Zobel Solution) (Light's Solution) Temperature (C)	200 mV	Chart 1	Chart 1 /99_4	

DATE:

INSTRUMENT IDENTIFICATION

-	Brand: VSI	Model: SEC MPS	Serial Number	
	Brand:	Model:	14 <i>年10006ラ</i> - <u>Serial Number</u>	
· ·	Scientific Inc.	- MICOB TPW	201503440	

WINDH RECUBU

CALIBRATION RECORD

Morning Calibration	g Chenk Afternoon Check	Evening Check	i figd e e sum tre
Calibration Standard Successful	Standard Reading	Standard Reading	
$\begin{array}{c} \textbf{pH} (S.I. units) \\ 4.00 & 3.88 \rightarrow 4.00 \\ 7.00 & 6.95 \rightarrow 7.20 \\ 10.00 & 10.07 \rightarrow 10.00 \end{array}$	7.00	4.00 <u>4-00</u> 7.00 <u>7-02</u> 10.00 <u>10-06</u>	
Turbidity (NTUs) 0.07 10 1000	0	0-02-0.02 10_0.04	n ann an Anna an Anna Anna Anna Anna An
Conductivity (µmhos/cm) 4894 987 → 1000 10	10	1099/	
Dissolved Oxygen (4694) % Zero DO Solution $47-5 > 99.9$	Not Applicable	Not Applicable	
REDOX (mV) 2000 (Zobel Solution) (Light's Solution)	Chart 1	Chart 1 201.4	
Temperature (C) 2046 - 7 200			

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer. an i se s

æ

- -

DATE: ß

INSTRUMENT IDENTIFICATION

. . . :

. . . <u>. .</u> .

Brand: YSI	<u>Model:</u>	556 MPS	Serial Number.	
Brand: Schertific The	<u>Model:</u>	Mizro TPW	14F100058 Serial Number: 201404348	

VATION RECURD

f

CALIBRATION RECORD

Morning Calibration	hig these Afternoon Check	Evening Check	if of the same for
Calibration Standard Successful	Standard Reading	Standard Reading	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.00 <u>3-94</u> 7.00 <u>7-14</u> 10.00 <u>10-06</u>	
Turbidity (NTUs) 0 - 02 1° 10 ≈ 0	0	0-07 <u>0-07</u> 10 <u>10-04</u>	i stati s i stati i
Conductivity (µmhos/cm) 動 997 <u>> 1000</u>	10	10 <u>998</u>	
Dissolved Oxygen (2001) 7/2 /03-6 Zero DO Solution 99-	7 Not Applicable	Not Applicable	
REDOX (mV) 200 mV (Zobel Solution) (Light's Solution) Temperature (C) $/97.4 \rightarrow 200 \text{ cc}$	Chart ¹	Chart 1 Des 3. 2	

DATE: 19/12 6

INSTRUMENT IDENTIFICATION

Brand:	Model:	Serial Number.
YP I-	SSG MPS	15D101637
Scientifice Inc.	Micro TPW	Senal Number 201605531

Windh Regurd

CALIBRATION RECORD

Morn	ing Calibration	g there Afternoon Check	Evening Check
Standard	Calibration Successful	Standard Reading	Standard Reading
pH (S.I. uni 4.00 3- 7.00 7- 10.00 9-	$\begin{array}{c} \text{its}) \\ 19 \rightarrow 4.60 \\ 26 \rightarrow 7.00 \\ 83 \rightarrow 9.97 \end{array}$	4.00 7.00 10.00	4.00 <u>4.66</u> 7.00 <u>7.09</u> 10.00 <u>10.13</u>
Turbidity (0 - 0 み 1 の 1000		0 · 10	0.02 0.07 10 <u>10.40</u>
Conductiv 864	ity (µmhos/cm) { → 10=0	10	10
Dissolved 77 Zero DO S	Oxygen (回知) で こフーション olution <u>78-7</u>	Not Applicable	Not Applicable
(Zobel Solu (Light's Sol Temperatu	lution)	Chart 1	Chart 1 202. (

The REDOX of the Zobel solution is temperature dependent, a chart is provided with the meter to check the reading for the appropriate temperature. REDOX must be calibrated by the manufacturer.

si na

DATE: 3/13/17

INSTRUMENT IDENTIFICATION

Brand: H	or.ba	Model: US2		Serial Number: RWUSTHHS	
Brand:		Model:		Serial Number	
				1	
-	11	11 m	14. tri.	the second s	

RATION RECORD

17.11

CALIBRATION RECORD

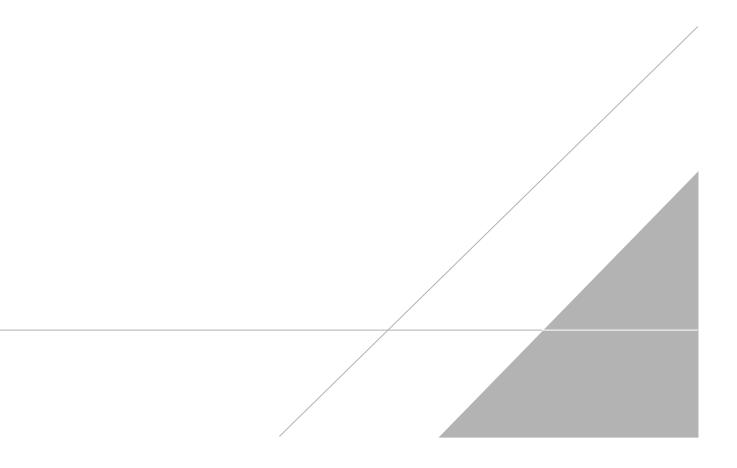
Morning Ca	libration availing (heck Afternoon	Check	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Evening Check
tandard	Calibration Successful	Standard	Reading		Standard Reading
H (S.I. units)	2.000			+5 d.a.	
4.00 3.98	4,00 00	4.00		1	4.00 4.11
7.00 7.04	7.00	7.00			7.00 6.89
10.00 10.00	10.00	10.00			10.00 10.06
urbidity (NTUs)	10 A.	. 5 *			
0,02	102	0			0.02 0 08
10 10°0	icco #	10			10 13.11
Conductivity (µm	hos/cm)	. 1		1.1.1.1	
1000 100	0/1000	10 -	4.8 		1000 1017
Dissolved Oxyge	n (ma/L)		<u></u>	1.40 A	
Zero DO Solution		Not App	licable		Not Applicable
REDOX (mV)	5081	Chart 1		20	Chart 1
Zobel Solution	200			1.1	209
Light's Solution)	UCD I				479.7
Temperature (C)	1611				1288

DATE: 3/16/17

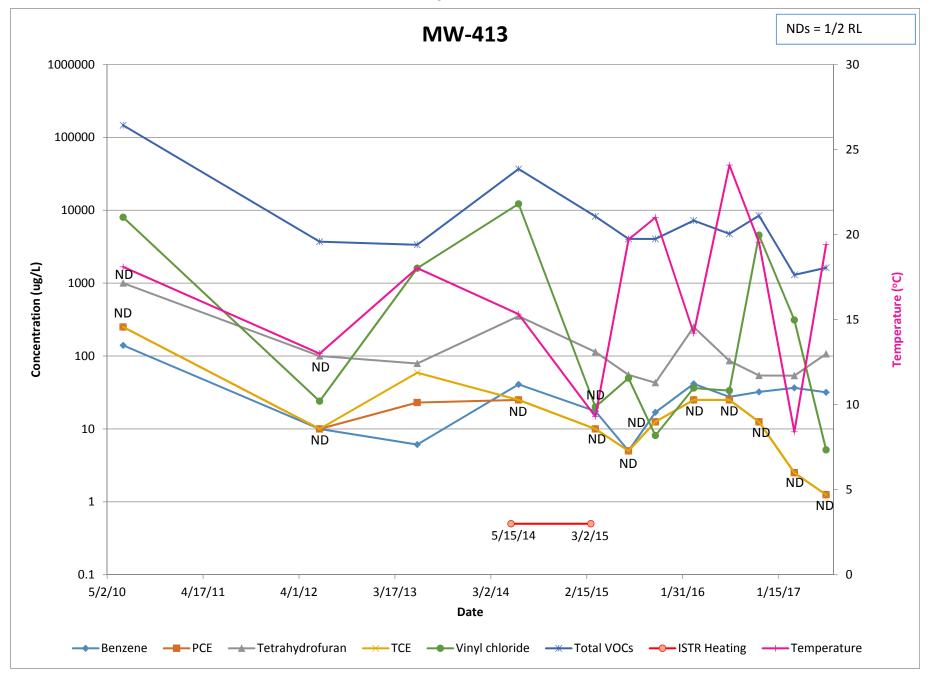
INSTRUMENT IDENTIFICATION

Brand: Model: Serial Number:	THHS	Serial Number: RW U5 THH8	Model: US2	Brand: Horiba
		Serial Number.	Model:	Brand:

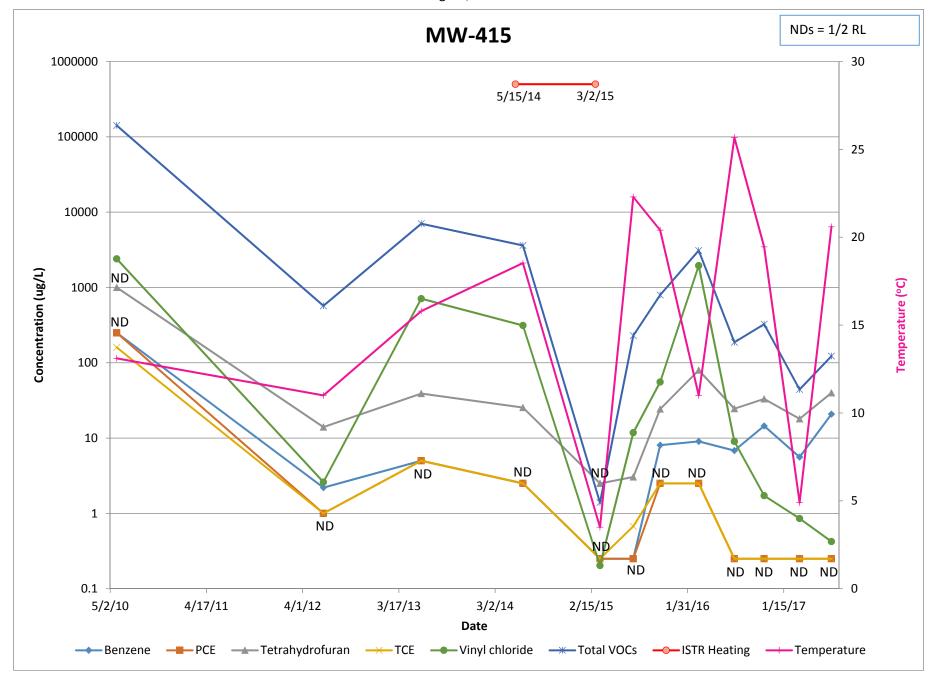
RATION RECORD

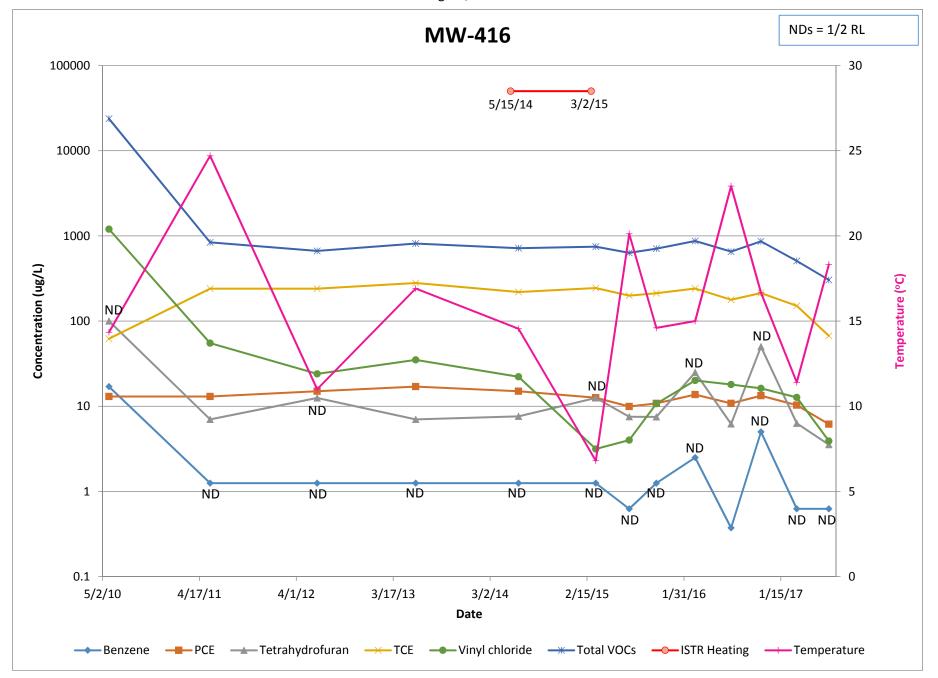

CALIBRATION RECORD

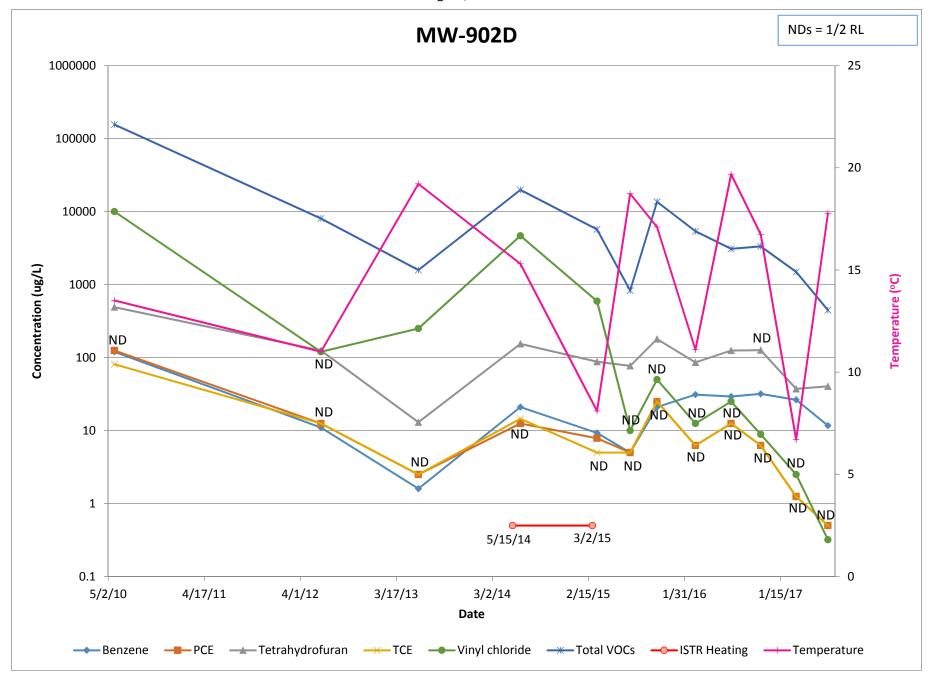
Ad . suma!

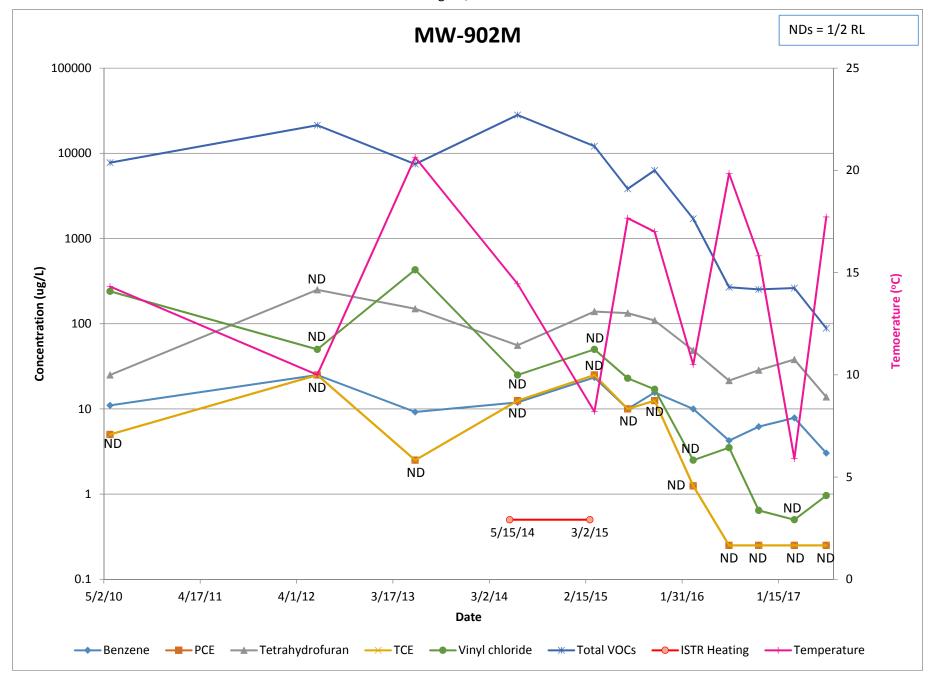

Morning Calibration		Afternoon Ch	Evening Check			
	alibration accessful	Standard Re	ading		Standard	Reading
pH (S.I. units)	2 APR			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 1 ^{. 1. 1.} 1. 1.
4.00 3.82 4	00 00	4.00	and a state of states	1	4.00	4.21
7.00 7.11 7	,60	7.00	1.1		7.00	1.08
10.00 9.97 1	0.00	10.00		2 P.	10.00	10.12
Turbidity (NTUs)	P 12					AT 1
0:02 0	02	0			002	0.11
10	0	10			10	9.11
	000				1000	9521
Conductivity (µmho	os/cm)			** S.		
100 0 100	0/1000	10	1911 ¹⁹³		1000	1089
100 0	2.7	10		1.10		1 7
Dissolved Oxygen	(mg/L)			1.47.17 1.47.17		
Zero DO Solution		Not Applicable		Not Applicable		
and the second			11			
REDOX (mV)		Chart ¹			Chart ¹	
(Zobel Solution) 250.8/200						211
(Light's Solution)						469.5
Temperature (C)	5.11			1 2 7		14.99

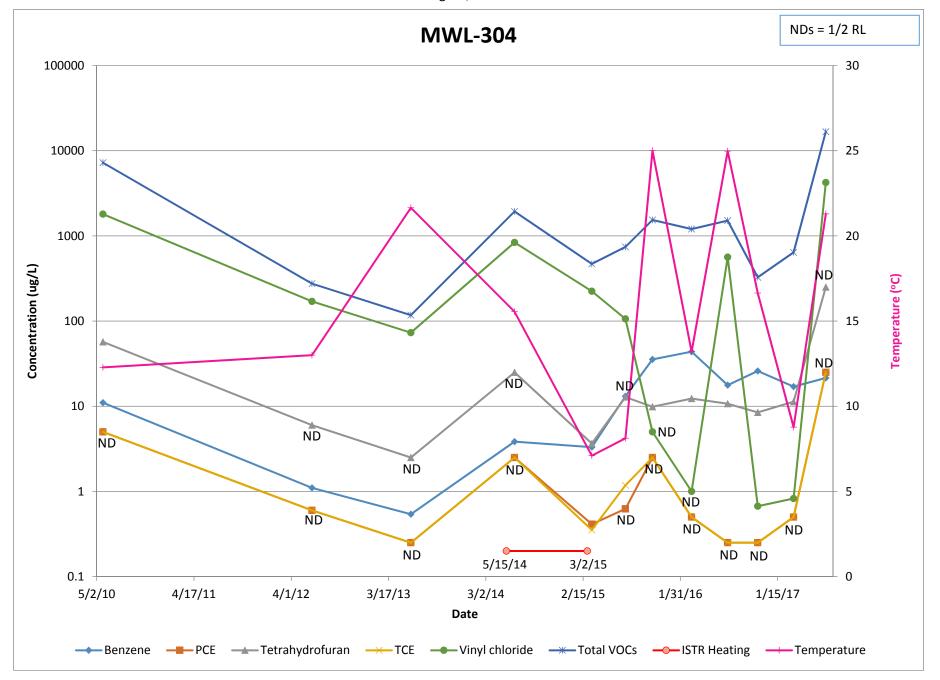
APPENDIX C


Post-Thermal Treatment Trend Graphs

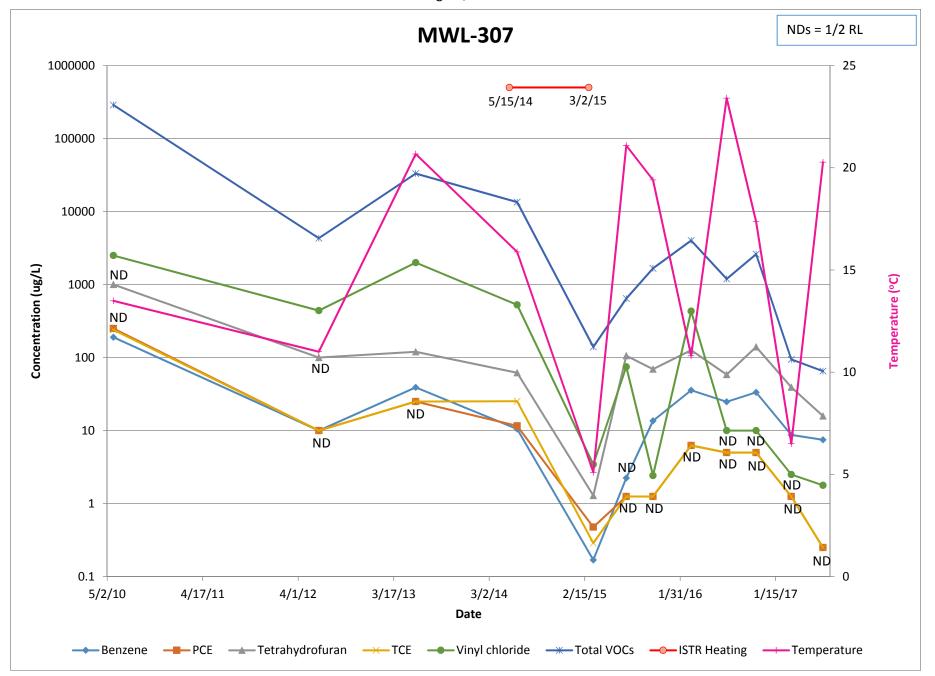

SRSNE Superfund Site


SRSNE Superfund Site

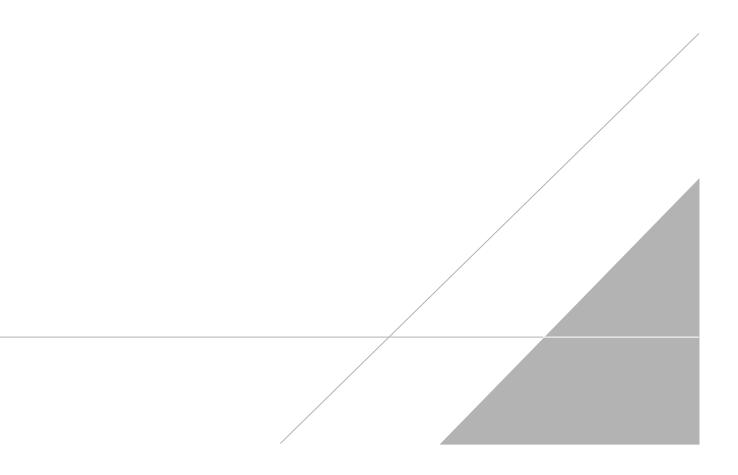

SRSNE Superfund Site


SRSNE Superfund Site

SRSNE Superfund Site


SRSNE Superfund Site

Groundwater Sampling Summary - Post-Thermal Treatment Sampling (N Wells)


SRSNE Superfund Site

Southington, Connecticut

APPENDIX D

2017 Microbiological Survey Technical Memorandum Update

DRAFT

To:

Bruce Thompson (de maximis)

Copies:

Jessie McCusker (de maximis) Ray Stevenson (Arcadis) Mike Gefell (Anchor QEA) Jeff Holden (GEI Consultants) Arcadis U.S., Inc. 160 Chapel Road Suite 201 Manchester Connecticut 06042-1625 Tel 860 645 1084 Fax 860 645 1090

From:

Monica Heintz, PhD Julie Sueker, PhD, PH, PE

Date:

Arcadis Project No.:

December 2017

B0054634.0001.02200

Subject:

2017 Microbiological Survey Technical Memorandum Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site, Southington, Connecticut

Arcadis U.S. Inc. (Arcadis) has prepared this *2017 Microbiological Survey Technical Memorandum* (memo) on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Site Group. This memo summarizes the scope, results, and data evaluation associated with the use of Bio-Trap[®] samplers and DNA-based analyses to assess groundwater microbiological characteristics at four groundwater monitoring wells in the affected groundwater zone downgradient from the former SRSNE Operations Area. This includes one well (CPZ-7R) where quantitative polymerase chain reaction (qPCR) was performed on individual gene targets, three wells (ISTR-1, ISTR-5, and TW-08D) where qPCR was performed using the QuantArray-Chlor gene suite, and one well (ISTR-5) where qPCR was performed using the QuantArray-Petro gene suite. The objectives of this survey were to:

- 1. Evaluate the capacity for microbial biodegradation of 1,4-dioxane in the NTCRA 1 containment area within the area bounded by the sheet pile wall
- 2. Compare pre- and post-thermal treatment microbial communities at select wells.

BACKGROUND

Bio-Trap[®] samplers are a passive sampling tool used to survey subsurface microbial communities. These samplers consist of a plastic housing filled with Bio-Sep[®] beads. These beads are approximately 2 to 4 millimeters in diameter, and are a composite of an inert structural material (Nomex[®]) covered with powdered activated carbon. Together, these form a suitable surface for colonization by microbes. Bio-Trap[®] samplers are typically deployed for approximately 30 days.

Following retrieval, the Bio-Trap[®] samplers are submitted to Microbial Insights of Knoxville, Tennessee. Deoxyribonucleic acid (DNA) is extracted from the Bio-Sep[®] beads, and qPCR analysis is applied to enumerate copy numbers of phylogenetic and functional genes of interest. Phylogenetic genes are genes that identify specific species of interest, while functional genes code for enzymes used in specific metabolic pathways. Phylogenetic genes are used to enumerate specific microorganisms that are known to mediate specific degradation reactions, while functional genes provide confirmation that the microbial community has the capacity to produce the enzymes necessary to complete specific reactions in known degradation pathways (Interstate Technology & Regulatory Council [ITRC] 2011).

CENSUS analysis is a method by which qPCR is used to enumerate gene targets selected for a specific project application. This method was used for the analysis of 1,4-dioxane and tetrahydrofuran (THF) biodegradation potential, and functional gene targets were selected that encode for enzymes that mediate metabolic and cometabolic 1,4-dioxane and THF biodegradation. When a substrate is degraded metabolically, it is used for cell maintenance and growth. Microorganisms able to metabolically oxidize 1,4-dioxane, using a combination of dioxane monooxygenase (DXMO) and aldehyde dehydrogenase (ALDH) enzymes, have been discovered (Gedalanga et al. 2014; Li et al. 2014). DXMO mediates the first step in biodegradation of 1,4-dioxane and THF. When enzymes produced for catalyzing metabolic degradation have relaxed substrate specificity, as many monooxygenase enzymes do, they may cometabolize compounds that the microorganisms who produced the enzyme are not capable of deriving energy or the building blocks of biomass from (Hazen 2010). Mahendra and Alvarez-Cohen (2006) presented evidence that the following groups of microorganisms have the capacity to mediate 1,4-dioxane cometabolism:

- Propane oxidizing bacteria (propanotrophs) producing propane monooxygenase (PPO)
- Methane oxidizing bacteria (methanotrophs) producing soluble methane monooxygenase (SMMO)
- Phenol degrading bacteria producing phenol hydroxylase (phenol 2-monooxygenase, PHE)
- Toluene oxidizing bacteria producing toluene monooxygenases (RMO and RDEG)

There is also evidence that some of these groups, including propanotrophs and potentially toluene oxidizing bacteria, have the capability to cometabolize THF. More recently, Hatzinger et al. (2017) found strong evidence of ethane-mediated cometabolism of 1,4-dioxane, but were

unable to reproduce evidence for methane-linked 1,4-dioxane cometabolism. Genetic targets to evaluate ethane-linked 1,4-dioxane cometabolism currently are not commercially available from Microbial Insights. Notably, each of the enzymes that have been linked to 1,4-dioxane and THF metabolism and cometabolism are monooxygenase enzymes. These enzymes require oxygen as a substrate, and therefore their activity is likely limited under the reducing to strongly reducing conditions present at the Site. However, even small amounts of dissolved oxygen may stimulate activity and result in 1,4-dioxane biodegradation.

QuantArray analysis is a method by which qPCR is used to simultaneously enumerate gene copy numbers for a range of phylogenetic and functional gene targets that have been identified as characteristic of specific degradation processes. The QuantArray-Chlor analysis provides a tool for assessing the potential for anaerobic reductive dechlorination of CVOCs as well as aerobic cometabolism of CVOCs. Many of the enzymes that mediate cometabolism of 1,4-dioxane also mediate cometabolism of chlorinated compounds. The QuantArray-Petro analysis provides a tool for assessing the potential for aerobic and anaerobic degradation of benzene, toluene, ethylbenzene, xylenes (BTEX), methyl *tert*-butyl ether (MTBE), polycyclic aromatic hydrocarbons (PAHs), and alkanes. In addition to providing enumeration of gene copy numbers for microorganisms and enzymes relevant to the degradation of CVOCs and petroleum hydrocarbons, QuantArray analyses enumerate methanogenic organisms, sulfate-reducing bacteria, and total bacteria to provide additional context for results.

For some gene targets in the QuantArray, Microbial Insights presents a qualitative ranking of the abundance, from low to high, and a quantitative percentile relative to numbers observed across a wide range of samples analyzed from different sites. For some CENSUS gene targets Microbial Insights also provides percentile rankings for the abundance detected relative to other samples analyzed.

CENSUS survey results for 1,4-dioxane biodegradation potential are presented on Figure 1. These results, along with percentile rankings for gene abundance, are also presented in Table 1. QuantArray survey results, including qualitative and quantitative rankings, are presented in Tables 2 and 3 and Figures 2 through 5.

1,4-DIOXANE BIODEGRADATION POTENTIAL

On March 3, 2017, a Bio-Trap[®] sampler was deployed at shallow bedrock monitoring well CPZ-7R. This monitoring well was selected as a replacement for monitoring at TW-08B because TW-08B was damaged and was abandoned in March 2017.On April 4, 2017 the Bio-Trap[®] sampler was retrieved from monitoring well CPZ-7R and shipped overnight to Microbial Insights. Microbial Insights extracted DNA from the sampler and used qPCR analyses to quantify selected CENSUS gene targets (Table 1). Figure 1 presents gene target counts for seven of the eight enzymes indicated above that are capable of metabolizing or cometabolizing 1,4-dioxane and/or THF. As indicated in the previous section, gene targets for ethane-mediated 1,4-dioxane cometabolism are currently not commercially available from Microbial Insights. Results indicate that quantifiable numbers of the genes that encode propane monooxygenase and soluble methane monooxygenase, and robust numbers of genes that encode phenol hydroxylase and toluene monooxygenases are present. The two gene targets that together are indicative of metabolic 1,4-dioxane biodegradation (DXMO and ALDH) were not detected. It is possible that metabolic biodegradation of 1,4-dioxane may be mediated by microorganisms and/or genetic pathways that have not yet been identified.

Both gene presence and substrate presence are relevant for an assessment of biodegradation potential. For 1,4-dioxane metabolism, the relevant substrates are 1,4-dioxane and oxygen. For 1,4-dioxane cometabolism, the relevant substrates are THF, propane, methane, phenol, toluene, ethane, and oxygen. For THF metabolism and cometabolism, 1,4-dioxane is a relevant substrate. Monitoring well CPZ-7R is in the "C" well group, indicating that it is sampled during comprehensive sampling rounds only, and thus recent data are not available. For the purposes of this evaluation, concentrations of potential substrates for 1,4-dioxane metabolism and cometabolism measured at monitoring well TW-08B prior to its abandonment are presented on Figure 1. These results suggest that there are multiple carbon substrates that have the potential to support cometabolic and/or 1,4-dioxane biodegradation in the NTCRA 1 monitoring area when dissolved oxygen is available. Dissolved oxygen concentrations in site groundwater are typically low; however, where the other required substrates are present, even a relatively small amount of oxygen may stimulate biodegradation.

These results, along with results presented in the *2016 Microbiological Survey Technical Memorandum* (Arcadis 2016) indicate that the subsurface microbial community at the Site has the capability to biodegrade 1,4-dioxane and THF via multiple pathways. To evaluate the extent to which biodegradation is occurring, additional lines of evidence will be necessary, including an evaluation of the expression of the gene targets discussed here. An evaluation of gene expression can be completed with a messenger ribonucleic acid (mRNA) survey of the same genetic targets. Demonstrated expression of the relevant gene targets with an mRNA survey provides a strong line of evidence that not only are the necessary organisms present, but that they are also active. This line of evidence is especially important in environments where some necessary substrates may be present only at low-levels (e.g., oxygen, propane, phenol). Another valuable line of evidence for the efficacy of 1,4-dioxane and THF biodegradation is the demonstration of decreasing concentrations over time.

PRE- AND POST-THERMAL TREATMENT COMPARISON

On February 6, 2017 Bio-Trap[®] samplers were deployed at three wells, ISTR-1, ISTR-5, and TW-08D, and a duplicate sampler was deployed at ISTR-5. These samplers were retrieved on March 8, 2017 and shipped overnight to Microbial Insights, where DNA was extracted and QuantArray qPCR analyses were used to enumerate a variety of organisms capable of biodegradation of chlorinated compounds (ISTR-1, ISTR-5, and TW-08D) and petroleum hydrocarbons (ISTR-5). Results from this sampling event build upon those from the baseline sampling event in June and July 2014 (prior to thermal treatment, Arcadis 2014) and the post-thermal treatment sampling event in June 2016. Thermal treatment was performed between May 2014 and March 2015 (Arcadis 2016).

QuantArray-Chlor results from well ISTR-1 are presented in Figure 2. Interpretations between the 2014 baseline microbiological survey and the 2016 and 2017 microbiological surveys are somewhat confounded because of the difference in incubation periods. In 2014, the Bio-Trap[®] sampler deployed at ISTR-1 was removed after an approximately one-week incubation because this well was within the active thermal treatment zone, and the Bio-Trap[®] needed to be removed before elevated groundwater temperatures affected the results. In 2016 and 2017, Bio-Trap[®] samplers at this well incubated for approximately one-month. ISTR-1 results from the 2016 and 2017 surveys indicate a diversity of microorganisms capable of reductive dechlorination of chlorinated compounds and indicate that the community has the capability to mediate aerobic cometabolic biodegradation. A comparison of 2016 results with 2017 results indicates increased microbial diversity and abundance over time. While vinyl chloride reductase genes BVC and VCR were not detected in 2016, a moderate abundance of VCR was documented in 2017. This observation provides a line of evidence that the microbial community has the capacity to mediate full reductive dechlorination, through vinyl chloride, to innocuous end-products.

A comparison of 2014 baseline (pre-thermal treatment) and 2017 QuantArray-Chlor results from well TW-08D are presented in Figure 3. These results indicate increased diversity in the microbial community and provide a strong line of evidence that the microbial community is capable of mediating biodegradation of a variety of chlorinated compounds via multiple pathways under variable oxidation-reduction conditions. However, the combination of increased populations of sulfate reducers and methanogens and the increased diversity of organisms capable of reductive dechlorination suggest that strongly reducing conditions persist, and that although a variety of aerobic microorganisms are present, limited availability of dissolved oxygen may preclude substantial aerobic biodegradation in this area of the Site.

A comparison of 2014 baseline (pre-thermal treatment), 2016, and 2017 QuantArray-Chlor results from well ISTR-5 are presented in Figure 4. These results indicate increased microbial diversity over time and increased abundance of key microbial groups with the capacity to mediate anaerobic reductive dechlorination and aerobic cometabolism of a variety of chlorinated compounds. While vinyl chloride reductase genes BVC and VCR were not detected in 2016, a moderate to high abundance was observed in 2017, providing a strong line of evidence that the microbial community has the capacity to mediate full reductive dechlorination to innocuous end-products. Similar to results at monitoring well TW-08D, results at ISTR-5 indicate substantial populations of sulfate reducers and methanogens and increasing diversity of organisms capable of reductive dechlorination over time. These observations continue to suggest that strongly reducing conditions persist, and that although a variety of aerobic microorganisms are present, limited availability of dissolved oxygen may preclude substantial aerobic biodegradation in this area of the Site.

QuantArray-Petro results from well ISTR-5 are presented in Figure 5. A comparison of results between 2014, 2016, and 2017 illustrates decreased abundance and diversity of anaerobic petroleum hydrocarbon degraders and increasing diversity and abundance of aerobic petroleum hydrocarbon degraders. This result is somewhat contradictory with results from the QuantArray-Chlor analysis, which indicates increasing diversity and abundance of anaerobic organisms. It is

possible that the microorganisms responsible for anaerobic biodegradation of petroleum hydrocarbons use genetic pathways that are not identified with the gene targets available with QuantArray-Petro. It is also possible that limited oxygen that may be available is rapidly utilized for biodegradation of petroleum hydrocarbons and that this process supports ongoing reductive dechlorination of chlorinated compounds.

SUMMARY AND CONCLUSIONS

Results indicate a broad range of capabilities within the site microbial community, with organisms capable of aerobic and anaerobic degradation present. A comparison of results between the 2014 pre-thermal treatment sampling event and the post-thermal treatment events in 2016 and 2017 indicates increased microbial diversity and abundance at the three locations sampled in 2017. The assessment of 1,4-dioxane biodegradation potential at monitoring well CPZ-7R indicates the potential for multiple biodegradation mechanisms in this area of the site. Because groundwater conditions are generally reducing to strongly reducing, it is likely that aerobic biodegradation is limited. However, it is possible that even small amounts of dissolved oxygen stimulate processes that may include the metabolism and/or cometabolism of 1,4-dioxane.

TABLES

Table 1 – 1,4-Dioxane and Tetrahydrofuran Biodegradation Potential – April 2017

- Table 2 QuantArray-Chlor Summary Table March 2017
- Table 3 QuantArray-Petro Summary Table March 2017

FIGURES

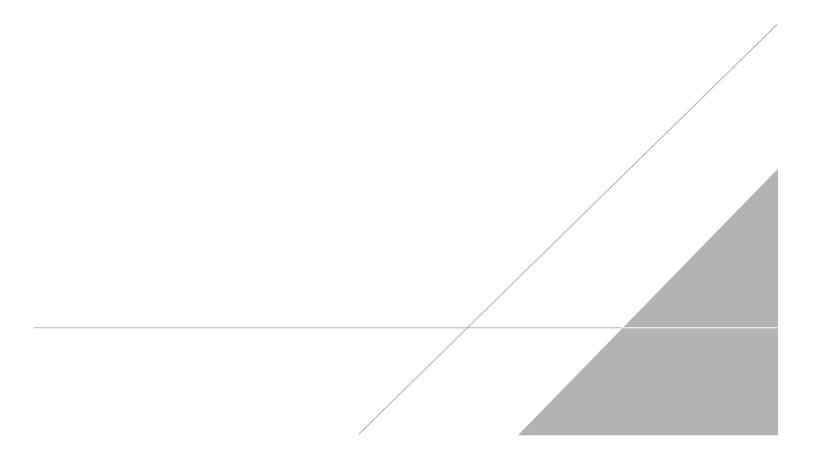
- Figure 1 1,4-Dioxane and Tetrahydrofuran Biodegradation Potential CPZ-7R March 2017
- Figure 2 2014, 2016, and 2017 QuantArray-Chlor Results ISTR-1
- Figure 3 2014 and 2017 QuantArray-Chlor Results TW-08D
- Figure 4 2014, 2016, and 2017 QuantArray-Chlor Results ISTR-5
- Figure 5 2014, 2016, and 2017 QuantArray-Petro Results ISTR-5

REFERENCES

Arcadis. 2014. 2014 Baseline Microbiological Survey Technical Memorandum. September 15, 2014.

Gedalanga, P.B., Pornwongthong, P., Mora, R., Chiang, S.D., Baldwin, B., Ogles, D., Mahendra, S. 2014. Identification of Biomarker Genes to predict Biodegradation of 1,4-Dioxane. Applied and Environmental Microbiology. 80(10):3209-3218.

Hatzinger, P.B., Banerjee, R., Rezes, R., Streger, S.H., McClay, K., Schaefer, C.E. 2017. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation. Published online ahead of print October 11, 2017.


Hazen, T.C. 2010. Cometabolic Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology. 2505-2514.

Interstate Technology & Regulatory Council. 2011. Technology Overview Environmental Molecular Diagnostics Fact Sheets. November

Li, M., Mathieu, J., Liu, Y., Van Orden, E.T., Yang, Y., Fiorenza, S., Alvarez, P.J.J. 2014. The Abundance of Tetrahydrofuran/Dioxane monooxygenase Genes 9thmA/sxmA) and 1,4-Dioxane Degradation Activity Are Significantly Correlated at Various Impacted Aquifers. Environmental Science and Technology. 1:122-127.

Mahendra, S. and Alvarez-Cohen, L. 2006. Kinetics of 1,4-Dioxane Biodegradation by Monooxygenase-Expressing Bacteria. Environmental Science and Technology. 40:5435.

TABLES

Table 1 - 1,4-Dioxane and Tetrahydrofuran Biodegradation Potential - April 2017 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

	Sar	nple Location	CPZ-7R				
		Sample Date		4/4/2017			
		Well Group		С			
		Layer	SBR				
Gene Target		Gene Type	Cells per Bead	Laboratory Flag	Percentile Ranking		
Dioxane Monooxygenase	DXMO	F	2.50E+02	U			
Aldehyde Dehydrogenase	ALDH	F	2.50E+02	U			
Propane Monooxygenase	PPO	F	4.05E+01	J			
Soluble Methane Monooxygenase	SMMO	F	1.94E+03		8		
Phenol Hydroxylase	PHE	F	3.02E+04		56		
Toluene Monooxygenase 2	RDEG	F	2.97E+04		62		
Toluene Monooxygenase	RMO	F	2.45E+04		64		

Notes:

U = Gene not detected at a copy number above the value indicated

J = Estimated gene copy number below practical quantitation limit, but above lower quantitation limit.

F= Functional gene

NA = percentile not applicable due to result below reporting limit

-- = percentile not calculated due to insufficient data in Microbial Insights Database

Bold = Analyte detected above the laboratory reporting limit

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

DBR = Deep Bedrock

Table 2 - QuantArray-Chlor Summary Table - March 2017 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Sample Location Sample Date				ISTR-1			ISTR-5			STR-5 DUP			TW-08D	
						3/8/2017 MOB/DOB		3/8/2017 MOB/DOB			3/8/2017 DOB			
Layer														
Gene Target		Gene Type	Cells per Bead	Laboratory Flag	Percentile Ranking	Cells per Bead	Laboratory Flag	Percentile Ranking	Cells per Bead	Laboratory Flag	Percentile Ranking	Cells per Bead	Laboratory Flag	Percentile Ranking
Reductive Dechlorination														
Dehalococcoides spp.	DHC	Р	7.85E+03		61	3.70E+04		71	2.08E+04		68	5.16E+04		73
Dehalobacter spp.	DHBt	Р	5.64E+05		89	3.34E+05		86	3.39E+05		86	1.87E+04		57
Desulfitobacterium spp.	DSB	Р	4.21E+04		NA	7.86E+03		NA	6.03E+03		NA	2.02E+03		NA
Desulfuromonas spp.	DSM	Р	1.13E+07		95	9.83E+06		95	3.97E+06		94	1.54E+06		91
BAV1 Vinyl Chloride Reductase	BVC	F	2.50E+01	U		2.50E+01	U		2.50E+01	U		3.39E+04		86
Vinyl Chloride Reductase	VCR	F	4.05E+03		49	2.86E+04		64	1.50E+04		60	2.94E+03		46
tce Reductase	TCE	F	1.43E+02		23	7.76E+03		57	6.68E+03		56	7.96E+03		57
Dehalogenimonas spp.	DHG	Р	4.68E+03		83	2.69E+03		51	1.95E+03		52	2.50E+02	U	57
1,1-Dichloroethane Reductase	DCA	F	2.50E+02	U		2.50E+02	U		2.50E+02	U		2.50E+02	U	
1,2-Dichloroethane Reductase	DCAR	F	2.50E+02	U		2.50E+02	U		2.50E+02	U		2.50E+02	U	ſ
Dehalobacter DCM	DCM	Р	1.29E+03		NA	9.62E+03		NA	6.63E+03		NA	5.11E+02		NA
Chloroform reductase	CFR	F	2.50E+02	U		2.50E+02	U		2.50E+02	U		2.50E+02	U	(
Dehalobium chlorocoercia	DECO	Р	2.99E+04			1.38E+03			2.14E+03			7.37E+02		ĺ
Aerobic Cometabolism							•							
Soluble Methane Monooxygenase	SMMO	F	4.94E+05		51	6.52E+04		35	3.32E+04		30	2.56E+04		28
Particulate Methane Monooxygenase	PMMO	F	2.10E+05		NA	1.50E+04		NA	7.28E+03		NA	2.05E+03		NA
Toluene Dioxygenase	TOD	F	9.52E+02		26	4.36E+03		59	5.68E+03		64	3.80E+02		7
Phenol Hydroxylase	PHE	F	1.09E+05		78	4.42E+04			1.48E+04			4.46E+04		63
Toluene Monooxygenase 2	RDEG	F	2.45E+05		91	2.06E+04		56	1.71E+04		53	3.86E+03		25
Toluene Monooxygenase	RMO	F	1.72E+04		58	7.05E+04		82	2.59E+04		94	2.67E+05		65
Epoxyalkane Transferase	EtnE	F	2.50E+02	U		2.50E+02	U		2.50E+02	U		7.90E+02		NA
Ethene Monooxygenase	EtnC	F	2.50E+02	U		2.50E+02	U		2.50E+02	U		5.32E+02		NA
Trichlorobenzene Dioxygenase	TCBO	F	2.61E+03			4.68E+02			1.24E+02	J		2.64E+03		[
Dichloromethane Dehalogenase	DCMA		2.50E+02	U		2.50E+02	U		2.50E+02	U		2.50E+02	U	[
Other					-			•			•			
Methanogens	MGN	F	4.89E+04		NA	4.23E+03		NA	2.41E+03		NA	8.92E+01	J	NA
Sulfate Reducing Bacteria	APS	F	3.86E+05	1	67	2.91E+04		45	3.54E+04		47	4.82E+03		28
Total Eubacteria	EBAC	Р	5.62E+07	1	91	6.99E+06		35	8.15E+06		40	1.66E+06		<4

Notes:

U = Gene not detected at a copy number above the value indicated

J = Estimated gene copy number below practical quantitation limit, but above lower quantitation limit.

F= Functional gene

P = Phylogenetic gene

ug/L = micrograms per liter

mg/L = milligrams per liter

NA = percentile not applicable due to result below reporting limit

-- = percentile not calculated due to insufficient data in Microbial Insights Database

Bold = Analyte detected above the laboratory reporting limit

MOB = Middle Overburden

DOB = Deep Overburden

SBR = Shallow Bedrock

DBR = Deep Bedrock

Relative abundance indicated by microbial insights in comparison with other sites

Low
Medium-Low
Medium
Medium-High
High

Table 3 - QuantArray-Petro Summary Table - March 2017 Solvents Recovery Service of New England, Inc. (SRSNE) Superfund Site Southington, Connecticut

Sample Location			ISTR-5			ISTR-5 DUP			
Sample Date			3/8/2017			3/8/2017			
Layer			MOB/DOB			MOB/DOB			
Gene Target		Gene Type	Cells per Bead	Laboratory Flag	Percentile Ranking	Cells per Bead	Laboratory Flag	Percentile Ranking	
Anaerobic BTEX				-				_	
Benzoyl Coenzyme A Reductase	BCR	F	9.43E+01	J		1.12E+01	J		
Benzylsuccinate synthase	bssA	F	2.50E+02	U	NA	2.50E+02	U	NA	
Benzene Carboxylase	abcA	F	2.50E+02	U		2.50E+02	U		
Anaerobic PAHs and Alkanes									
Naphthalene Carboxylase	ANC	F	2.50E+02	U		2.50E+02	U		
Naphthylmethylsuccinate Synthase	mnssA	F	2.50E+02	U		2.50E+02	U		
Alklysuccinate Synthase	assA	F	2.50E+02	U	NA	2.50E+02	U	NA	
Aerobic BTEX and MTBE									
Toluene/Benzene Dioxygenase	TOD	F	4.36E+03		59	5.68E+03		64	
Phenol Hydroxylase	PHE	F	4.42E+04		63	1.48E+04		42	
Toluene 2 Monooxygenase/Phenol Hydroxylase	RDEG	F	2.06E+04		56	1.71E+04		53	
Toluene Ring Hydroxylating Monooxygenases	RMO	F	7.05E+04		82	2.59E+04		65	
Xylene/Toluene Monooxygenase	TOL	F	2.50E+02	U		2.50E+02	U		
Ethylbenzene/Isopropylbenzene Dioxygenase	EDO	F	2.50E+02	U		2.50E+02	U		
Biphenyl/Isopropylbenzene Dioxygenase	BPH4	F	2.50E+02	U		2.50E+02	U		
Methylibium petroliphilum	PM1	Р	4.83E+04		14	1.95E+04		<6	
TBA Monooxygenase	TBA	F	2.50E+02	U		2.50E+02	U		
Aerobic PAHs and Alkanes									
Naphthalene Dioxygenase	NAH	F	3.07E+02		<4	1.76E+02	J	<4	
Napthalene-inducible Dioxygenase	NidA	F	2.50E+02	U		2.50E+02	U		
Phenanthrene Dioxygenase	PHNA	F	2.50E+02	U		2.50E+02	U		
Alkane Monooxygenase	ALKB	F	2.50E+02	U		2.50E+02	U		
Alkane Monooxygenase	ALMA	F	2.50E+02	U		2.50E+02	U		
Other									
Sulfate Reducing Bacteria	APS	F	2.91E+04		45	3.54E+04		47	
Total Eubacteria	EBAC	Р	6.99E+06		35	8.15E+06		40	

Notes:

U = Gene not detected at a copy number above the value indicated

J = Estimated gene copy number below practical quantitation limit, but above lower quantitation limit.

F= Functional gene

P = Phylogenetic gene

ug/L = micrograms per liter

mg/L = milligrams per liter

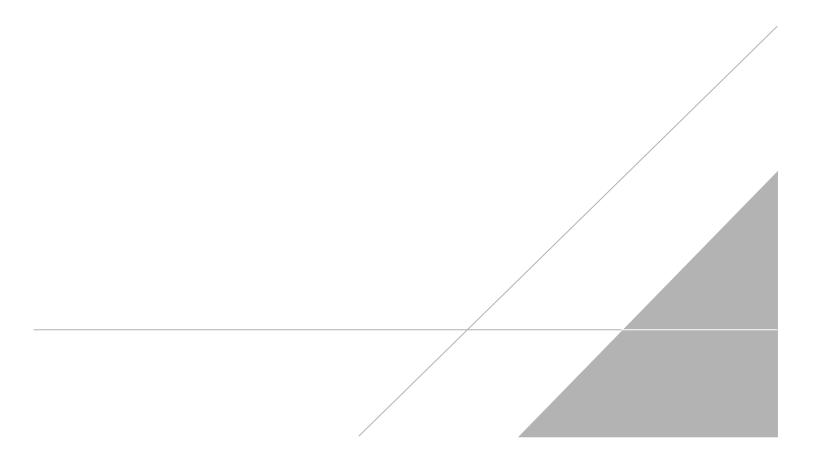
NA = percentile not applicable due to result below reporting limit

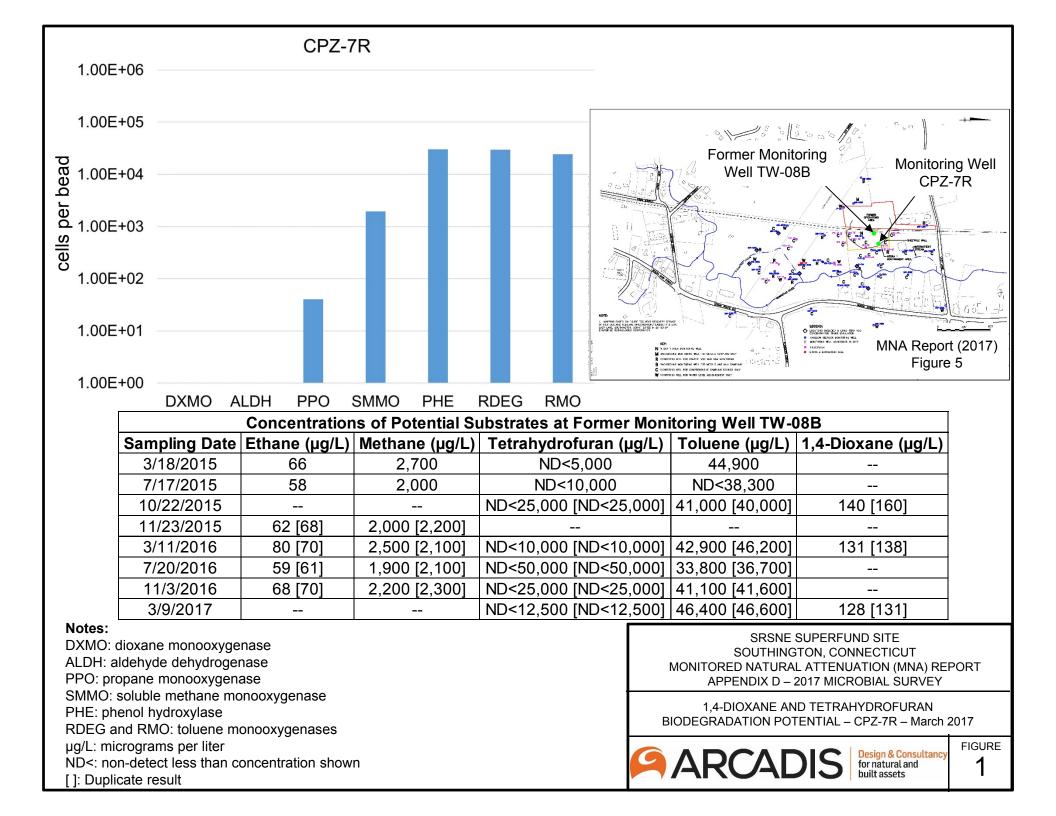
-- = percentile not calculated due to insufficient data in Microbial Insights Database

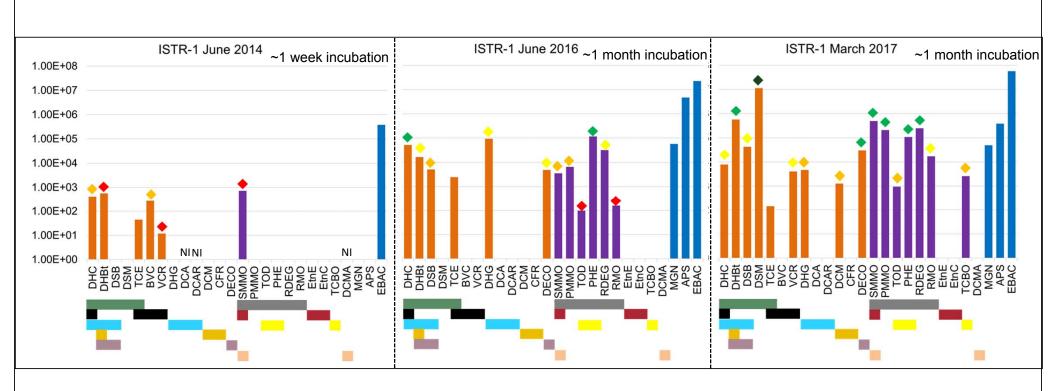
Bold = Analyte detected above the laboratory reporting limit

MOB = Middle Overburden

DOB = Deep Overburden


SBR = Shallow Bedrock

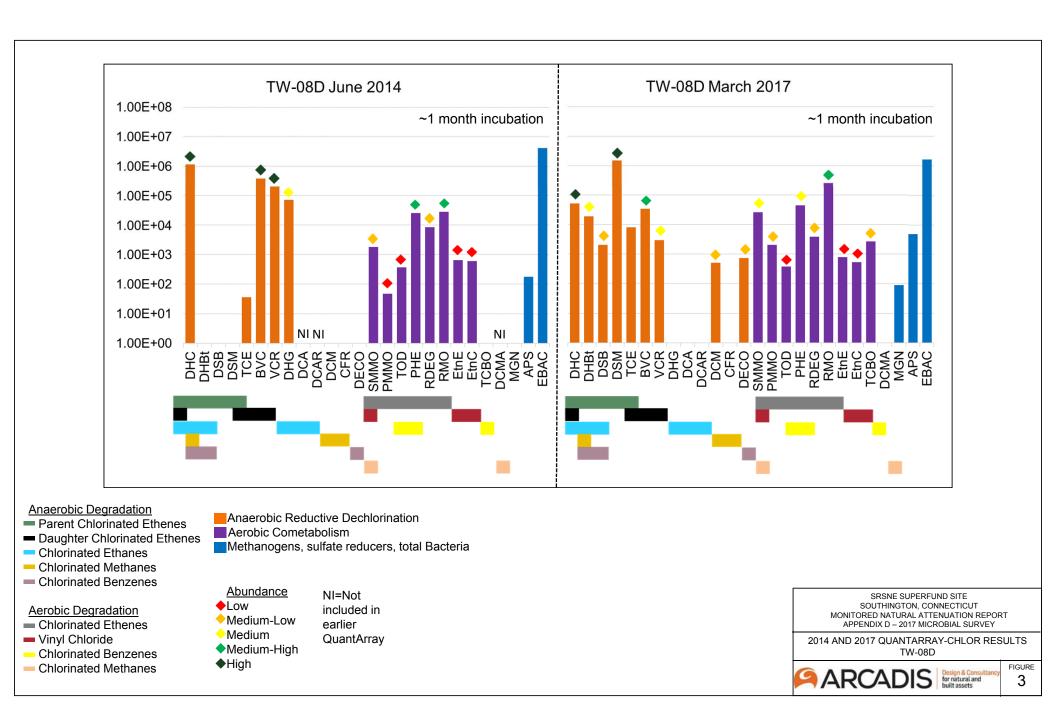

DBR = Deep Bedrock

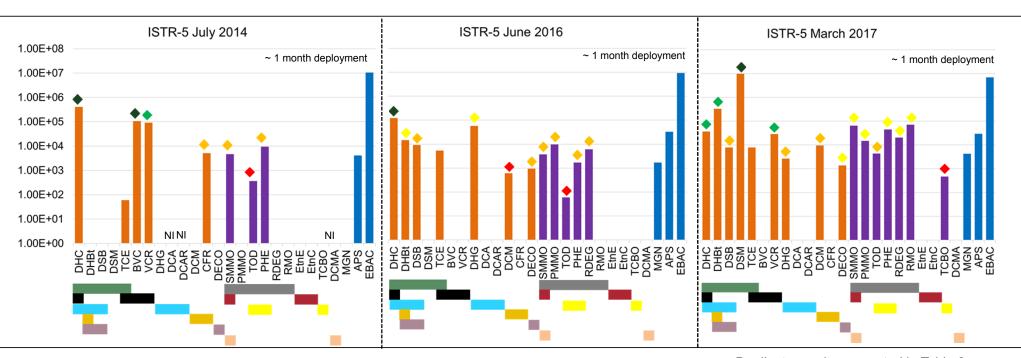

Relative abundance indicated by microbial insights in comparison with other sites

FIGURES

Anaerobic Degradation

- Parent Chlorinated Ethenes
- Daughter Chlorinated Ethenes
- Chlorinated Ethanes
- Chlorinated Methanes
- Chlorinated Benzenes


Aerobic Degradation


- Chlorinated Ethenes
- Vinyl Chloride
- Chlorinated Benzenes
- Chlorinated Methanes

Anaerobic Reductive Dechlorination Aerobic Cometabolism Methanogens, sulfate reducers, total Bacteria

AbundanceNI=Not◆Lowincluded in◆Medium-Lowearlier◆MediumQuantArray◆Medium-HighHigh

SRSNE SUPERFUND SITE SOUTHINGTON, CONNECTICUT MONITORED NATURAL ATTENUATION REPORT APPENDIX D – 2017 MICROBIAL SURVEY 2014, 2016, AND 2017 QUANTARRAY-CHLOR RESULTS ISTR-1 FIGURE 2

Duplicate results presented in Table 2

Anaerobic Degradation

- Parent Chlorinated Ethenes
- Daughter Chlorinated Ethenes
- Chlorinated Ethanes
- Chlorinated Methanes
 Chlorinated Benzenes
- Chlorinated Benzenes

Aerobic Degradation

- Chlorinated Ethenes
- Vinyl Chloride
- Chlorinated Benzenes
 Chlorinated Methanes
- Medium
 Medium-High

Abundance

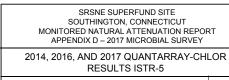
Medium-Low

Anaerobic Reductive Dechlorination

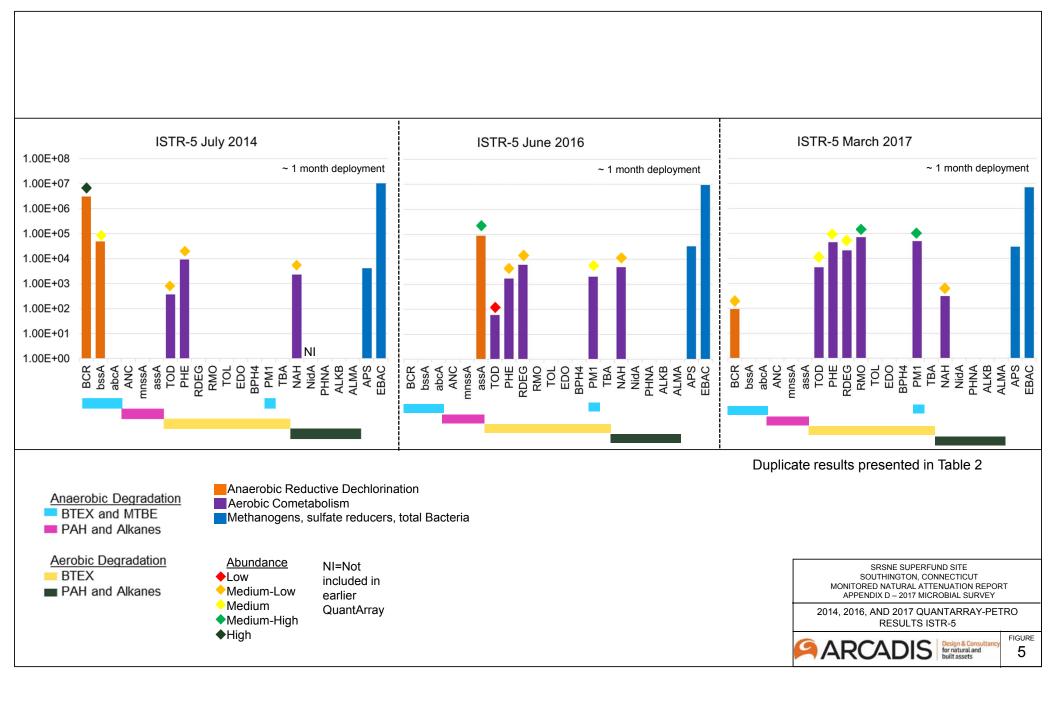
Methanogens, sulfate reducers, total Bacteria

NI=Not

earlier


included in

QuantArray


Aerobic Cometabolism

♦High

Low

ARCADIS Design & Consultancy for natural and built assets 4

Arcadis U.S., Inc.

160 Chapel Road Suite 201 Manchester, Connecticut 06042-1625 Tel 860 645 1084 Fax 860 645 1090

www.arcadis.com

Attachment 3

2017 Groundwater Sampling and Monitored Natural Attenuation Report

Hydraulic Containment and Treatment System Annual Demonstration of Compliance Report No. 9

31 October 2016 Through 30 October 2017

Solvents Recovery Service of New England, Inc. Superfund Site Southington, Connecticut

Prepared for:

SRSNE PRP Group

Prepared by:

WESTON SOLUTIONS, INC. Suite 3B 124 Hebron Avenue Glastonbury, CT 06033 (860) 368-3200

March 2018

TABLE OF CONTENTS

Section

Page

1.	INTE	RODUCT	TON	1-1
	1.1	NTCRA	A-1 BACKGROUND	1-1
	1.2	NTCR	A-2 BACKGROUND	
	1.3	GROU	NDWATER TREATMENT SYSTEM	
	1.4	REPOF	RT ORGANIZATION	
2.	DAT	A ACQU	ISITION AND RESULTS	
	2.1	NTCRA	A-1 CONTAINMENT SYSTEM MONITORING	
		2.1.1	RGT-1 Results	
		2.1.2	RGT-2 Results	
	2.2	NTCR	A-2 CONTAINMENT SYSTEM MONITORING	
		2.2.1	CT-1 Results	
		2.2.2	CT-2 Results	
	2.3	TREAT	IMENT SYSTEM MONITORING	
		2.3.1	HCTS Influent and Effluent Analytical Data	
		2.3.2	HCTS Influent and Effluent Flow Data	
3.	HYDI	RAULIC	CONTAINMENT AND TREATMENT SYSTEM (HCTS	S)
	OPE	RATION	S AND MAINTENANCE SUMMARY	
	3.1	OPER A	ATIONS AND MAINTENANCE SUMMARY	
	3.2		RE HCTS OPERATIONS AND MAINTENANCE	
		ACTIC	ON ITEMS	
4.	REF	ERENCH	ES	

DRAFT

TABLES

Title

Table 1	Hydraulic Head Measurements End of Month Gauging
---------	--

- Table 2
 Weekly NTCRA-1 Compliance Piezometer Pair Summary
- Table 3
 Analytical Results Process Influent
- Table 4Analytical Results Process Effluent
- Table 5Influent and Effluent HCTS Flow Data Summary

FIGURES

Title

Figure 1	NTCRA-1 &2 Hydraulic Containment Area Site Plan
Figure 1A	Overburden Hydraulic Head Contours – November 2016
Figure 1B	Shallow Bedrock Hydraulic Head Contours – November 2016
Figure 1C	Deep Bedrock Hydraulic Head Contours – November 2016
Figure 2A	Overburden Hydraulic Head Contours – December 2016
Figure 2B	Shallow Bedrock Hydraulic Head Contours – December 2016
Figure 2C	Deep Bedrock Hydraulic Head Contours – December 2016
Figure 3A	Overburden Hydraulic Head Contours – January 2017
Figure 3B	Shallow Bedrock Hydraulic Head Contours – January 2017
Figure 3C	Deep Bedrock Hydraulic Head Contours – January 2017
Figure 4A	Overburden Hydraulic Head Contours – February 2017
Figure 4B	Shallow Bedrock Hydraulic Head Contours – February 2017
Figure 4C	Deep Bedrock Hydraulic Head Contours – February 2017
Figure 5A	Overburden Hydraulic Head Contours – March 2017
Figure 5B	Shallow Bedrock Hydraulic Head Contours – March 2017
Figure 5C	Deep Bedrock Hydraulic Head Contours – March 2017
Figure 6A	Overburden Hydraulic Head Contours – April 2017
Figure 6B	Shallow Bedrock Hydraulic Head Contours – April 2017
Figure 6C	Deep Bedrock Hydraulic Head Contours – April 2017
Figure 7A	Overburden Hydraulic Head Contours – May 2017
Figure 7B	Shallow Bedrock Hydraulic Head Contours – May 2017
Figure 7C	Deep Bedrock Hydraulic Head Contours – May 2017
Figure 8A	Overburden Hydraulic Head Contours – June 2017
Figure 8B	Shallow Bedrock Hydraulic Head Contours – June 2017
Figure 8C	Deep Bedrock Hydraulic Head Contours – June 2017
Figure 9A	Overburden Hydraulic Head Contours – July 2017

FIGURES (Concluded)

Title

- Figure 9B Shallow Bedrock Hydraulic Head Contours July 2017
- Figure 9C Deep Bedrock Hydraulic Head Contours July 2017
- Figure 10A Overburden Hydraulic Head Contours August 2017
- Figure 10B Shallow Bedrock Hydraulic Head Contours August 2017
- Figure 10C Deep Bedrock Hydraulic Head Contours August 2017
- Figure 11A Overburden Hydraulic Head Contours September 2017
- Figure 11B Shallow Bedrock Hydraulic Head Contours September 2017
- Figure 11C Deep Bedrock Hydraulic Head Contours September 2017
- Figure 12A Overburden Hydraulic Head Contours October 2017
- Figure 12B Shallow Bedrock Hydraulic Head Contours October 2017
- Figure 12C Deep Bedrock Hydraulic Head Contours October 2017
- Figure 13 Hydrographs of CPZ-5 and CPZ-6 31 Oct. 2016 through 30 Oct. 2017
- Figure 14A Hydrographs of PZR-2R and MW-704R 31 Oct. 2016 through 30 Oct. 2017
- Figure 14B Hydrographs of PZR-2DR and MW-704DR 31 Oct. 2016 through 30 Oct. 2017

LIST OF ACRONYMS

BBL	Blasland, Bouck & Lee, Inc.
CTDEEP	Connecticut Department of Energy & Environmental Protection
DCP	Demonstration of Compliance Plan
DCR	Demonstration of Compliance Report
EPA	United States Environmental Protection Agency
ft	feet
gpm	gallons per minute
HCTS	Hydraulic Containment and Treatment System
NTCRA	Non-Time-Critical Removal Action
O&M	operations and maintenance
RCRA	Resource Conservation and Recovery Act
SOW	Statement of Work
SRSNE	Solvents Recovery Service of New England, Inc.
UV	ultraviolet oxidation
VFD	Variable Frequency Drive
VOC	volatile organic contaminants
WESTON®	Weston Solutions, Inc.

DRAFT

SECTION 1

INTRODUCTION

1. INTRODUCTION

This Demonstration of Compliance Report (DCR) was prepared by Weston Solutions, Inc. (WESTON[®]) on behalf of the Solvents Recovery Service of New England, Inc. (SRSNE) Site Group. The DCR documents the effectiveness of the Non-Time-Critical Removal Action No. 1 and 2 (NTCRA-1 and NTCRA-2) hydraulic containment and treatment system at the SRSNE Superfund Site in Southington, Connecticut. This DCR has been prepared and submitted in accordance with Section VII, Paragraph G of the Remedial Design/Remedial Action Statement of Work (SOW) that accompanied the Record of Decision (ROD) for the site. The data presented in this DCR were obtained in accordance with the United States Environmental Protection Agency (EPA) approved Demonstration of Compliance Plans (DCP) for NTCRA-1 and NTCRA-2 (Blasland, Bouck & Lee (BBL), June 1995 and November 1999, respectively). The data acquisition schedule, reporting, and evaluation requirements for this and future DCRs were described in these DCPs.

This is the ninth annual DCR prepared following lodging of the Consent Decree in 2008, and reflects performance data collected from the period of October 31, 2016 through October 31, 2017. This DCR follows 60 previously submitted DCRs prepared initially on a quarterly basis and changed to annual submissions in 2003.

1.1 NTCRA-1 BACKGROUND

The NTCRA-1 hydraulic containment system is installed in the NTCRA-1 containment area (Figure 1), which was defined in the NTCRA-1 DCP The containment system originally included an array of 12 overburden groundwater extraction wells (RW-1 through RW-12) and a downgradient barrier (steel sheet piling) that hydraulically and physically contains overburden groundwater leaving the SRSNE operations area.

The pre-design investigation results and the designs of the hydraulic barrier wall, extraction wells, and treatment system are described in detail in the NTCRA-1 100% Groundwater Containment and Treatment System Design Report (100% Design Report, BBL, January 1994). The NTCRA-1 system was constructed between February and July 1995 and brought online in accordance with the EPA-approved schedule on 19 July 1995.

The NTCRA-1 hydraulic containment and monitoring network remained as originally constructed until November 2009, when specific recovery wells, monitoring wells, and piezometers were abandoned in accordance with the Monitoring Well Network Evaluation, included as Attachment N to the *Remedial Design Work Plan* (Arcadis, April 2009). EPA was notified that the abandoned wells and piezometers would be removed from the NTCRA-1 monitoring program and DCP on 1 November 2009 (WESTON, December 2009). The second annual DCR (31 October 2009 to 30 October 2010) summarizes the recovery wells, monitoring wells, and piezometers abandoned under this program and the rationale for abandonment of each well. As indicated in the second annual DCR, abandonment of the targeted monitoring wells and piezometers was performed in November and December 2009, with exception to former recovery wells RW-5 and RW-6. These recovery wells were permanently taken out of service in November 2009, but not abandoned until December 2010. As a result of the 2010 recovery well

abandonment activities discussed above, the NTCRA-1 containment system consists of ten overburden groundwater extraction wells (RW-1 through RW-4, and RW-7 through RW-12).

The NTCRA-1 hydraulic containment system was not further modified until construction of a Resource Conservation and Recovery Act (RCRA) Subtitle C cap (RCRA cap) over the former Operations Area of the site between November 2016 and September 2017. As summarized in the Final RCRA Cap 100% Design Report (Arcadis, October 2016), NTCRA-1 system infrastructure modifications were concurrently implemented with the cap construction that allow for the future cessation of pumping at the NTCRA-1 recovery wells. As part of the NTCRA-1 modifications, the ground surface elevation in the NTCRA-1 area was raised requiring both select monitoring and recovery well elevations to be raised. In addition drainage trenches were constructed on both the upgradient (west side) and downgradient (east side) of the NTCRA-1 sheet pile wall to create a drainage pathway for the flow of groundwater. At three locations on the sheet pile wall, penetrations were installed and equipped with valves to enable future control of the groundwater flow through the wall. These wall penetrations will remain closed until such time the NTCRA-1 hydraulic containment system is shut down.

All ten NTCRA-1 recovery wells (RW-1 through RW-4, and RW-7 through RW-12) continued to operate between November 2009 and March 2017. The SRSNE Group requested (demaximis, March 2017) the shutdown of five NTCRA-1 recovery wells (RW-1, 4, 8, 9 and 10). These five wells were proposed to be shut down because these wells produced lower groundwater yield and the construction of the drainage trenches along the sheet pile wall will promote the flow of groundwater to the remaining wells. The EPA subsequently approved this request and these wells were turned off on 29 March 2017. EPA also approved abandonment and removal of monitoring wells (MWL-305 and MWL-308) from the NTCRA-1 DCP (demaximis, March 2017). In addition, P-5A was also abandoned and removed from the NTCRA-1 monitoring program at the same time as MWL-305 and MWL-308.

As a result of the 2017 recovery well shutdown, the NTCRA-1 containment system now consists of five operational overburden groundwater extraction wells (RW-2, 3, 7, 11 and 12). The other five recovery wells are still being monitored as part of the DCP, but the pumps and equipment have been removed.

1.2 NTCRA-2 BACKGROUND

The NTCRA-2 hydraulic containment system is installed south (hydraulically downgradient) of the NTCRA-1 containment area (Figure 1), as shown in the NTCRA-2 DCP. The NTCRA-2 containment area encompasses the majority of the northern portion of the Town of Southington's well field property and includes the shallow and deep bedrock, extending to a depth of 100 feet (ft) below the top of bedrock in the northern portion of this property (Figure 1). Further upgradient (north), the NTCRA-2 containment area extends over 170 ft below the top of bedrock and over 200 ft below ground surface (BBL, November 1999).

The NTCRA-2 hydraulic containment system initially included two groundwater extraction wells (RW-13 and RW-1R) that, in combination with the NTCRA-1 containment system, contain bedrock groundwater migrating from the SRSNE operations area (Figure 1). The design of the

overburden and bedrock extraction wells RW-13 and RW-1R are described in the NTCRA-2 *100% Design Report* (BBL, November 1999). Overburden recovery well RW-13 has been on-line since 14 July 1999, and bedrock recovery well RW-1R has been operating since 5 September 2001.

A third groundwater extraction well (RW-14) was added to the NTCRA-2 containment system (Figure 1) to further enhance long-term hydraulic containment of the overburden and bedrock groundwater in the NTCRA-2 well field. The design of the additional overburden extraction well is described in the RW-14 *Completion Report* (WESTON, November 2007). This overburden recovery well has been operating since 24 September 2007.

A fourth groundwater extraction well (RW-15) was also added to the NTCRA-2 well field to provide additional redundancy and ensure NTCRA-2 performance objectives can be maintained with one NTCRA-2 overburden recovery well out of service in the future. The design of the additional overburden extraction well is described in the RW-15 *Completion Report* (WESTON, January 2015). This overburden recovery well has been operating since 12 November 2014. As part of the well installation work, a second electrical service was extended to the NTCRA-2 well field and one of the two installed spare NTCRA-2 forcemains was connected to RW-15 and placed into service. As part of the forcemain extension, a valve vault was installed between the NTCRA-2 wells and the treatment system. The valve vault allows for selection of which forcemain will be used to convey groundwater to the Hydraulic Containment and Treatment System (HCTS). It is also equipped with cleanouts to allow for maintenance on each active forcemain.

1.3 GROUNDWATER TREATMENT SYSTEM

The groundwater extracted by the NTCRA-1 and -2 containment systems is pumped directly to the groundwater treatment facility (Figure 1). The treatment system consists of: influent equalization, metals pretreatment, filtration, ultraviolet oxidation (UV), and granular activated carbon adsorption. Vapor phase carbon adsorption is also used to capture contaminants that volatize during treatment. The system precipitates and extracts metals, reduces suspended solids, and destroys and captures volatile organic compounds (VOC). Treated water is discharged to the Quinnipiac River in accordance with the Connecticut Department of Energy & Environmental Protection (CTDEEP) *Revised Substantive Requirements for Discharge of Pre-Treated Groundwater* issued 6 November 1995.

1.4 **REPORT ORGANIZATION**

Section 2 of this report summarizes the acquisition and evaluation of field data used to verify the effectiveness of the hydraulic containment and treatment system, and Section 3 provides an overview of operations and maintenance (O&M) activities conducted at the site during this O&M period.

DRAFT

SECTION 2

DATA ACQUISITION AND RESULTS

2. DATA ACQUISITION AND RESULTS

The data required to demonstrate the effectiveness of the hydraulic containment and treatment system were obtained in the form of hydraulic head measurements from wells and piezometers installed in the area of the containment system, flow measurements from the extraction well array, treatment system flow rates, and analytical results.

2.1 NTCRA-1 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-1 containment system is verified through two reversal-of-gradient tests that determine whether groundwater flow is controlled by the system. These tests are demonstrated by comparing hydraulic head measurements at several monitoring locations. The specific wells and piezometers used for these comparisons are discussed in Subsections 2.1.1 and 2.1.2. The gradient tests are:

- **Reversal of Gradient Test No. 1 (RGT-1)**: Confirms that overburden groundwater east and downgradient of the operations area is flowing in the direction of the groundwater extraction wells.
- **Reversal of Gradient Test No. 2 (RGT-2)**: Confirms that overburden groundwater flow is reversed and maintained in the direction of the groundwater extraction wells within the area enclosed by the hydraulic divide installed adjacent to the hydraulic containment system. RGT-2 is more crucial to a demonstration of compliance as it requires that overburden groundwater elevations within the barrier are at least 0.3 ft lower than those outside the wall in NTCRA-1.

2.1.1 RGT-1 Results

To confirm that overburden groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the groundwater extraction wells, hydraulic head measurements were collected at the following overburden wells/piezometers located in the vicinity of the groundwater containment system:

- Extraction Wells RW-1 through RW-4 and RW-7 through RW-12
- Monitoring Wells MW-415, MWL-304, MWL-305, MWL-307, and MWL-308. Monitoring Wells MWL-305 and MWL-308 were only monitored between November 2016 and February 2017. These wells were abandoned in March 2017 and are removed from the NTCRA-1 DCP going forward.

Overburden groundwater elevations were also measured at the following wells to assess the hydraulic response in the area between the hydraulic barrier wall and the Quinnipiac River:

Monitoring Wells MWL-302, MWL-306, MWL-309, MWL-311, and TW-7A.

Monthly overburden hydraulic head data measured at the specified wells and compliance monitoring points from 31 October 2016 through 30 October 2017 are presented in Table 1. The

resulting groundwater contour maps are presented as Figures 1A through 12A. The contours indicate the horizontal hydraulic gradient between the SRSNE operations area and the extraction wells was eastward toward the extraction wells, fulfilling RGT-1.

The vertical hydraulic gradient between the overburden and bedrock in the vicinity of the hydraulic containment system is also evaluated to confirm satisfactory recovery well operation. Groundwater elevations were compared between bedrock well MW-416 and the adjacent overburden well MWL-307 on the same dates. This comparison indicates that the vertical component of the hydraulic gradient between the bedrock and the overburden was generally downward from the overburden to the bedrock within the containment area.

Hydraulic head data is also compared at overburden compliance piezometers CPZ-1, CPZ-3, CPZ-5, CPZ-7, and CPZ-9 and adjacent bedrock piezometers CPZ-1R, CPZ-3R, CPZ-5R, CPZ-7R, and CPZ-9R. Monitoring indicates that the gradient was generally upward from the bedrock to the overburden in the vicinity of the pumping wells and the hydraulic barrier wall throughout the period covered by this DCR.

2.1.2 RGT-2 Results

To confirm that groundwater flow is reversed and maintained in the direction of the groundwater extraction wells, hydraulic head measurements were collected weekly at eight fully penetrating overburden compliance piezometers (CPZ-1, 2A, 3, 4A, 5, 6, 7, and 8). Compliance piezometers CPZ-9 and -10 were removed from RGT-2 when CPZ-9 was abandoned in December 2009. As stated in the DCP, the hydraulic gradient is considered reversed and inward across the hydraulic barrier wall when the hydraulic head data measured at each compliance piezometer located inside the hydraulic barrier wall (CPZ-1, CPZ-3, CPZ-5, and CPZ-7) is at least 0.3 ft lower than the head measured at the corresponding compliance piezometer located outside the hydraulic barrier wall (CPZ-4A, CPZ-6, and CPZ-8, respectively).

Based on weekly hydraulic head measurements, the required 0.3-ft head differential was achieved in all four pairs (CPZ-1/CPZ-2A, CPZ-3/CPZ-4A, CPZ-5/CPZ-6, and CPZ-7/CPZ-8) for 15 of the 53 weekly monitoring rounds during the monitoring period. Compliance piezometer pairs CPZ-5/CPZ-6 and CPZ-7/CPZ-8 met the 0.3-ft head differential during the entire monitoring period. Compliance piezometer pairs CPZ-1/2A and CPZ-3/CPZ-4A did not achieve the required 0.3-ft differential on seven (7) and thirty-eight (38) weekly gauging rounds, respectively, during the monitoring period. Table 2 provides a summary of RGT-2 test results and highlights the weeks the required head differential was not maintained between CPZ-1/2A and CPZ-3/4A.

The cause of the loss of hydraulic gradient reversal at compliance pair CPZ-1/2A and CPZ-3/4A is believed to be a result of excessively dry site conditions due to low precipitation, and a substantial localized elevation decrease in the overburden water table outside of the sheet pile wall. This same loss of hydraulic gradient reversal has been documented in prior DCR reports when excessively dry conditions have occurred. In addition, compliance piezometers CPZ-1 and CPZ-3, which are located on the inside of the hydraulic barrier wall, have poor hydraulic connectivity to the adjacent recovery wells (RW-7 and RW-12, respectively). The distance from

each piezometer to the closest recovery well is less than 11 ft, and the recovery wells have very little drawdown influence on the groundwater elevation in the piezometer. These loss of hydraulic gradient reversals are consistent with prior monitoring periods in these pairs when dry meteorological conditions are encountered in the central Connecticut region.

Recovery well redevelopment typically occurs when groundwater recovery performance has diminished or compliance piezometer head differential is less than 0.3-ft. Recovery wells (RW-1, 7, 8, 9, and 12) were previously redeveloped in July and August 2015. The other five NTCRA-1 recovery wells (RW-2, 3, 4, 10, and 11) were previously redeveloped in November 2015. Historically, redevelopment activities are successful in improving groundwater extraction production; however, they have not been successful in improving hydraulic connectivity to the nearby piezometers and hydraulic gradient reversal during dry conditions. The November 2015 redevelopment work was not successful in improving hydraulic connectivity and hydraulic gradient remained out of compliance until precipitation raised the groundwater levels outside the containment area (see table below). Because of this historical data and acceptable recovery well flow, the NTCRA-1 recovery wells were not redeveloped during this performance period.

To verify the continuity of gradient reversal, daily hydraulic head measurements are also recorded by a data logger at compliance piezometers CPZ-5 and CPZ-6. These measurements are collected in 8-hour intervals or three times a day. These measurements demonstrated compliance for the entire monitoring period with exception of 26 and 27 April 2017 when the entire HCTS system was down following local power quality issues that caused the failure of 3-phase electrical fuses and Variable Frequency Drives (VFD). A hydrograph of the data logger measurements from compliance pair CPZ-5 and CPZ-6 is presented as Figure 13 for the monitoring period.

A summary of NTCRA-1 non-compliance occurrences between 31 October 2016 and 30 October 2017 is presented below, along with an explanation of the cause and corrective measures taken in response to the non-compliance issue.

NTCRA-1 – Non-Compliance Summary – 31 October 2016 to 30 October 2017						
Dates & (No. of Days)	Cause	Corrective Actions				
28 December 2016 to 26 February 2017 (61 days)	compliance piezometers CPZ-3/4A was not maintained. For portions of the non- compliance period, piezometers CPZ-1/2A may also not have demonstrated hydraulic gradient reversal. In addition to noted periods when hydraulic gradient reversal was not maintained at	No corrective action. Root cause is believed to be excessively dry site conditions due to low precipitation, and a substantial localiz elevation decrease in the overburden water table outside of the sheet pile wall.				
2 April to 7 May 2017 (36 days)		Compliance was restored when rain increased the overburden water table. To resolve the electrical damage both the damaged fuses and VFDs were replaced.				
26 May to 29 October 2017 (127 days)						

2.2 NTCRA-2 CONTAINMENT SYSTEM MONITORING

The satisfactory performance of the NTCRA-2 hydraulic containment system is verified through two containment tests that compare hydraulic head measurements in NTCRA-2. The specific locations used for hydraulic head comparisons are presented in Subsections 2.2.1 and 2.2.2. The containment tests are:

- **Containment Test Part 1 (CT-1)**: Confirms that within the NTCRA-2 containment area, bedrock groundwater east and downgradient of the operations area is flowing in the direction of the hydraulic containment system.
- **Containment Test Part 2 (CT-2)**: Confirms that bedrock groundwater flow downgradient of the NTCRA-2 extraction system within the containment area is reversed and maintained in the direction of the hydraulic containment system.

2.2.1 CT-1 Results

To confirm that VOC-impacted bedrock groundwater east and downgradient of the operations area and within the containment area is flowing in the direction of the extraction wells, hydraulic head measurements were obtained at the following pairs of wells/piezometers located upgradient of the hydraulic containment system:

- Shallow bedrock MW-704R and MW-121A
- Deep Bedrock MW-704DR and MW-705DR

The hydraulic gradient is considered to be towards the extraction wells when the hydraulic head measured at the shallow (MW-704R) and deep (MW-704DR) bedrock monitoring wells, located adjacent to extraction wells RW-13, RW-1R, RW-14, and RW-15, is lower than hydraulic head measurements at wells MW-121A and MW-705DR, respectively.

Monthly rounds of hydraulic head data measurements collected from 31 October 2016 to 30 October 2017 are presented in Table 1. The resulting contour maps for shallow bedrock and deep bedrock monitoring wells and piezometers are presented as contours on Figures 1B through 12B and Figures 1C through 12C, respectively. The contours indicate that groundwater flow in the shallow and deep bedrock is inward toward the NTCRA-2 extraction wells, fulfilling Containment Test Requirement No.1.

2.2.2 CT-2 Results

To confirm that bedrock groundwater flow downgradient of the extraction system within the containment area is reversed and maintained in the direction of the extraction wells, hydraulic head measurements were obtained at the following locations:

- Shallow bedrock MW-704R, MW-204A, PZR-2R, and PZR-4R
- Deep Bedrock MW-704DR, PZR-2DR, and PZR-4DR

The hydraulic gradient is considered reversed and inward toward the containment area when the hydraulic head measured at the shallow and deep bedrock monitoring wells MW-704R and MW-704DR, which are located adjacent to extraction wells RW-13, RW-1R, RW-14, and RW-15, is lower than the hydraulic head measurements at the remaining shallow and deep bedrock monitoring wells and piezometers listed above. Measurements taken at these locations are presented in Table 1 and as groundwater contours in Figures 1B through 12B and 1C through 12C.

To verify the continuity of gradient reversal, daily hydraulic head measurements are recorded via a data logger at the following locations:

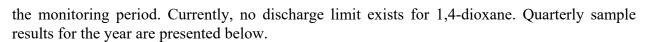
- Shallow bedrock MW-704R and PZR-2R
- Deep Bedrock MW-704DR and PZR-2DR

Daily hydraulic head measurements indicated that the NTCRA-2 containment system met CT-2 for the entire monitoring period.

Hydrographs of the data logger measurements obtained for shallow and deep bedrock compliance points between 31 October 2015 and 30 October 2016 are included as Figures 14A and 14B, respectively.

2.3 TREATMENT SYSTEM MONITORING

HCTS influent and effluent flow measurements and laboratory analytical data were obtained during the monitoring period. The analytical and flow data are presented and discussed in Subsections 2.3.1 and 2.3.2, respectively.


2.3.1 HCTS Influent and Effluent Analytical Data

Samples of groundwater treatment system influent and effluent were collected twice per month and analyzed for metals, VOCs, alcohols, and total suspended solids. For the process effluent, the first round each month was also analyzed for total polychlorinated biphenyls. Once every quarter, additional effluent samples were collected and tested for dioxins/furans. Analytical results from the influent and effluent sampling are summarized in Tables 3 and 4, respectively. In Table 4, the effluent sampling results are compared with the discharge limits established by CTDEP in the Substantive Requirements for Discharge, dated 6 November 1995. As shown in Table 4, the treatment system effluent water quality was below discharge limits for the monitoring period.

In addition to the analyses discussed previously, effluent samples were collected and submitted for acute and chronic toxicity analysis in January, April, July, and October 2016. The submitted effluent samples passed the acute and chronic toxicity test for both Daphnia Pulex and fathead minnows. This data is submitted to CT DEEP on a quarterly basis.

To collect additional data concerning the presence of 1,4-dioxane in the groundwater treated via the HCTS, process influent and effluent was also monitored quarterly for this compound during

SRSNE - 1,4-Dioxane Sampling Summary		
Date	Influent (ppb)	Effluent (ppb)
3-Jan-2017	32	11
4-Apr-2017	40	22
4-Jul-2017	38	26
3-Oct-2017	47	40

Notes:

ppb – parts per billion

2.3.2 HCTS Influent and Effluent Flow Data

The influent and effluent flow rates of the groundwater treatment system were each recorded continuously using an in-line totalizing flow meter and strip chart recorder. The NTCRA-1 and NTCRA-2 recovery wells ran continuously throughout the monitoring period, with the exception of minor shutdowns during maintenance, individual recovery well failures, or HCTS alarm shutdowns.

Approximately 20,084,000 gallons of groundwater were extracted, treated, and discharged during the monitoring period. Refer to Table 5 for a summary of influent and effluent flow rates and totals. Throughout the period covered in this report, the system treated and discharged an average of 38.2 gallons per minute (gpm).

SECTION 3

HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY

3. HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM (HCTS) OPERATIONS AND MAINTENANCE SUMMARY

The HCTS O&M summary is divided into two sections. Subsection 3.1 highlights the major O&M-related activities performed between 31 October 2016 and 30 October 2017, and Subsection 3.2 discusses O&M issues that are on-going or anticipated during future activities at the site.

3.1 OPERATIONS AND MAINTENANCE SUMMARY

The following briefly describes highlighted HCTS O&M activities or capital improvements conducted during the reporting period.

- 1. **NTCRA-1 Recovery Well Maintenance**: The following NTCRA-1 recovery well maintenance was performed during the monitoring period.
 - December 2016 Recovery Well RW-1: The Warrick level control relay for recovery well pump in RW-1 stopped working and the pump was not turning on/off based on well level. The level control relay was replaced to restore its operation.
 - March 2017 Recovery Wells RW-1, 4, 8, 9 and 10: All five NTCRA-1 recovery wells (RW-1, 4, 8, 9, and 10) were turned off.
 - March/April 2017 NTCRA-1 Recovery Well Modifications: As a result of grading changes associated with the RCRA Cap construction the NTCRA-1 recovery wells also underwent modifications to raise the vaults, well casings, and electrical controls. Four (4) recovery wells (RW-2, RW-3, RW-7, and RW-12) had; the vault/manhole, the top of casing/well, the electrical controls, and the internal vault piping raised so they would be accessible and operable with the higher ground elevation. The vault and well elevation for recovery well RW-11 did not require to be raised, but the Electrical controls were relocated to a higher elevation. For the five recovery wells that were recently shut down, the pumping and electrical control equipment were removed and placed into spare parts inventory. The vaults for recovery wells RW-1, 8, 9 and 10 were raised, but no modifications were done to the internal casings. No modifications for RW-4 were required because the grade was not changed in the area of this recovery well.
 - March 2017 Recovery Well No. 7: This recovery well required replacement of the pump with a new clean pump to improve its yield.
 - April 2017 Recovery Well No. 3: The controls for recovery well RW-3 were upgraded from level switch type control to a level transducer to improve well reliability and reduce excessive cycling.

 August 2017 – Recovery Well No. 2: The recovery well required replacement of the pump control box (Capacitor and Run Relay) to restore its operation to normal.

DRAFT

- 2. NTCRA-2 Well Maintenance: The following NTCRA-2 recovery well maintenance was performed:
 - **Recovery Well No. 13 Regular Maintenance:** In order to maintain acceptable hydraulic performance (yield) from this recovery well, the well pump was removed and replaced with a clean pump a total of 7 times during the reporting period in December 2016 and February, April, May, August September and October 2017.
 - **Recovery Well No. 14 Regular Maintenance:** In order to maintain acceptable hydraulic performance (yield) from this recovery well, the well pump was removed and replaced with a clean pump a total of 7 times during the reporting period in February, April, June, July, August September and October 2017.
 - **Recovery Well No. 15 Regular Maintenance:** In order to maintain acceptable hydraulic performance (yield) from this recovery well, the well pump was removed and replaced with a clean pump a total of 2 times during the reporting period in April, and September 2017.
 - April 2017 RW-14 Motor Replacement: Following a power quality issue at the site, recovery well RW-14 was confirmed to no longer be operable. The pump motor required replacement to restore its operation.
- 3. November 2016 Air Compressor Relief valve: The east air compressor, pressure relief valve was intermittently leaking high volumes of air, causing the compressors to operate excessively. The compressor system was shut down and the valve replaced to restore operations to normal.
- 4. December 2016 Clarifier Feed Pump P-100: The check valve was no longer operating correctly and allowing water to leak back when pump P-101 was running. A new check valve was purchased and installed.
- 5. December 2016 Sludge Transfer Pump (P-900): The diaphragm was leaking. The pump was removed from position and both the diaphragms and center shaft were replaced.
- 6. December 2016 UV-2 Influent Isolation Solenoid Valve: The air operated control valve would not close when UV-2 was taken off line. Troubleshooting confirmed that the solenoid that controls this valve stopped working. The solenoid was replaced to restore valve operation to normal.

- 7. February 2017 Sludge Transfer Pump (P-900): Continued operating problems were occurring with this pump during the month of January 2017. A new replacement pump was installed in lieu of continued maintenance on the existing pump.
- 8. March 2017 Flash Mix and Flocculation Tank Cleaning: Excessive solids in the Flash Mix and Flocculation tanks were also restricting gravity flow though the metals pre-treatment system. Both tanks had to be dewatered and solids removed to allow water to be process through these tanks. During tank cleaning the mixers were also cleaned.
- 9. March/April/July/September and October 2017 Clarifier Feed Pump Cleaning: The Clarifier Feed Pump capacity for both P100 and P-101 has been slowly diminishing. The suction and discharge piping were cleaned each month to maintain acceptable pump capacity. P-100 has recovered somewhat, but P-101 capacity continues to be a concern. In October the P-101 pump internals were inspected and cleaned to further remove accumulated solids.
- 10. April 2017 Oxidation Feed Pump (P-300 and P-301) VFD Replacement: A power quality issue caused both Oxidation Feed Pump Variable Frequency Drives (VFDs) to fail. Both VFDs required replacement to restore the pump operation.
- 11. April 2017 Clarifier Feed Tank and Mixer Cleaning: The Clarifier Feed tank was dewatered and manway removed to gain access to the tank and mixer. Settled solids and scale were removed from both the tank and mixer. Approximately one drum of solids was removed from the three tanks during the maintenance event.
- 12. May 2017 Gravity Line Cleaning: The gravity piping between the; Clarifier Feed Tank and Flash Mix/Flocculation Tank, Clarifier and Sand Filter were dismantled and cleaned as part of scheduled preventive maintenance.
- 13. June 2017 Clarifier Feed Tank pH Probe: The pH probe was no longer accurately reporting process tank pH. The probe was replaced to correct this issue.
- 14. July 2017 Sodium Hydroxide Pump Replacement: A replacement sodium hydroxide chemical feed pump was installed to replace an older metering pump. This new pump has a higher capacity to enable use of either 25% or 50% sodium hydroxide in the future.
- 15. July 2017 HCTS Effluent pH sensor: The HCTS effluent pH sensor was not working properly. The salt bridge was replaced to restore its operation to normal.
- 16. September 2017 NTCRA-2 Recovery Well Failure Alarm: The NTCRA-2 Recovery Well Failure Alarm was no longer functional. The spare NTCRA-2 alarm wire that was installed when the electrical service was upgraded was placed into service to restore this alarm circuit to normal.

17. October 2017 – NTCRA-2 Security Fence: A security fence was installed around all three recovery wells, and the Electrical/control distribution center to improve security in this remote area of the site.

DRAFT

- 18. October 2017 Filter Press Feed Pump: The north filter press feed pump was no longer operational. A new replacement pump was installed to restore its operation.
- 19. Ultraviolet Oxidation System: The following summarizes the major maintenance performed on the UV equipment during the monitoring period:
 - Four (5) UV lamps were replaced during the reporting period. All lamps were removed or replaced due to failure, excessive amperage draw, or excessive hours.
 - Two (2) quartz tubes were replaced during the reporting period.

During the monitoring period, no additional UV reactor circuits failed. At the end of this monitoring period, UV-1 has 8 of 12 functional reactor circuits, and UV-2 has 6 of 12 functional circuits.

As noted on the previous DCR, Calgon Carbon Corporation (UV Manufacturer), is no longer offering replacement parts for the older Perox-Pure UV units. The SRSNE Site Group purchased extra replacement parts in the fall of 2016 and placed them into inventory to enable continued short term operation. WESTON estimates approximately 1-2 years of additional operation could likely be achieved if operations and parts replacement conditions remain consistent with recent usage rates.

3.2 FUTURE HCTS OPERATIONS AND MAINTENANCE ACTION ITEMS

- Future long-term water treatment upgrades and alternate discharge options have been and continue to be considered for the site. Following the thermal remedial action, a significant decline in influent VOC loading has been and continues to be observed from NTCRA-1 extraction system. This loading rate decline could result in future requests for modifications to the NTCRA-1 hydraulic containment system.
- WESTON will continue to evaluate the overall HCTS and make recommendations for process improvements or modifications in the coming year. These recommendations will be summarized in the monthly O&M HCTS report submissions.

DRAFT

SECTION 4

REFERENCES

4. **REFERENCES**

Arcadis. 2009. Remedial Design Work Plan. April.

BBL. 1994. 100% Groundwater Containment and Treatment System Design Report. January.

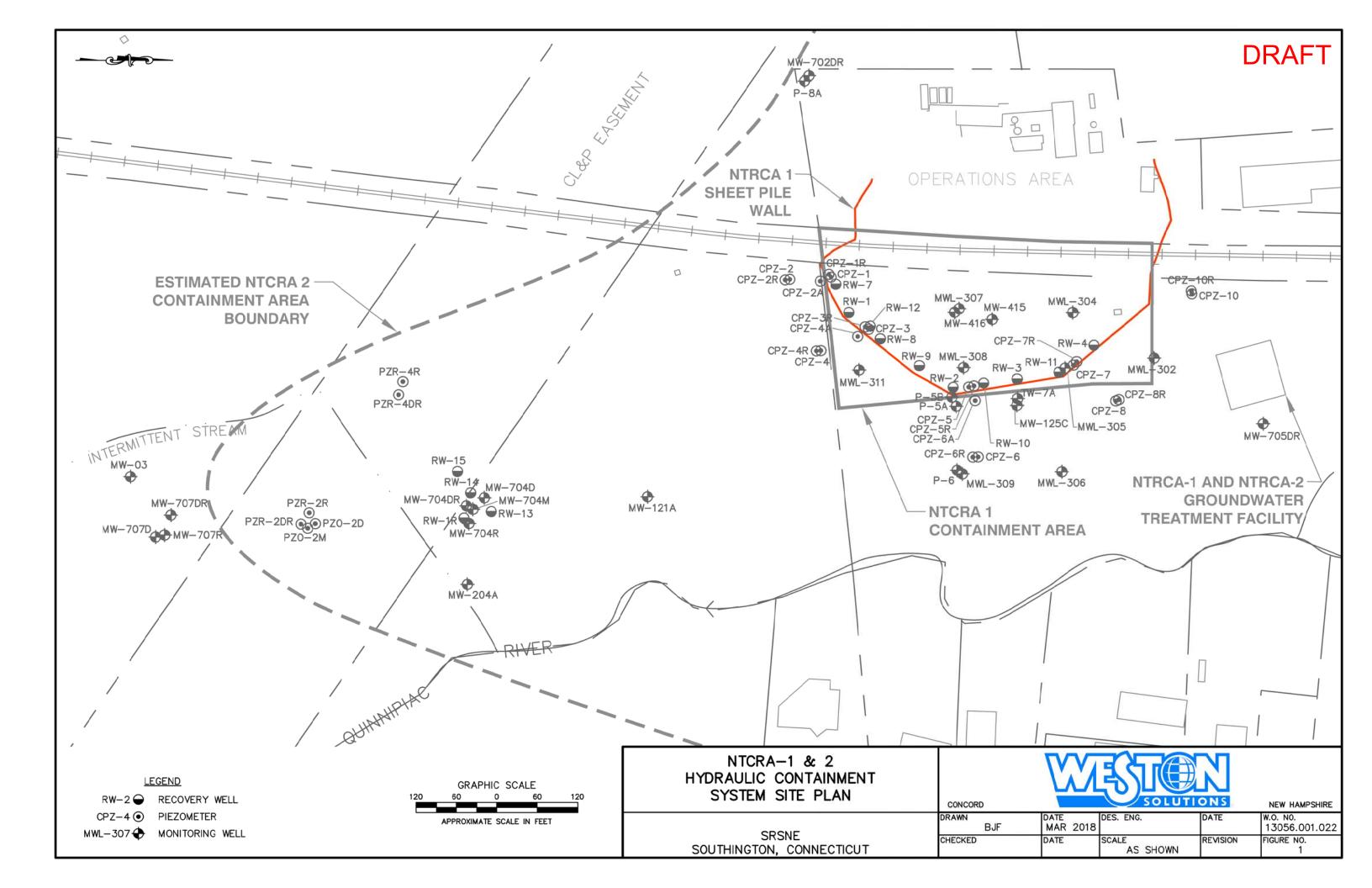
BBL. 1995. NTCRA-1 Demonstration of Compliance Plan (DCP). June

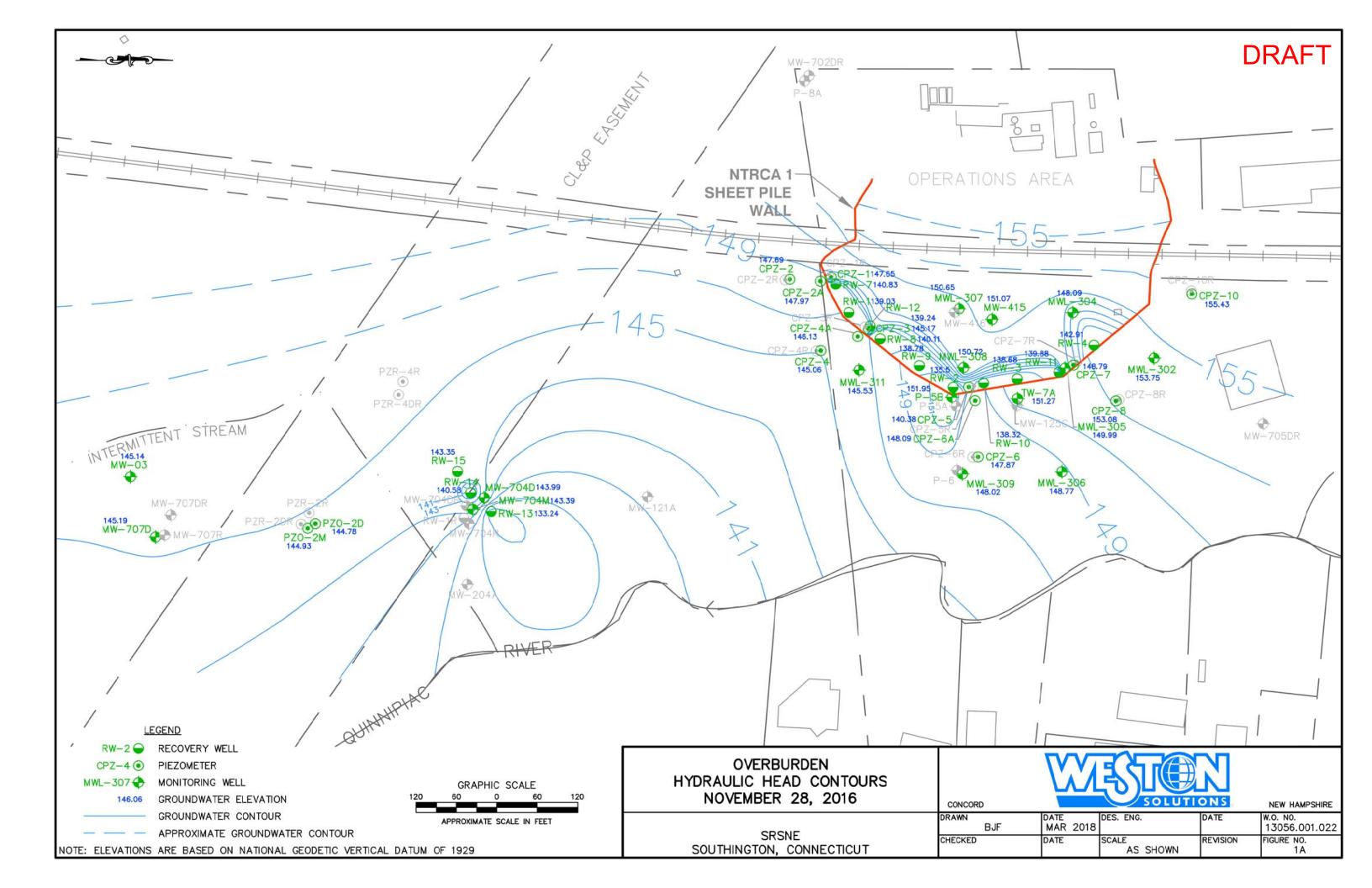
BBL. 1999. NTCRA-2 DCP. November

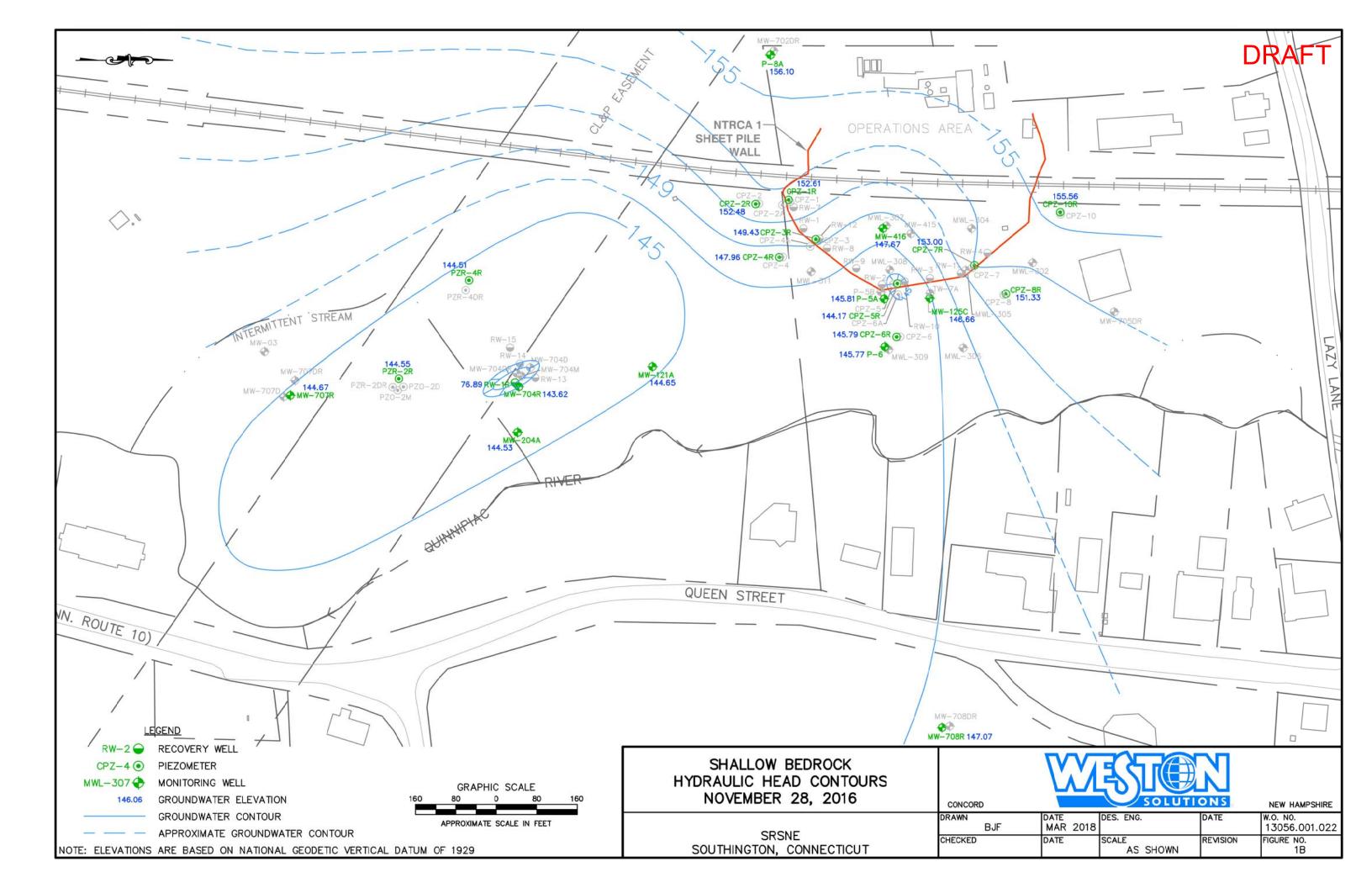
CTDEEP (Connecticut Department of Energy & Environmental Protection). 1995. Revised Substantive Requirements for Discharge of Pre-Treated Groundwater. November.

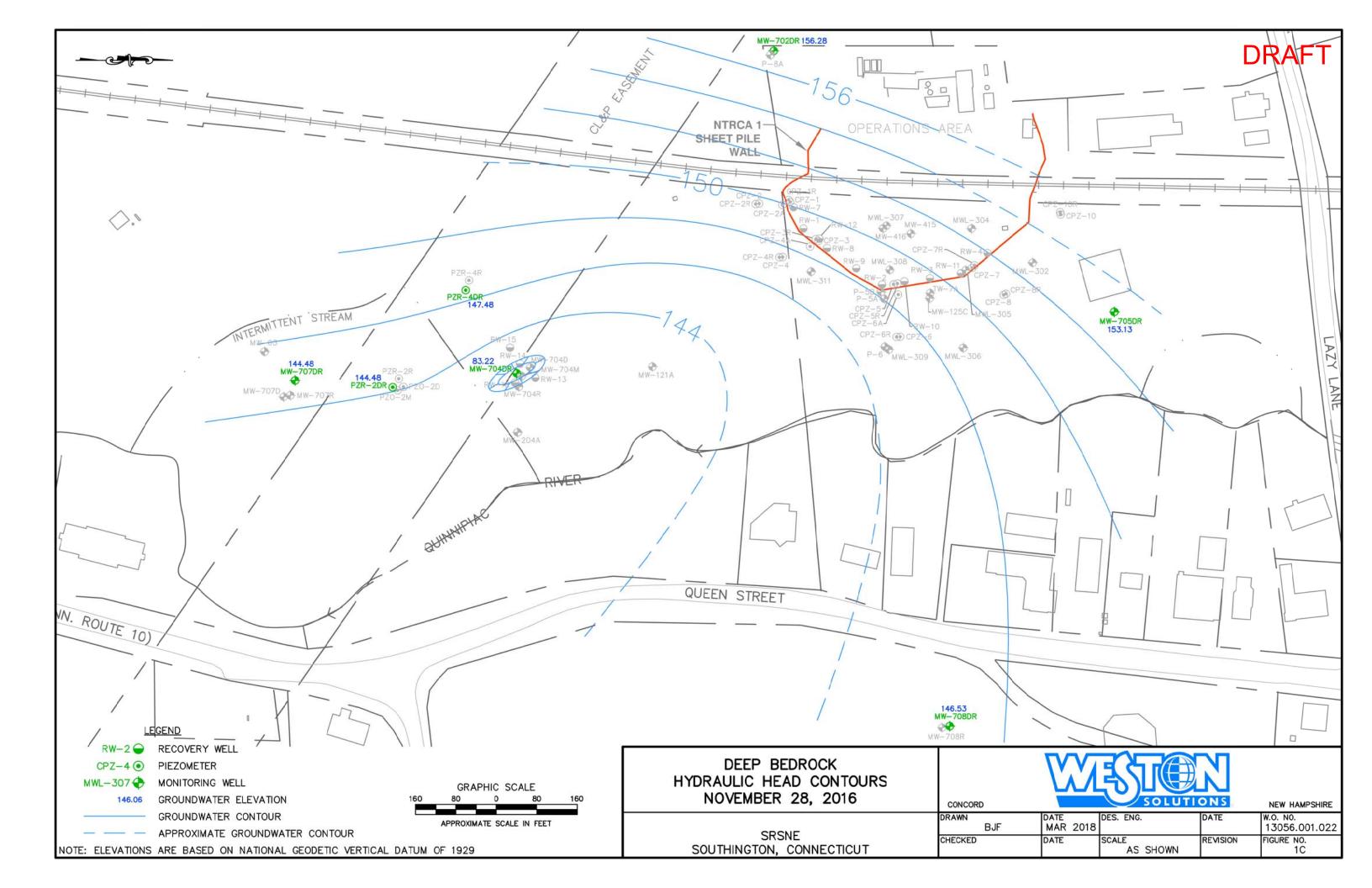
WESTON. 2007. RW-14 Completion Report. November.

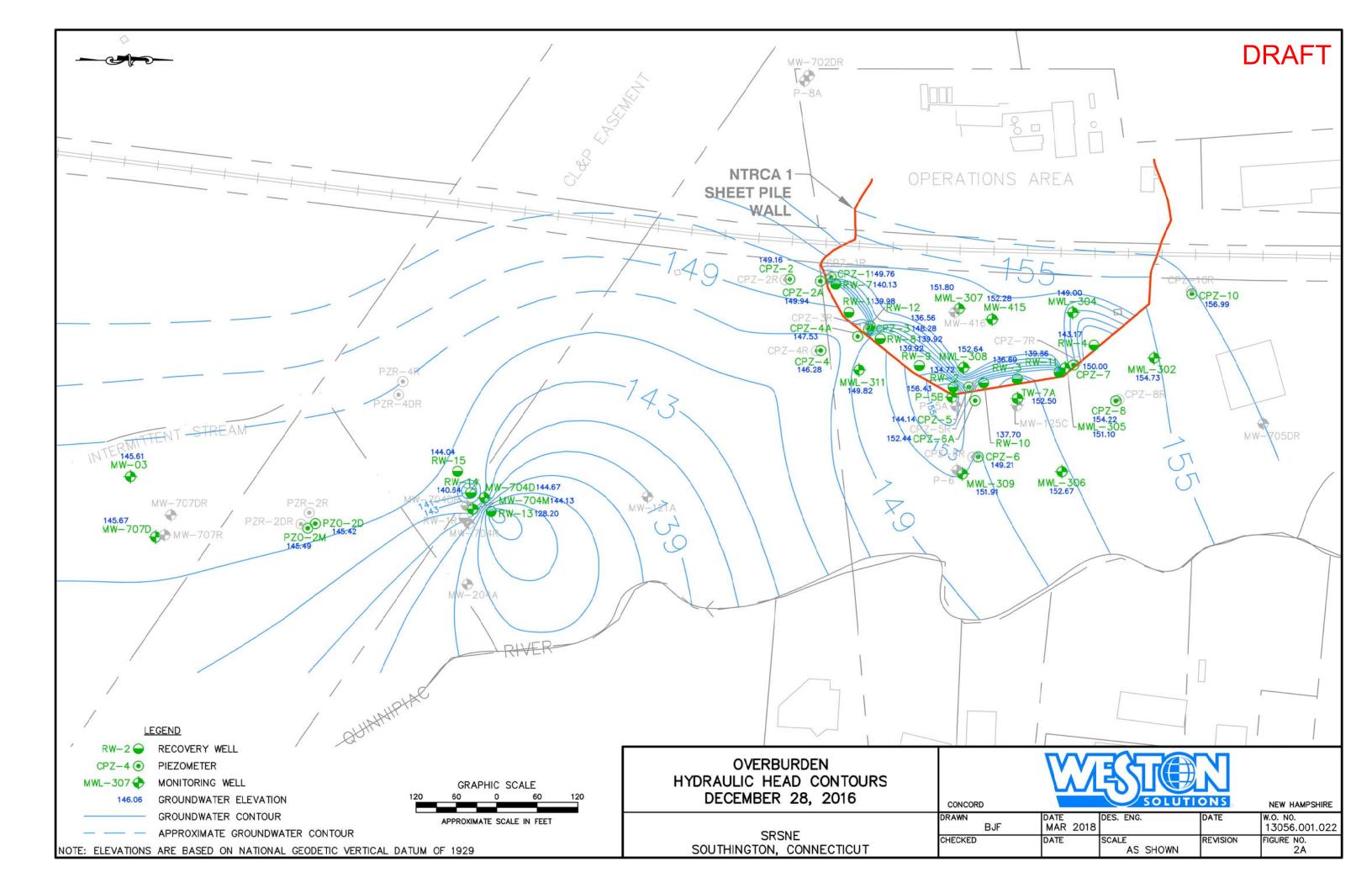
WESTON. 2009. NTCRA-1 DCP Modifications. December.

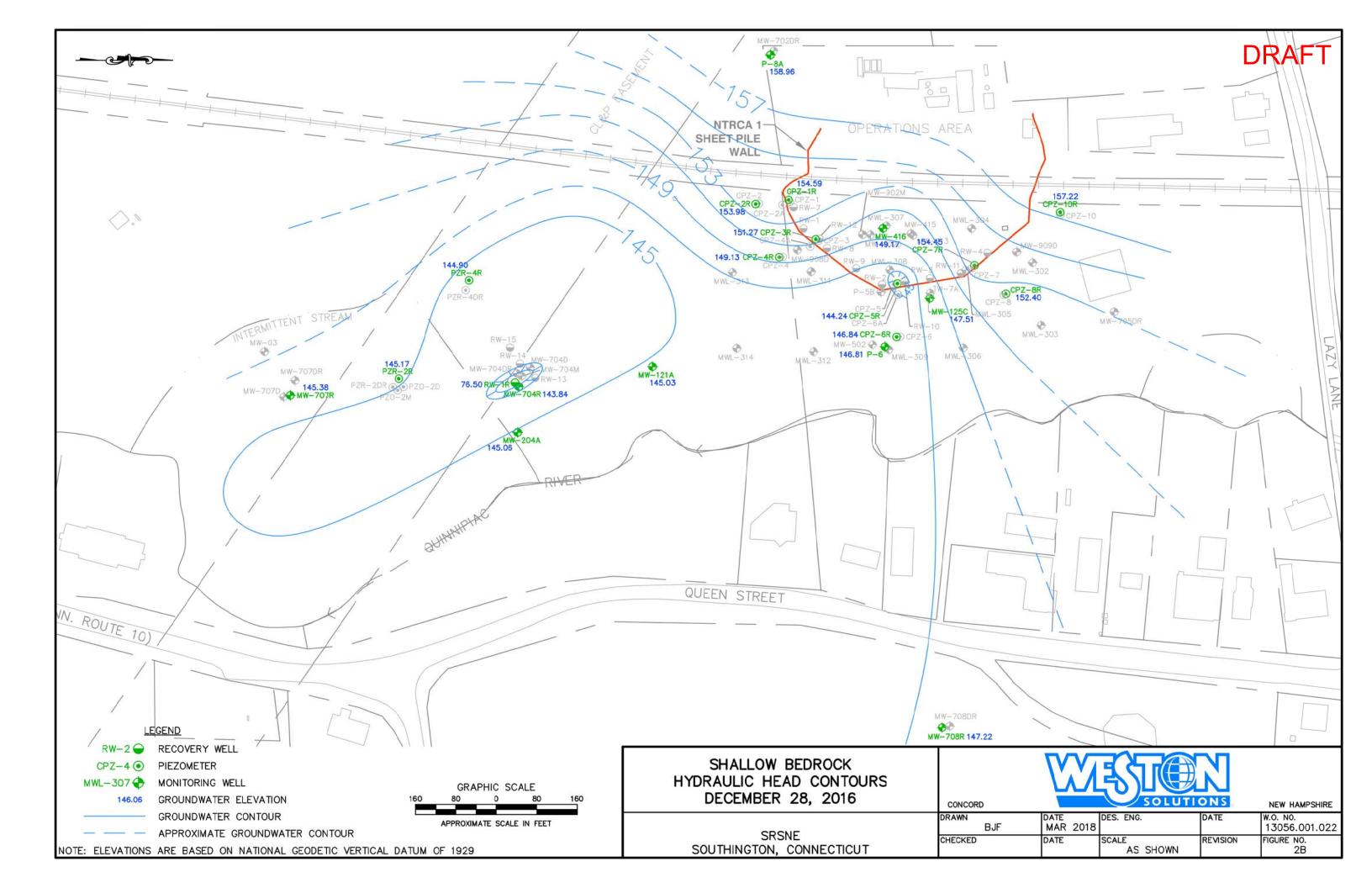

WESTON. 2015. RW-15 Completion Report. January.

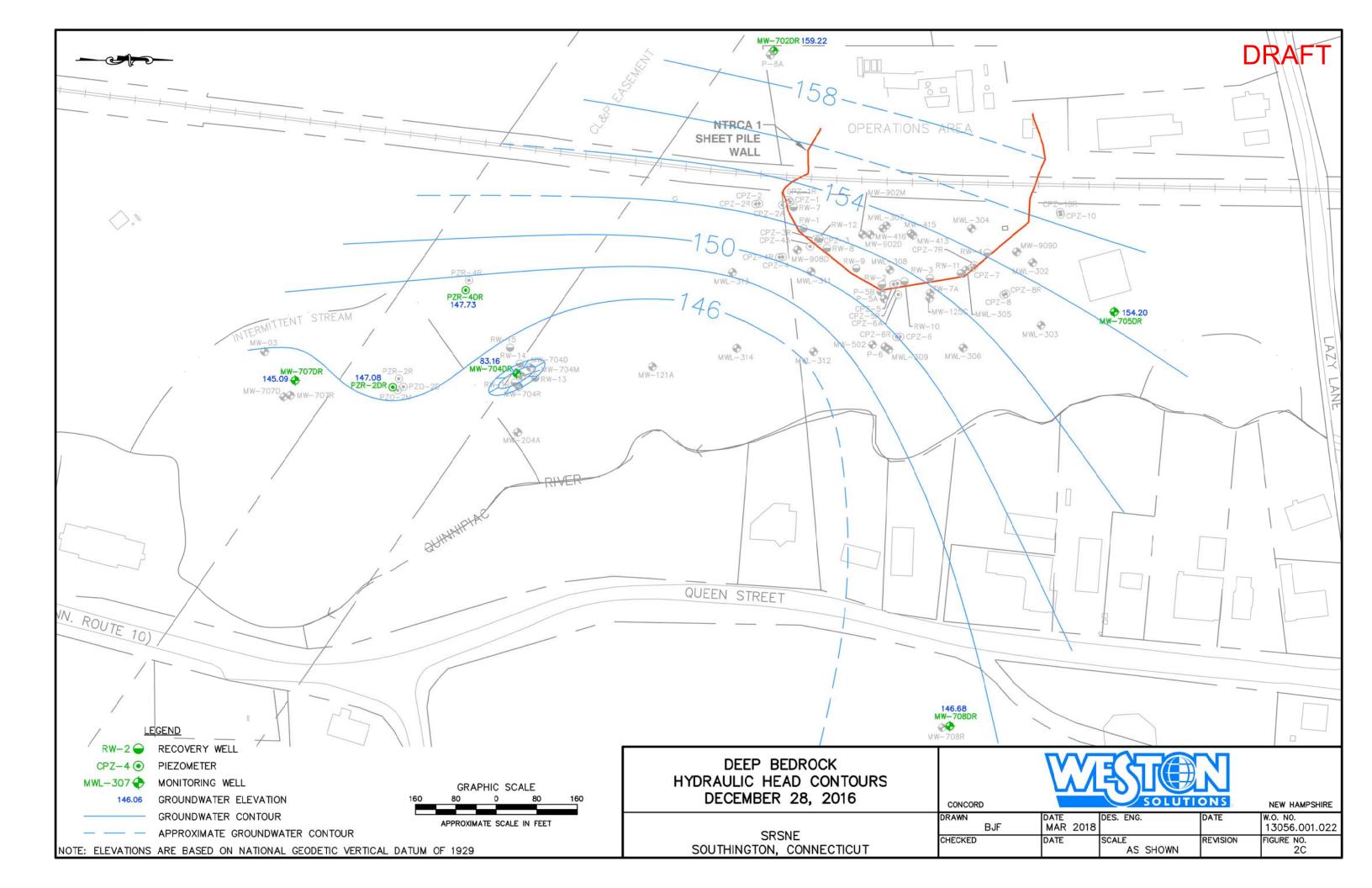

Arcadis. 2016. Final RCRA Cap 100% Design Report. October

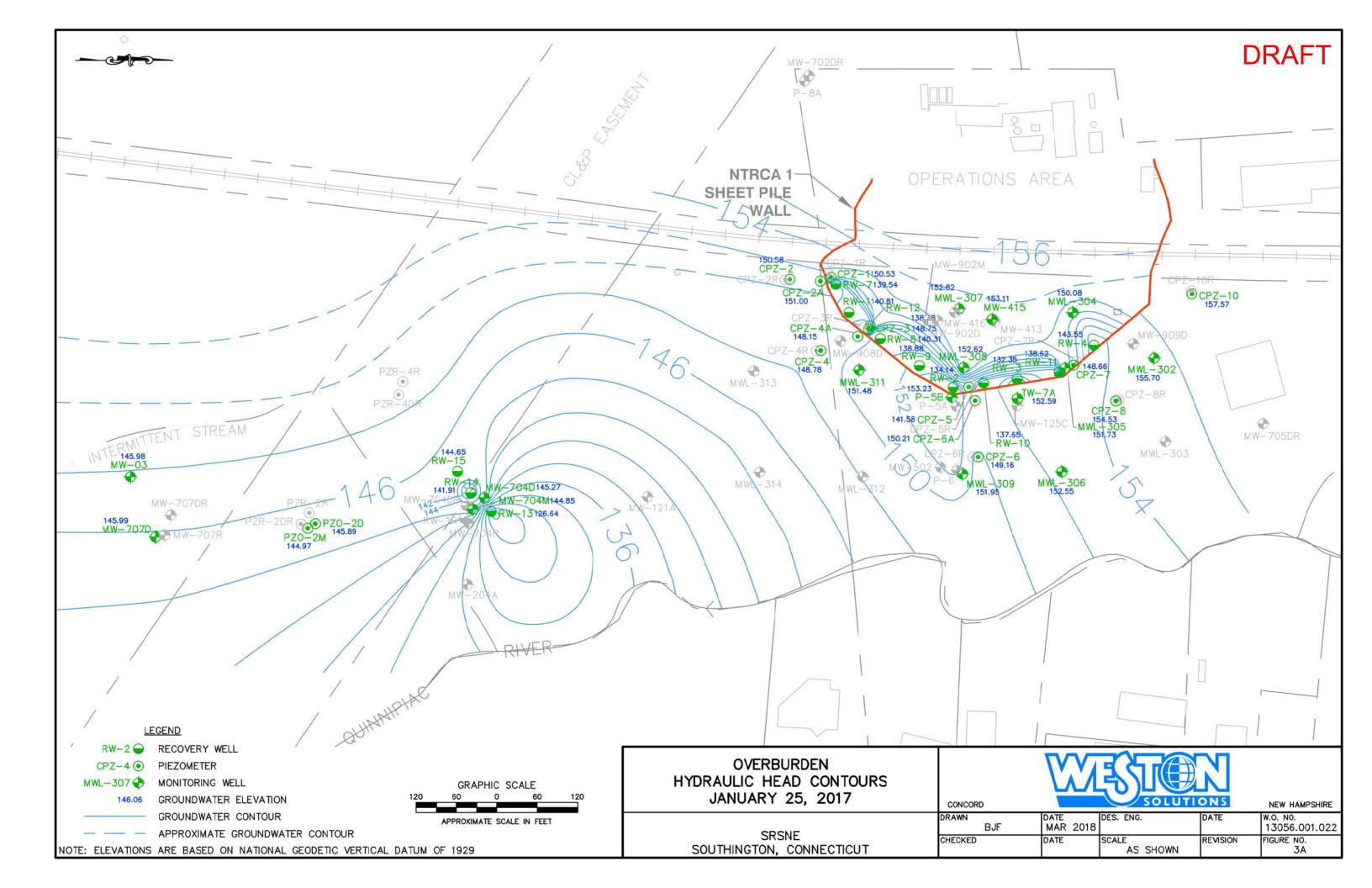

demaximis. 2017. SRSNE NTCRA-1 Modifications - Proposed Monitoring Plan

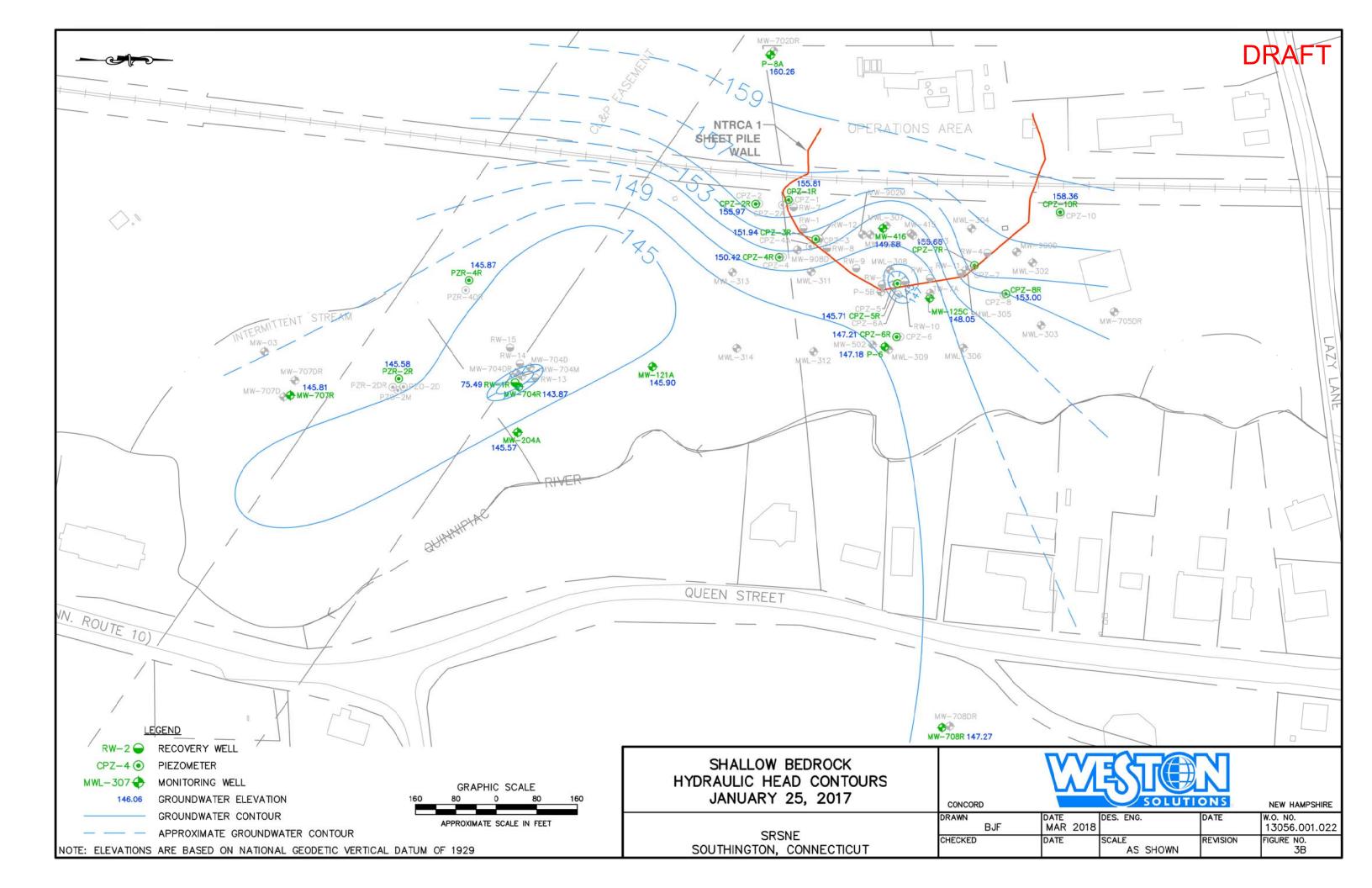

DRAFT

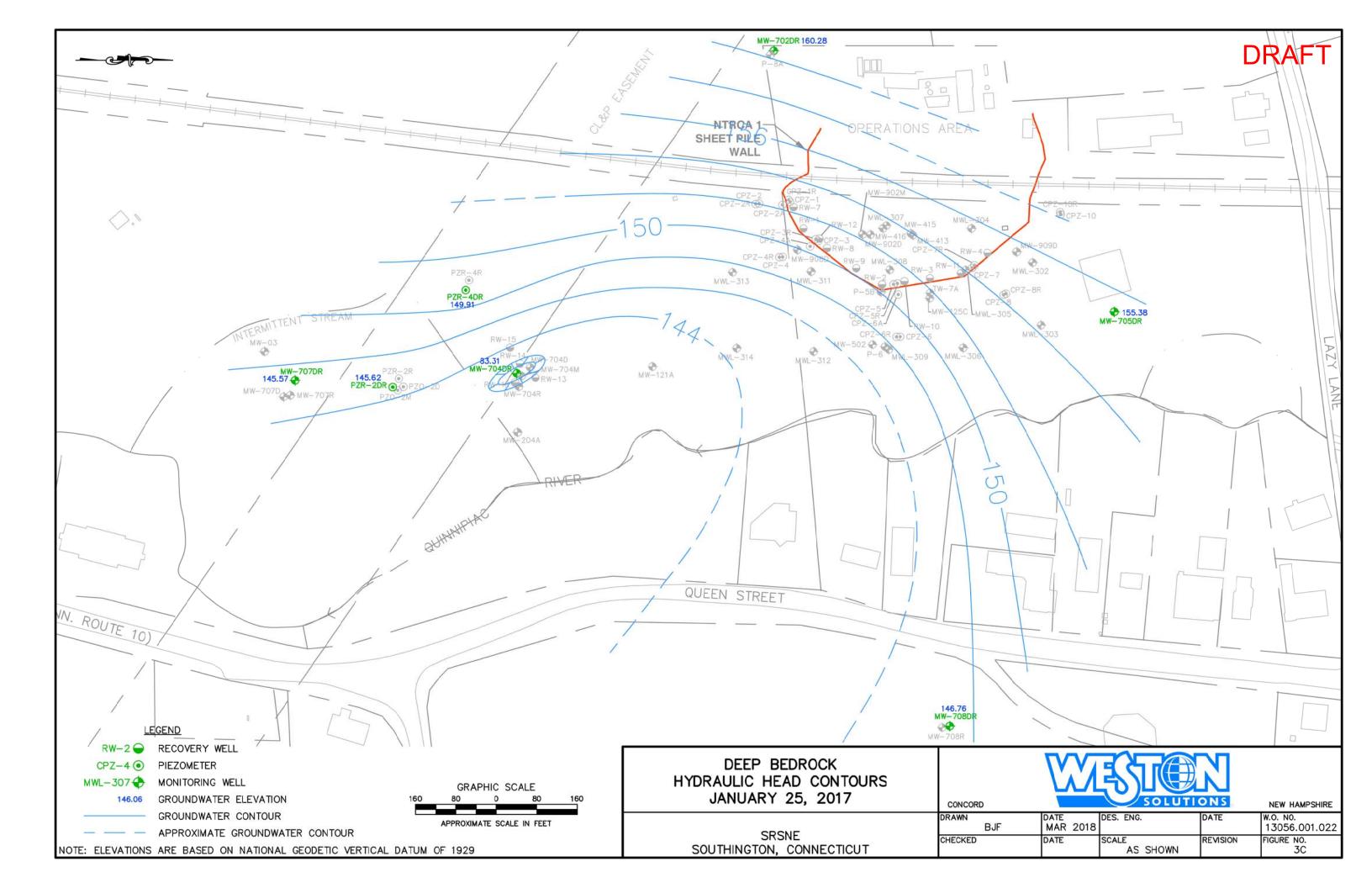

FIGURES

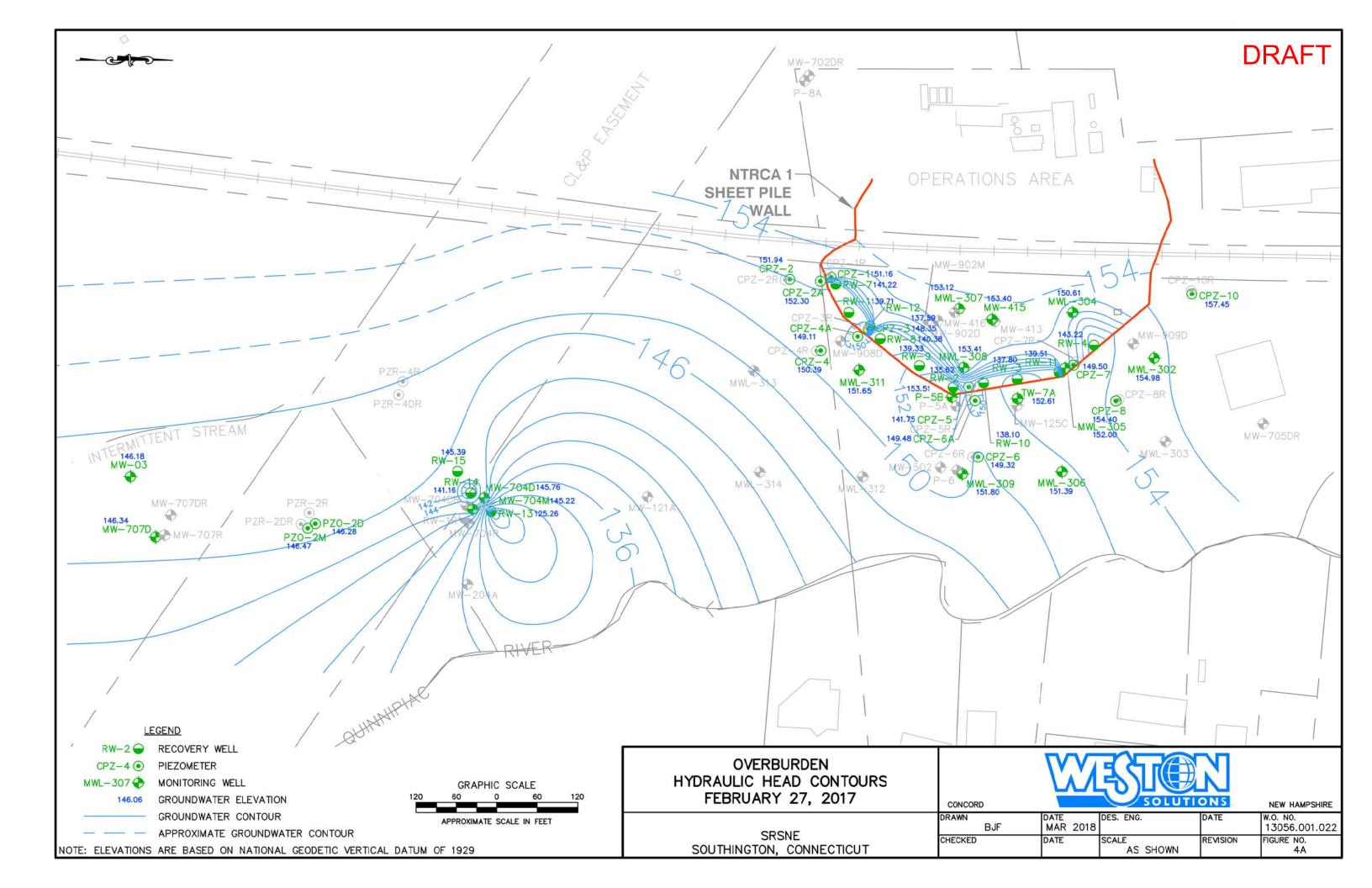


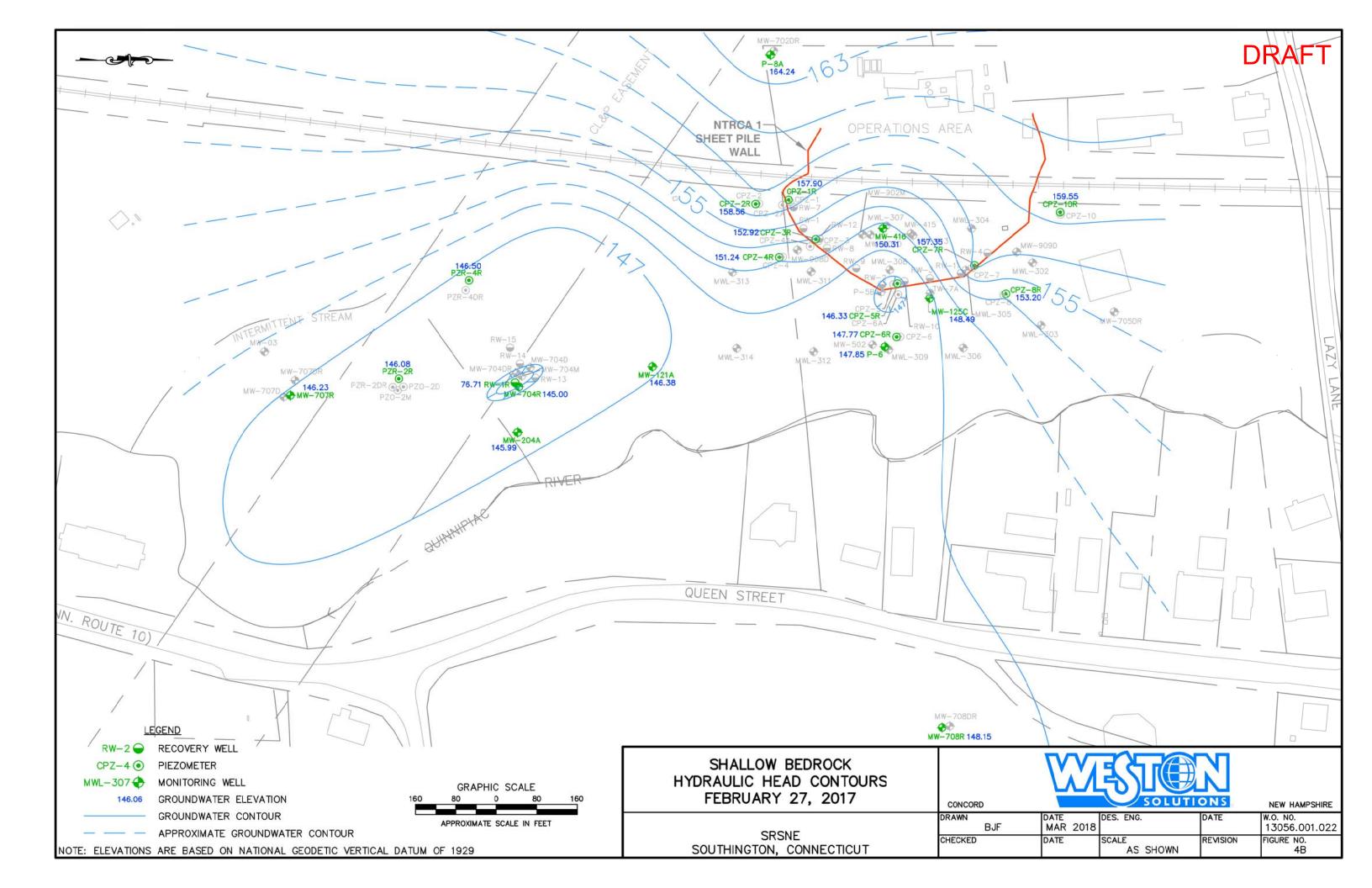


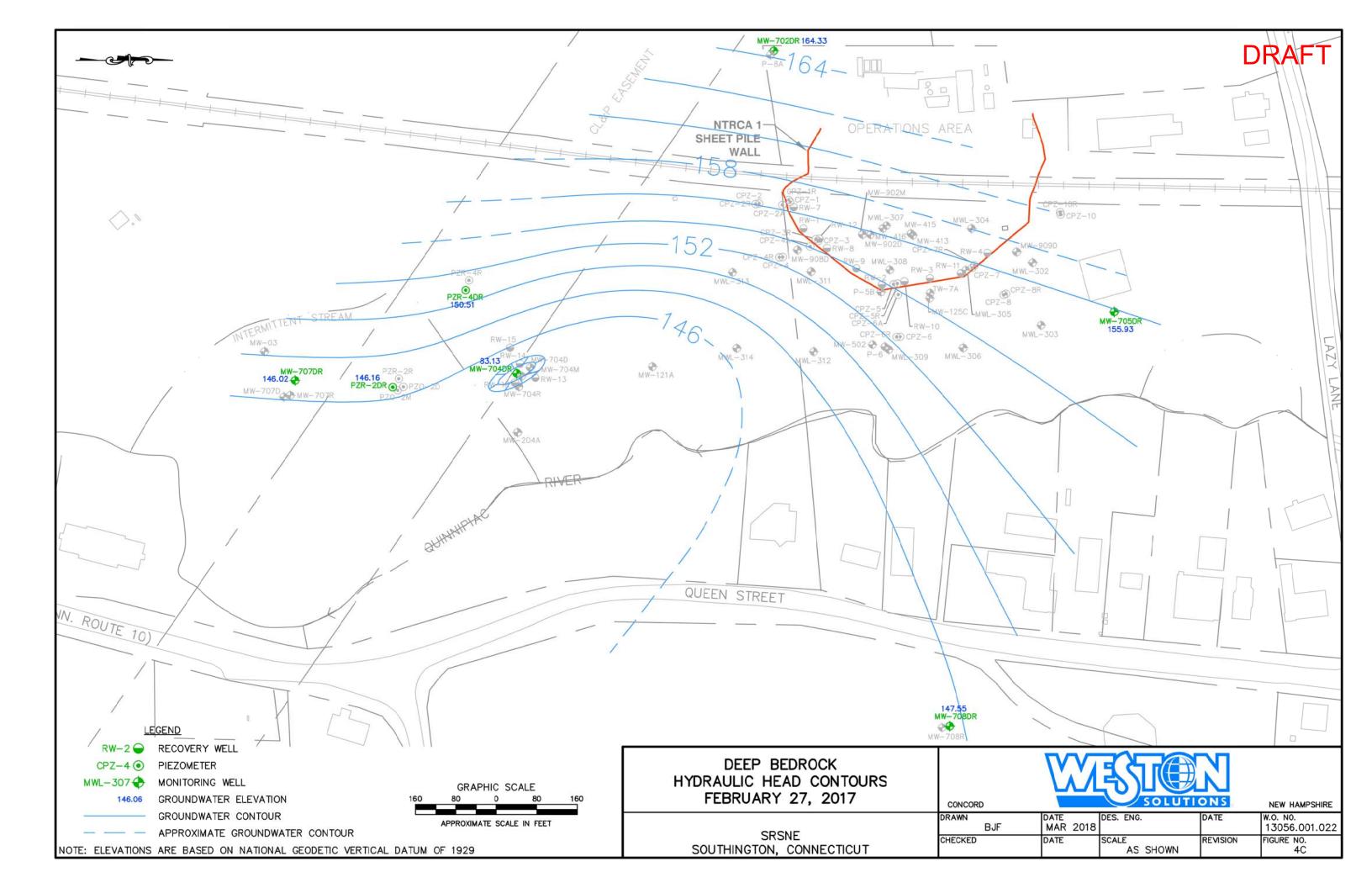


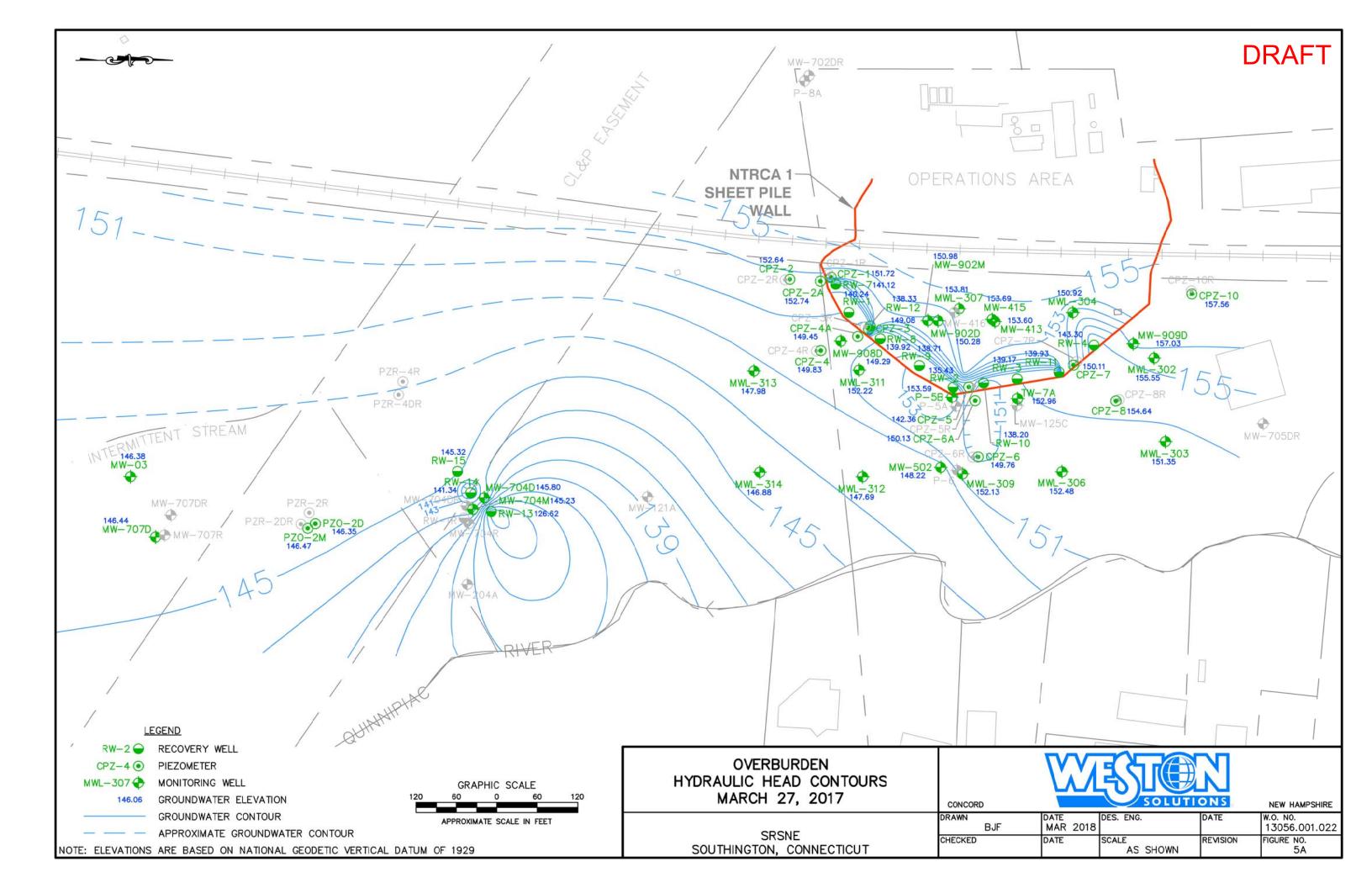


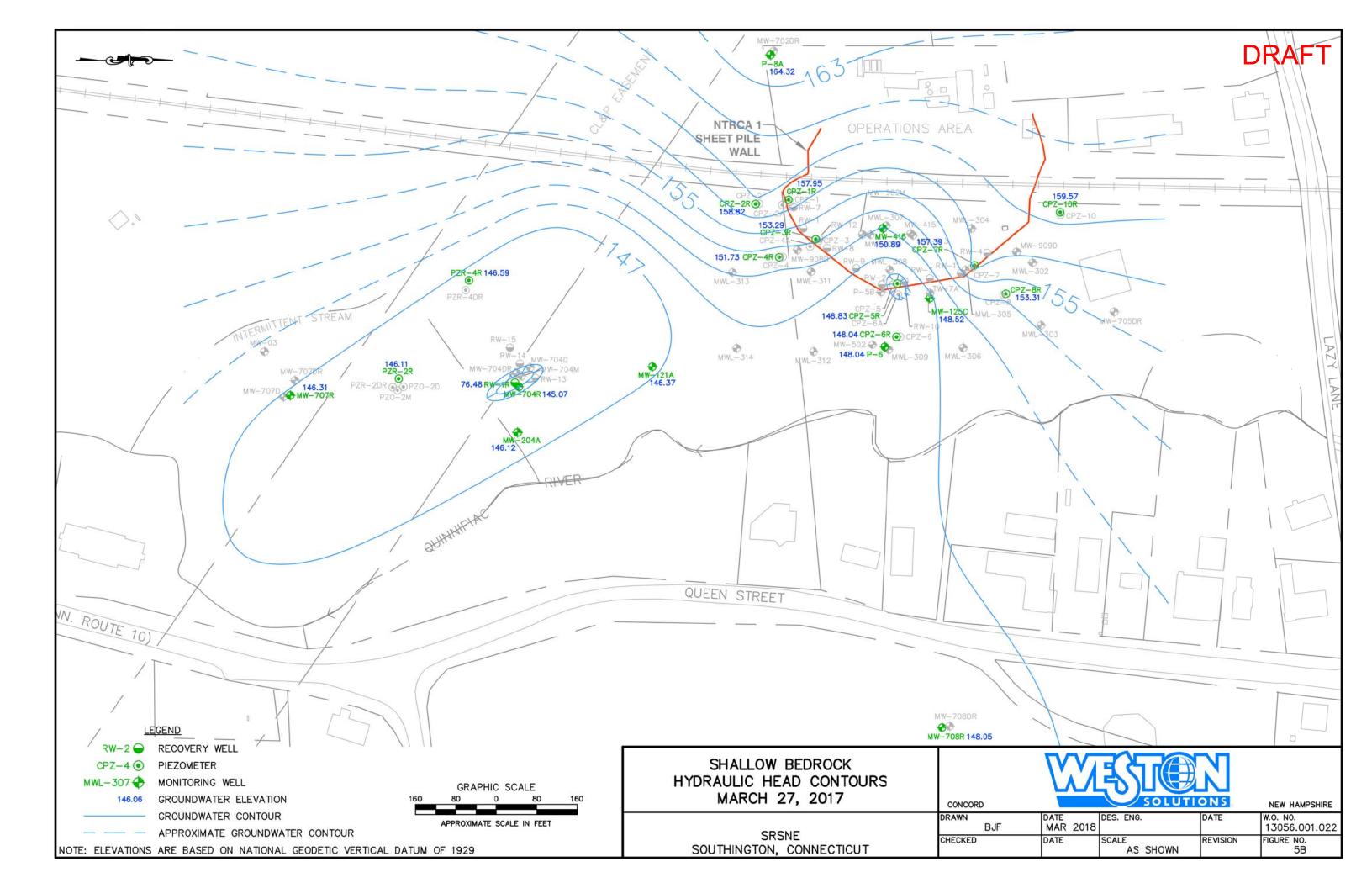


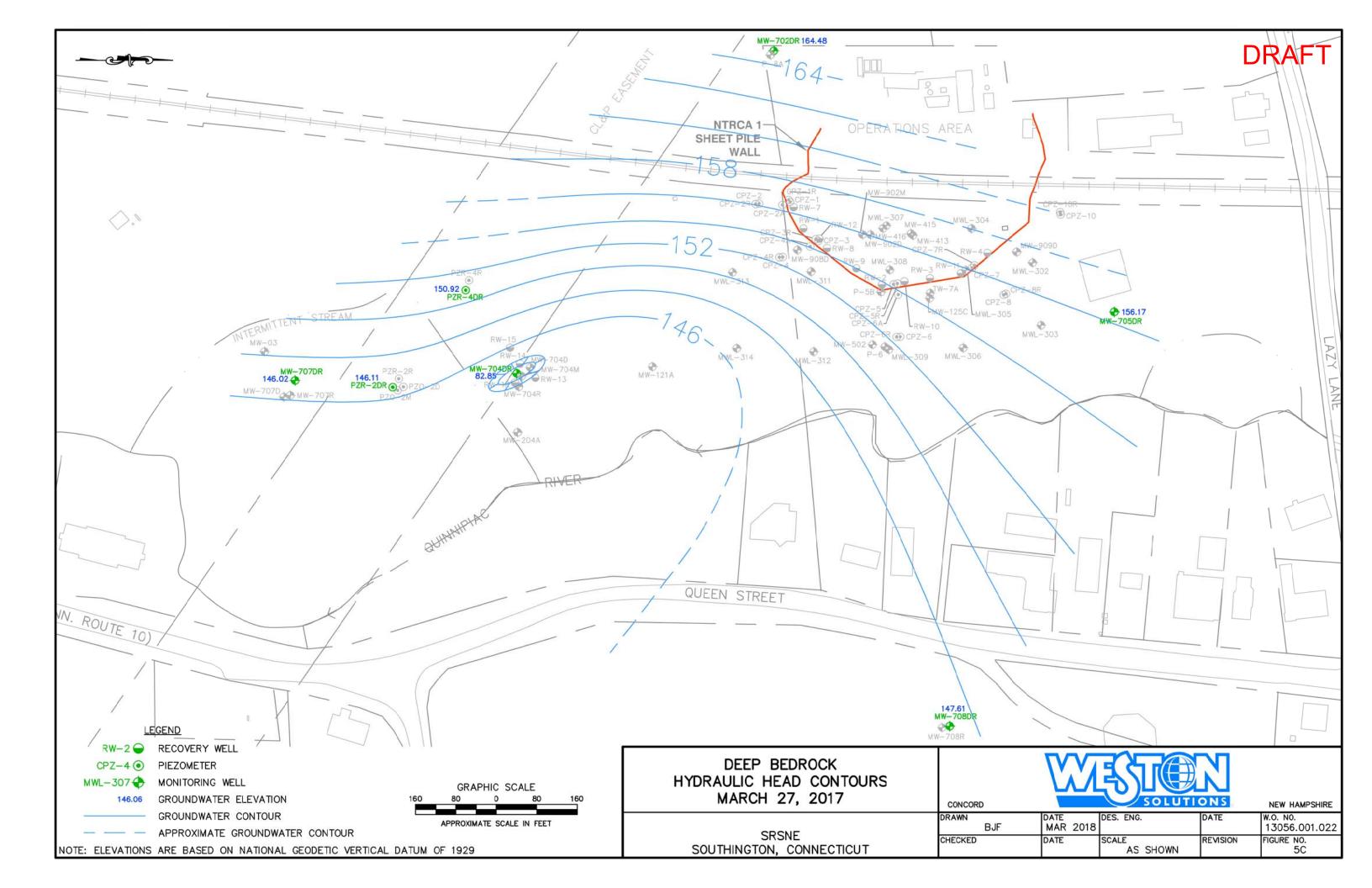


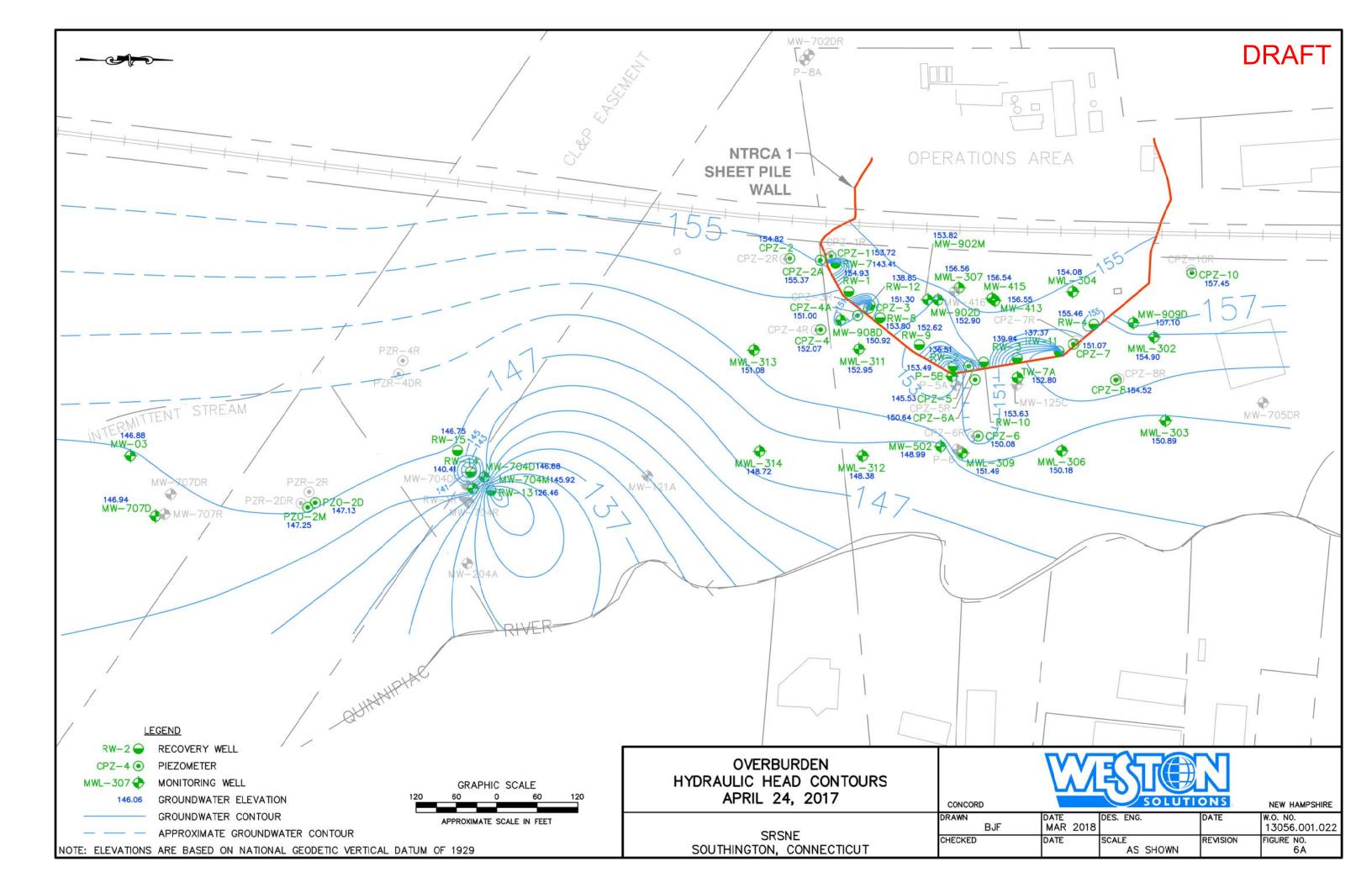


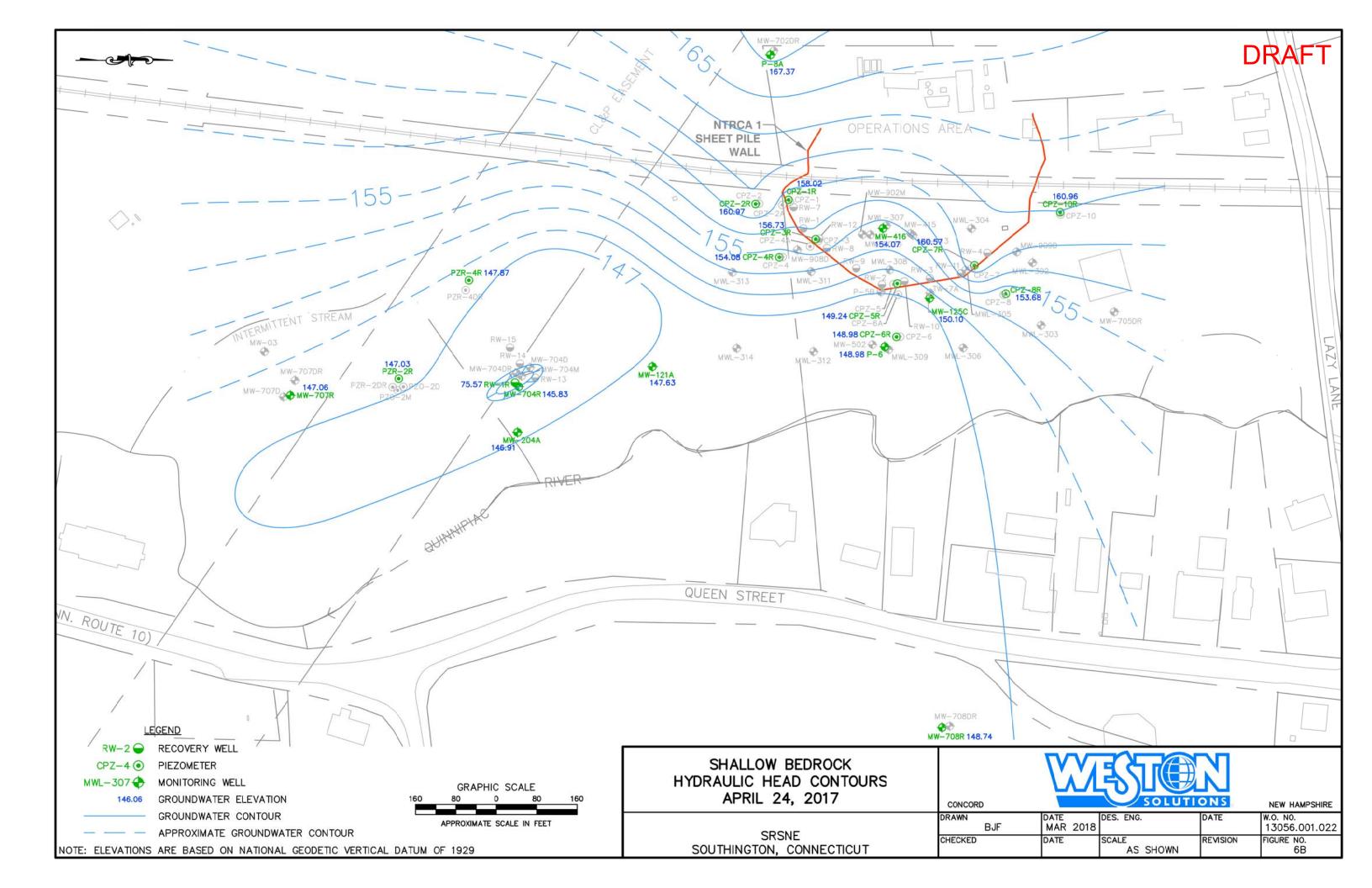


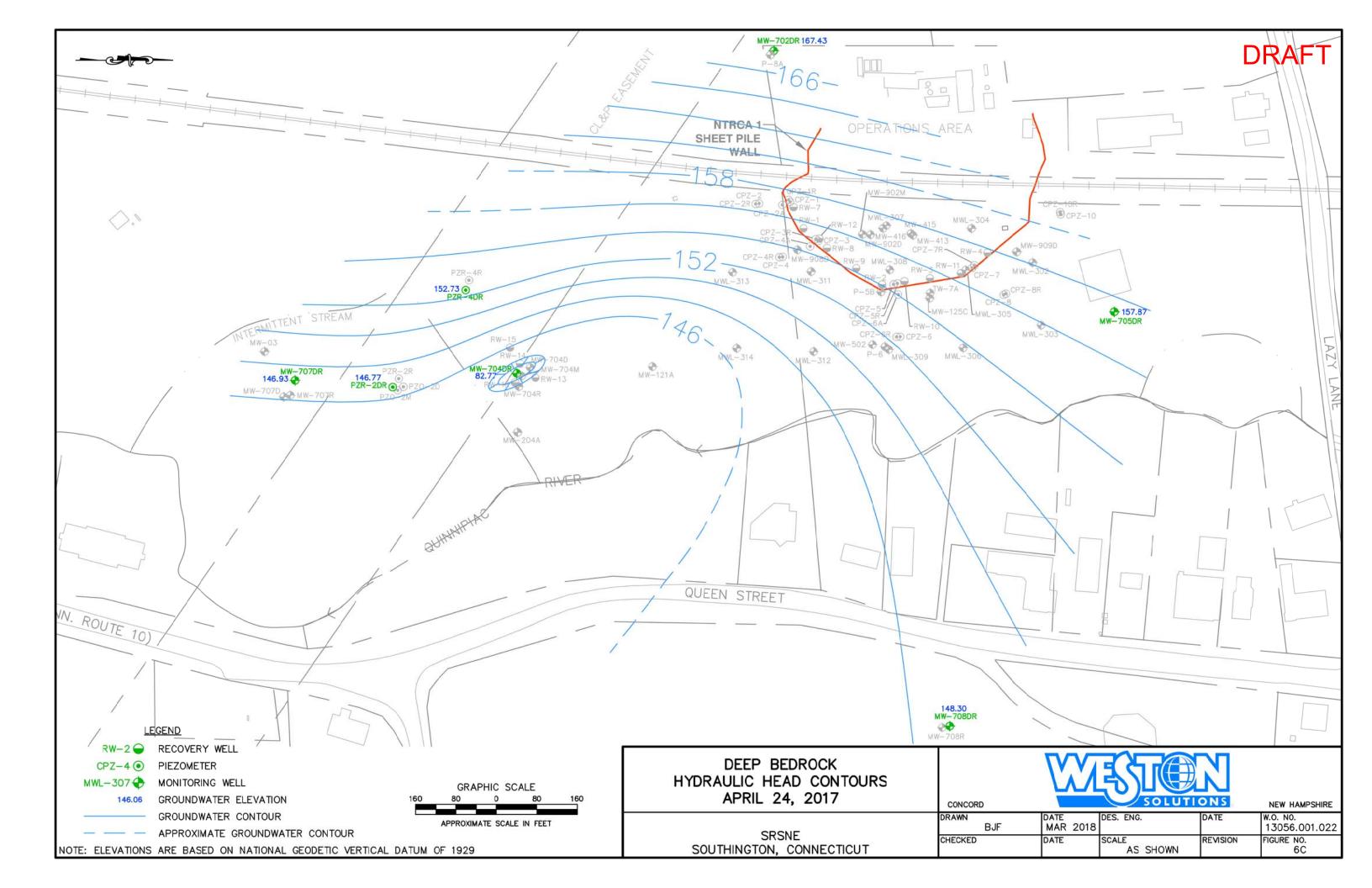


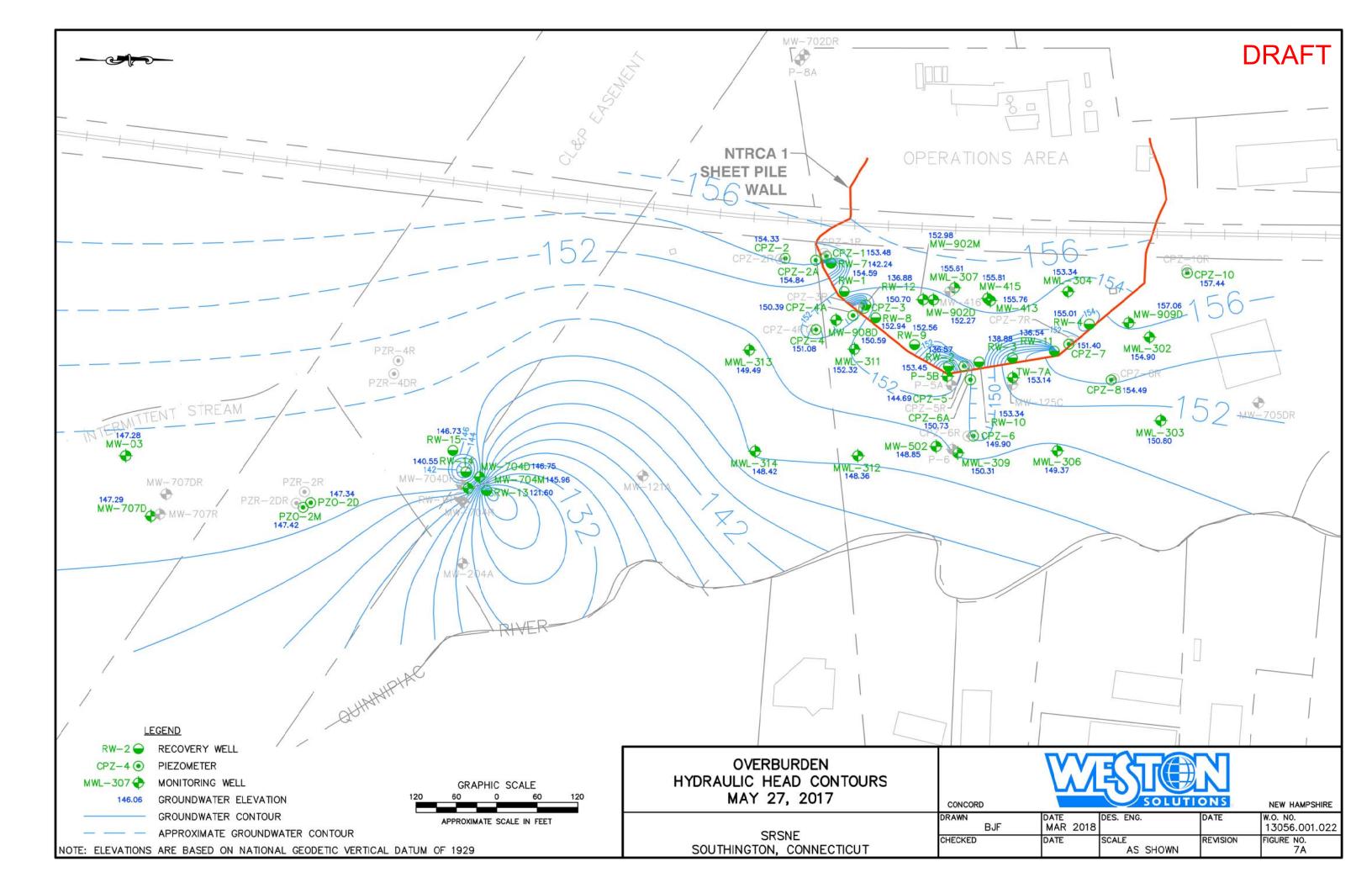


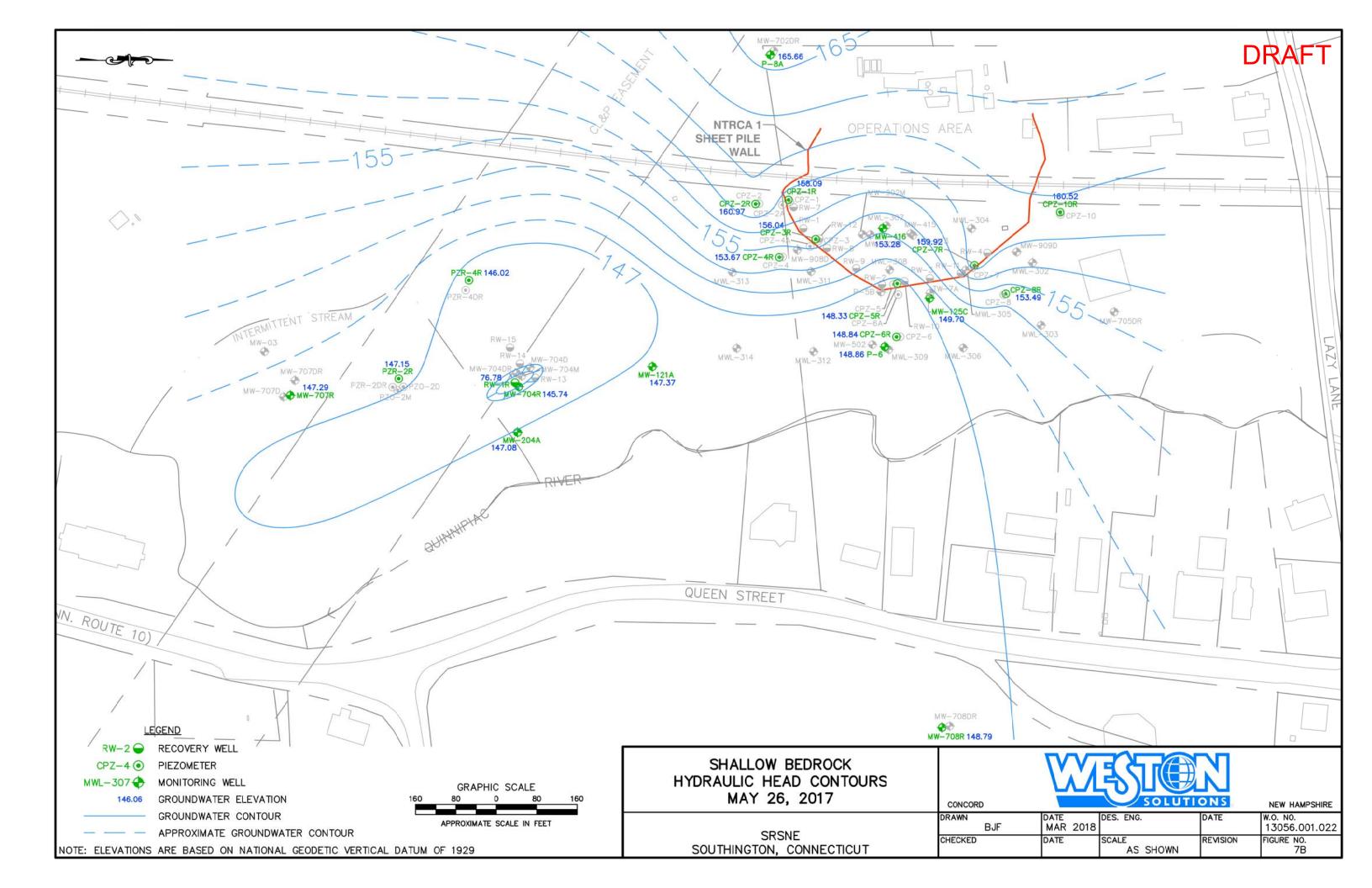


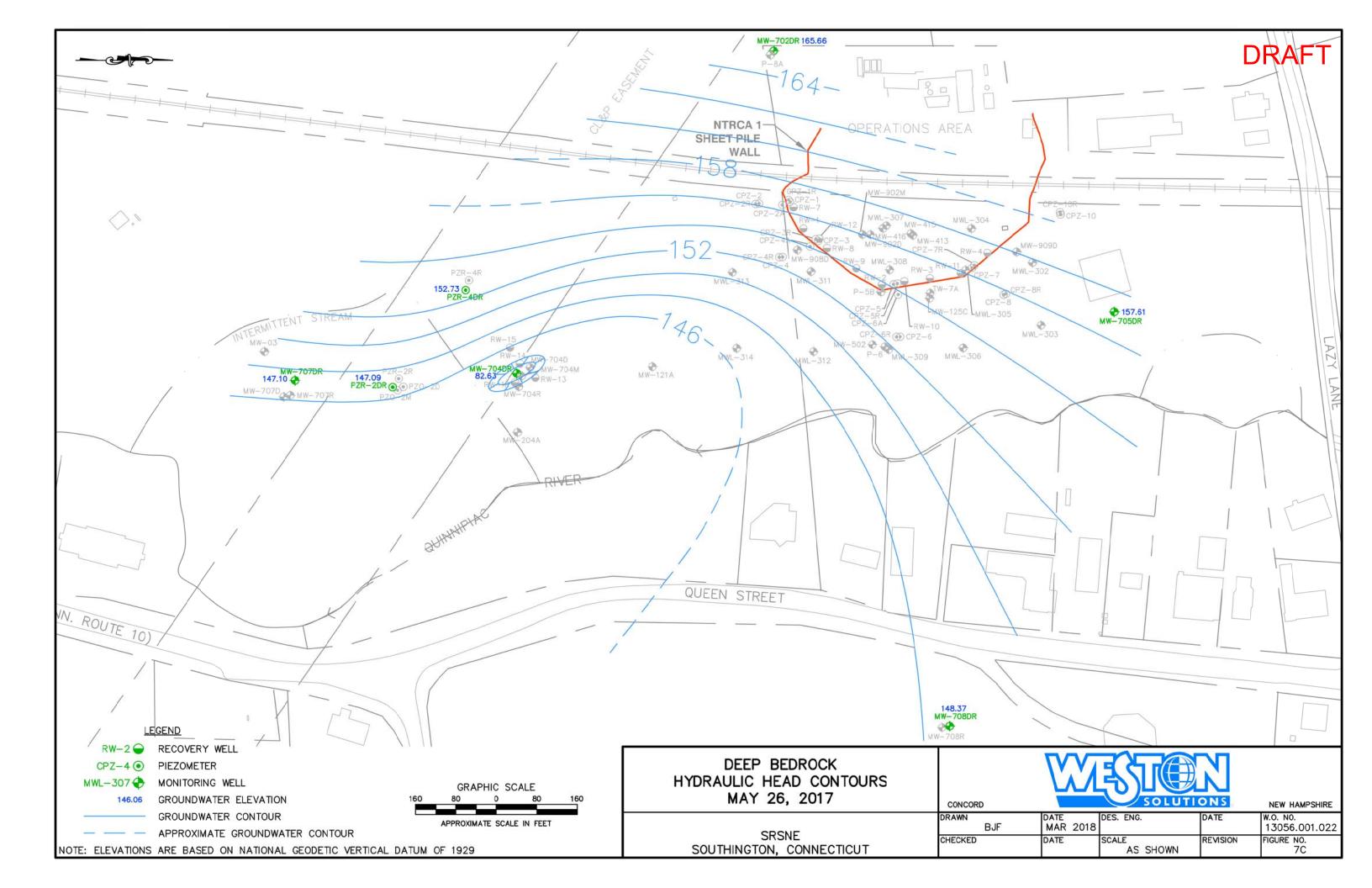


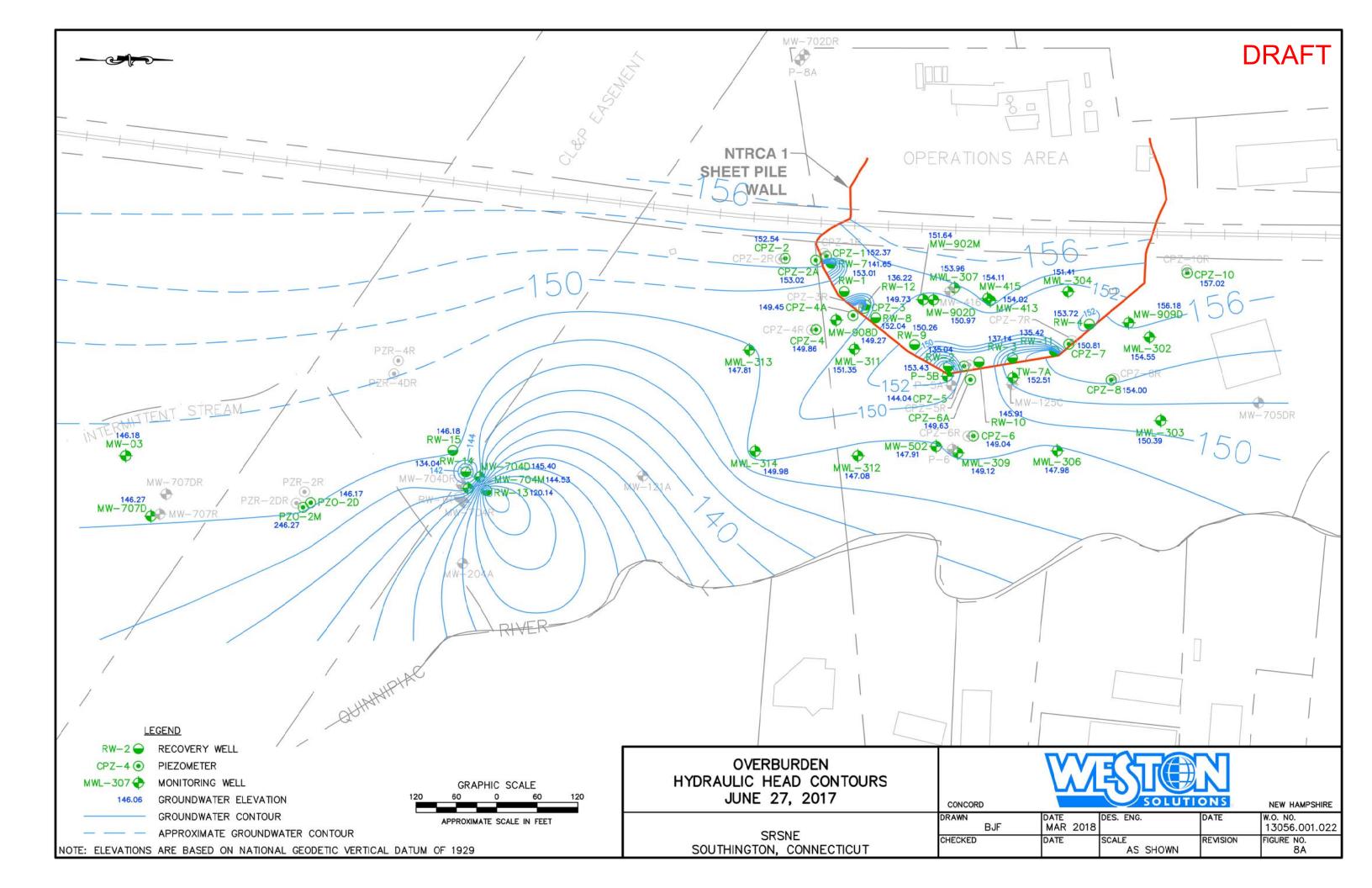


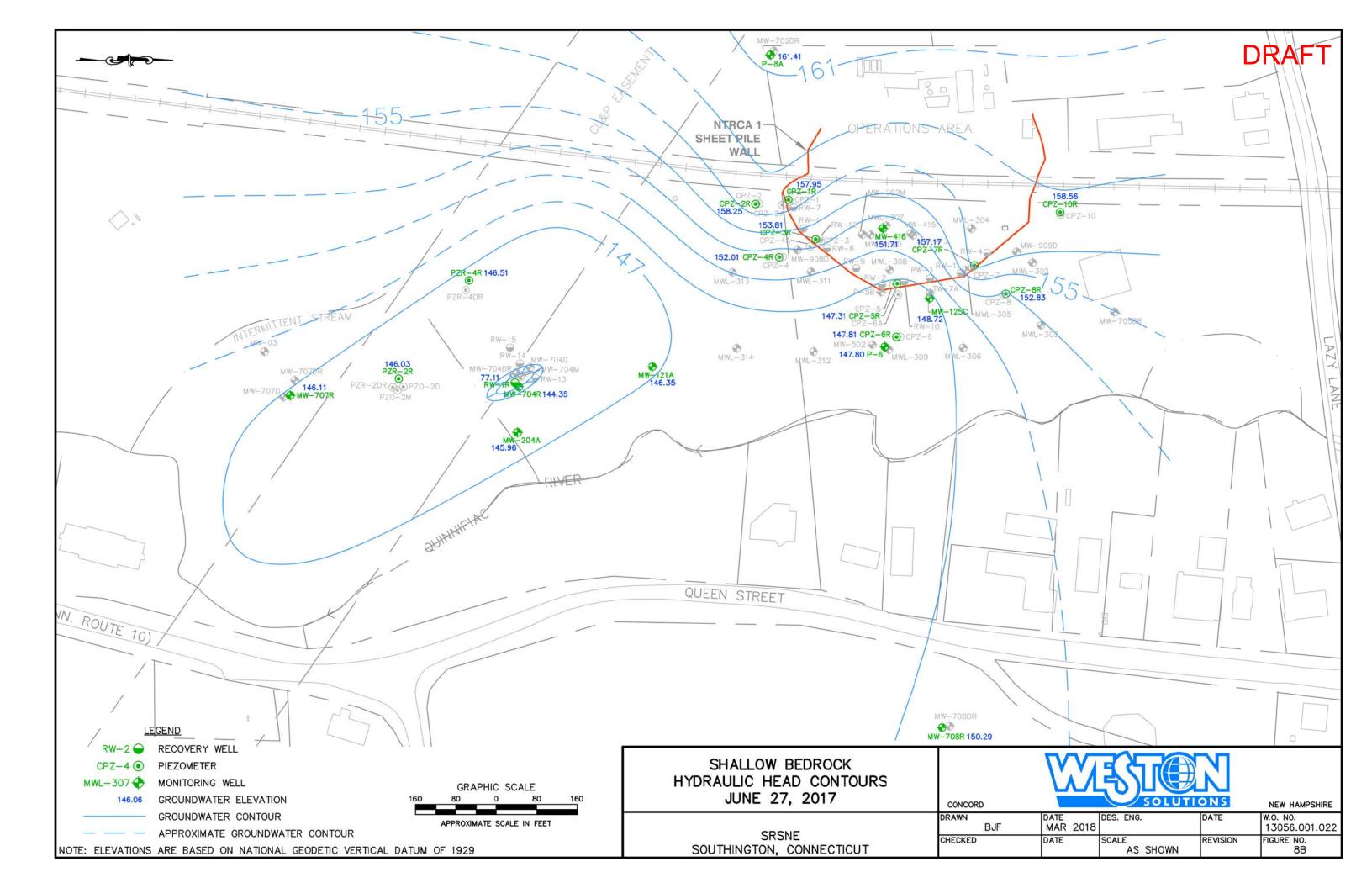


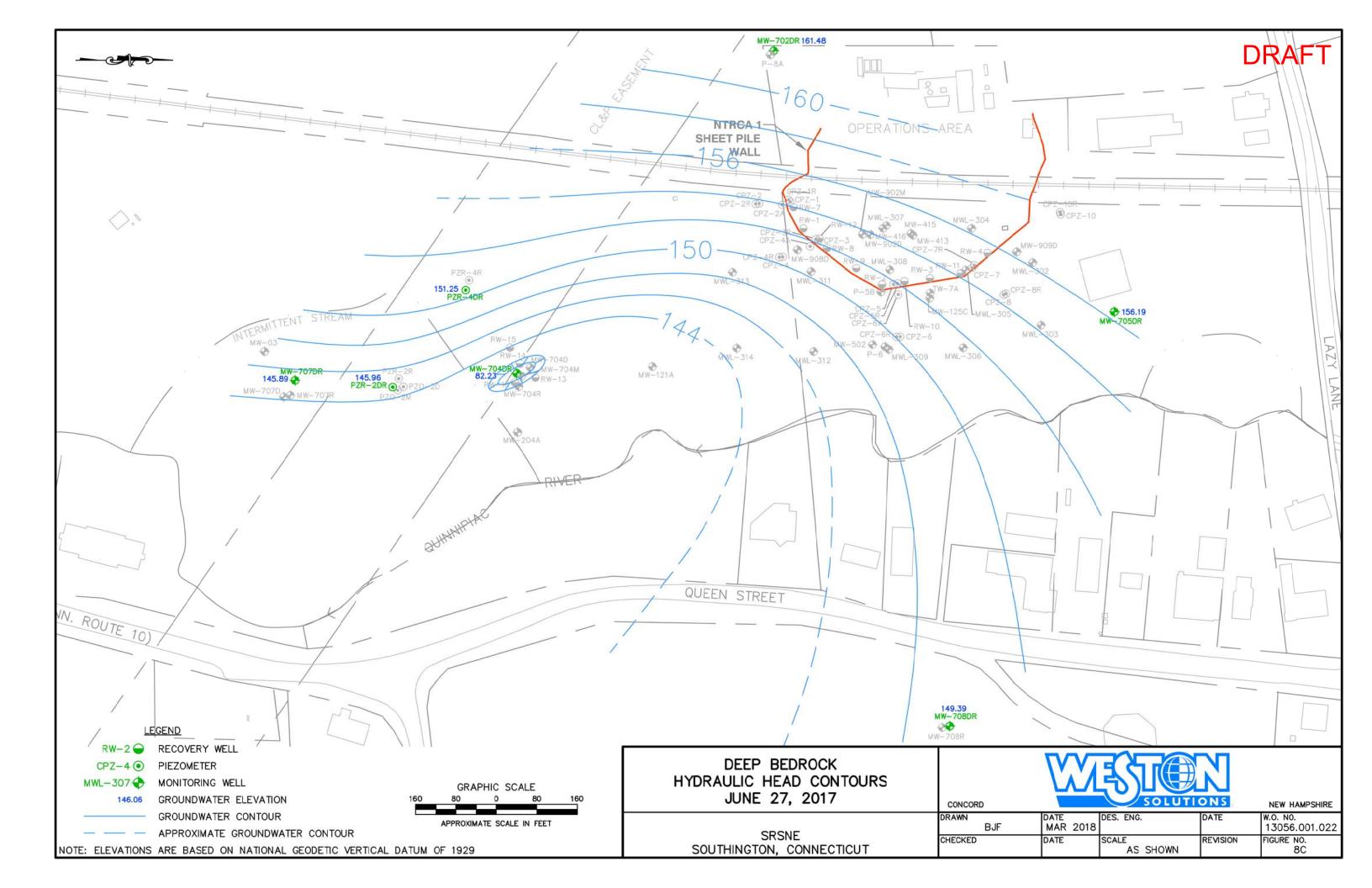


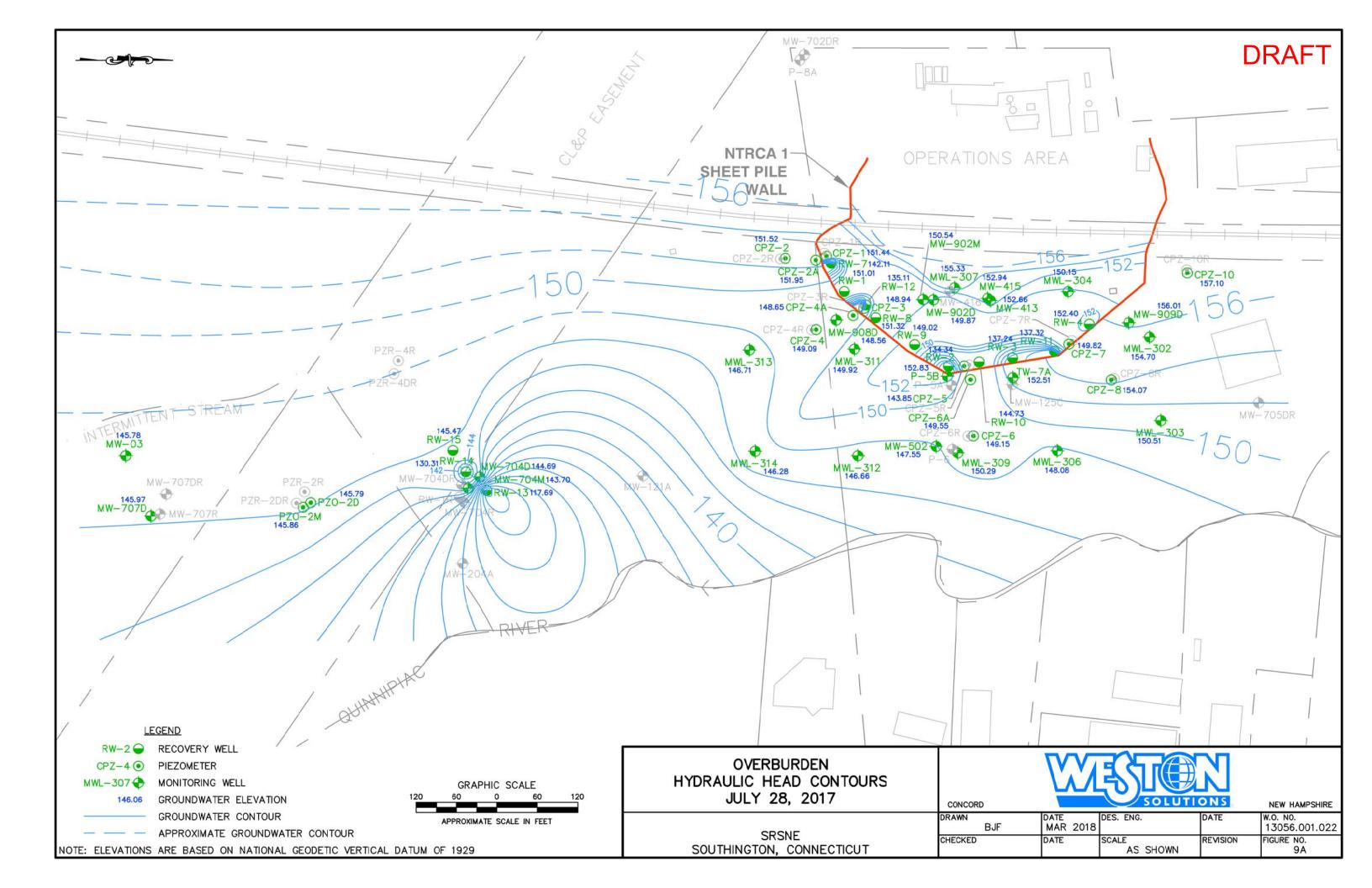


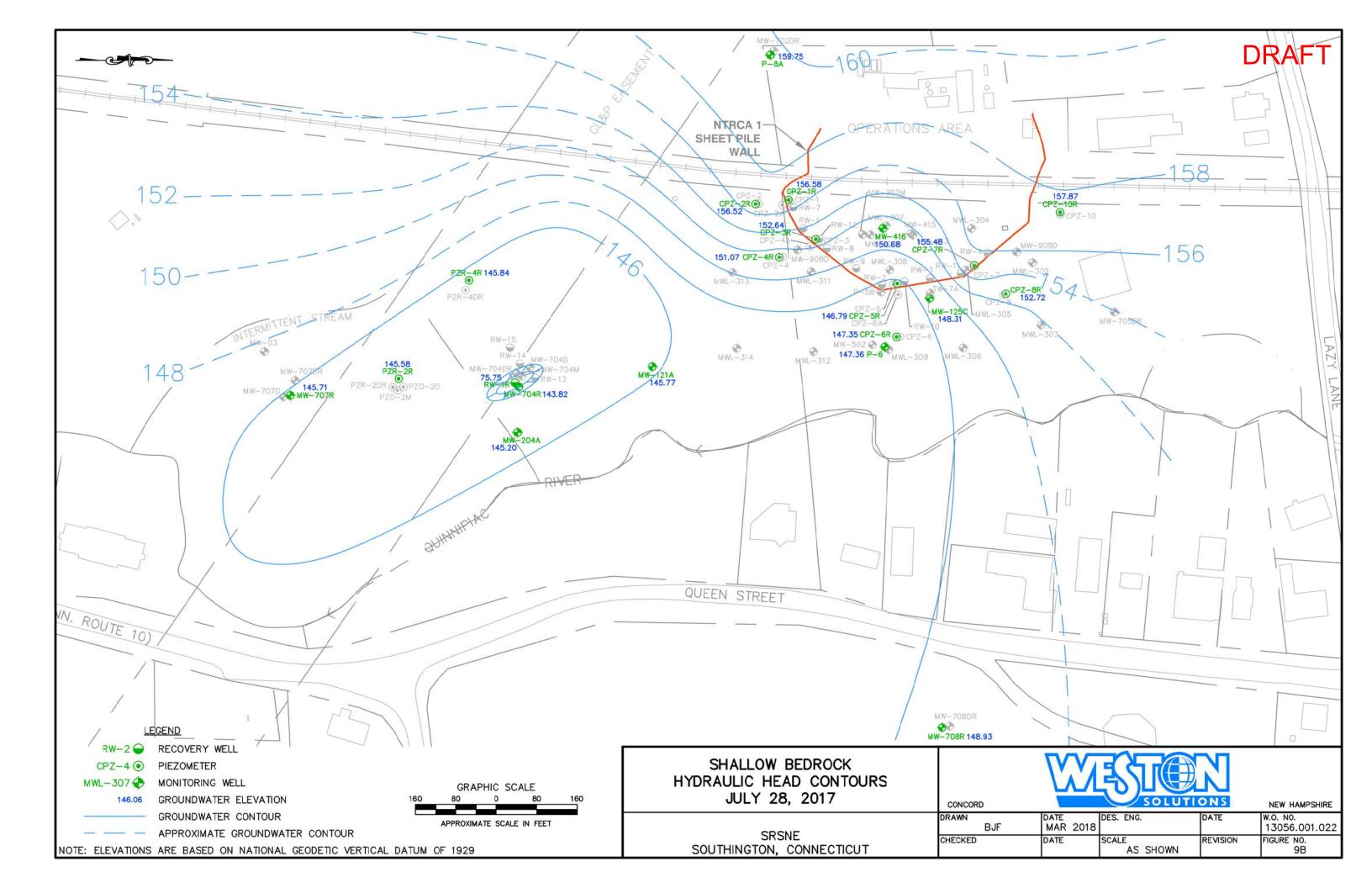


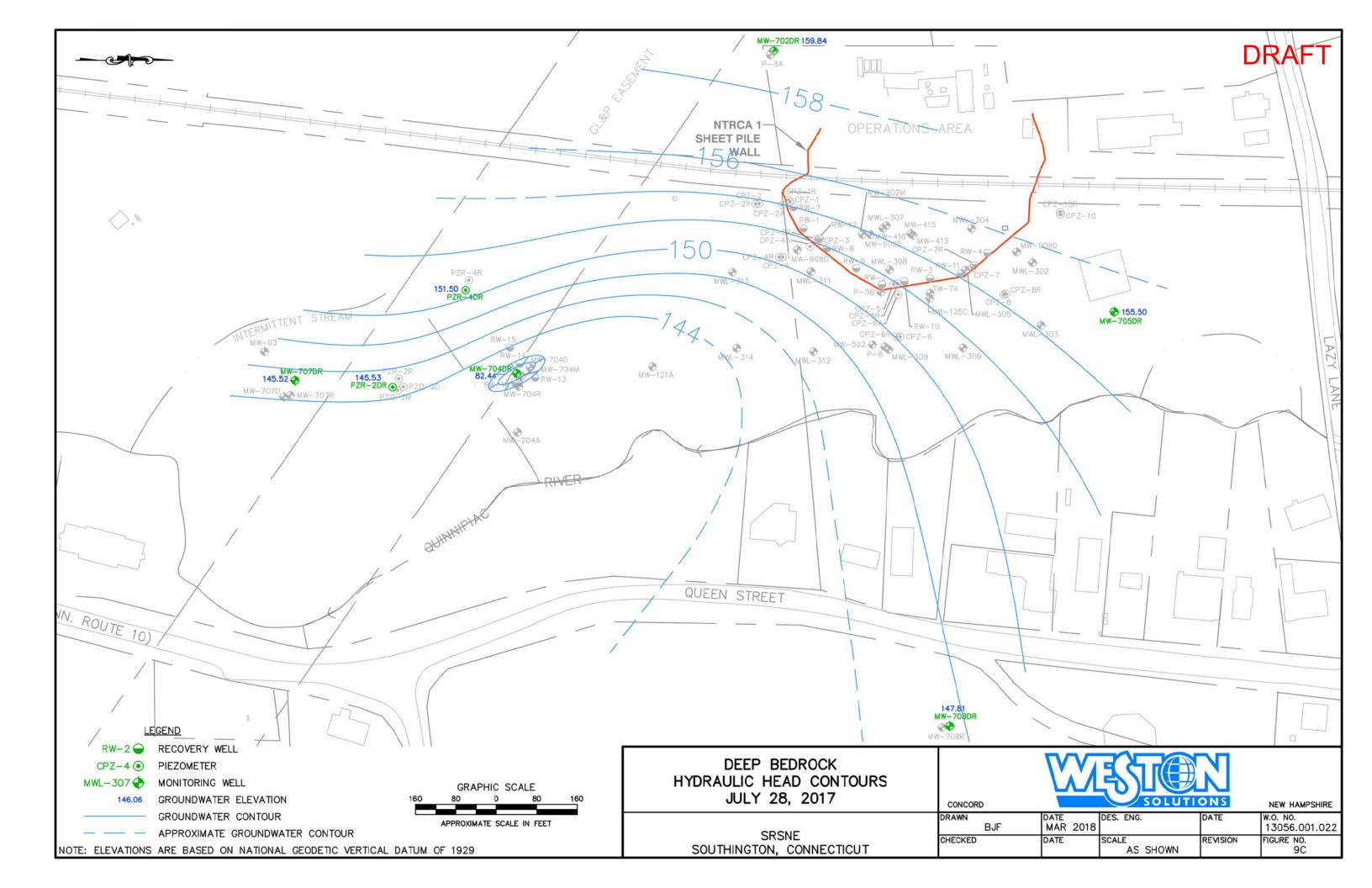


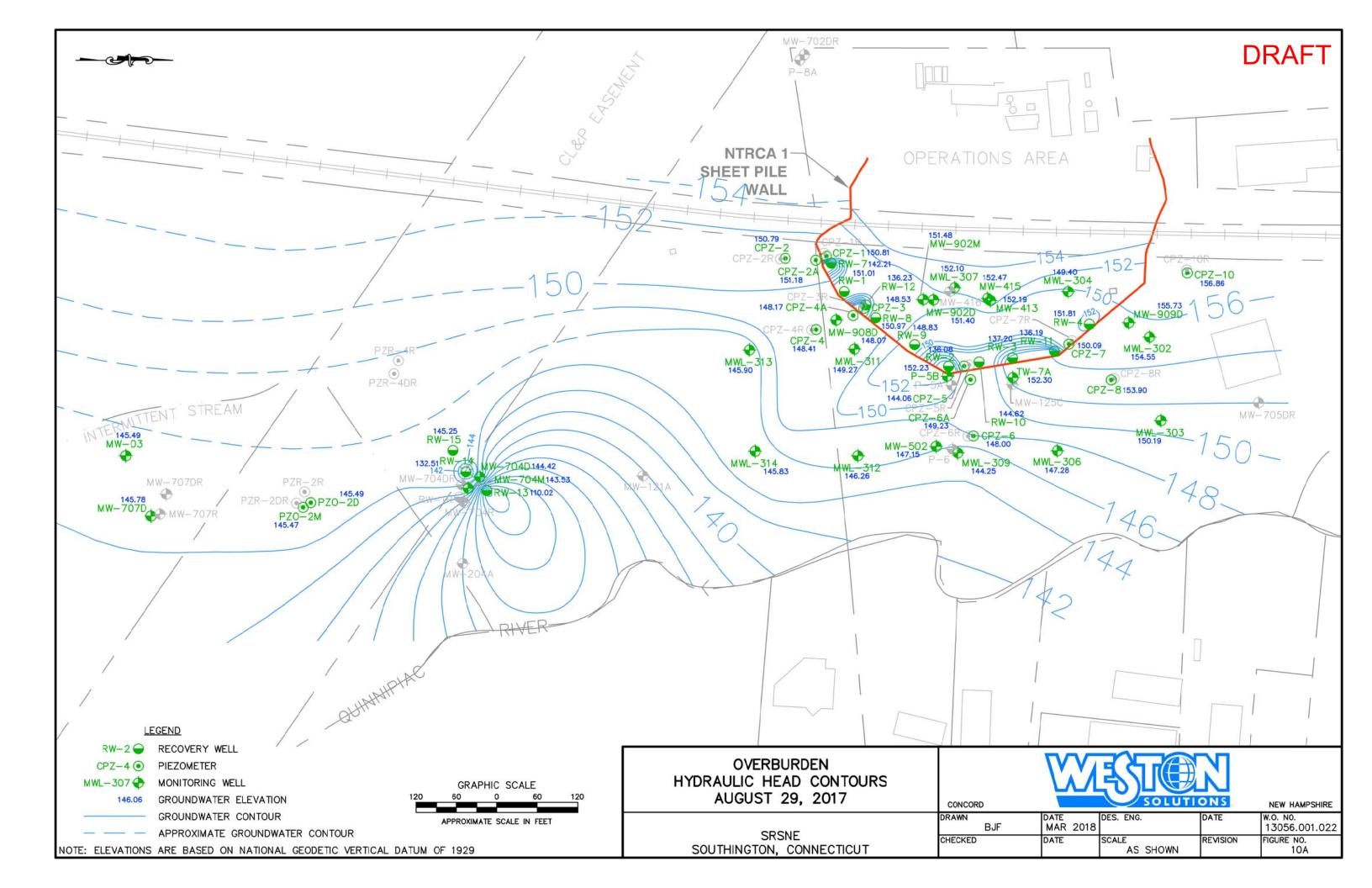


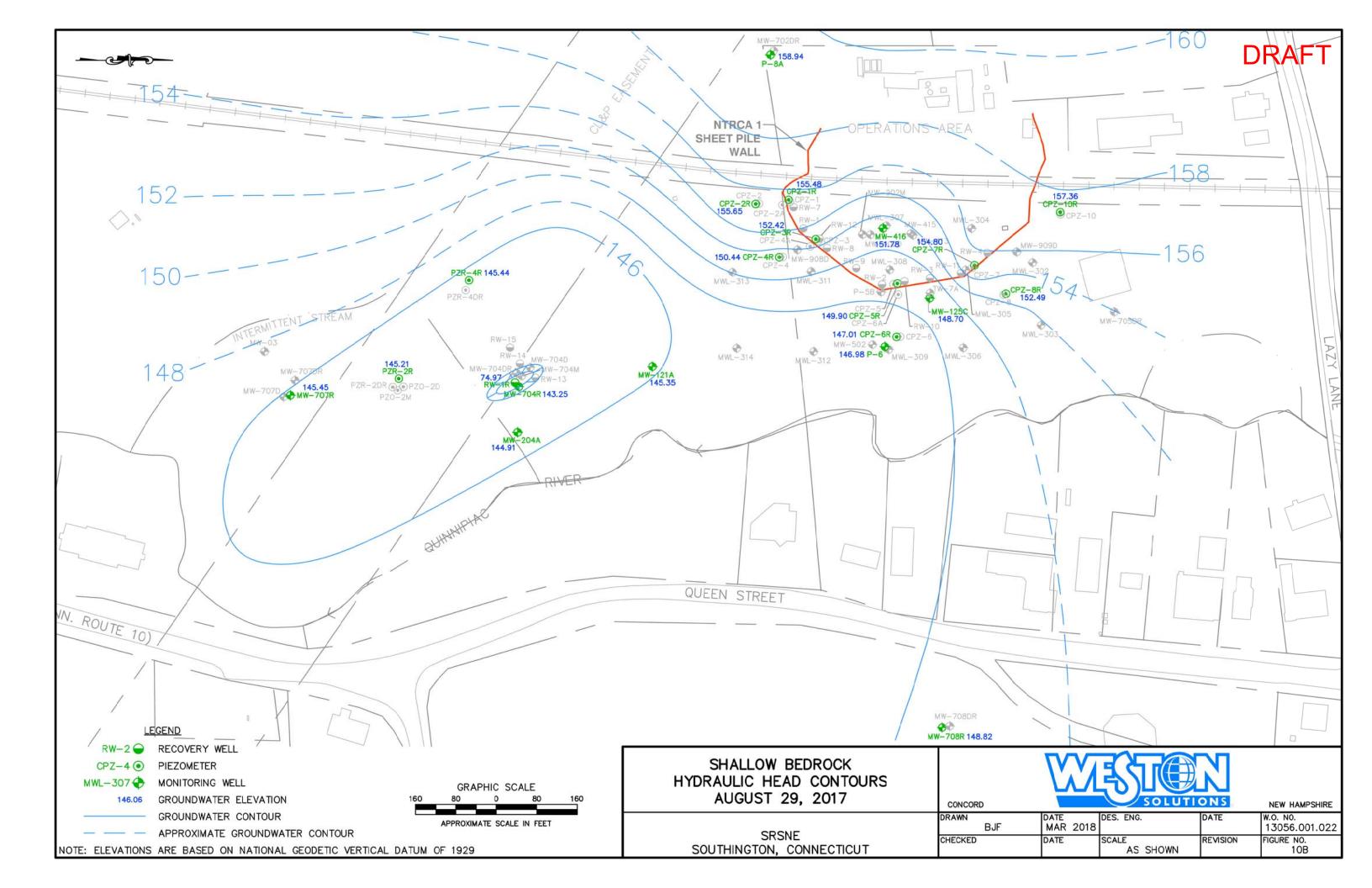


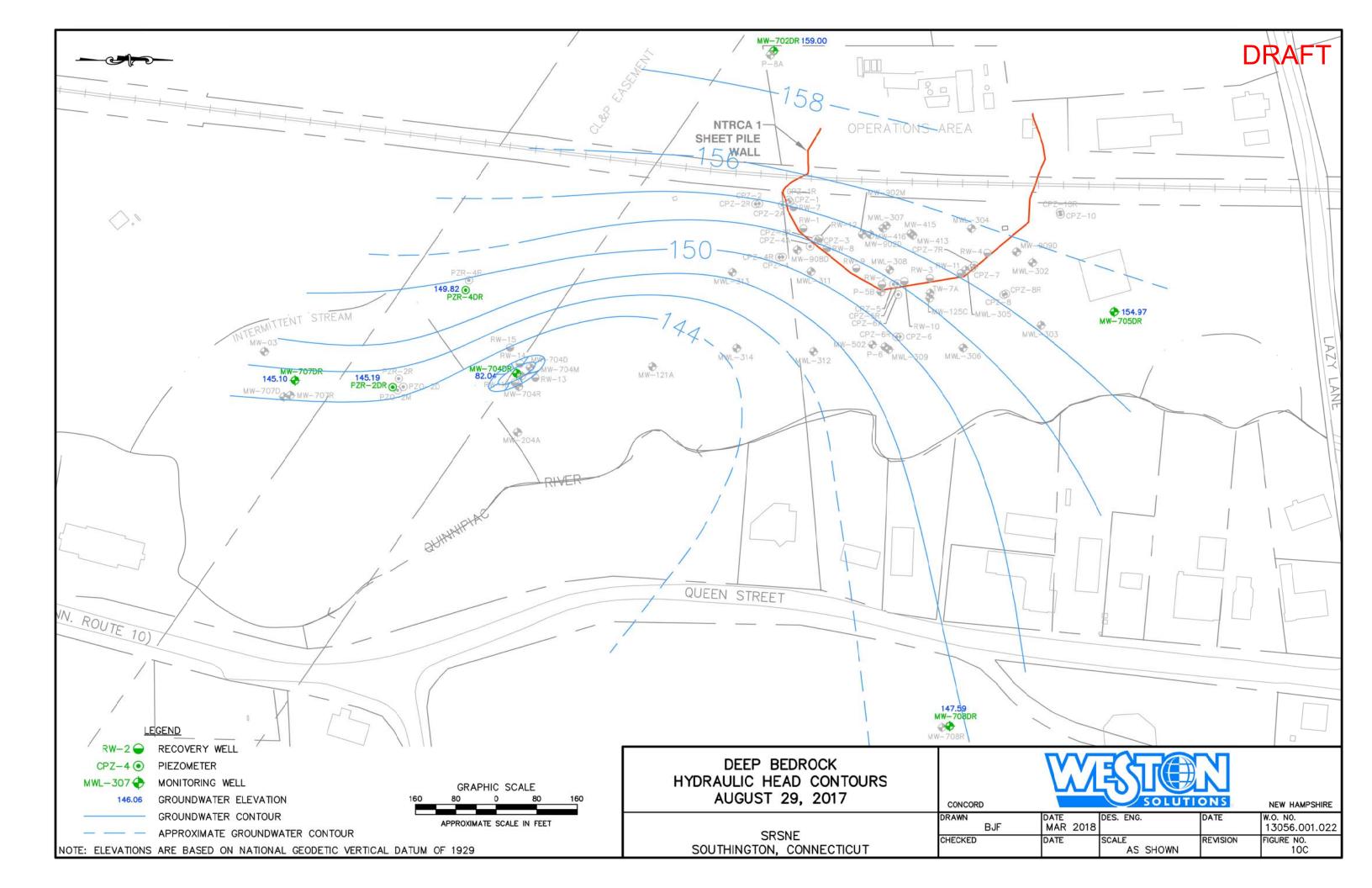


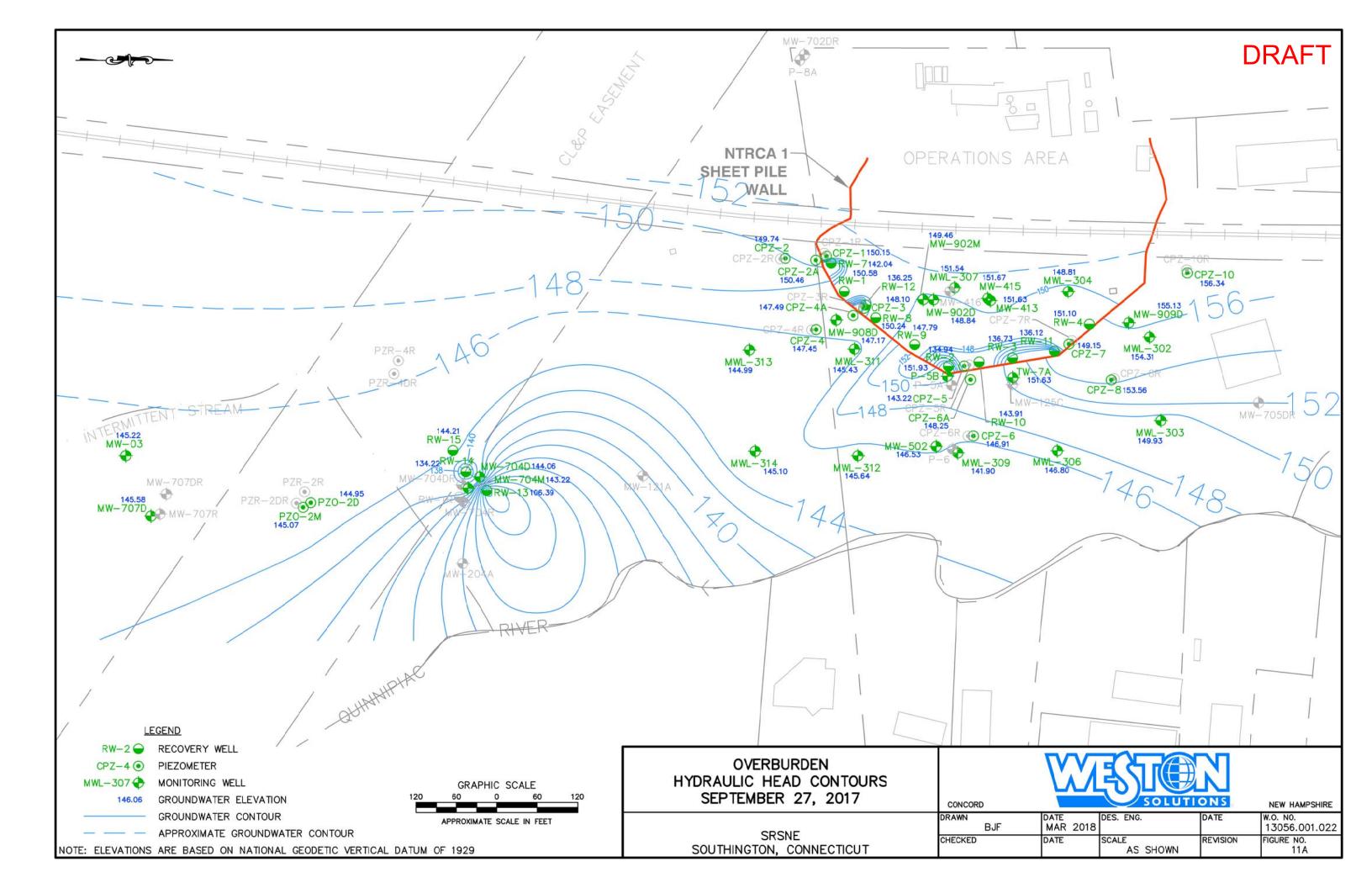


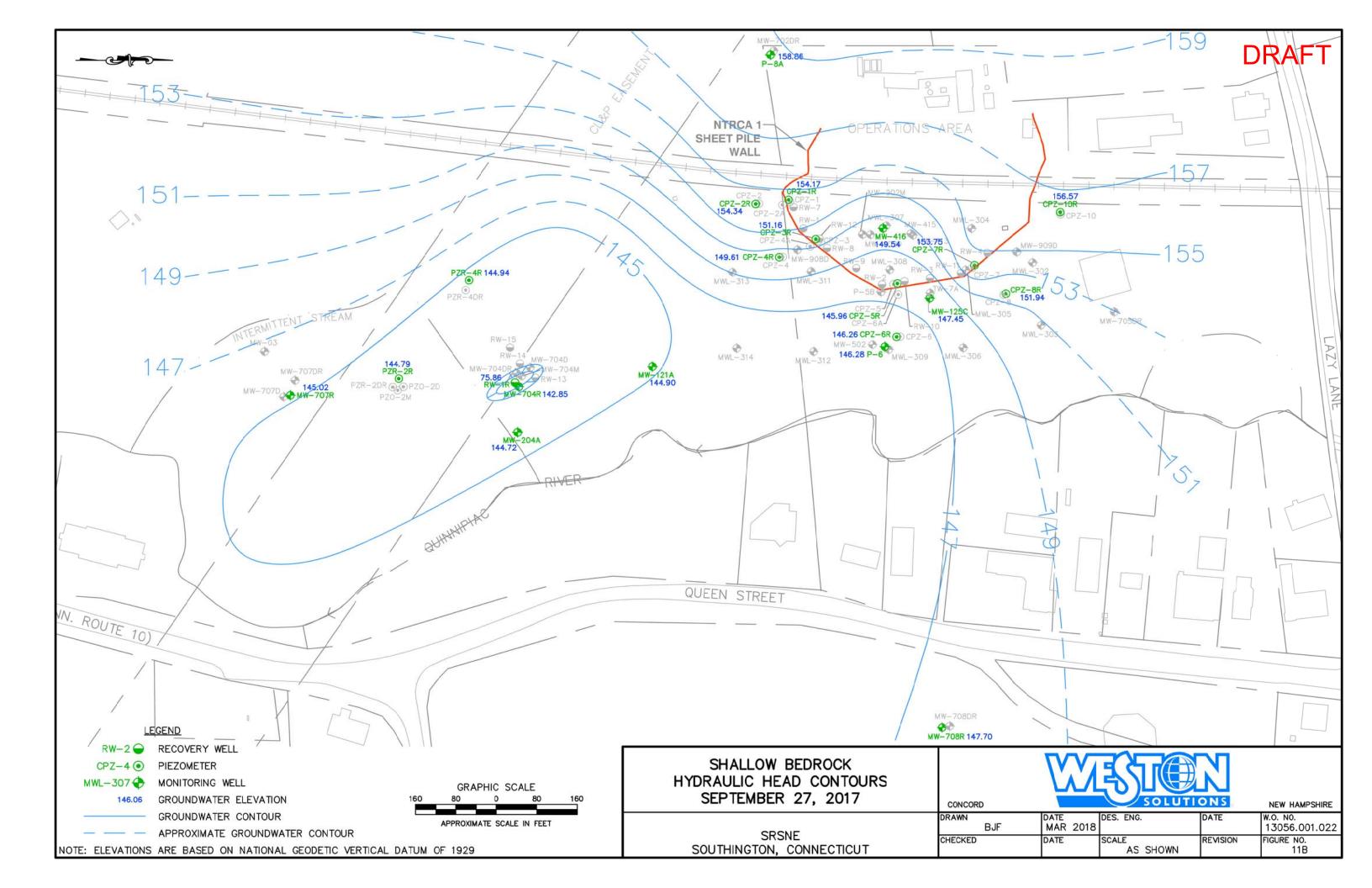


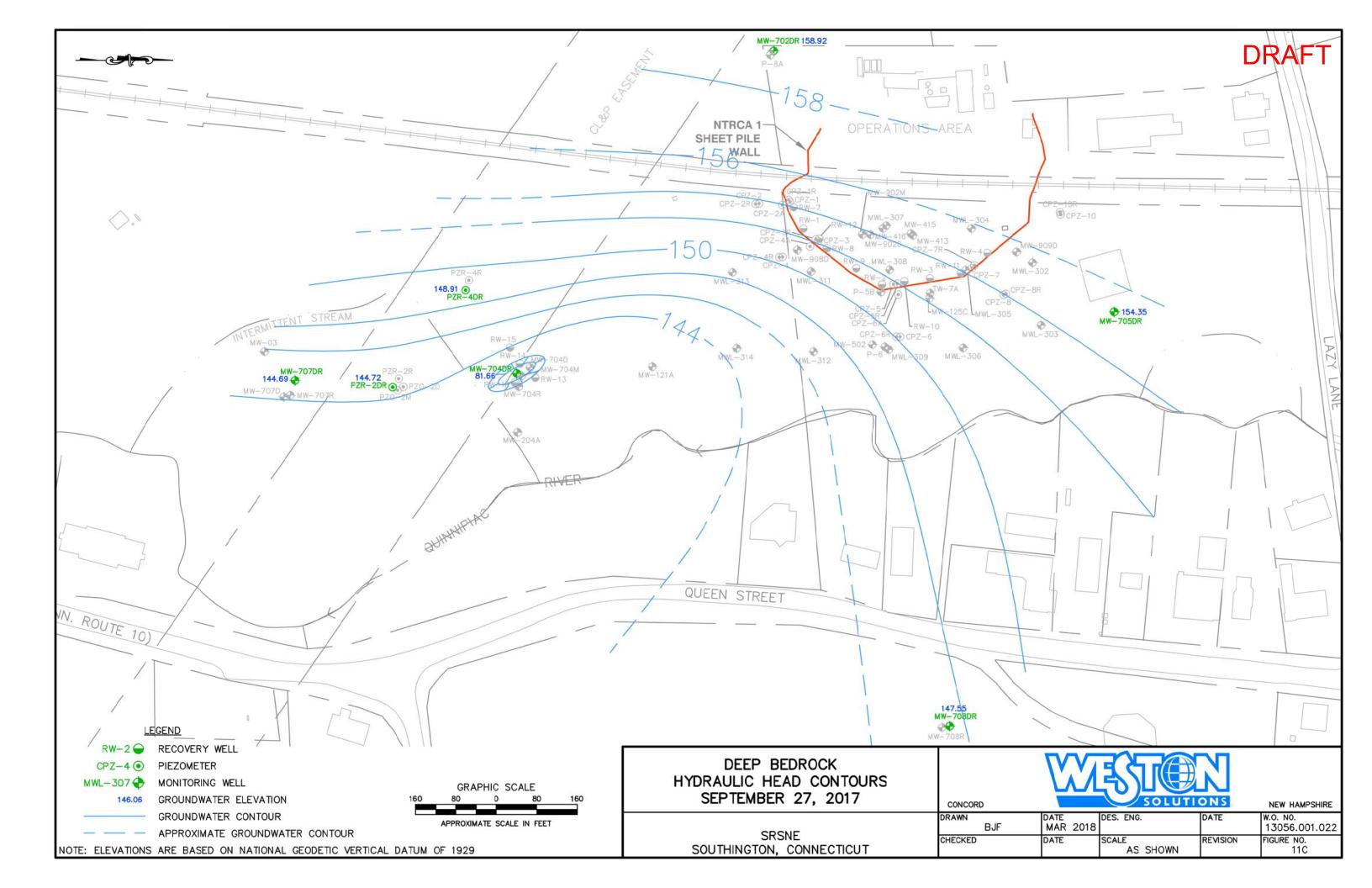


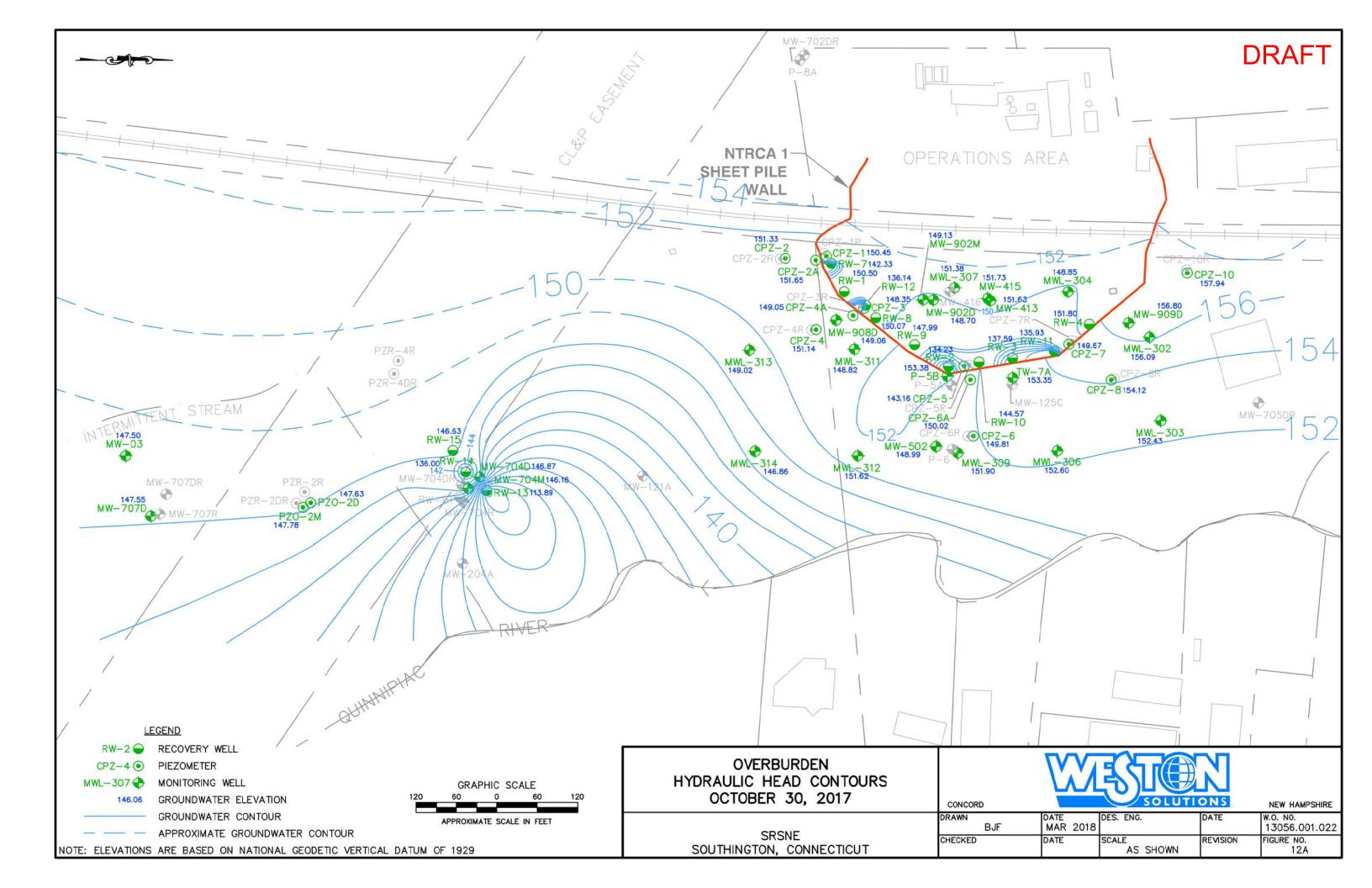


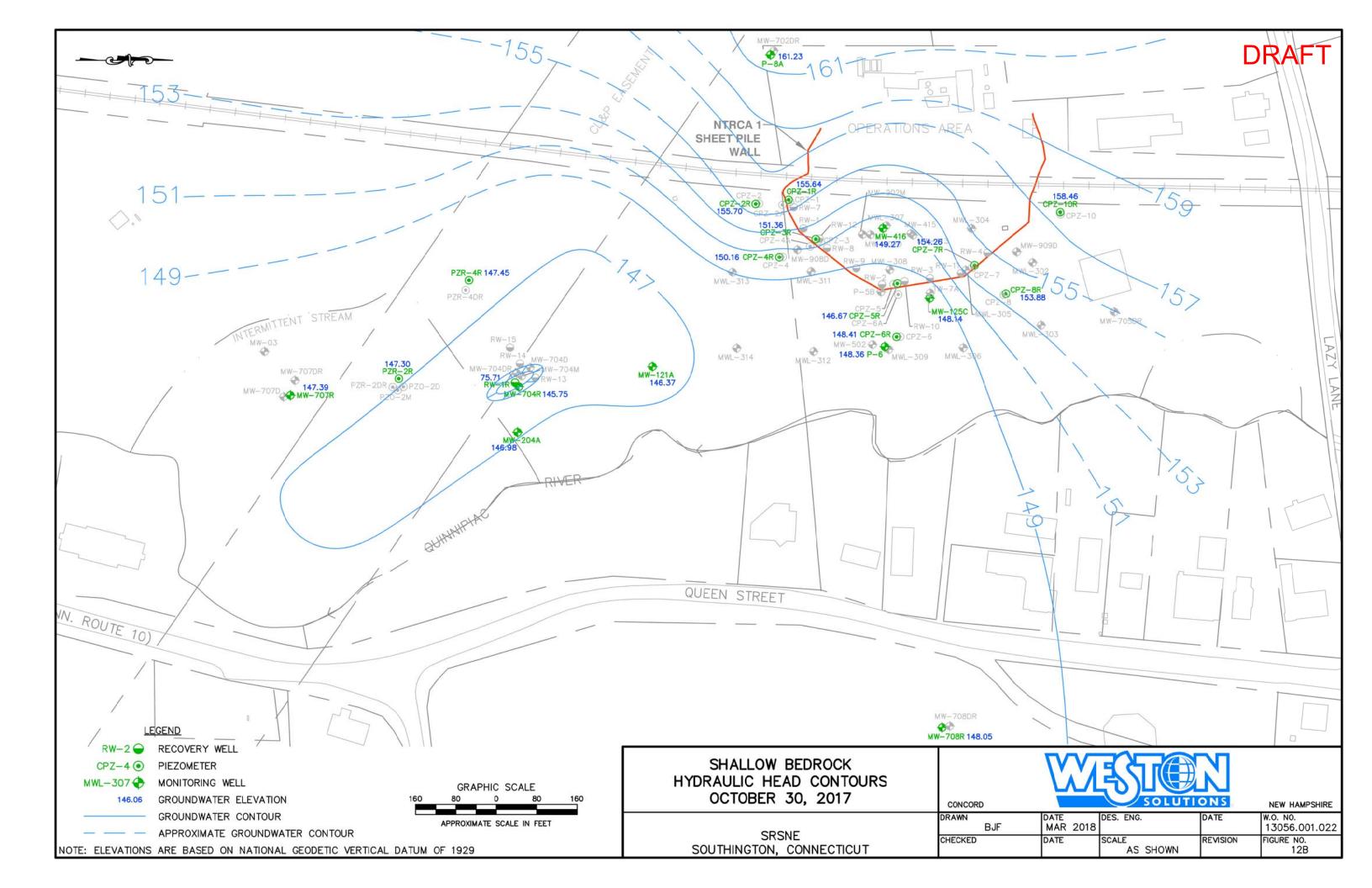


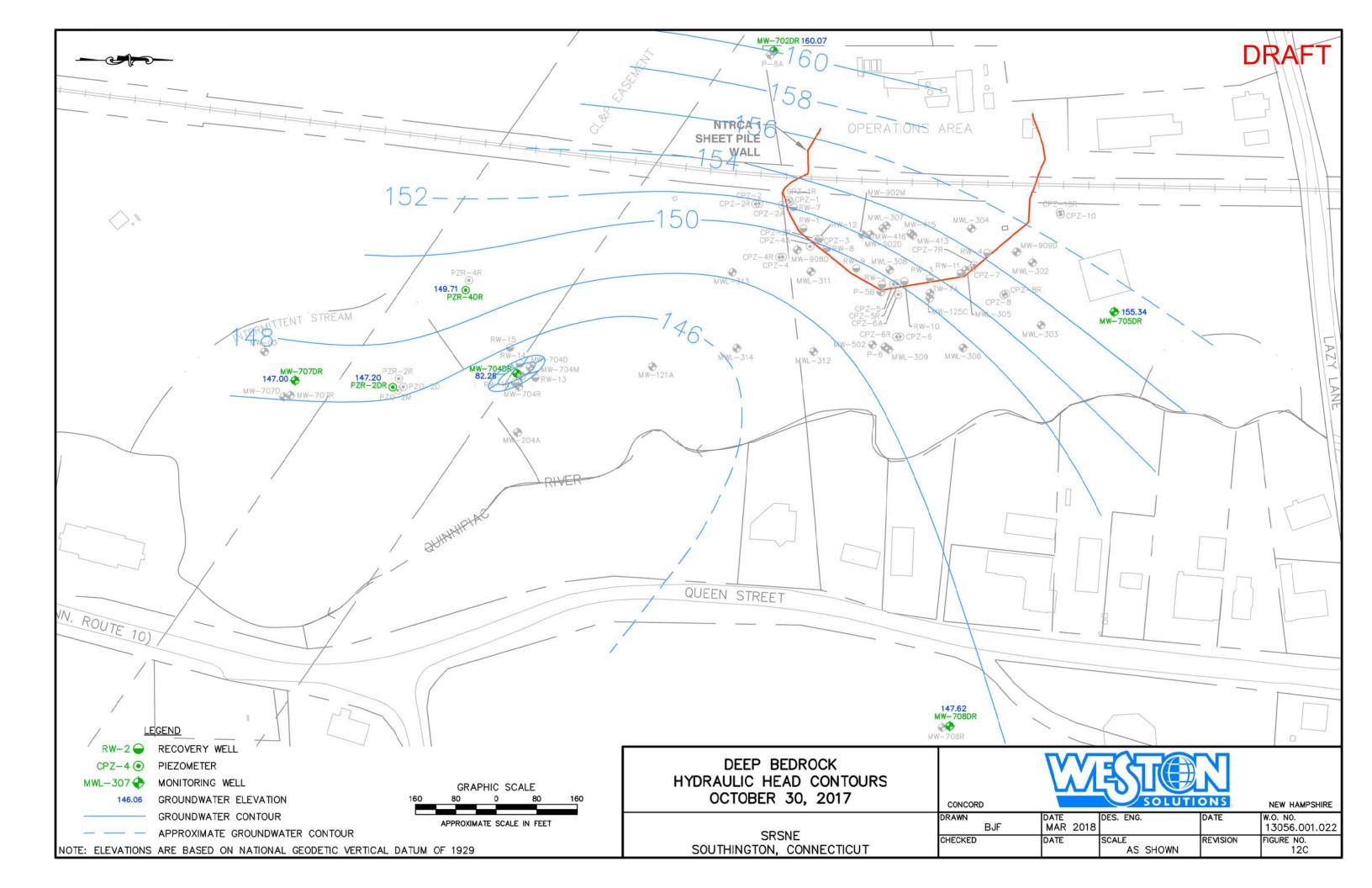












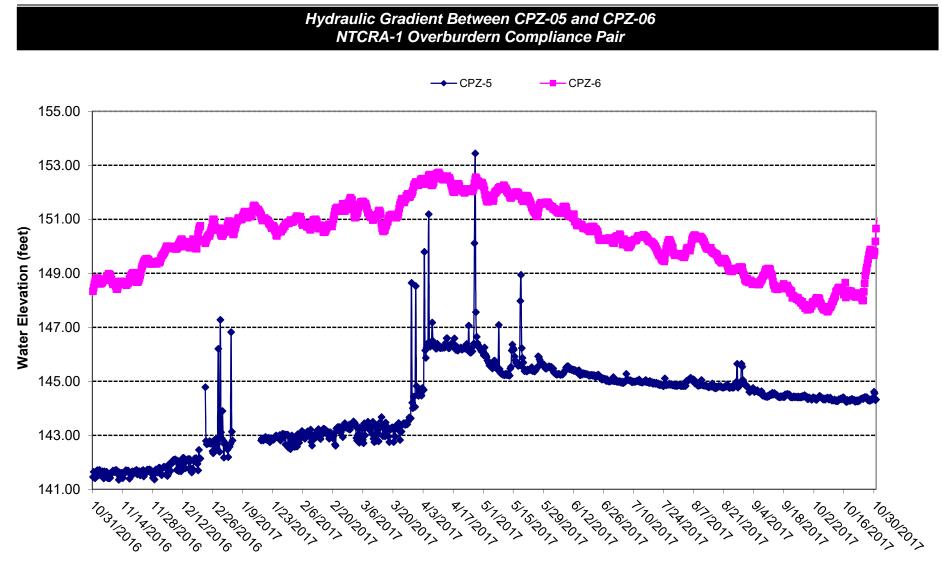
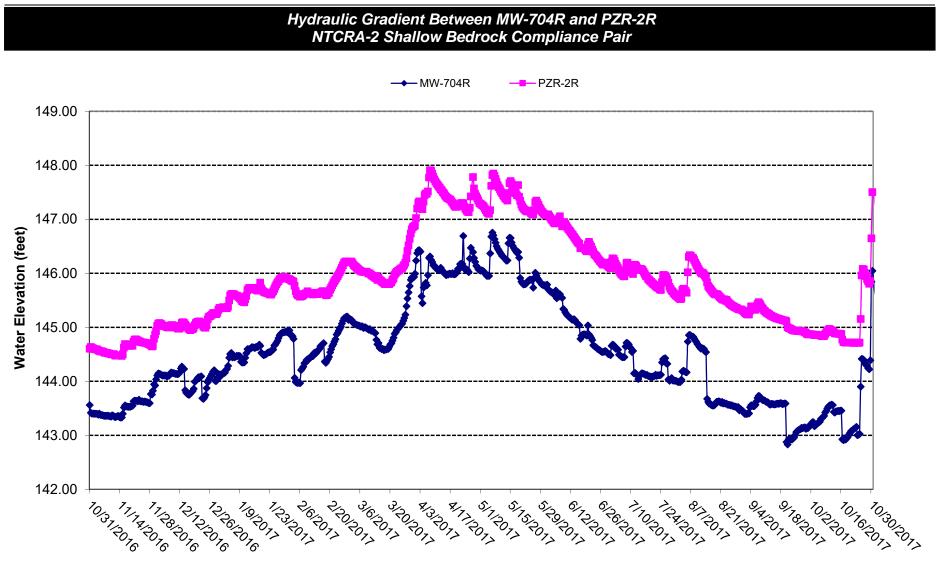


FIGURE 13

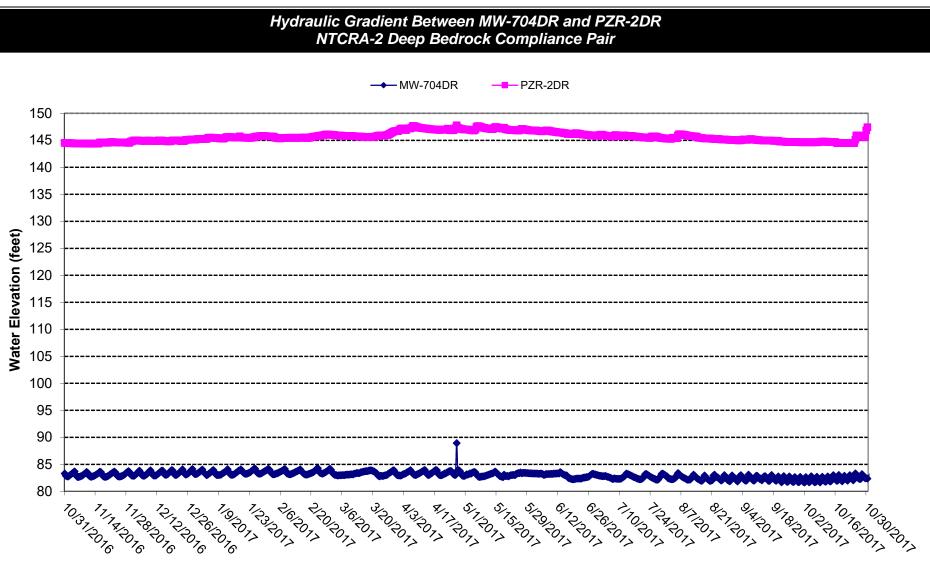
31 Oct. 2016 through 30 Oct. 2017



Date

FIGURE 14A

31 Oct. 2016 through 30 Oct. 2017



Date

FIGURE 14B

31 Oct. 2016 through 30 Oct. 2017

Date

TABLES

						1		n		1	
Measuring Location	Location Elevation	Location Elevation	Location Elevation Apr.	28-N	ov-16	28-D	ec-16	25-J	an-17	27-I	eb-17
Location	Nov. 2016	Dec. 2016 to	2017 to Oct								
		Mar. 2017	2017	Depth to Water	Water Elevation						
CPZ-1	159.64	162.13	162.13	11.99	147.65	12.37	149.76	11.60	150.53	10.97	151.16
CPZ-1R CPZ-2	161.12 158.64	161.96 158.64	161.96 158.64	8.51 10.95	152.61 147.69	7.37 9.48	154.59 149.16	6.15 8.06	155.81 150.58	4.06 6.70	157.90 151.94
CPZ-2A	158.82	161.19	161.19	10.85	147.97	11.25	149.94	10.19	151.00	8.89	152.30
CPZ-2R	160.97	160.97	160.97	8.49	152.48	6.99	153.98	5.00	155.97	2.41	158.56
CPZ-3 CPZ-3R	159.21 160.70	162.86 161.74	162.86 161.74	14.04 11.27	145.17 149.43	14.58 10.47	148.28 151.27	14.11 9.80	148.75 151.94	14.51 8.82	148.35 152.92
CPZ-4	158.80	158.80	158.80	13.74	145.06	12.52	146.28	10.02	148.78	8.41	150.39
CPZ-4A CPZ-4R	159.44	160.75 158.76	160.75 158.76	13.31	146.13	13.22	147.53 149.13	12.60 8.34	148.15 150.42	11.64	149.11
CPZ-4R CPZ-5	158.76 158.68	160.96	160.96	10.80 18.30	147.96 140.38	9.63 16.82	149.13	19.38	141.58	7.52 19.21	151.24 141.75
CPZ-5R	158.30	161.35	161.35	14.13	144.17	NS	NS	15.64	145.71	15.02	146.33
CPZ-6 CPZ-6A	154.48 158.05	154.48 160.83	154.48 160.83	6.61 9.96	147.87 148.09	5.27 8.39	149.21 152.44	5.32 10.62	149.16 150.21	5.16 11.35	149.32 149.48
CPZ-6R	154.39	154.39	154.39	8.60	145.79	7.55	146.84	7.18	147.21	6.62	147.77
CPZ-7	159.40	161.89	161.89	10.61	148.79	11.89	150.00	13.23	148.66	12.39	149.50
CPZ-7R CPZ-8	158.58 160.11	161.77 160.11	161.77 160.11	5.58 7.03	153.00 153.08	7.32 5.89	154.45 154.22	6.11 5.58	155.66 154.53	4.42 5.71	157.35 154.40
CPZ-8 CPZ-8R	160.62	160.11	160.62	9.29	153.08	8.22	154.22	7.62	154.53	7.42	154.40
CPZ-10	163.44	163.44	163.44	8.01	155.43	6.45	156.99	5.87	157.57	5.99	157.45
CPZ-10R MW-121A	162.98 152.96	162.98 152.96	162.98 152.96	7.42 8.31	155.56 144.65	5.76 7.93	157.22 145.03	4.62 7.06	158.36 145.90	3.43 6.58	159.55 146.38
MW-121A MW-125A	152.90	152.90	157.87	4.41	153.46	3.05	154.82	2.78	145.90	2.77	140.38
MW-125C	156.30	156.30	156.30	9.64	146.66	8.79	147.51	8.25	148.05	7.81	148.49
MW-204A MW-415	150.78 160.75	150.78 162.72	150.78 162.72	6.25 9.68	144.53 151.07	5.72 10.44	145.06 152.28	5.21 9.61	145.57 153.11	4.79 9.32	145.99 153.40
MW-416	159.98	161.79	161.79	12.31	147.67	12.62	149.17	12.11	149.68	11.48	150.31
MW-704D	150.98	150.98	150.98	6.99	143.99	6.31	144.67	5.71	145.27	5.22	145.76
MW-704M MW-704R	152.34 153.23	152.34 153.23	152.34 153.23	8.95 9.61	143.39 143.62	8.21 9.39	144.13 143.84	7.49 9.36	144.85 143.87	7.12 8.23	145.22 145.00
MW-704DR	152.84	152.84	152.84	69.62	83.22	69.68	83.16	69.53	83.31	69.71	83.13
MW-705DR	160.99	160.99	160.99	7.86	153.13	6.79	154.20	5.61	155.38	5.06	155.93
MWL-302 MWL-304	161.60 159.90	161.60 159.90	161.60 159.90	7.85	153.75 148.09	6.87 10.90	154.73 149.00	5.90 9.82	155.70 150.08	6.62 9.29	154.98 150.61
MWL-305	159.01	159.01	159.01	9.02	149.99	7.91	151.10	7.28	151.73	7.01	152.00
MWL-306	155.39	155.39	155.39	6.62	148.77	2.72	152.67	2.84	152.55	4.00	151.39
MWL-307 MWL-308	159.14 158.63	162.23 158.63	162.23 158.63	8.49 7.91	150.65 150.72	10.43 5.99	151.80 152.64	9.41 6.01	152.82 152.62	9.11 5.22	153.12 153.41
MWL-309	155.20	155.20	155.20	7.18	148.02	3.29	151.91	3.25	151.95	3.40	151.80
MWL-311	157.33	157.33	157.33	11.80	145.53	7.51	149.82	5.85	151.48	5.68	151.65
P-5A P-5B	157.61 158.39	160.81 161.03	160.81 161.03	11.80 6.44	145.81 151.95	10.59 4.60	150.22 156.43	NS NS	NS NS	NS 7.52	NS 153.51
P-6	153.78	153.78	153.78	8.01	145.77	6.97	146.81	6.60	147.18	5.93	147.85
PZR-2R PZR-2DR	153.78 154.67	153.78 154.67	153.78 154.67	9.23 10.19	144.55 144.48	8.61 7.59	145.17 147.08	8.20 9.05	145.58 145.62	7.70 8.51	146.08 146.16
PZR-2DK PZR-4R	153.72	153.72	153.72	9.21	144.40	8.82	147.08	7.85	145.87	7.22	146.10
PZR-4DR	152.73	152.73	152.73	5.25	147.48	5.00	147.73	2.82	149.91	2.22	150.51
RW-1 RW-2	157.61 156.49	157.61 156.49	157.61 158.24	18.58 20.99	139.03 135.50	17.63 21.77	139.98 134.72	16.80 22.35	140.81 134.14	17.90 20.87	139.71 135.62
RW-2 RW-3	156.49	156.49	158.24	18.67	135.50	20.66	136.69	22.35	134.14	19.55	135.62
RW-4	158.21	158.21	158.21	15.30	142.91	15.04	143.17	14.66	143.55	14.99	143.22
RW-7 RW-8	157.09 156.95	157.09 156.95	158.91 156.95	16.26 16.84	140.83 140.11	16.96 17.03	140.13 139.92	17.55 16.64	139.54 140.31	15.87 16.57	141.22 140.38
RW-8 RW-9	156.95	156.95	156.95	17.94	138.78	16.80	139.92	17.84	138.88	17.39	139.33
RW-10	156.13	156.13	156.13	17.81	138.32	18.43	137.70	18.48	137.65	18.03	138.10
RW-11 RW-12	157.82 158.36	157.82 158.36	157.82 159.10	17.94 19.12	139.88 139.24	17.96 21.80	139.86 136.56	19.20 19.98	138.62 138.38	18.31 20.77	139.51 137.59
RW-12 RW-13	151.64	150.50	151.64	18.40	133.24	23.44	128.20	25.00	126.64	26.38	125.26
RW-14	151.71	151.71	151.71	11.13	140.58	11.07	140.64	9.80	141.91	10.55	141.16
RW-15 RW-1R	151.28 149.77	151.28 149.77	151.28 149.77	7.93 72.88	143.35 76.89	7.24 73.27	144.04 76.50	6.63 74.28	144.65 75.49	5.89 73.06	145.39 76.71
TW-TR	158.72	149.77	158.72	72.88	151.27	6.22	152.50	6.13	152.59	6.11	152.61
MW-702DR	181.38	181.38	181.38	25.10	156.28	22.16	159.22	21.10	160.28	17.05	164.33
P-8A MW-707D	181.26 156.09	181.26 156.09	181.26 156.09	25.16 10.90	156.10 145.19	22.30 10.42	158.96 145.67	21.00 10.10	160.26 145.99	17.02 9.75	164.24 146.34
MW-707D MW-707R	156.09	156.09	156.09	11.34	145.19	10.42	145.87	10.10	145.99	9.75	146.34
MW-707DR	156.80	156.80	156.80	12.32	144.48	11.71	145.09	11.23	145.57	10.78	146.02
PZ-02D PZ-02M	154.14 154.77	154.14 154.77	154.14 154.77	9.36 9.84	144.78 144.93	8.72 9.28	145.42 145.49	8.25 9.80	145.89 144.97	7.86 8.30	146.28 146.47
PZ-02M MW-3	154.77 153.79	154.77 153.79	154.77 153.79	9.84	144.93	9.28	145.49	9.80	144.97 145.98	8.30 7.61	146.47
MW-708R	224.95	224.95	224.95	77.88	147.07	77.73	147.22	77.68	147.27	76.80	148.15
MW-708DR	224.19	224.19 155.85	224.19 155.85	77.66 5.77	146.53 150.08	77.51 5.28	146.68 150.57	77.43 5.19	146.76 150.66	76.64 4.19	147.55 151.66

Measuring	Location	Location	Location	27-N	1ar-17	24-A	pr-17	26-N	lay-17	27-J	un-17
Location	Elevation Nov. 2016	Elevation Dec. 2016 to	Elevation Apr. 2017 to Oct	Denth (c	14/- (Denth (c	14/2 / 2 12	Dawith in	14/- (Denth (c	Maran
		Mar. 2017	2017	Depth to Water	Water Elevation						
CPZ-1	159.64	162.13	162.13	10.41	151.72	8.41	153.72	8.65	153.48	9.76	152.37
CPZ-1R	161.12	161.96	161.96	4.01	157.95	3.94	158.02	3.87	158.09	4.01	157.95
CPZ-2	158.64	158.64	158.64	6.00	152.64	3.82	154.82	4.31	154.33	6.10	152.54
CPZ-2A CPZ-2R	158.82 160.97	161.19 160.97	161.19 160.97	8.45 2.15	152.74 158.82	5.82 0.00	155.37 160.97	6.35 0.00	154.84 160.97	8.17 2.72	153.02 158.25
CPZ-2IX CPZ-3	159.21	162.86	162.86	13.78	149.08	11.56	151.30	12.16	150.70	13.13	149.73
CPZ-3R	160.70	161.74	161.74	8.45	153.29	5.01	156.73	5.70	156.04	7.93	153.81
CPZ-4	158.80	158.80	158.80	8.97	149.83	6.73	152.07	7.72	151.08	8.94	149.86
CPZ-4A	159.44	160.75	160.75	11.30	149.45	9.75	151.00	10.36	150.39	11.30	149.45
CPZ-4R CPZ-5	158.76 158.68	158.76 160.96	158.76 160.96	7.03 18.60	151.73 142.36	4.68 15.43	154.08 145.53	5.09 16.27	153.67 144.69	6.75 16.92	152.01 144.04
CPZ-5R	158.30	161.35	161.35	14.52	146.83	12.11	149.24	13.02	148.33	14.04	147.31
CPZ-6	154.48	154.48	154.48	4.72	149.76	4.40	150.08	4.58	149.90	5.44	149.04
CPZ-6A	158.05	160.83	160.83	10.70	150.13	10.19	150.64	10.10	150.73	11.20	149.63
CPZ-6R	154.39	154.39	154.39	6.35	148.04	5.41	148.98	5.55	148.84	6.58	147.81
CPZ-7 CPZ-7R	159.40 158.58	161.89 161.77	161.89 161.77	11.78 4.38	150.11 157.39	10.82 1.20	151.07 160.57	10.49 1.85	151.40 159.92	11.08 4.60	150.81 157.17
CPZ-7R CPZ-8	160.11	160.11	160.11	5.47	154.64	5.59	154.52	5.62	159.92	6.11	157.17
CPZ-8R	160.62	160.62	160.62	7.31	153.31	6.94	153.68	7.13	153.49	7.79	152.83
CPZ-10	163.44	163.44	163.44	5.88	157.56	5.99	157.45	6.00	157.44	6.42	157.02
CPZ-10R	162.98	162.98	162.98	3.41	159.57	2.02	160.96	2.46	160.52	4.42	158.56
MW-121A MW-125A	152.96 157.87	152.96 157.87	152.96 157.87	6.59 2.67	146.37 155.20	5.33 2.02	147.63 155.85	5.59 2.59	147.37 155.28	6.61 3.39	146.35 154.48
MW-125A MW-125C	156.30	157.87	157.87	7.78	155.20	6.20	155.85	6.60	155.28	7.58	154.48
MW-204A	150.78	150.50	150.78	4.66	146.12	3.87	146.91	3.70	147.08	4.82	145.96
MW-415	160.75	162.72	162.72	9.03	153.69	6.18	156.54	6.91	155.81	8.61	154.11
MW-416	159.98	161.79	161.79	10.90	150.89	7.72	154.07	8.51	153.28	10.08	151.71
MW-704D MW-704M	150.98 152.34	150.98	150.98 152.34	5.18 7.11	145.80 145.23	4.30 6.42	146.68	4.23 6.38	146.75	5.58	145.40 144.53
MW-704M MW-704R	152.34	152.34 153.23	152.34	8.16	145.23	7.40	145.92 145.83	7.49	145.96 145.74	7.81 8.88	144.55
MW-704DR	152.84	152.84	152.84	69.99	82.85	70.07	82.77	70.21	82.63	70.61	82.23
MW-705DR	160.99	160.99	160.99	4.82	156.17	3.12	157.87	3.38	157.61	4.80	156.19
MWL-302	161.60	161.60	161.60	6.05	155.55	6.70	154.90	6.70	154.90	7.05	154.55
MWL-304	159.90	159.90	159.90	8.98	150.92	5.82	154.08	6.56	153.34	8.49	151.41
MWL-305 MWL-306	159.01 155.39	159.01 155.39	159.01 155.39	NS 2.91	NS 152.48	NS 5.21	NS 150.18	NS 6.02	NS 149.37	NS 7.41	NS 147.98
MWL-307	159.14	162.23	162.23	8.42	153.81	5.67	156.56	6.62	155.61	8.27	153.96
MWL-308	158.63	158.63	158.63	NS	NS	NS	NS	NS	NS	NS	NS
MWL-309	155.20	155.20	155.20	3.07	152.13	3.71	151.49	4.89	150.31	6.08	149.12
MWL-311	157.33	157.33	157.33	5.11	152.22	4.38	152.95	5.01	152.32	5.98	151.35
P-5A P-5B	157.61 158.39	160.81 161.03	160.81 161.03	NS 7.44	NS 153.59	NS 7.54	NS 153.49	NS 7.58	NS 153.45	NS 7.60	NS 153.43
P-6	153.78	153.78	153.78	5.74	148.04	4.80	148.98	4.92	148.86	5.98	147.80
PZR-2R	153.78	153.78	153.78	7.67	146.11	6.75	147.03	6.63	147.15	7.75	146.03
PZR-2DR	154.67	154.67	154.67	8.56	146.11	7.90	146.77	7.58	147.09	8.71	145.96
PZR-4R	153.72	153.72	153.72	7.13	146.59	5.85	147.87	7.70	146.02	7.21	146.51
PZR-4DR RW-1	152.73 157.61	152.73 157.61	152.73 157.61	1.81 17.37	150.92 140.24	0.00 2.68	152.73 154.93	0.00 3.02	152.73 154.59	1.48 4.60	151.25 153.01
RW-2	156.49	156.49	158.24	21.06	135.43	21.73	136.51	21.67	136.57	23.20	135.04
RW-3	157.35	157.35	159.09	18.18	139.17	19.15	139.94	20.21	138.88	21.95	137.14
RW-4	158.21	158.21	158.21	14.91	143.30	2.75	155.46	3.20	155.01	4.49	153.72
RW-7	157.09	157.09	158.91	15.97	141.12	15.50	143.41	16.67 4.01	142.24	17.26	141.65
RW-8 RW-9	156.95 156.72	156.95 156.72	156.95 156.72	17.03 18.01	139.92 138.71	3.15 4.10	153.80 152.62	4.01 4.16	152.94 152.56	4.91 6.46	152.04 150.26
RW-10	156.13	156.13	156.13	17.93	138.20	2.50	153.63	2.79	153.34	10.22	145.91
RW-11	157.82	157.82	157.82	17.89	139.93	20.45	137.37	21.28	136.54	22.40	135.42
RW-12	158.36	158.36	159.10	20.03	138.33	20.25	138.85	22.22	136.88	22.88	136.22
RW-13	151.64	151.64	151.64	25.02	126.62	25.18	126.46	30.04	121.60	31.50	120.14
RW-14 RW-15	151.71 151.28	151.71 151.28	151.71 151.28	10.37 5.96	141.34 145.32	11.30 4.53	140.41 146.75	11.16 4.55	140.55 146.73	17.67 5.10	134.04 146.18
RW-15 RW-1R	149.77	149.77	149.77	73.29	76.48	74.20	75.57	72.99	76.78	72.66	77.11
TW-7A	158.72	158.72	158.72	5.76	152.96	5.92	152.80	5.58	153.14	6.21	152.51
MW-702DR	181.38	181.38	181.38	16.90	164.48	13.95	167.43	15.72	165.66	19.90	161.48
P-8A	181.26	181.26	181.26	16.94	164.32	13.89	167.37	15.60	165.66	19.85	161.41
MW-707D MW-707R	156.09	156.09	156.09	9.65	146.44	9.15	146.94	8.80	147.29	9.82	146.27
MW-707R MW-707DR	156.01 156.80	156.01 156.80	156.01 156.80	9.70 10.78	146.31 146.02	8.95 9.87	147.06 146.93	8.72 9.70	147.29 147.10	9.90 10.91	146.11 145.89
PZ-02D	154.14	154.14	154.14	7.79	146.35	7.01	147.13	6.80	147.34	7.97	145.05
PZ-O2M	154.77	154.77	154.77	8.30	146.47	7.52	147.25	7.35	147.42	8.50	146.27
MW-3	153.79	153.79	153.79	7.41	146.38	6.91	146.88	6.51	147.28	7.61	146.18
	224.95	224.95	224.95	76.90	148.05	76.21	148.74	76.16	148.79	74.66	150.29
MW-708R MW-708DR	224.19	224.19	224.19	76.58	147.61	75.89	148.30	75.82	148.37	74.80	149.39

Measuring	Location	Location	Location	28-J	lul-17	29-A	ug-17	27-S	ep-17	30-0	Oct-17
Location	Elevation Nov. 2016	Elevation Dec. 2016 to Mar. 2017	Elevation Apr. 2017 to Oct 2017	Depth to Water	Water Elevation						
CPZ-1	159.64	162.13	162.13	10.69	151.44	11.32	150.81	11.98	150.15	11.68	150.45
CPZ-1R CPZ-2	161.12 158.64	161.96 158.64	161.96 158.64	5.58	156.38	6.48 7.85	155.48 150.79	7.79 8.90	154.17 149.74	6.32 7.31	155.64 151.33
CPZ-2 CPZ-2A	158.82	156.64	158.64	9.24	151.52 151.95	10.01	150.79	10.73	149.74	9.54	151.65
CPZ-2R	160.97	160.97	160.97	4.45	156.52	5.32	155.65	6.63	154.34	5.27	155.70
CPZ-3	159.21	162.86	162.86	13.92	148.94	14.33	148.53	14.76	148.10	14.51	148.35
CPZ-3R	160.70	161.74	161.74	9.10	152.64	9.32	152.42	10.58	151.16	10.38	151.36
CPZ-4 CPZ-4A	158.80 159.44	158.80 160.75	158.80 160.75	9.71 12.10	149.09 148.65	10.39 12.58	148.41 148.17	11.35 13.26	147.45 147.49	7.66	151.14 149.05
CPZ-4A CPZ-4R	158.76	158.76	158.76	7.69	151.07	8.32	140.17	9.25	147.49	8.60	149.05
CPZ-5	158.68	160.96	160.96	17.11	143.85	16.90	144.06	17.74	143.22	17.80	143.16
CPZ-5R	158.30	161.35	161.35	14.56	146.79	11.45	149.90	15.39	145.96	14.68	146.67
CPZ-6	154.48	154.48	154.48	5.33	149.15	6.48	148.00	7.57	146.91	4.67	149.81
CPZ-6A CPZ-6R	158.05 154.39	160.83 154.39	160.83 154.39	11.28 7.04	149.55 147.35	11.60 7.38	149.23 147.01	12.58 8.13	148.25 146.26	10.81 5.98	150.02 148.41
CPZ-7	159.40	161.89	161.89	12.07	149.82	11.80	150.09	12.74	149.15	12.22	149.67
CPZ-7R	158.58	161.77	161.77	6.29	155.48	6.97	154.80	8.02	153.75	7.51	154.26
CPZ-8	160.11	160.11	160.11	6.04	154.07	6.21	153.90	6.55	153.56	5.99	154.12
CPZ-8R CPZ-10	160.62 163.44	160.62 163.44	160.62 163.44	7.90 6.34	152.72 157.10	8.13 6.58	152.49 156.86	8.68 7.10	151.94 156.34	6.74 5.50	153.88 157.94
CPZ-10 CPZ-10R	163.44	163.44	163.44	5.11	157.10	5.62	156.86	6.41	156.34	4.52	157.94
MW-121A	152.96	152.96	152.96	7.19	145.77	7.61	145.35	8.06	144.90	6.59	146.37
MW-125A	157.87	157.87	157.87	3.49	154.38	3.79	154.08	4.11	153.76	2.25	155.62
MW-125C	156.30	156.30	156.30	7.99	148.31	7.60	148.70	8.85	147.45	8.16	148.14
MW-204A MW-415	150.78 160.75	150.78 162.72	150.78 162.72	5.58 9.78	145.20 152.94	5.87 10.25	144.91 152.47	6.06 11.05	144.72 151.67	3.80 10.99	146.98 151.73
MW-415 MW-416	159.98	161.79	161.79	11.11	150.68	10.23	151.78	12.25	149.54	12.52	149.27
MW-704D	150.98	150.98	150.98	6.29	144.69	6.56	144.42	6.92	144.06	4.11	146.87
MW-704M	152.34	152.34	152.34	8.64	143.70	8.81	143.53	9.12	143.22	6.18	146.16
MW-704R	153.23	153.23	153.23	9.41	143.82	9.98	143.25	10.38	142.85	7.48	145.75
MW-704DR MW-705DR	152.84 160.99	152.84 160.99	152.84 160.99	70.40 5.49	82.44 155.50	70.80 6.02	82.04 154.97	71.18 6.64	81.66 154.35	70.56 5.65	82.28 155.34
MWL-302	161.60	161.60	161.60	6.90	154.70	7.05	154.55	7.29	154.31	5.51	156.09
MWL-304	159.90	159.90	159.90	9.75	150.15	10.50	149.40	11.09	148.81	11.05	148.85
MWL-305	159.01	159.01	159.01	NS	NS	NS	NS	NS	NS	NS	NS
MWL-306 MWL-307	155.39 159.14	155.39 162.23	155.39 162.23	7.31 6.90	148.08 155.33	8.11 10.13	147.28 152.10	8.59 10.69	146.80 151.54	2.79 10.85	152.60 151.38
MWL-308	158.63	158.63	158.63	NS	NS	NS	NS	NS	NS	NS	NS
MWL-309	155.20	155.20	155.20	4.91	150.29	10.95	144.25	13.30	141.90	3.30	151.90
MWL-311	157.33	157.33	157.33	7.41	149.92	8.06	149.27	11.90	145.43	8.51	148.82
P-5A	157.61	160.81	160.81	NS	NS 452.92	NS	NS	NS 0.40	NS 454.00	NS 7.65	NS 452.20
P-5B P-6	158.39 153.78	161.03 153.78	161.03 153.78	8.20 6.42	152.83 147.36	8.80 6.80	152.23 146.98	9.10 7.50	151.93 146.28	7.65 5.42	153.38 148.36
PZR-2R	153.78	153.78	153.78	8.20	145.58	8.57	145.21	8.99	144.79	6.48	147.30
PZR-2DR	154.67	154.67	154.67	9.14	145.53	9.48	145.19	9.95	144.72	7.47	147.20
PZR-4R	153.72	153.72	153.72	7.88	145.84	8.28	145.44	8.78	144.94	6.27	147.45
PZR-4DR RW-1	152.73 157.61	152.73 157.61	152.73 157.61	1.23 6.57	151.50 151.04	2.91 6.60	149.82 151.01	3.82 7.03	148.91 150.58	3.02 7.11	149.71 150.50
RW-2	156.49	156.49	158.24	23.90	134.34	22.16	136.08	23.30	134.94	24.01	134.23
RW-3	157.35	157.35	159.09	21.85	137.24	21.89	137.20	22.36	136.73	21.50	137.59
RW-4	158.21	158.21	158.21	5.81	152.40	6.40	151.81	7.11	151.10	6.41	151.80
RW-7 RW-8	157.09 156.95	157.09 156.95	158.91 156.95	16.80 5.63	142.11 151.32	16.70 5.98	142.21 150.97	16.87 6.71	142.04 150.24	16.58 6.88	142.33 150.07
RW-8 RW-9	156.95	156.95	156.95	7.70	151.32	5.98	148.83	8.93	150.24	8.73	150.07
RW-10	156.13	156.13	156.13	11.40	144.73	11.51	144.62	12.22	143.91	11.56	144.57
RW-11	157.82	157.82	157.82	20.50	137.32	21.63	136.19	21.70	136.12	21.89	135.93
RW-12	158.36	158.36	159.10	23.99	135.11	22.87	136.23	22.85	136.25	22.96	136.14
RW-13 RW-14	151.64 151.71	151.64 151.71	151.64 151.71	33.95 21.40	117.69 130.31	41.62 19.20	110.02 132.51	45.25 17.49	106.39 134.22	37.75 15.71	113.89 136.00
RW-14 RW-15	151.28	151.28	151.28	5.81	145.47	6.03	145.25	7.07	134.22	4.65	146.63
RW-1R	149.77	149.77	149.77	74.02	75.75	74.80	74.97	73.91	75.86	74.06	75.71
TW-7A	158.72	158.72	158.72	6.21	152.51	6.42	152.30	7.09	151.63	5.37	153.35
MW-702DR	181.38	181.38	181.38	21.54	159.84	22.38	159.00	22.46	158.92	21.31	160.07
P-8A MW-707D	181.26 156.09	181.26 156.09	181.26 156.09	21.51 10.12	159.75 145.97	22.32 10.31	158.94 145.78	22.40 10.51	158.86 145.58	20.03 8.54	161.23 147.55
MW-707D MW-707R	156.01	156.09	156.01	10.12	145.97	10.51	145.45	10.99	145.02	8.62	147.39
MW-707DR	156.80	156.80	156.80	11.28	145.52	11.70	145.10	12.11	144.69	9.80	147.00
PZ-02D	154.14	154.14	154.14	8.35	145.79	8.65	145.49	9.19	144.95	6.51	147.63
PZ-O2M	154.77	154.77	154.77	8.91	145.86	9.30	145.47	9.70	145.07	6.99	147.78
MW-3 MW-708R	153.79 224.95	153.79 224.95	153.79 224.95	8.01 76.02	145.78 148.93	8.30 76.13	145.49 148.82	8.57 77.25	145.22 147.70	6.29 76.90	147.50 148.05
MW-708R MW-708DR	224.95	224.95	224.95	76.02	148.93	76.13	148.82	76.64	147.70	76.90	148.05
PZ-906DR	155.85	155.85	155.85	4.20	151.65	4.45	151.40	4.71	151.14	4.01	151.84

TABLE 2 DRAFT

31 October 2016 through 30 October 2017

Weekly NTCRA-1 Compliance Piezometer Pair Summary

Date	CPZ-1/CPZ-2A	CPZ-3/CPZ-4A	CPZ-5/CPZ-6	CPZ-7/CPZ
01-Nov-16	0.34	0.69	7.21	4.15
07-Nov-16	0.32	0.64	7.14	4.20
13-Nov-16	0.35	0.62	7.15	4.19
21-Nov-16	0.31	0.40	7.44	4.09
28-Nov-16	0.32	0.96	7.49	4.29
05-Dec-16	0.31	0.35	8.15	4.33
13-Dec-16	0.45	0.52	7.94	4.45
22-Dec-16	0.32	1.32	7.28	4.44
28-Dec-16	0.18	-0.74	5.07	4.22
05-Jan-17	0.18	-0.69	5.54	4.34
11-Jan-17	0.19	-0.62	5.86	4.26
19-Jan-17	0.43	0.19	7.60	5.49
25-Jan-17	0.47	-0.59	7.58	5.87
02-Feb-17	0.79	-0.08	7.40	5.25
06-Feb-17	0.87	0.01	7.59	5.31
16-Feb-17	0.94	0.18	7.80	5.79
21-Feb-17	0.38	-0.25	7.73	5.51
27-Feb-17	1.14	0.77	7.57	4.90
07-Mar-17	1.37	0.33	7.22	4.97
12-Mar-17	1.40	0.34	7.12	5.01
20-Mar-17	1.37	0.37	7.08	4.77
27-Mar-17	1.02	0.38	7.40	4.53
02-Apr-17	2.38	0.22	7.15	3.83
10-Apr-17	2.26	0.27	5.01	2.75
18-Apr-17	1.25	-0.64	4.63	2.43
24-Apr-17	1.65	-0.29	4.55	3.45
01-May-17	1.45	-0.61 0.34	5.27	2.46
08-May-17	1.89	0.34	6.05	2.80
15-May-17 26-May-17	<u>2.05</u> 1.36	-0.30	5.38 5.21	2.82 3.09
01-Jun-17	1.30	-0.06	5.30	3.03
06-Jun-17	1.11	-0.07	5.64	3.33
13-Jun-17	0.58	-0.46	5.10	3.07
20-Jun-17	0.92	-0.38	5.07	3.30
27-Jun-17	0.65	-0.27	5.00	3.19
05-Jul-17	0.52	-0.50	4.92	3.90
12-Jul-17	0.59	-0.35	5.32	3.76
17-Jul-17	0.50	-0.44	5.20	3.89
28-Jul-17	0.51	-0.28	5.30	4.25
01-Aug-17	0.31	-1.15	5.32	4.27
07-Aug-17	0.89	0.08	5.32	4.31
15-Aug-17	0.69	-0.06	5.34	4.32
23-Aug-17	0.50	-0.30	4.81	4.29
29-Aug-17	0.37	-0.35	3.94	3.81
07-Sep-17	0.34	-0.44	4.48	4.54
12-Sep-17	0.32	-0.51	4.49	4.41
18-Sep-17	0.32	-0.57	4.15	4.49
27-Sep-17	0.31	-0.60	3.69	4.41
02-Oct-17	-0.06	-0.96	3.42	4.35
12-Oct-17	0.07	-0.89	3.79	4.37
17-Oct-17	-0.02	-0.99	3.75	4.39
23-Oct-17	-0.16	-1.06	3.70	4.30
30-Oct-17	1.20	0.71	6.65	4.45
hlighted Cel	Is - are weeks that the	0.30-foot hydraulic gra	adient reversal stand	lard for a specifi

Table 3

November 2016

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	11/3/2016	11/15/2016
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.186	0.130
Ethylbenzene (mg/L)	0.130	0.088
Xylenes, Total (mg/L)	0.203	0.136
Vinyl chloride (mg/L)	0.046	0.029
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.014	0.007
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0.50	<0.50
Isobutyl Ketone) (mg/L)	<0.50	<0.50
Total VOCs ^[2]	0.58	0.39
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	2.43	10.60
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

December 2016

SRSNE HCTS - Influent Results

	Sample	e Dates
Parameter/ Concentration (mg/L)	12/1/2016	12/15/2016
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	< 0.001	0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	<0.001	0.02
Ethylbenzene (mg/L)	<0.001	0.011
Xylenes, Total (mg/L)	<0.001	0.016
Vinyl chloride (mg/L)	<0.001	0.006
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	<0.001	0.002
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.50	<0.50
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.50	<0.50
4-Methyl-2-pentanone (Methyl	<0 F0	<0 F0
Isobutyl Ketone) (mg/L)	<0.50	<0.50
Total VOCs ^[2]	0.00	0.05
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	3.26	2.8
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	< 0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

January 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	1/3/2017	1/19/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	0.009
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.053	0.004
Ethylbenzene (mg/L)	0.063	0.004
Xylenes, Total (mg/L)	0.097	0.006
Vinyl chloride (mg/L)	0.070	0.005
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.052	0.007
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		•
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	< <u>5.0</u>
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (mg/L)	<0.030	\0.050
Total VOCs ^[2]	0.34	0.04
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	28.0	11.6
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

February 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	2/2/2017	2/16/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.024	<0.001
Ethylbenzene (mg/L)	0.026	<0.001
Xylenes, Total (mg/L)	0.045	<0.001
Vinyl chloride (mg/L)	0.046	<0.001
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	0.017	<0.001
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	< <u>5.0</u>
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (mg/L)	<0.050	<0.050
Total VOCs ^[2]	0.158	0.001
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	5.14	10.1
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

March 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	3/2/2017	3/16/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.038	<0.001
Ethylbenzene (mg/L)	0.051	<0.001
Xylenes, Total (mg/L)	0.088	< 0.001
Vinyl chloride (mg/L)	0.066	<0.001
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	0.038	<0.001
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0 <5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (mg/L)		<0.030
Total VOCs ^[2]	0.281	0.000
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	7.12	2.90
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

April 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	4/4/2017	4/20/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.024	0.020
Ethylbenzene (mg/L)	0.031	0.026
Xylenes, Total (mg/L)	0.050	0.045
Vinyl chloride (mg/L)	0.067	0.030
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.036	0.015
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (ma/L)		<0.030
Total VOCs ^[2]	0.209	0.136
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	10.0	7.8
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

May 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	5/3/2017	5/16/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.015	0.015
Ethylbenzene (mg/L)	0.019	0.045
Xylenes, Total (mg/L)	0.032	0.065
Vinyl chloride (mg/L)	0.060	0.072
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.022	0.029
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0 <5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	< 0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	< 0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (ma/L)		<0.030
Total VOCs ^[2]	0.148	0.226
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	0.02	<0.01
Iron, Total (mg/L)	6.06	8.60
Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

June 2017

SRSNE HCTS - Influent Results

	Sampl	e Dates
Parameter/ Concentration (mg/L)	6/1/2017	6/15/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	< 0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.018	0.035
Ethylbenzene (mg/L)	0.035	0.039
Xylenes, Total (mg/L)	0.038	0.041
Vinyl chloride (mg/L)	0.112	0.135
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1,2-Dichloroethene ^[1] (ma/L)	0.045	0.136
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0 <5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (mg/L)	~0.050	<0.030
Total VOCs ^[2]	0.248	0.386
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	< 0.01	<0.01
IIron. Total (mg/L)	9.4	11.0
Lead, Total (mg/L)	<0.005	< 0.005
Nickel, Total (mg/L)	< 0.05	< 0.05
Zinc, Total (mg/L)	< 0.05	< 0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

July 2017

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L) 7/4/2017 7/1/8/2017 A. ORGANIC PARAMETERS (mg/L) (mg/L) (mg/L) Volatile Organic Compounds (mg/L) (mg/L) (mg/L) Trichloroethene (mg/L) <0.001 <0.001 <0.001 Torichloroethene (mg/L) 0.005 0.014 Toluene (mg/L) 0.011 0.055 0.014 Ethylbenzene (mg/L) 0.016 0.052 Vinyl choride (mg/L) 0.019 0.061 0.052 Vinyl choride (mg/L) <0.001 <0.001 <0.001 1.1-Dichloroethane (mg/L) <0.006 0.015 1.2-Dichloroethane (mg/L) <0.001 <0.001 1.2-Dichloroethane (mg/L) <0.001 <0.001 1.1-Dichloroethane (mg/L) <0.001 <0.001 1.2-Dichloroethane (mg/L) <0.001 <0.001 1.2-Dichloroethane (mg/L) <0.001 <0.001 1.1-Dichloroethane (mg/L) <0.001 <0.001	Decomptor/ Concentration (mg/L)	Sample	e Dates
Volatile Organic Compounds (mg/L) (mg/L) Trichloroethene (mg/L) <0.001 <0.001 Toterachloroethene (mg/L) <0.001 <0.001 Totuene (mg/L) 0.005 0.014 Ethylbenzene (mg/L) 0.016 0.052 Vigenes, Total (mg/L) 0.016 0.052 Vinyi chloride (mg/L) 0.016 0.052 1,1-Dichloroethene (mg/L) <0.001 <0.001 1,1-Dichloroethene (mg/L) <0.050 <0.050 1,2-Dichloroethene (mg/L) <0.001 <0.001 1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,1-Trichloroethane (mg/L) <0.001 <0.001 Styrene (mg/L) <0.001 <0.001 Styrene (mg/L) <0.001 <0.001 Styrene (mg/L) <5.0 <5.0 2-Butanol (mg/L) <5.0 <5.0 2-Propanol (lsopropanol) (mg/L) <5.0 <5.0 2-Buta	Parameter/ Concentration (mg/L)	7/4/2017	7/18/2017
Trichloroethene (mg/L) <0.001	A. ORGANIC PARAMETERS		
Tetrachloroethene (mg/L) <0.001	Volatile Organic Compounds	(mg/L)	(mg/L)
Toluene (mg/L) 0.005 0.014 Ethylbenzene (mg/L) 0.011 0.051 Xylenes, Total (mg/L) 0.016 0.052 Vinyl chloride (mg/L) 0.019 0.051 1,1-Dichloroethene (mg/L) <0.001	Trichloroethene (mg/L)		
Ethylbenzene (mg/L) 0.011 0.051 Xylenes, Total (mg/L) 0.016 0.052 Viny chloride (mg/L) 0.019 0.051 1,1-Dichloroethene (mg/L) <0.001	Tetrachloroethene (mg/L)		
Xylenes, Total (mg/L) 0.016 0.052 Vinyl chloride (mg/L) 0.019 0.051 1.1-Dichloroethene (mg/L) <0.001			
Xylenes, Total (mg/L) 0.016 0.052 Vinyl chloride (mg/L) 0.019 0.051 1,1-Dichloroethene (mg/L) <0.001	Ethylbenzene (mg/L)		0.051
Vinyl chloride (mg/L) 0.019 0.051 1,1-Dichloroethene (mg/L) <0.001	Xylenes, Total (mg/L)	0.016	0.052
1,1-Dichloroethene (mg/L) <0.001	Vinyl chloride (mg/L)	0.019	0.051
Tetrahydrofuran (mg/L) <0.050	1,1-Dichloroethene (mg/L)	<0.001	<0.001
1.2-Dichloroethene ^[1] (mg/L) 0.006 0.015 1.2-Dichloroethane (mg/L) <0.001	Tetrahydrofuran (mg/L)	<0.050	<0.050
1,2-Dichloroethane (mg/L) <0.001		0.006	0.015
1,1,2-Trichloroethane (mg/L) <0.001	1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L) <0.001		<0.001	<0.001
Methylene chloride (mg/L) <0.001 <0.001 Styrene (mg/L) <0.001		<0.001	<0.001
Styrene (mg/L) <0.001 <0.001 Alcohols Ethanol (mg/L) <5.0		<0.001	<0.001
Alcohols Ethanol (mg/L) <5.0		<0.001	<0.001
2-Butanol (sec-Butanol) (mg/L) <5.0 <5.0 2-Propanol (Isopropanol) (mg/L) <5.0 <5.0 Ketones Acetone (mg/L) <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050 <0.050 4-Methyl-2-pentanone (Methyl <0.050 <0.050 Isobutyl Ketone) (mg/L) <0.050 <0.050 Total VOCs ^[2] 0.057 0.183 B. INORGANIC PARAMETERS Metals Copper, Total (mg/L) <0.01 <0.01 Iron, Total (mg/L) 11.5 6.91 Lead, Total (mg/L) <0.005 <0.005 Nickel, Total (mg/L) <0.05 <0.05			
2-Butanol (sec-Butanol) (mg/L) <5.0	Ethanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L) <5.0	Methanol (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L) <5.0	2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
Acetone (mg/L) <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050		<5.0	<5.0
2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050 <0.050 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) <0.050	Ketones		
4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) <0.050	Acetone (mg/L)	< 0.050	<0.050
4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) <0.050	2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
Isobutyl Ketone) (mq/L) 0.057 0.183 Total VOCs ^[2] 0.057 0.183 B. INORGANIC PARAMETERS		<0.050	<0.0E0
B. INORGANIC PARAMETERS Metals Copper, Total (mg/L) <0.01	Isobutyl Ketone) (mg/L)	<0.050	<0.050
Metals Copper, Total (mg/L) <0.01	Total VOCs ^[2]	0.057	0.183
Metals Copper, Total (mg/L) <0.01	B. INORGANIC PARAMETERS		
Copper, Total (mg/L) <0.01 <0.01 Iron, Total (mg/L) 11.5 6.91 Lead, Total (mg/L) <0.005			
Iron, Total (mg/L) 11.5 6.91 Lead, Total (mg/L) <0.005		< 0.01	<0.01
Lead, Total (mg/L) <0.005 <0.005 Nickel, Total (mg/L) <0.05 <0.05		11.5	
Nickel, Total (mg/L) <0.05 <0.05	Lead, Total (mg/L)		
	Zinc, Total (mg/L)	< 0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

August 2017

SRSNE HCTS - Influent Results

Devemptor/ Concentration (mg/l)	Sample	e Dates
Parameter/ Concentration (mg/L)	8/2/2017	8/15/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.030	0.012
Ethylbenzene (mg/L)	0.047	0.041
Xylenes, Total (mg/L)	0.050	0.040
Vinyl chloride (mg/L)	0.229	0.020
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.118	0.007
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0 <5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	< 0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (ma/L)		<0.030
Total VOCs ^[2]	0.474	0.120
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
Iron, Total (mg/L)	0.50	12.0
Lead, Total (mg/L)	<0.005	< 0.005
Nickel, Total (mg/L)	< 0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

September 2017

SRSNE HCTS - Influent Results

Beremeter/ Concentration (mg/l)	Sampl	e Dates
Parameter/ Concentration (mg/L)	9/1/2017	9/14/2017
A. ORGANIC PARAMETERS		
Volatile Organic Compounds	(mg/L)	(mg/L)
Trichloroethene (mg/L)	<0.001	<0.001
Tetrachloroethene (mg/L)	<0.001	<0.001
Toluene (mg/L)	0.039	0.006
Ethylbenzene (mg/L)	0.060	0.018
Xylenes, Total (mg/L)	0.068	0.018
Vinyl chloride (mg/L)	0.254	0.051
1,1-Dichloroethene (mg/L)	<0.001	<0.001
Tetrahydrofuran (mg/L)	<0.050	<0.050
1.2-Dichloroethene ^[1] (ma/L)	0.170	0.023
1,2-Dichloroethane (mg/L)	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	<0.001	<0.001
Methylene chloride (mg/L)	<0.001	<0.001
Styrene (mg/L)	<0.001	<0.001
Alcohols		
Ethanol (mg/L)	<5.0	<5.0
Methanol (mg/L)	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	<5.0	<5.0
Ketones		
Acetone (mg/L)	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	<0.050	<0.050
Isobutyl Ketone) (ma/L)	<0.050	<0.050
Total VOCs ^[2]	0.591	0.116
B. INORGANIC PARAMETERS		
Metals		
Copper, Total (mg/L)	<0.01	<0.01
	23.0	13.6
Iron, Total (mg/L) Lead, Total (mg/L)	<0.005	<0.005
Nickel, Total (mg/L)	<0.05	<0.05
Zinc, Total (mg/L)	<0.05	<0.05

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

Table 3

October 2017

SRSNE HCTS - Influent Results

Parameter/ Concentration (mg/L) 10/3/2017 10/19/2017 A. ORGANIC PARAMETERS (mg/L) (mg/L) (mg/L) Volatile Organic Compounds (mg/L) (mg/L) (mg/L) Trichloroethene (mg/L) <0.001 <0.001 <0.001 Tetrachloroethene (mg/L) 0.065 0.080 Zylenes, Total (mg/L) 0.068 0.083 J.1-Dichloroethene (mg/L) <0.001 <0.011 J.1-Dichloroethene (mg/L) <0.068 0.083 Xienes, Total (mg/L) <0.050 0.012 J.2-Dichloroethene (mg/L) <0.001 <0.001 J.2-Dichloroethene (mg/L) <0.001 <0.001 J.2-Dichloroethane (mg/L) <0.001 <0.001 <	Devementary Concentration (mg/l)	Sample	e Dates
Volatile Organic Compounds (mg/L) (mg/L) Trichioroethene (mg/L) <0.001 <0.001 Tetrachioroethene (mg/L) 0.010 0.014 Toluene (mg/L) 0.010 0.014 Ethylbenzene (mg/L) 0.065 0.080 Xylenes, Total (mg/L) 0.0668 0.083 Vinyi chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.050 0.011 1,2-Dichloroethene (mg/L) <0.050 0.012 1,2-Dichloroethene (mg/L) <0.001 <0.001 1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,1-Trichloroethane (mg/L) <0.001 <0.001 1,1,2-Trichloroethane (mg/L) <0.001 <0.001 Methanol (mg/L) <5.0 <2.5 Ethanol (mg/L) <5.0 <2.5 Bethanol (mg/L) <5.0 <2.5 2-Butanol (sec-Butanol) (mg/L) <5.0 <2.5 2-Butanol (sec-Butanol) (mg/L) <0.050 <0.025 <td< th=""><th>Parameter/ Concentration (mg/L)</th><th>10/3/2017</th><th>10/19/2017</th></td<>	Parameter/ Concentration (mg/L)	10/3/2017	10/19/2017
Trichloroethene (mg/L) <0.001 <0.001 Tetrachloroethene (mg/L) 0.001 <0.001 Toluene (mg/L) 0.010 0.014 Ethylbenzene (mg/L) 0.065 0.080 Xylenes, Total (mg/L) 0.068 0.083 Yinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.001 <0.001 1,2-Dichloroethene (mg/L) <0.050 0.012 1,2-Dichloroethane (mg/L) <0.001 <0.001 1,2-Dichloroethane (mg/L) <0.001 <0.001 1,2-Trichloroethane (mg/L) <0.001 <0.001 1,1,2-Trichloroethane (mg/L) <0.001 <0.001 1,1,2-Trichloroethane (mg/L) <0.001 <0.001 1,1,2-Trichloroethane (mg/L) <0.001 <0.001 Methylene chloride (mg/L) <0.001 <0.001 Methylene chloride (mg/L) <0.001 <0.001 1,1,2-Trichloroethane (mg/L) <0.001 <0.001 2,50 <2.5 2,50 <2.5	A. ORGANIC PARAMETERS		
Tetrachloroethene (mg/L) <0.001		(<i>mg/L</i>)	(mg/L)
Toiluene (mg/L) 0.010 0.014 Ethylbenzene (mg/L) 0.065 0.080 Xylenes, Total (mg/L) 0.068 0.083 Vinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.001	Trichloroethene (mg/L)		<0.001
Ethylbenzene (mg/L) 0.065 0.080 Xylenes, Total (mg/L) 0.068 0.083 Vinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.001	Tetrachloroethene (mg/L)	<0.001	<0.001
Xylenes, Total (mg/L) 0.068 0.083 Vinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.001	Toluene (mg/L)		
Xylenes, Total (mg/L) 0.068 0.083 Vinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.050	Ethylbenzene (mg/L)	0.065	0.080
Vinyl chloride (mg/L) 0.033 0.100 1,1-Dichloroethene (mg/L) <0.001		0.068	0.083
1,1-Dichloroethene (mg/L) <0.001	Vinyl chloride (mg/L)	0.033	0.100
Tetrahydrofuran (mg/L) <0.050	1,1-Dichloroethene (mg/L)	<0.001	<0.001
1.2-Dichloroethene ^[1] (mq/L) 0.012 0.039 1.2-Dichloroethane (mg/L) <0.001	Tetrahydrofuran (mg/L)	<0.050	0.012
1,2-Dichloroethane (mg/L) <0.001		0.012	0.039
1,1,1-Trichloroethane (mg/L) <0.001	1,2-Dichloroethane (mg/L)		<0.001
1,1,2-Trichloroethane (mg/L) <0.001			<0.001
Methylene chloride (mg/L) <0.001 <0.005 Styrene (mg/L) <0.001			<0.001
Styrene (mg/L) <0.001 <0.001 Alcohols			
Alcohols Ethanol (mg/L) <5.0		<0.001	
Ethanol (mg/L) <5.0			
2-Propanol (Isopropanol) (mg/L) <5.0	Ethanol (mg/L)	<5.0	<2.5
2-Propanol (Isopropanol) (mg/L) <5.0	Methanol (mg/L)	<5.0	<2.5
2-Propanol (Isopropanol) (mg/L) <5.0	2-Butanol (sec-Butanol) (mg/L)	<5.0	<2.5
Acetone (mg/L) <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050		<5.0	
2-Butanone (Methyl Ethyl Ketone) (mg/L) <0.050 <0.025 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) <0.050			
4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) <0.050	Acetone (mg/L)	<0.050	<0.050
Isobutyl Ketone) (mq/L) <0.050 <0.025 Total VOCs ^[2] 0.188 0.328 B. INORGANIC PARAMETERS Metals Copper, Total (mg/L) <0.01	2-Butanone (Methyl Ethyl Ketone) (mg/L)	<0.050	<0.025
Isobutyl Ketone) (mg/L) 0.188 0.328 Total VOCs ^[2] 0.188 0.328 B. INORGANIC PARAMETERS		-0.050	-0.005
Total VOCs ^[2] 0.188 0.328 B. INORGANIC PARAMETERS	Isobutyl Ketone) (mg/L)	<0.050	<0.025
Metals <0.01 <0.04 Copper, Total (mg/L) 7.6 13.0 Iron, Total (mg/L) 7.6 13.0 Lead, Total (mg/L) <0.005		0.188	0.328
Metals <0.01 <0.04 Copper, Total (mg/L) 7.6 13.0 Iron, Total (mg/L) 7.6 13.0 Lead, Total (mg/L) <0.005	B INORGANIC PARAMETERS		
Copper, Total (mg/L) <0.01 <0.04 Iron, Total (mg/L) 7.6 13.0 Lead, Total (mg/L) <0.005			
Iron, Total (mg/L) 7.6 13.0 Lead, Total (mg/L) <0.005		< 0.01	< 0.04
Lead, Total (mg/L) <0.005 <0.013 Nickel, Total (mg/L) <0.05		7.6	13.0
Nickel, Total (mg/L) <0.05 <0.05	Lead, Total (mg/L)	<0.005	< 0.013
	Zinc, Total (mg/L)	< 0.05	<0.02

NOTES:

mg/L = Milligrams per liter unless otherwise noted.

[1] = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

DRAFT

November 2016

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	11/3/2016	11/15/2016
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001 <0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001 <0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (ma/L)	5.000	<0.001	<0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			•
Acetone (mg/L)	35.0	< 0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	~ ~	-0.050	-0.050
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0	0
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (ɑ/dav) ^[3]	15.8 g/day	<0.01 mg/l or <1.88 g/day	<0.01 mg/l or <1.88 g/day
Iron, Total (mg/l)	5.0	0.11	0.09
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.94 g/day	<0.005 mg/l or <0.94 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.4 g/day	<0.05 mg/l or <9.4 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (μg/L)	NL	<0.2 <1	<0.2 NS
pH (s.u.)	6.0 - 9.0 s.u.	6.84	6.82
Total Suspended Solids (mg/L)	30	<1	<1
Dioxins (pg/L)	NL NL	NS	NS
Furans (pg/L)	NL	NS	NS
NOTES:		110	110

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

December 2016

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	12/1/2016	12/15/2016
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001 <0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001 <0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1,2-Dichloroethene ^[1] (ma/L)	5.000	<0.001	<0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	< 0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	< 0.050	< 0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0	0
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3] Iron, Total (mg/l)	15.8 g/day 5.0	<0.01 mg/l or <1.88 g/day 0.09	<0.01 mg/l or <1.88 g/day 0.25
Lead, Total (g/day) ^[3]	3.2 g/day	<pre><0.03</pre> <0.005 mg/l or <0.94 g/day	<0.25 <p><0.005 mg/l or <0.94 g/day</p>
		<0.05	
Nickel, Total (mg/l)	0.5		<0.05
Zinc, Total (g/day) ^[3] OTHER	40.3 g/day	<0.05 mg/l or <9.39 g/day	<0.05 mg/l or <9.39 g/day
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (µg/L)	NL	<0.2 <1	<0.2 NS
pH (s.u.)	6.0 - 9.0 s.u.	6.86	6.73
Total Suspended Solids (mg/L)	<u>0.0 - 9.0 s.u.</u> 30	0.80 1	0.73
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)		NS	NS
NOTES:	NL	- ING	6/1

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

January 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates	
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	1/4/2017	1/19/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(m <u>g</u> /L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001 <0.001 <0.050	<0.001
1,1-Dichloroethene (mg/L)	0.058 0.500	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.001 <0.001 <0.050
1,2-Dichloroethene ^[1] (ma/L)	5.000	<0.001	<0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)	2.0	-0.000	<0:030
Total VOCs ^[2]		0	0
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/day) ^[3] Iron, Total (mg/l)	15.8 g/day 5.0	<0.01 mg/l or <1.98 g/day 0.16	<0.01 mg/l or <1.98 g/day 0.11
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.99 g/day	<0.005 mg/l or <0.99 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.88 g/day	<0.05 mg/l or <9.88 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (µg/L)	NL	<1	NS
pH (s.u.)	6.0 - 9.0 s.u.	6.71	6.75
Total Suspended Solids (mg/L)	30	<1	2
Dioxins (pg/L)	NL	<36	NS
Furans (pg/L)	NL	<51	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

February 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	2/2/2017	2/16/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500 4.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	< 0.001
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	<0.001	<0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols		0.000	
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	10.0	-0.0	-0.0
Acetone (mg/L)	35.0	<0.050	< 0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl		-0.000	-0.000
Isobutyl Ketone) (mg/L)	2.0	< 0.050	<0.050
Total VOCs ^[2]		0	0
		Ŭ	U
B. INORGANIC PARAMETERS			_
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (g/dav) ^[3]	15.8 g/day	<0.01 mg/l or <2.05 g/day	<0.01 mg/l or <2.05 g/day
Iron, Total (mg/l)	5.0	0.61	0.11
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.03 g/day	<0.005 mg/l or <1.03 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <10.25 g/day	<0.05 mg/l or <10.25 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2
Total PCBs (µg/L)	NL	NS	<0.2 NS
pH (s.u.)	6.0 - 9.0 s.u.	6.71	6.71
Total Suspended Solids (mg/L)	30	1	<1
Dioxins (pg/L)	NL	ŃS	NS
Furans (pg/L)		NS	NS
NOTES:			110

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

March 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates	
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	3/2/2017	3/16/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	<0.001 <0.001 <0.050
1,1-Dichloroethene (mg/L)	0.058 0.500	<0.001 <0.050	<0.001
Tetrahydrofuran (mg/L)	0.500		<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.001	0.001
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones	1010		
Acetone (ma/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.001	0.001
B. INORGANIC PARAMETERS	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper, Total (q/day) ^[3]	15.8 g/day	<0.01 mg/l or <2.08 g/day	<0.01 mg/l or <2.08 g/day
ron, Total (mg/l)	13.8 g/uay	0.14	0.20
	5.0		
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.04 g/day	<0.005 mg/l or <1.04 g/day
Nickel, Total (mg/l)	0.5	< 0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <10.38 g/day	<0.05 mg/l or <10.38 g/day
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2 <1	<0.2
Total PCBs (µg/L)	NL	<1	NS
oH (s.u.)	6.0 - 9.0 s.u.	6.69	6.77
Total Suspended Solids (mg/L)	30	4	<1
Dioxins (pg/L)	NL	NS	NS
		NS	NS

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

April 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	4/4/2017	4/20/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	<0.001	0.012 <0.001 <0.050
1,1-Dichloroethene (mg/L)	0.058	<0.001 <0.050	<0.001
Tetrahydrofuran (mg/L)	0.500		<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.002	0.008
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (ma/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.002	0.02
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
<u>Copper, Total (g/dav)^[3]</u> Iron, Total (mg/l)	15.8 g/day 5.0	<0.01 mg/l or <2.4 g/day 0.14	<0.01 mg/l or <2.4 g/day <0.05
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.2 g/day	<0.005 mg/l or <1.2 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <11.98 g/day	
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2 <1	<0.2
Total PCBs (µg/L)	NL	<1	NS
pH(su)	6.0 - 9.0 s.u.	6.75	6.81
Total Suspended Solids (mg/L)	30	<1	2 NS
Dioxins (pg/L)	NL	<77	NS
Furans (pg/L)	NL	<67	NS
NOTES:			

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

May 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	5/3/2017	5/16/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	<0.001	<0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	0.010	0.012 <0.001 <0.050
1,1-Dichloroethene (mg/L)	0.058 0.500	<0.001 <0.050	<0.001
Tetrahydrofuran (mg/L)	0.500		<0.050
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.009	0.009
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (ma/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl			
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050
Total VOCs ^[2]		0.019	0.021
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
<u>Copper, Total (g/dav)^[3]</u> Iron, Total (mg/l)	15.8 g/day 5.0	0.02 mg/l or 5.18 g/day <0.05	<0.01 mg/l or <2.59 g/day <0.05
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.29 g/day	<0.005 mg/l or <1.29 g/day
Nickel, Total (mg/l)	0.5	<0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <12.94 g/day	
OTHER	40.3 g/uay		<0.03 mg/101 < 12.94 g/day
Hydrogen Peroxide (mg/L)	1.0	<0.2 <1	<0.2
Total PCBs (µg/L)	NL	<1	NS
pH (s.u.)	6.0 - 9.0 s.u.	6.74	6.73
Total Suspended Solids (mg/L)	30	1	<1
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS
NOTES:		•	

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

June 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample	e Dates
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	6/1/2017	6/15/2017
A. ORGANIC PARAMETERS			
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)
Trichloroethene (mg/L)	0.973	<0.001	<0.001
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001
Toluene (mg/L)	4.000	< 0.001	< 0.001
Ethylbenzene (mg/L)	1.000	<0.001	<0.001
Xylenes, Total (mg/L)	0.500	<0.001	<0.001
Vinyl chloride (mg/L)	4.500	0.010	0.003
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001 <0.050
Tetrahydrofuran (mg/L)	0.500	<0.050 0.011	<0.050
1.2-Dichloroethene ^[1] (mg/L)	5.000	0.011	0.007
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001
Methylene chloride (mg/L)	15.000	<0.001	<0.001
Styrene (mg/L)	0.500	<0.001	<0.001
Alcohols			
Ethanol (mg/L)	20.0	<5.0	<5.0
Methanol (mg/L)	10.0	<5.0	<5.0
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0
Ketones			
Acetone (mg/L)	35.0	<0.050	<0.050
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050
4-Methyl-2-pentanone (Methyl	2.0	<0.050	<0.050
Isobutyl Ketone) (mg/L)	2.0		
Total VOCs ^[2]		0.021	0.010
B. INORGANIC PARAMETERS			
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)
Copper_Total (q/day) ^[3] Iron, Total (mg/l)	15.8 g/day 5.0	<0.01 mg/l or< 4.53 g/day <0.05	<0.01 mg/l or <2.26 g/day 0.24
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <1.13 g/day	<0.005 mg/l or <1.13 g/day
Nickel, Total (mg/l)	0.5	< 0.05	<0.05
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <11.32 g/day	
OTHER			
Hydrogen Peroxide (mg/L)	1.0	<0.2 <1	<0.2 NS
Total PCBs (µg/L)	ŇĹ	<1	
pH (s.u.)	6.0 - 9.0 s.u.	6.78	6.68
Total Suspended Solids (mg/L)	30	<1	<1
Dioxins (pg/L)	NL	NS	NS
Furans (pg/L)	NL	NS	NS
NOTES:			

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

July 2017

SRSNE HCTS - Effluent Results

Parameter/ Concentration (mg/L) Discharge Limits T/4/2017 T/18/2017 A. ORGANIC PARAMETERS Volatile Organic Compounds (mg/L) (mg/L) (mg/L) (mg/L) Trichicroethere (mg/L) 0.973 <0.001 <0.001 <0.001 Tetrachicroethere (mg/L) 0.973 <0.001 <0.001 <0.001 Totelicroethere (mg/L) 0.106 <0.001 <0.001 <0.001 Totelicroethere (mg/L) 0.500 <0.001 <0.001 <0.001 Vind choride (mg/L) 0.550 <0.003 0.002 <0.001 <0.001 Yund choride (mg/L) 0.550 <0.003 <0.002 <0.003 <0.002 1,1-Dichicroethare (mg/L) 0.550 <0.001 <0.001 <0.001 <0.001 1,2-Dichicroethare (mg/L) 0.250 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1,1,1-Trichicroethare (mg/L) 0.500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		Substantive	Sample Dates			
Volatile Organic Compounds (mg/L) (mg/L) <th>Parameter/ Concentration (mg/L)</th> <th>Requirement</th> <th>7/4/2017</th> <th colspan="3">7/18/2017</th>	Parameter/ Concentration (mg/L)	Requirement	7/4/2017	7/18/2017		
Trichloroethene (mg/L) 0.973 <0.001 <0.001 Totachloroethene (mg/L) 0.006 <0.001						
Tetrachloroethene (mg/L) 0.106 <0.001 <0.001 Ethylbenzene (mg/L) 4.000 <0.001			(mg/L)	(mg/L)		
Toluene (mg/L) 4.000 <0.001			<0.001	<0.001		
Ethylberzene (mg/L) 1.000 <0.001			<0.001	<0.001		
Xylenes, Total (mg/L) 0.500 <0.001 <0.001 Vinyl chloride (mg/L) 4.500 0.003 0.002 1-Dichloroethene (mg/L) 0.058 <0.001			<0.001	<0.001		
Viny choride (mg/L) 4.500 0.003 0.002 1,1-Dichloroethene (mg/L) 0.058 <0.001		1.000		<0.001		
1.1-Dichloroethene (mg/L) 0.058 <0.001 <0.001 Tetrahydrofuran (mg/L) 0.500 <0.050		0.500				
Tetrahydrofuran (mg/L) 0.500 <0.050 <0.050 1.2-Dichloroethane (mg/L) 5.000 0.009 0.008 1.2-Dichloroethane (mg/L) 0.250 <0.001		4.500	0.003	0.002		
Tetrahydrofuran (mg/L) 0.500 <0.050 <0.050 1.2-Dichloroethane (mg/L) 5.000 0.009 0.008 1.2-Dichloroethane (mg/L) 0.250 <0.001	1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001		
1.2-Dichloroethane ⁽¹¹⁾ (mg/L) 5.000 0.009 0.008 1.2-Dichloroethane (mg/L) 0.250 <0.001	Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050		
1,2-Dichloroethane (mg/L) 0.250 <0.001	1.2-Dichloroethene ^[1] (mg/L)	5.000				
1,1.2-Trichloroethane (mg/L) 0.250 <0.001	1,2-Dichloroethane (mg/L)					
Methylene chloride (mg/L) 15.000 <0.001 <0.001 Styrene (mg/L) 0.500 <0.001		4.000	<0.001	<0.001		
Styrene (mg/L) 0.500 <0.001 <0.001 Alcohols 0 0 0 0 Ethanol (mg/L) 20.0 <5.0			<0.001	<0.001		
Aicohols 20.0 <5.0 <5.0 Ethanol (mg/L) 10.0 <5.0						
Ethanol (mg/L) 20.0 <5.0 <5.0 Methanol (mg/L) 30.0 <5.0		0.500	<0.001	<0.001		
Methanol (mg/L) 10.0 <5.0 <5.0 2-Butanol (sec-Butanol) (mg/L) 30.0 <5.0						
2-Butanol (sec-Butanol) (mg/L) 30.0 <5.0 <5.0 2-Propanol (isopropanol) (mg/L) 10.0 <5.0			<5.0			
2-Propanol (Isopropanol) (mg/L) 10.0 <5.0 <5.0 Ketones	Methanol (mg/L)		<5.0	<5.0		
2-Propanol (Isopropanol) (mg/L) 10.0 <5.0 <5.0 Ketones			<5.0	<5.0		
Acetone (mg/L) 35.0 <0.050 <0.050 2-Butanone (Methyl Ethyl Ketone) (mg/L) 10.0 <0.050		10.0	<5.0	<5.0		
2-Butanone (Methyl Ethyl Ketone) (mg/L) 10.0 <0.050 <0.050 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) 2.0 <0.050						
4-Methyl-2-pentanone (Methyl Isobutyl Ketone) (mg/L) 2.0 <0.050 <0.050 Total VOCs ^[2] 0.012 0.010 B. INORGANIC PARAMETERS Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Copper, Total (g/day) ^[3] 15.8 g/day <0.01 mg/l or <2.1 g/day <0.01 mg/l or <2.1 g/day Iron, Total (mg/l) 5.0 <0.05 0.08 Lead, Total (g/day) ^[3] 3.2 g/day <0.05 mg/l or <1.05 g/day <0.05 mg/l or <1.05 g/day Nickel, Total (mg/l) 0.5 <0.05 <0.05 <0.05 Zinc, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <1.05 g/day <0.05 mg/l or <10.51 g/day Vickel, Total (mg/l) 0.5 <0.05 <0.05 <0.05 Zinc, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <10.51 g/day <0.05 mg/l or <10.51 g/day Vickel, Total (mg/l) 1.0 <0.2 <0.2 <0.2 <0.2 Didd 0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 Didd 0.1 <0.2 <0.2 <0.2	Acetone (mg/L)		<0.050	<0.050		
Isobutyl Ketone) (mg/L) Z.0 <0.050 <0.050 Total VOCs ^[2] 0.012 0.010 B.INORGANIC PARAMETERS (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Copper, Total (g/day) ^[3] 15.8 g/day <0.01 mg/l or <2.1 g/day		10.0	<0.050	<0.050		
Isobutyl Ketone) (mg/L) 0.012 0.010 Total VOCs ^[2] 0.012 0.010 B.INORGANIC PARAMETERS (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Copper, Total (g/day) ^[3] 15.8 g/day <0.01 mg/l or <2.1 g/day		2.0	<0.050	<0.050		
B. INORGANIC PARAMETERS Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Copper, Total (g/day) ^[3] 15.8 g/day <0.01 mg/l or <2.1 g/day		2.0		<0.030		
Metals (mg/L) or (g/day) (mg/L) or (g/day) (mg/L) or (g/day) Copper, Total $(q/day)^{[3]}$ 15.8 g/day <0.01 mg/l or <2.1 g/day	Total VOCs ^[2]		0.012	0.010		
Copper, Total (g/day) ^[3] 15.8 g/day <0.01 mg/l or <2.1 g/day <0.01 mg/l or <2.1 g/day Iron, Total (mg/l) 5.0 <0.05	B. INORGANIC PARAMETERS					
Iron, Total (mg/l) 5.0 <0.05 0.08 Lead, Total (g/day) ^[3] 3.2 g/day <0.005 mg/l or <1.05 g/day			(mg/L) or (g/day)	(mg/L) or (g/day)		
Lead, Total (g/day) ^[5] 3.2 g/day <0.005 mg/l or <1.05 g/day <0.005 mg/l or <1.05 g/day Nickel, Total (mg/l) 0.5 <0.05	Copper, Total (q/day) ^[3] Iron, Total (mg/l)		<0.01 mg/l or <2.1 g/day <0.05	<0.01 mg/l or <2.1 g/day 0.08		
Nickel, Total (mg/l) 0.5 <0.05 <0.05 Zinc, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <10.51 g/day			<0.005 mg/l or <1.05 g/day	<0.005 mg/l or <1.05 g/day		
Zinc, Total (g/day) ^[3] 40.3 g/day <0.05 mg/l or <10.51 g/day <0.05 mg/l or <10.51 g/day OTHER		0.5				
OTHER I.0 <0.2 <0.2 Hydrogen Peroxide (mg/L) I.0 <0.2	Zipa, Total $(a/day)^{[3]}$					
NL <1 NS pH (s.u.) 6.0 - 9.0 s.u. 6.57 7.40 Total Suspended Solids (mg/L) 30 <1	OTHER					
NL <1 NS pH (s.u.) 6.0 - 9.0 s.u. 6.57 7.40 Total Suspended Solids (mg/L) 30 <1		1.0	<0.2	<0.2		
Total Suspended Solids (mg/L) 30 <1 1 Dioxins (pg/L) NL <37	Total PCBs (µg/L)	NL	<1	NS		
Total Suspended Solids (mg/L) 30 <1 1 Dioxins (pg/L) NL <37	pH (s.u.)					
Dioxins (pg/L) NL <37 NS			<1	1		
Furans (pg/L) NL <67 NS		NL		NS		
	Furans (pg/L)	NL	<67	NS		

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

August 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates			
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	8/2/2017	8/15/2017		
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	0.973	<0.001	<0.001		
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001		
Toluene (mg/L)	4.000	<0.001	<0.001		
Ethylbenzene (mg/L)	1.000	<0.001	<0.001		
Xylenes, Total (mg/L)	0.500 4.500	<0.001	<0.001		
Vinyl chloride (mg/L)	4.500	<0.001	< <u>0.001</u> <0.001		
1,1-Dichloroethene (mg/L)	0.058	<0.001	< 0.001		
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050		
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.009	0.008		
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001		
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001		
1,1,2-Trichloroethane (mg/L)	0.250	<0.001	<0.001		
Methylene chloride (mg/L)	15.000	<0.001	<0.001		
Styrene (mg/L)	0.500	<0.001	<0.001		
Alcohols					
Ethanol (mg/L)	20.0	<5.0	<5.0		
Methanol (mg/L)	10.0	<5.0	<5.0		
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0	<5.0		
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	<5.0		
Ketones					
Acetone (mg/L)	35.0	<0.050	<0.050		
2-Butanone (Methyl Ethyl Ketone) (mg/L)	10.0	<0.050	<0.050		
4-Methyl-2-pentanone (Methyl					
Isobutyl Ketone) (mg/L)	2.0	<0.050	<0.050		
Total VOCs ^[2]		0.009	0.008		
B. INORGANIC PARAMETERS					
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)		
Copper. Total (g/day) ^[3]	15.8 g/day	<0.01 mg/l or <1.97 g/day	<0.01 mg/l or <1.97 g/day		
Iron, Total (mg/l)	5.0	0.06	0.07		
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.98 g/day	<0.005 mg/l or <0.98 g/day		
Nickel, Total (mg/l)	0.5	<0.05	<0.05		
Zinc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.84 g/day	<0.05 mg/l or <9.84 g/day		
OTHER					
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2		
Total PCBs (µg/L)	NL	-1	NS 7.10		
	6.0 - 9.0 s.u.	7.19 1	7.10		
Total Suspended Solids (mg/L)	30		<1		
Dioxins (pg/L)	NL	NS	NS		
Furans (pg/L)	NL	NS	NS		
NOTES:		·	•		

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

September 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates			
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	9/1/2017	9/14/2017		
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	0.973	<0.001	<0.001		
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001		
Toluene (mg/L)	4.000	<0.001	<0.001		
Ethylbenzene (mg/L)	1.000	<0.001 <0.001	<0.001 <0.001		
Xylenes, Total (mg/L)	0.500	<0.001	< 0.001		
Vinyl chloride (mg/L)	4.500	<0.001	<0.001		
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001		
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.050		
1,2-Dichloroethene ^[1] (mg/L)	5.000	0.008	0.008		
1,2-Dichloroethane (mg/L)	0.250	<0.001	<0.001		
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001		
1,1,2-Trichloroethane (mg/L)	0,250	<0.001	<0.001		
Methylene chloride (mg/L)	15.000	<0.001	<0.001		
Styrene (mg/L)	0.500	<0.001	<0.001		
Alcohols	0.000	-0.001	-0.001		
Ethanol (mg/L)	20.0	<5.0	<5.0		
Methanol (mg/L)	10.0	-0.0 <5.0	-5.0 <5.0		
2-Butanol (sec-Butanol) (mg/L)	30.0	<5.0 <5.0	<5.0 <5.0		
2-Propanol (Isopropanol) (mg/L)	<u> </u>	< <u>5.0</u> <5.0	< <u>-</u> 5.0		
Ketones	10.0	<5.0	<5.0		
Acetone (mg/L)	35.0	<0.050	<0.050		
2-Butanone (Methyl Ethyl Ketone) (mg/L)					
	10.0	<0.050	<0.050		
4-Methyl-2-pentanone (Methyl	2.0	< 0.050	<0.050		
Isobutyl Ketone) (mg/L)					
Total VOCs ^[2]		0.008	0.008		
B. INORGANIC PARAMETERS					
Metals	(mg/L) or (g/day)	(mg/L) or (g/day)	(mg/L) or (g/day)		
Copper, Total (q/dav) ^[3]	15.8 g/day	<0.01 mg/l or <1.94 g/day	<0.01 mg/l or <1.94 g/day		
Iron, Total (mg/l)	5.0	<0.05	<0.05		
Lead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.97 g/day	<0.005 mg/l or <0.97 g/day		
Nickel, Total (mg/l)	0.5	<0.05	<0.05		
$7' = 7 + 1 + (1 + 1)^{[3]}$	40.3 g/day	<0.05 	<0.05 <0.05 mg/l or <9.7 g/day		
Zinc, Total (g/day) ^[3] OTHER	40.5 g/uay		<0.03 mg/101 <9.7 g/day		
Hydrogen Peroxide (mg/L)	1.0	<0.2	<0.2		
Total PCBs (µg/L)	I.V NL	<u> </u>	NS		
рН (s.u.)	6.0 - 9.0 s.u.		6.91		
Total Suspended Solids (mg/L)	<u>6.0 - 9.0 S.u.</u> 30	7.02 6	0.91 F		
		ы NS	5 NS		
Dioxins (pg/L)	NL				
Furans (pg/L) NOTES:	NL	NS	NS		

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

DRAFT

October 2017

SRSNE HCTS - Effluent Results

	Substantive	Sample Dates			
Parameter/ Concentration (mg/L)	Requirement Discharge Limits	10/3/2017	10/19/2017		
A. ORGANIC PARAMETERS					
Volatile Organic Compounds	(mg/L)	(mg/L)	(mg/L)		
Trichloroethene (mg/L)	0.973	<0.001	<0.001		
Tetrachloroethene (mg/L)	0.106	<0.001	<0.001		
Toluene (mg/L)	4.000	<0.001	<0.001		
Ethylbenzene (mg/L)	1.000	<0.001	<0.001		
Kylenes, Total (mg/L)	0.500	<0.001	<0.001		
/inyl chloride (mg/L)	4.500	<0.001	<0.0016		
1,1-Dichloroethene (mg/L)	0.058	<0.001	<0.001		
Tetrahydrofuran (mg/L)	0.500	<0.050	<0.005		
1.2-Dichloroethene ^[1] (ma/L)	5.000	0.008	0.011		
1,2-Dichloroethane (mg/L)	0.250	<0.001	< 0.001		
1,1,1-Trichloroethane (mg/L)	4.000	<0.001	<0.001		
1,1,2-Trichloroethane (mg/L)	0,250	<0.001	<0.001		
Methylene chloride (mg/L)	15.000	<0.001	<0.005		
Styrene (mg/L)	0.500	<0.001	<0.001		
Alcohols	0.000	-0.001	-0.001		
Ethanol (mg/L)	20.0	<5.0	<25		
Aethanol (mg/L)	10.0	<5.0	<25		
-Butanol (sec-Butanol) (mg/L)	30.0	<u><5.0</u>	<2.5 <2.5 <2.5 <2.5 <2.5 <2.5		
2-Propanol (Isopropanol) (mg/L)	10.0	<5.0	~2.5		
Ketones	10.0	-5.0	~2.0		
Acetone (mg/L)	35.0	<0.050	<0.050		
2-Butanone (Methyl Ethyl Ketone) (mg/L)	<u> </u>	<0.050	<0.030		
4-Methyl-2-pentanone (Methyl	10:0	~0.030	~0.025		
	2.0	<0.050	<0.025		
sobutyl Ketone) (mg/L) Fotal VOCs ^[2]		0.008	0.011		
		0.000	0.011		
B. INORGANIC PARAMETERS			-		
Metals	(mg/L) or (g/day)	(<i>mg/L</i>) or (g/day) <0.01 mg/l or <1.87 g/day	(mg/L) or (g/day)		
Copper, Total (q/dav) ^[3]	15.8 g/day		<0.04 mg/l or <7.46 g/day		
ron, Total (mg/l)	5.0	<0.05	<0.10		
₋ead, Total (g/day) ^[3]	3.2 g/day	<0.005 mg/l or <0.93 g/day	<0.013 mg/l or <2.42 g/da		
lickel, Total (mg/l)	0.5	<0.05	<0.05		
/inc, Total (g/day) ^[3]	40.3 g/day	<0.05 mg/l or <9.33 g/day	<0.02 mg/l or <3.73 g/day		
DTHER					
lydrogen Peroxide (mg/L)	1.0	<0.2 <1	<0.2		
Γotal PCBs (μg/L)	NL	<1	<0.2 NS		
oH (s.u.)	6.0 - 9.0 s.u.	6.84	6.89		
Total Suspended Solids (mg/L)	30	<1	<5		
Dioxins (pg/L)	ŇĹ	<11.3	NŠ		
Furans (pg/L)		<14.7	NS		
IOTES:					

NOTES:

1 = 1,2-Dichloroethene represents total cis and trans 1,2-Dichloroethene.

2 = Total VOCs is the total sum of detected compounds (mg/l)

3 = Inorganic results reported in grams per day are based on average monthly effluent flow

NL = no limit specified.

NS = not sampled (total PCBs analysis required monthly; dioxin/furan analysis required

quarterly).

mg/L = Milligrams per liter

µg/L = micrograms per liter

pg/L = picograms per liter

g/day = grams per day

TABLE 5

31 October 2016 through 30 October 2017

DRAFT

Influent and Effluent GWCT System Flow Data Summary

Influent Flow Summary (NCTRA 1 and 2 Combined)				NCTRA-1 NCTRA-2 Flow Summary I Flow Summary			Effluent Flow Summary (NTCRA 1 and 2 Combined)			
Date	Total Cumulative Flow (gallons)	Total Flow Since Previous (gallons)	Avg. Rate Since Prev. (GPM)	Avg. Rate Since Prev. (GPM)	Total Cumulative Flow (gallons)	Total Flow Since Previous (gallons)	Avg. Rate Since Prev. (GPM)	Total Cumulative Flow (gallons)	Total Flow Since Previous (gallons)	Avg. Rate Since Prev. (GPM)
10/31/2016	307,057,000				180,188,310			324,007,000		
11/30/2016	308,480,000	1,423,000	32.9	1.3	181,555,610	1,367,300	31.7	325,497,000	1,490,000	34.5
12/30/2016	309,961,000	1,481,000	34.3	2.6	182,925,210	1,369,600	31.7	326,985,000	1,488,000	34.4
1/31/2017	311,607,000	1,646,000	35.7	3.9	184,391,210	1,466,000	31.8	328,655,000	1,670,000	36.2
2/28/2017	313,098,000	1,491,000	37.0	4.6	185,697,710	1,306,500	32.4	330,172,000	1,517,000	37.6
3/31/2017	314,774,000	1,676,000	37.5	5.7	187,119,689	1,421,979	31.9	331,872,000	1,700,000	38.1
4/28/2017	316,544,000	1,770,000	43.9	12.9	188,367,610	1,247,921	31.0	333,644,000	1,772,000	43.9
5/31/2017	318,730,000	2,186,000	46.0	14.1	189,883,710	1,516,100	31.9	335,900,000	2,256,000	47.5
6/30/2017	320,464,000	1,734,000	40.1	8.4	191,254,600	1,370,890	31.7	337,694,000	1,794,000	41.5
7/31/2017	322,170,000	1,706,000	38.2	7.3	192,636,910	1,382,310	31.0	339,415,000	1,721,000	38.6
8/31/2017	323,712,000	1,542,000	34.5	3.4	194,029,210	1,392,300	31.2	341,027,000	1,612,000	36.1
9/29/2017	325,165,000	1,453,000	34.8	2.8	195,364,510	1,335,300	32.0	342,514,000	1,487,000	35.6
10/31/2017	326,723,000	1,558,000	33.8	2.8	196,795,210	1,430,700	31.0	344,091,000	1,577,000	34.2
Yearly Averages ⁽¹⁾			37.4	5.8			31.6			38.2
Cumulative Totals:	326,723,000	19,666,000			196,795,210	16,606,900		344,091,000	20,084,000	

Notes:

1: The average yearly flows are calculated by dividing the total cumulative annual flow by the duration in minutes.

31 October 2016 through 30 October 2017